<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-size:small"><div style="color:rgb(80,0,80)"><div><font face="verdana, sans-serif" size="4"><b style="background-color:rgb(255,242,204)">Thesis Defense: Siqi Sun, TTIC</b></font><br></div><div style="font-family:arial,helvetica,sans-serif"><br></div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b>When:</b></span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b> </b> Tues</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif;border-bottom:1px dashed rgb(204,204,204)">day, February 18th at 1:30pm</span></div><div style="color:rgb(80,0,80);font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="color:rgb(80,0,80);font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Where:</b> <span style="border-bottom:1px dashed rgb(204,204,204)">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 501</span></font></div><div style="color:rgb(80,0,80);font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="color:rgb(80,0,80);font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Who: </b> </font><span style="font-size:small">Siqi Sun, TTIC</span></div><div style="color:rgb(80,0,80);font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="color:rgb(80,0,80);font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="color:rgb(80,0,80);font-size:12.8px"><div><b>Title: </b> <span style="font-size:small">Unsupervised and Supervised Structure Learning for Protein Contact Prediction</span><span style="font-size:12.8px"></span></div><br><div><div><b style="font-family:arial,helvetica,sans-serif;font-size:12.8px">Abstract:</b><br></div><div>Protein contacts provide key information for the understanding of protein structure and function, and therefore contact prediction from sequences is an important problem. Recent research shows that some correctly predicted long-range contacts could help topology-level structure modeling. Thus, contact prediction and contact-assisted protein folding also proves the importance of this problem. In this thesis, I will briefly introduce the extant related work, then show how to establish the contact prediction through unsupervised graphical models with topology constraints. Further, I will explain how to use the supervised deep learning methods to further boost the accuracy of contact prediction. Finally, I will propose a scoring system called diversity score to measure the novelty of contact predictions, as well as an algorithm that predicts contacts with respect to the new scoring system.<div></div><div><br style="font-size:small"></div></div></div></div><div style="color:rgb(80,0,80);font-size:12.8px"><br></div><span style="color:rgb(80,0,80);font-size:12.8px"><b>Thesis advisor:</b> <a href="mailto:j3xu@ttic.edu" target="_blank">Jinbo Xu</a></span><br class="gmail-Apple-interchange-newline"></div><div class="gmail_default" style="font-size:small"><br></div><div class="gmail_default" style="font-size:small"><br></div><div class="gmail_default" style="font-size:small"><br></div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Feb 17, 2020 at 2:30 PM Mary Marre <<a href="mailto:mmarre@ttic.edu">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><div><font face="verdana, sans-serif" size="4"><b style="background-color:rgb(255,242,204)"><span>Thesis</span> <span>Defense</span>: Siqi Sun, TTIC</b></font><br></div><div style="font-family:arial,helvetica,sans-serif"><br></div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b>When:</b></span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b> </b> Tues</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif;border-bottom:1px dashed rgb(204,204,204)">day, February 18th at 1:30pm</span></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Where:</b> <span style="border-bottom:1px dashed rgb(204,204,204)">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 501</span></font></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Who: </b> </font><span style="font-size:small">Siqi Sun, TTIC</span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><div><b>Title: </b> <span style="font-size:small">Unsupervised and Supervised Structure Learning for Protein Contact Prediction</span><span style="font-size:12.8px"></span></div><br><div><div><b style="font-family:arial,helvetica,sans-serif;font-size:12.8px">Abstract:</b><br></div><div>Protein contacts provide key information for the understanding of protein structure and function, and therefore contact prediction from sequences is an important problem. Recent research shows that some correctly predicted long-range contacts could help topology-level structure modeling. Thus, contact prediction and contact-assisted protein folding also proves the importance of this problem. In this <span>thesis</span>, I will briefly introduce the extant related work, then show how to establish the contact prediction through unsupervised graphical models with topology constraints. Further, I will explain how to use the supervised deep learning methods to further boost the accuracy of contact prediction. Finally, I will propose a scoring system called diversity score to measure the novelty of contact predictions, as well as an algorithm that predicts contacts with respect to the new scoring system.