<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-size:small"><div class="gmail_default"><b>When</b>: Monday, July 29th from 11:30am - 12:30pm CT</div><div class="gmail_default"><div><b><br></b></div><div><b>Where</b>: Talk will be given <b><font color="#0000ff">live, in-person</font></b> at<br> TTIC, 6045 S. Kenwood Avenue<br> 5th Floor, <b><u><font color="#000000">Room 530</font></u></b><b><br></b><br><b>Virtually</b>: via <a href="https://us02web.zoom.us/j/82622819147?pwd=ubre2fCUgmj4kuOX20j45v6IwyioJU.1" target="_blank"><b>Zoom</b></a> <br></div><div> </div><b>Who: </b> Kevin Stangl, TTIC <br> <br></div><div class="gmail_default"><div style="border-top:none;border-right:none;border-left:none;border-bottom:2.25pt solid rgb(11,118,159);padding:0in 0in 1pt"></div><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small"><br></b></p><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small">Title: </b> <span style="color:rgb(60,64,67);font-family:Roboto,Arial,sans-serif;font-size:14px;letter-spacing:0.2px;text-align:start">Fairness, Accuracy, and Unreliable Data</span> <span style="font-family:arial,sans-serif;font-size:small"> </span></p></div><div class="gmail_default"><font face="arial, sans-serif"><b>Abstract:</b></font> A theme throughout my thesis is thinking about ways and responses to how a `plain' empirical risk minimization algorithm will be misleading or ineffective because of a train-test distribution mis-match due to biased data, strategic behavior, or adversarial data corruptions. The overarching research goal for these related topics is to provide a crisp mathematical model for each learning scenario that exposes different failure modes and makes trade-offs explicit.<br><br>In my defense, I will survey all of my completed research and dive deeply into two papers, which study a fundamental question in fairness in machine learning, how effectively or ineffectively a range of fairness constraints recover from biased and adversarial corruptions in training data.<div><p><font face="arial, sans-serif"><b>Committee: </b>Avrim Blum (chair), </font>Madhur Tulsiani, Ali Vakilian, and Juba Ziani (Georgia Tech)</p></div></div><br></div><div><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue, Rm 517</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i><br></font></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">773-834-1757</font></i></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Jul 28, 2024 at 4:08 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><b>When</b>: Monday, July 29th from 11:30am - 12:30pm CT</div><div><div><b><br></b></div><div><b>Where</b>: Talk will be given <b><font color="#0000ff">live, in-person</font></b> at<br> TTIC, 6045 S. Kenwood Avenue<br> 5th Floor, <b><u><font color="#000000">Room 530</font></u></b><b><br></b><br><b>Virtually</b>: via <a href="https://us02web.zoom.us/j/82622819147?pwd=ubre2fCUgmj4kuOX20j45v6IwyioJU.1" target="_blank"><b>Zoom</b></a> <br></div><div> </div><b>Who: </b> Kevin Stangl, TTIC <br> <br></div><div><div style="border-top:none;border-right:none;border-left:none;border-bottom:2.25pt solid rgb(11,118,159);padding:0in 0in 1pt"></div><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small"><br></b></p><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small">Title: </b> <span style="color:rgb(60,64,67);font-family:Roboto,Arial,sans-serif;font-size:14px;letter-spacing:0.2px;text-align:start">Fairness, Accuracy, and Unreliable Data</span> <span style="font-family:arial,sans-serif;font-size:small"> </span></p></div><div><font face="arial, sans-serif"><b>Abstract:</b></font> A theme throughout my thesis is thinking about ways and responses to how a `plain' empirical risk minimization algorithm will be misleading or ineffective because of a train-test distribution mis-match due to biased data, strategic behavior, or adversarial data corruptions. The overarching research goal for these related topics is to provide a crisp mathematical model for each learning scenario that exposes different failure modes and makes trade-offs explicit.<br><br>In my defense, I will survey all of my completed research and dive deeply into two papers, which study a fundamental question in fairness in machine learning, how effectively or ineffectively a range of fairness constraints recover from biased and adversarial corruptions in training data.<div><p><font face="arial, sans-serif"><b>Committee: </b>Avrim Blum (chair), </font>Madhur Tulsiani, Ali Vakilian, and Juba Ziani (Georgia Tech)</p></div></div><br></div><div style="font-size:small"><br></div><div style="font-size:small"><br></div><div><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue, Rm 517</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i><br></font></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">773-834-1757</font></i></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Jul 25, 2024 at 12:42 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div style="font-size:small"><div><b>When</b>: Monday, July 29th from 11:30am - 12:30pm CT</div><div><div><b><br></b></div><div><b>Where</b>: Talk will be given <b><font color="#0000ff">live, in-person</font></b> at<br> TTIC, 6045 S. Kenwood Avenue<br> 5th Floor, <b><u><font color="#000000">Room 530</font></u></b><b><br></b><br><b>Virtually</b>: via <a href="https://us02web.zoom.us/j/82622819147?pwd=ubre2fCUgmj4kuOX20j45v6IwyioJU.1" target="_blank"><b>Zoom</b></a> <br></div><div> </div><b>Who: </b> Kevin Stangl, TTIC <br> <br></div><div><div style="border-top:none;border-right:none;border-left:none;border-bottom:2.25pt solid rgb(11,118,159);padding:0in 0in 1pt"></div><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small"><br></b></p><p class="MsoNormal" style="margin:0in 0in 8pt;text-align:justify;line-height:15.6933px;font-size:11pt;font-family:Aptos,sans-serif"><b style="font-family:arial,sans-serif;font-size:small">Title: </b> <span style="color:rgb(60,64,67);font-family:Roboto,Arial,sans-serif;font-size:14px;letter-spacing:0.2px;text-align:start">Fairness, Accuracy, and Unreliable Data</span> <span style="font-family:arial,sans-serif;font-size:small"> </span></p></div><div><font face="arial, sans-serif"><b>Abstract:</b></font> A theme throughout my thesis is thinking about ways and responses to how a `plain' empirical risk minimization algorithm will be misleading or ineffective because of a train-test distribution mis-match due to biased data, strategic behavior, or adversarial data corruptions. The overarching research goal for these related topics is to provide a crisp mathematical model for each learning scenario that exposes different failure modes and makes trade-offs explicit.<br><br>In my defense, I will survey all of my completed research and dive deeply into two papers, which study a fundamental question in fairness in machine learning, how effectively or ineffectively a range of fairness constraints recover from biased and adversarial corruptions in training data.<div><p><font face="arial, sans-serif"><b>Committee: </b>Avrim Blum (chair), </font>Madhur Tulsiani, Ali Vakilian, and Juba Ziani (Georgia Tech)</p><br></div><div><br></div><div><br></div></div></div><div><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue, Rm 517</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i><br></font></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">773-834-1757</font></i></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div>
</blockquote></div></div>
</blockquote></div></div>