<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"></div><div dir="ltr"><br></div><blockquote type="cite"><div dir="ltr"><blockquote type="cite"><div dir="ltr"><div class="WordSection1"><blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
<p class="MsoNormal"><b><span style="font-size:14.0pt;color:black">Mika </span></b><b><span style="font-size:14.0pt">Göös</span></b><o:p></o:p></p>
<p class="MsoNormal"><b><span style="font-size:12.0pt;color:black;background:white">The Swiss Federal Institute of Technology in Lausanne, Switzerland</span></b><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><img width="155" height="227" style="width:1.6145in;height:2.3645in" id="Picture_x0020_1" alt="image001.jpg" src="cid:image001.jpg@01D8D7DA.4E6601E0"></span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><b><span style="font-size:11.0pt;color:black">Tuesday, October 18, 2022 at 3:30pm</span></b><o:p></o:p></p>
<p class="MsoNormal"><b><span style="font-size:11.0pt;color:black;background:yellow">Kent Chemical Laboratory, Room 107</span></b><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><br>
<b><i>TITLE: </i></b> </span><b><span style="font-size:14.0pt">Separations in Proof Complexity and TFNP</span></b><span style="font-size:14.0pt"><br>
</span><span style="font-size:11.0pt"><br>
<b><i>ABSTRACT:</i></b> </span><span style="font-size:12.0pt">It is well-known that Resolution proofs can be efficiently simulated by Sherali-Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot
be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT Resolution) cannot be efficiently simulated by Nullstellensatz (NS).<br>
<br>
These results have consequences for total NP search problems. First, we characterise the classes PPADS, PPAD, SOPL by unary-SA, unary-NS, and Reversible Resolution, respectively. Second, we show that, relative to an oracle, PLS not-subset PPP, SOPL not-subset
PPA, and EOPL not-subset UEOPL. In particular, together with prior work, this gives a complete picture of the black-box relationships between all classical TFNP classes introduced in the 1990s.</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><b><i><span style="font-size:11.0pt">Bio:</span></i></b><span style="font-size:12.0pt;color:black;background:white"> I am an assistant professor at EPFL in the Theory Group. Previously, I was a post-doc at Stanford, Princeton IAS, and
Harvard.</span></p></blockquote></div></div></blockquote><style>@font-face { font-family: Helvetica; }
@font-face { font-family: "Cambria Math"; }
@font-face { font-family: Calibri; }
p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in; font-size: 10pt; font-family: Calibri, sans-serif; }
.MsoChpDefault { font-size: 10pt; }
@page WordSection1 { size: 8.5in 11in; margin: 1in; }
div.WordSection1 { page: WordSection1; }</style></div></blockquote></body></html>