<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-size:small"><div class="gmail_default"><p style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit"> Monday, December 16th at 11:00 am</font></font><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 526</font></font></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Who: </b> </font></font></font>Graham Neubig, Carnegie Mellon University </p></div><div class="gmail_default"><br></div><div class="gmail_default"><br></div><div class="gmail_default"><div><b>Title:</b> Learning about Language with Normalizing Flows</div><div><br></div><div><b>Abstract: </b>Human language is complex and highly structured, with the unique syntax of each language defining this structure. While analyzing this structure and using it to train better NLP models is of inherent interest to linguists and NLP practitioners, for most languages in the world there is a paucity of labeled data. In this talk, I will discuss methods for learning about this structure and the correspondence between languages, specifically take advantage of a powerful tool called normalizing flows to build generative models over complex underlying structures. First, I will give a brief overview of normalizing flows, using an example from our recent work that uses these techniques to learn bilingual word embeddings. Then, I will demonstrate how these can be applied to learning for part-of-speech tagging, dependency parsing, or machine translation.</div><div><br></div><div><b>References:</b></div><div>* Variational Inference with Normalizing Flows (<a href="https://arxiv.org/pdf/1505.05770" target="_blank">https://arxiv.org/pdf/1505.05770</a>)</div><div>* Density Matching for Bilingual Word Embedding (<a href="https://arxiv.org/abs/1904.02343" target="_blank">https://arxiv.org/abs/1904.02343</a>)</div><div>* Unsupervised Learning of Syntactic Structure with Invertible Neural Projections (<a href="https://arxiv.org/abs/1808.09111" target="_blank">https://arxiv.org/abs/1808.09111</a>)</div><div>* Cross-Lingual Syntactic Transfer through Unsupervised Adaptation of Invertible Projections (<a href="https://arxiv.org/abs/1906.02656" target="_blank">https://arxiv.org/abs/1906.02656</a>)</div><div>* FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow (<a href="https://arxiv.org/abs/1909.02480" target="_blank">https://arxiv.org/abs/1909.02480</a>)</div><div><br></div><div><b>Bio:</b></div><div>Graham Neubig is an assistant professor at the Language Technologies Institute of Carnegie Mellon University. His work focuses on natural language processing, specifically multi-lingual models that work in many different languages, and natural language interfaces that allow humans to communicate with computers in their own language. Much of this work relies on machine learning to create these systems from data, and he is also active in developing methods and algorithms for machine learning over natural language data. He publishes regularly in the top venues in natural language processing, machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP, EACL, and WNMT. He is also active in developing open-source software, and is the main developer of the DyNet neural network toolkit.</div></div><div class="gmail_default"><div><br></div><div><b>Host:</b> <a href="mailto:kgimpel@ttic.edu" target="_blank">Kevin Gimpel</a></div><div><br></div><div><br></div><div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">For more information on the </span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">colloquium</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"> series or to subscribe to the mailing list, please see </span><a href="http://www.ttic.edu/colloquium.php" target="_blank" style="font-size:12.8px;font-family:arial,helvetica,sans-serif">http://www.ttic.edu/colloquium.php</a> <br></div><div><br></div><div><br></div><div><br></div></div></div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Administrative Assistant</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Dec 16, 2019 at 1:05 AM Mary Marre <<a href="mailto:mmarre@ttic.edu">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="font-size:small"><div><p style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit"> Monday, December 16th at 11:00 am</font></font><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 526</font></font></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Who: </b> </font></font></font>Graham Neubig, Carnegie Mellon University </p></div><div><br></div><div><br></div><div><div><b>Title:</b> Learning about Language with Normalizing Flows</div><div><br></div><div><b>Abstract: </b>Human language is complex and highly structured, with the unique syntax of each language defining this structure. While analyzing this structure and using it to train better NLP models is of inherent interest to linguists and NLP practitioners, for most languages in the world there is a paucity of labeled data. In this talk, I will discuss methods for learning about this structure and the correspondence between languages, specifically take advantage of a powerful tool called normalizing flows to build generative models over complex underlying structures. First, I will give a brief overview of normalizing flows, using an example from our recent work that uses these techniques to learn bilingual word embeddings. Then, I will demonstrate how these can be applied to learning for part-of-speech tagging, dependency parsing, or machine translation.</div><div><br></div><div><b>References:</b></div><div>* Variational Inference with Normalizing Flows (<a href="https://arxiv.org/pdf/1505.05770" target="_blank">https://arxiv.org/pdf/1505.05770</a>)</div><div>* Density Matching for Bilingual Word Embedding (<a href="https://arxiv.org/abs/1904.02343" target="_blank">https://arxiv.org/abs/1904.02343</a>)</div><div>* Unsupervised Learning of Syntactic Structure with Invertible Neural Projections (<a href="https://arxiv.org/abs/1808.09111" target="_blank">https://arxiv.org/abs/1808.09111</a>)</div><div>* Cross-Lingual Syntactic Transfer through Unsupervised Adaptation of Invertible Projections (<a href="https://arxiv.org/abs/1906.02656" target="_blank">https://arxiv.org/abs/1906.02656</a>)</div><div>* FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow (<a href="https://arxiv.org/abs/1909.02480" target="_blank">https://arxiv.org/abs/1909.02480</a>)</div><div><br></div><div><b>Bio:</b></div><div>Graham Neubig is an assistant professor at the Language Technologies Institute of Carnegie Mellon University. His work focuses on natural language processing, specifically multi-lingual models that work in many different languages, and natural language interfaces that allow humans to communicate with computers in their own language. Much of this work relies on machine learning to create these systems from data, and he is also active in developing methods and algorithms for machine learning over natural language data. He publishes regularly in the top venues in natural language processing, machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP, EACL, and WNMT. He is also active in developing open-source software, and is the main developer of the DyNet neural network toolkit.