<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-size:small"><div class="gmail_default"><div class="gmail_default"><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif" color="#000000"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b>    </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">    Friday, February 25th at<b> <span style="background-color:rgb(255,255,0)">11:30 am CT</span></b></font></font><br></font></p><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><br></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="color:rgb(0,0,0);vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b>       </font></font>Zoom Virtual Talk (<b><a href="https://uchicagogroup.zoom.us/webinar/register/WN_plBFlRGyR9GEghGRimu_Ug" target="_blank"><font color="#0000ff">register in advance here</font></a></b>)</font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><font color="#000000"><b>Who: </b> </font><font color="#500050">    </font><font color="#000000">    </font></font></font></font><span style="color:rgb(34,34,34)">Kuikui Liu, University of Washington</span></p></div><div><div dir="ltr"><div dir="ltr"><br></div></div></div></div><div class="gmail_default"><br></div><div class="gmail_default"><b style="font-family:arial,sans-serif">Title:</b><span style="font-family:arial,sans-serif">          Spectral Independence: A New Tool to Analyze Markov Chains</span><br></div><div class="gmail_default"><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Abstract: </b>Sampling from high-dimensional probability distributions is a fundamental and challenging problem encountered throughout science and engineering. One of the most popular approaches to tackle such problems is the Markov chain Monte Carlo (MCMC) paradigm. While MCMC algorithms are often simple to implement and widely used in practice, analyzing the fidelity of the generated samples remains a difficult problem.</font></div><div><span style="font-family:arial,sans-serif"><br></span></div><div><span style="font-family:arial,sans-serif">In this talk, I will describe a new technique called "spectral independence" that my collaborators and I developed over the last couple of years to analyze Markov chains. This technique has allowed us to break long-standing barriers and resolve several decades-old open problems in MCMC theory. Our work has opened up numerous connections with other areas of computer science, mathematics, and statistical physics, leading to dozens of new developments as well as exciting new directions of inquiry. I will then discuss how these connections have allowed us to "unify" nearly all major algorithmic paradigms for approximate counting and sampling. Finally, I will conclude with a wide variety of future directions and open problems at the frontier of this research.</span><br></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Bio:</b> Kuikui Liu is a fourth-year PhD student at UW CSE advised by Shayan Oveis Gharan. He completed his undergraduate studies also at the University of Washington in 2017, double majoring in computer science and mathematics. His primary area of expertise is in developing and analyzing algorithms for sampling from high-dimensional probability distributions encountered throughout science and engineering. More broadly, he is interested in algorithmic statistics and the theory of computing. His work has been recognized by a STOC Best Paper Award.</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Host: </b><a href="mailto:madhurt@ttic.edu" target="_blank"><b>Madhur Tulsiani</b></a></font></div><div><br style="color:rgb(80,0,80)"></div></div></div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL  60637</font></i><br></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Feb 25, 2022 at 10:38 AM Mary Marre <<a href="mailto:mmarre@ttic.edu">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><div><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif" color="#000000"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b>    </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">    Friday, February 25th at<b> <span style="background-color:rgb(255,255,0)">11:30 am CT</span></b></font></font><br></font></p><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><br></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="color:rgb(0,0,0);vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b>       </font></font>Zoom Virtual Talk (<b><a href="https://uchicagogroup.zoom.us/webinar/register/WN_plBFlRGyR9GEghGRimu_Ug" target="_blank"><font color="#0000ff">register in advance here</font></a></b>)</font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><font color="#000000"><b>Who: </b> </font><font color="#500050">    </font><font color="#000000">    </font></font></font></font><span style="color:rgb(34,34,34)">Kuikui Liu, University of Washington</span></p></div><div><div dir="ltr"><div dir="ltr"><br></div></div></div></div><div><br></div><div><b style="font-family:arial,sans-serif">Title:</b><span style="font-family:arial,sans-serif">          Spectral Independence: A New Tool to Analyze Markov Chains</span><br></div><div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Abstract: </b>Sampling from high-dimensional probability distributions is a fundamental and challenging problem encountered throughout science and engineering. One of the most popular approaches to tackle such problems is the Markov chain Monte Carlo (MCMC) paradigm. While MCMC algorithms are often simple to implement and widely used in practice, analyzing the fidelity of the generated samples remains a difficult problem.