<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div style="-webkit-text-size-adjust: auto;">The probability seminar this week, given by Bob Hough from Stony Brook, may also be of interest to some on this list. The talk will be <span dir="ltr">at 2:30 p.m. on Friday, Jan. 28</span> in Eckhart 202, and will be simultaneously broadcast on zoom, using this link:</div><div style="-webkit-text-size-adjust: auto;"><br></div><div style="-webkit-text-size-adjust: auto;"><a href="https://uchicago.zoom.us/j/5478153078?pwd=Y09DRndpVVE2V0tycWhlMUFvTUVmdz09" target="_blank">https://uchicago.zoom.us/j/5478153078?pwd=Y09DRndpVVE2V0tycWhlMUFvTUVmdz09</a> <br></div><div style="-webkit-text-size-adjust: auto;"><br></div><div style="-webkit-text-size-adjust: auto;"><i>Title: </i><b>Covering systems of congruences </b></div><div style="-webkit-text-size-adjust: auto;"><p><i>Abstract: </i>A distinct covering system of congruences is a list of congruences a<sub>i</sub> ≅ m<sub>i</sub>, for i = 1, 2, ..., k whose union is the integers. Erdős asked if the least modulus m<sub>1</sub> of a distinct covering system of congruences can be arbitrarily large (the minimum modulus problem for covering systems, $1000) and if there exist distinct covering systems of congruences all of whose moduli are odd (the odd problem for covering systems, $25). I'll discuss my proof of a negative answer to the minimum modulus problem, and a quantitative refinement with Pace Nielsen that proves that any distinct covering system of congruences has a modulus divisible by either 2 or 3. The proofs use the probabilistic method. Time permitting, I may briefly discuss a reformulation of our method due to Balister, Bollobás, Morris, Sahasrabudhe and Tiba which solves a conjecture of Shinzel (any distinct covering system of congruences has one modulus that divides another) and gives a negative answer to the square-free version of the odd problem.</p></div></body></html>