<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
</head>
<body>
<div dir="ltr">
<div dir="ltr"><br>
</div>
<div dir="ltr">Dear all, </div>
<div dir="ltr"><br>
</div>
<div dir="ltr">Caroline Terry's talk in the logic seminar tomorrow, "<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; text-decoration: none; display: inline !important; background-color: rgb(255, 255, 255);">On
the growth of regular partitions in 3-uniform hypergraphs" (see below) </span>may be of interest to people on this list. </div>
<div id="mail-editor-reference-message-container" class="ms-outlook-mobile-reference-message">
<div dir="ltr">
<div dir="ltr"><br>
</div>
<div dir="ltr">MM</div>
<div dir="ltr"><br>
</div>
<div dir="ltr"><br>
</div>
<div id="mail-editor-reference-message-container" class="ms-outlook-mobile-reference-message">
<div dir="ltr">
<div id="mail-editor-reference-message-container" class="ms-outlook-mobile-reference-message">
<div dir="ltr">
<div dir="ltr">-------------------------------------</div>
<div dir="ltr"><br>
</div>
<div dir="ltr">Logic Seminar </div>
<div dir="ltr"><br>
</div>
<div dir="ltr">Speaker: Caroline Terry (UIC)</div>
<div dir="ltr"><br>
</div>
<div dir="ltr">Location: Eckhart 206, 5-6pm</div>
<div dir="ltr"><br>
</div>
<div dir="ltr">
<div class="elementToProof" style="font-size:12pt; text-decoration:none; font-family:Aptos,Aptos_EmbeddedFont,Aptos_MSFontService,Calibri,Helvetica,sans-serif">
Title: On the growth of regular partitions in 3-uniform hypergraphs.</div>
<div class="elementToProof" dir="ltr" style="font-size:12pt; text-decoration:none; font-family:Aptos,Aptos_EmbeddedFont,Aptos_MSFontService,Calibri,Helvetica,sans-serif">
<br>
</div>
<div class="elementToProof" style="font-size:12pt; text-decoration:none; font-family:Aptos,Aptos_EmbeddedFont,Aptos_MSFontService,Calibri,Helvetica,sans-serif">
Abstract: Many tools have been developed in combinatorics to study global structure in finite graphs. One such tool is called Szemer'{e}di’s regularity lemma, which gives a structural decomposition for any large finite graph. Beginning with work of Alon-Fischer-Newman,
Lov\'{a}sz-Szegedy, and Malliaris-Shelah, it has been shown over the last 15 years that regularity lemmas can be used to detect structural dichotomies in graphs, and that these dichotomies have deep connections to model theory. One striking example is a dichotomy
in the size of regular partitions, first observed by Alon-Fox-Zhao. Specifically, if a hereditary graph property H has finite VC-dimension, then results of Alon-Fischer-Newman and Lovász-Szegedy imply all graphs in H have regular partitions of size polynomial
in $\eplsilon^{-1}$. On the other hand, if H has infinite VC-dimension, then results of Gowers and Fox-Lov\'{a}sz show there are graphs in $H$ whose smallest $\epsilon$-regular partition have size an exponential tower of height polynomial in $\epsilon^{-1}$.
In this talk, I present several analogous dichotomies in the setting of hereditary properties of 3-uniform hypergraphs. </div>
<span class="elementToProof" dir="ltr" style="font-size:12pt; text-decoration:none; font-family:Aptos,Aptos_EmbeddedFont,Aptos_MSFontService,Calibri,Helvetica,sans-serif"><i><br>
</i></span><br class="Apple-interchange-newline">
<br>
</div>
<div id="mail-editor-reference-message-container" class="ms-outlook-mobile-reference-message" dir="ltr">
<div dir="ltr">
<div id="ms-outlook-mobile-signature" dir="ltr">
<div dir="ltr"></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>