</font></div><div><span style="font-family:arial,sans-serif"><br></span></div><div><span style="font-family:arial,sans-serif">In this talk, I will describe a new technique called "spectral independence" that my collaborators and I developed over the last couple of years to analyze Markov chains. This technique has allowed us to break long-standing barriers and resolve several decades-old open problems in MCMC theory. Our work has opened up numerous connections with other areas of computer science, mathematics, and statistical physics, leading to dozens of new developments as well as exciting new directions of inquiry. I will then discuss how these connections have allowed us to "unify" nearly all major algorithmic paradigms for approximate counting and sampling. Finally, I will conclude with a wide variety of future directions and open problems at the frontier of this research.</span><br></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Bio:</b> Kuikui Liu is a fourth-year PhD student at UW CSE advised by Shayan Oveis Gharan. He completed his undergraduate studies also at the University of Washington in 2017, double majoring in computer science and mathematics. His primary area of expertise is in developing and analyzing algorithms for sampling from high-dimensional probability distributions encountered throughout science and engineering. More broadly, he is interested in algorithmic statistics and the theory of computing. His work has been recognized by a STOC Best Paper Award.</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Host: </b><a href="mailto:madhurt@ttic.edu" target="_blank"><b>Madhur Tulsiani</b></a></font></div><div><br></div><div><br></div><div><br></div></div></div><div><div dir="ltr"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL  60637</font></i><br></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Feb 24, 2022 at 3:10 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><div><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif" color="#000000"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b>    </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">    Friday, February 25th at<b> <span style="background-color:rgb(255,255,0)">11:30 am CT</span></b></font></font><br></font></p><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><br></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="color:rgb(0,0,0);vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b>       </font></font>Zoom Virtual Talk (<b><a href="https://uchicagogroup.zoom.us/webinar/register/WN_plBFlRGyR9GEghGRimu_Ug" target="_blank"><font color="#0000ff">register in advance here</font></a></b>)</font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><font color="#000000"><b>Who: </b> </font><font color="#500050">    </font><font color="#000000">    </font></font></font></font><span style="color:rgb(34,34,34)"><span>Kuikui</span> Liu, University of Washington</span></p></div><div><div dir="ltr"><div dir="ltr"><br></div></div></div></div><div><br></div><div><b style="font-family:arial,sans-serif">Title:</b><span style="font-family:arial,sans-serif">          Spectral Independence: A New Tool to Analyze Markov Chains</span><br></div><div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Abstract: </b>Sampling from high-dimensional probability distributions is a fundamental and challenging problem encountered throughout science and engineering. One of the most popular approaches to tackle such problems is the Markov chain Monte Carlo (MCMC) paradigm. While MCMC algorithms are often simple to implement and widely used in practice, analyzing the fidelity of the generated samples remains a difficult problem.</font></div><div><span style="font-family:arial,sans-serif"><br></span></div><div><span style="font-family:arial,sans-serif">In this talk, I will describe a new technique called "spectral independence" that my collaborators and I developed over the last couple of years to analyze Markov chains. This technique has allowed us to break long-standing barriers and resolve several decades-old open problems in MCMC theory. Our work has opened up numerous connections with other areas of computer science, mathematics, and statistical physics, leading to dozens of new developments as well as exciting new directions of inquiry. I will then discuss how these connections have allowed us to "unify" nearly all major algorithmic paradigms for approximate counting and sampling. Finally, I will conclude with a wide variety of future directions and open problems at the frontier of this research.