<div></div><div><br style="font-size:small"></div></div></div></div><div style="font-size:12.8px"><br></div><span style="font-size:12.8px"><b><span>Thesis</span> advisor:</b> <a href="mailto:j3xu@ttic.edu" target="_blank">Jinbo Xu</a></span><div><span style="font-size:12.8px"><br></span></div><br></div><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Feb 11, 2020 at 5:23 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><div><font face="verdana, sans-serif" size="4"><b style="background-color:rgb(255,242,204)">Thesis Defense: Siqi Sun, TTIC</b></font><br></div><div style="font-family:arial,helvetica,sans-serif"><br></div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b>When:</b></span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b> </b> Tues</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif;border-bottom:1px dashed rgb(204,204,204)">day, February 18th at 1:30pm</span></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Where:</b> <span style="border-bottom:1px dashed rgb(204,204,204)">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 501</span></font></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Who: </b> </font><span style="font-size:small">Siqi Sun, TTIC</span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><div><b>Title: </b> <span style="font-size:small">Unsupervised and Supervised Structure Learning for Protein Contact Prediction</span><span style="font-size:12.8px"></span></div><br><div><div><b style="font-family:arial,helvetica,sans-serif;font-size:12.8px">Abstract:</b><br></div><div>Protein contacts provide key information for the understanding of protein structure and function, and therefore contact prediction from sequences is an important problem. Recent research shows that some correctly predicted long-range contacts could help topology-level structure modeling. Thus, contact prediction and contact-assisted protein folding also proves the importance of this problem. In this thesis, I will briefly introduce the extant related work, then show how to establish the contact prediction through unsupervised graphical models with topology constraints. Further, I will explain how to use the supervised deep learning methods to further boost the accuracy of contact prediction. Finally, I will propose a scoring system called diversity score to measure the novelty of contact predictions, as well as an algorithm that predicts contacts with respect to the new scoring system.<div></div><div><br style="font-size:small"></div></div></div></div><div style="font-size:12.8px"><br></div><span style="font-size:12.8px"><b>Thesis advisor:</b> <a href="mailto:j3xu@ttic.edu" target="_blank">Jinbo Xu</a></span><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px"><br></span></div><br></div><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Feb 4, 2020 at 12:38 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><div><div><font face="verdana, sans-serif" size="4"><b style="background-color:rgb(255,242,204)">Thesis Defense: Siqi Sun, TTIC</b></font><br></div><div style="font-size:small;font-family:arial,helvetica,sans-serif"><br></div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b>When:</b></span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"><b> </b> Tues</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif;border-bottom:1px dashed rgb(204,204,204)">day, February 18th at 1:30pm</span></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Where:</b> <span style="border-bottom:1px dashed rgb(204,204,204)">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 501</span></font></div><div style="font-size:12.8px"><span style="border-bottom:1px dashed rgb(204,204,204)"><font face="arial, helvetica, sans-serif"><br></font></span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><b>Who: </b> </font><span style="font-size:small">Siqi Sun, TTIC</span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><div><b>Title: </b> <span style="font-size:small">Unsupervised and Supervised Structure Learning for Protein Contact Prediction</span><span style="font-size:12.8px"></span></div><br><div><div><b style="font-family:arial,helvetica,sans-serif;font-size:12.8px">Abstract:</b><br></div><div>Protein contacts provide key information for the understanding of protein structure and function, and therefore contact prediction from sequences is an important problem. Recent research shows that some correctly predicted long-range contacts could help topology-level structure modeling. Thus, contact prediction and contact-assisted protein folding also proves the importance of this problem. In this thesis, I will briefly introduce the extant related work, then show how to establish the contact prediction through unsupervised graphical models with topology constraints. Further, I will explain how to use the supervised deep learning methods to further boost the accuracy of contact prediction. Finally, I will propose a scoring system called diversity score to measure the novelty of contact predictions, as well as an algorithm that predicts contacts with respect to the new scoring system.<div></div><div><br style="font-size:small"></div></div></div></div><div style="font-size:12.8px"><br></div><span style="font-size:12.8px"><b><span>Thesis</span> advisor:</b> <a href="mailto:j3xu@ttic.edu" target="_blank">Jinbo Xu</a></span><div style="font-size:small"><span style="font-size:12.8px"><br></span></div><div style="font-size:small"><span style="font-size:12.8px"><br></span></div><div style="font-size:small"><span style="font-size:12.8px"><br></span></div><div style="font-size:small"><span style="font-size:12.8px"> </span></div></div><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Faculty Administrative Support</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</blockquote></div></div>
</blockquote></div></div>
</blockquote></div></div>