</div></div><div><div><br></div><div><b>Host:</b> <a href="mailto:kgimpel@ttic.edu" target="_blank">Kevin Gimpel</a></div><div><br></div><div><br></div><div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">For more information on the </span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">colloquium</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"> series or to subscribe to the mailing list, please see </span><a href="http://www.ttic.edu/colloquium.php" style="font-size:12.8px;font-family:arial,helvetica,sans-serif" target="_blank">http://www.ttic.edu/colloquium.php</a> <br></div><div><br></div><div><br></div><div><br></div></div></div><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Administrative Assistant</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Dec 9, 2019 at 3:22 PM Mary Marre <<a href="mailto:mmarre@ttic.edu" target="_blank">mmarre@ttic.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div style="font-size:small"><p style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;margin:0px"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>When:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit"> Monday, December 16th at 11:00 am</font></font><br></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Where:</b> </font></font><font style="vertical-align:inherit"><font style="vertical-align:inherit">TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 526</font></font></font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"> </font></p><p class="MsoNormal" style="margin:0in 0in 0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, sans-serif"><font style="vertical-align:inherit"><font style="vertical-align:inherit"><b>Who: </b> </font></font></font>Graham Neubig, Carnegie Mellon University
</p></div><div style="font-size:small"><br></div><div style="font-size:small"><br></div><div style="font-size:small"><div><b>Title:</b> Learning about Language with Normalizing Flows</div><div><br></div><div><b>Abstract: </b>Human language is complex and highly structured, with the unique syntax of each language defining this structure. While analyzing this structure and using it to train better NLP models is of inherent interest to linguists and NLP practitioners, for most languages in the world there is a paucity of labeled data. In this talk, I will discuss methods for learning about this structure and the correspondence between languages, specifically take advantage of a powerful tool called normalizing flows to build generative models over complex underlying structures. First, I will give a brief overview of normalizing flows, using an example from our recent work that uses these techniques to learn bilingual word embeddings. Then, I will demonstrate how these can be applied to learning for part-of-speech tagging, dependency parsing, or machine translation.</div><div><br></div><div><b>References:</b></div><div>* Variational Inference with Normalizing Flows (<a href="https://arxiv.org/pdf/1505.05770" target="_blank">https://arxiv.org/pdf/1505.05770</a>)</div><div>* Density Matching for Bilingual Word Embedding (<a href="https://arxiv.org/abs/1904.02343" target="_blank">https://arxiv.org/abs/1904.02343</a>)</div><div>* Unsupervised Learning of Syntactic Structure with Invertible Neural Projections (<a href="https://arxiv.org/abs/1808.09111" target="_blank">https://arxiv.org/abs/1808.09111</a>)</div><div>* Cross-Lingual Syntactic Transfer through Unsupervised Adaptation of Invertible Projections (<a href="https://arxiv.org/abs/1906.02656" target="_blank">https://arxiv.org/abs/1906.02656</a>)</div><div>* FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow (<a href="https://arxiv.org/abs/1909.02480" target="_blank">https://arxiv.org/abs/1909.02480</a>)</div><div><br></div><div><b>Bio:</b></div><div>Graham Neubig is an assistant professor at the Language Technologies Institute of Carnegie Mellon University. His work focuses on natural language processing, specifically multi-lingual models that work in many different languages, and natural language interfaces that allow humans to communicate with computers in their own language. Much of this work relies on machine learning to create these systems from data, and he is also active in developing methods and algorithms for machine learning over natural language data. He publishes regularly in the top venues in natural language processing, machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP, EACL, and WNMT. He is also active in developing open-source software, and is the main developer of the DyNet neural network toolkit.</div></div><div style="font-size:small"><div><br></div><div><b>Host:</b> <a href="mailto:kgimpel@ttic.edu" target="_blank">Kevin Gimpel</a></div><div><br></div><div><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">For more information on the </span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">colloquium</span><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif"> series or to subscribe to the mailing list, please see </span><a href="http://www.ttic.edu/colloquium.php" style="font-size:12.8px;font-family:arial,helvetica,sans-serif" target="_blank">http://www.ttic.edu/colloquium.php</a> <br></div><div><br></div><div><br></div><div><br></div><div><br></div></div><div><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font face="arial, helvetica, sans-serif">Mary C. Marre</font><div><font face="arial, helvetica, sans-serif">Administrative Assistant</font></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6"><b>Toyota Technological Institute</b></font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">6045 S. Kenwood Avenue</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Room 517</font></i></div><div><i><font face="arial, helvetica, sans-serif" color="#3d85c6">Chicago, IL 60637</font></i></div><div><i><font face="arial, helvetica, sans-serif">p:(773) 834-1757</font></i></div><div><i><font face="arial, helvetica, sans-serif">f: (773) 357-6970</font></i></div><div><b><i><a href="mailto:mmarre@ttic.edu" target="_blank"><font face="arial, helvetica, sans-serif">mmarre@ttic.edu</font></a></i></b></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</blockquote></div></div>
</blockquote></div></div>