</span><br></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Bio:</b> <span>Kuikui</span> Liu is a fourth-year PhD student at UW CSE advised by Shayan Oveis Gharan. He completed his undergraduate studies also at the University of Washington in 2017, double majoring in computer science and mathematics. His primary area of expertise is in developing and analyzing algorithms for sampling from high-dimensional probability distributions encountered throughout science and engineering. More broadly, he is interested in algorithmic statistics and the theory of computing. His work has been recognized by a STOC Best Paper Award.</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Host: </b><a href="mailto:madhurt@ttic.edu" target="_blank"><b>Madhur Tulsiani</b></a></font></div><div><br></div><div><br></div><div><br></div></div></div><div><div dir="ltr"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL  60637</font></i><br></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Feb 18, 2022 at 7:09 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div style="font-size:small"><div><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif" color="#000000"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b>    </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">    Friday, February 25th at<b> <span style="background-color:rgb(255,255,0)">11:30 am CT</span></b></font></font><br></font></p><p style="color:rgb(80,0,80);font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><br></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="color:rgb(0,0,0);vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b>       </font></font>Zoom Virtual Talk (<b><a href="https://uchicagogroup.zoom.us/webinar/register/WN_plBFlRGyR9GEghGRimu_Ug" target="_blank"><font color="#0000ff">register in advance here</font></a></b>)</font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;color:rgb(80,0,80);line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><font color="#000000"><b>Who: </b> </font><font color="#500050">    </font><font color="#000000">    </font></font></font></font><span style="color:rgb(34,34,34)">Kuikui Liu, University of Washington</span></p></div><div><div dir="ltr"><div dir="ltr"><br></div></div></div></div><div style="font-size:small"><br></div><div style="font-size:small"><b style="font-family:arial,sans-serif">Title:</b><span style="font-family:arial,sans-serif">          Spectral Independence: A New Tool to Analyze Markov Chains</span><br></div><div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Abstract: </b>Sampling from high-dimensional probability distributions is a fundamental and challenging problem encountered throughout science and engineering. One of the most popular approaches to tackle such problems is the Markov chain Monte Carlo (MCMC) paradigm. While MCMC algorithms are often simple to implement and widely used in practice, analyzing the fidelity of the generated samples remains a difficult problem.</font></div><div><span style="font-family:arial,sans-serif"><br></span></div><div><span style="font-family:arial,sans-serif">In this talk, I will describe a new technique called "spectral independence" that my collaborators and I developed over the last couple of years to analyze Markov chains. This technique has allowed us to break long-standing barriers and resolve several decades-old open problems in MCMC theory. Our work has opened up numerous connections with other areas of computer science, mathematics, and statistical physics, leading to dozens of new developments as well as exciting new directions of inquiry. I will then discuss how these connections have allowed us to "unify" nearly all major algorithmic paradigms for approximate counting and sampling. Finally, I will conclude with a wide variety of future directions and open problems at the frontier of this research.</span><br></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Bio:</b> Kuikui Liu is a fourth-year PhD student at UW CSE advised by Shayan Oveis Gharan. He completed his undergraduate studies also at the University of Washington in 2017, double majoring in computer science and mathematics. His primary area of expertise is in developing and analyzing algorithms for sampling from high-dimensional probability distributions encountered throughout science and engineering. More broadly, he is interested in algorithmic statistics and the theory of computing. His work has been recognized by a STOC Best Paper Award.</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><b>Host: </b><a href="mailto:madhurt@ttic.edu" target="_blank"><b>Madhur Tulsiani</b></a></font></div><div><font face="arial, sans-serif"><br></font></div><div style="font-size:small"><br></div><div style="font-size:small"><br></div></div><div><div dir="ltr"><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif;font-size:x-small">Mary C. Marre</span><br></div><div><div><font face="arial, helvetica, sans-serif" size="1">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6" size="1">6045 S. Kenwood Avenue</font></i></div><div><font size="1"><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL  60637</font></i><br></font></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif" size="1">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div>
</blockquote></div></div>
</blockquote></div></div>
</blockquote></div></div>