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1 First Session

We present the following result of Dinur and Kaufman.

Theorem 1.1 (Informal Main [1]). High-dimensional expanders imply derandomized agreement
expanders.

We will see that the theorem above is a derandomized direct product test which is a known
test in the PCP literature [3, 2]. In this first session, we will elaborate on the objects and terms
appearing in this theorem. We start with the notion of agreement expansion, but first we need to
introduce agreement tests (tailored to our applications).

1.1 Agreement Tests and Agreement Expanders

Let V = [n] and X ⊆ 2V . We say that F = {fS}S∈X , where each fS ∈ {0, 1}S , is an ensemble on
the collection X. A natural question is the following.

Question 1.2. Given an ensemble F = {fS}S∈X , does there exist a “global” function g : V → {0, 1}
such that (∀S ∈ X)(fS = g|S) where g|S is the restriction of g to S?

We can inspect every pair S, S′ ∈ X and certify that fS |S∩S′ = fS′ |S∩S′ which we denote more
compactly as fS ≡ fS′ . It is not hard to see that the preceding verification succeeds if and only if
the ensemble F arises from a global function, i.e., F = {fS = g|S}S∈X for some g : V → {0, 1} in
which case we say that F is a global ensemble.

We can ask a robust version of this verification procedure, namely, instead of requiring fS ≡ fS′
for every pair S, S′ ∈ X we require for most pairs. For this reason we introduce a distribution D
on X2. Now we are ready to formally define an agreement test as follows.

Definition 1.1 (Agreement Test (X,D)). Input: a local ensemble F = {fS}S∈X .

• Sample (S, S′) ∼ D, and

• Accept iff fS ≡ fS′.

We denote the rejecting probability as disagree(X,D)(F ) := Pr(S,S′)∼D [fS 6≡ fS′ ]. Before we
define more formally agreement expanders we state a meta-theorem this kind of object should
satisfy. An agreement expander is given by a pair (X,D) such the the following meta-theorem
holds.
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Theorem 1.3 (Meta-Theorem). Suppose (X,D) is an agreement expander. If disagree(X,D)(F ) = ε,
then there is some g : V → {0, 1} such that

Pr
S∼D

[g|S 6≡ fS ] = O(ε),

where S ∼ D is the marginal (S = S, S′) ∼ D.

We will need more notation. Let Global(X) := {g : V → {0, 1}} be the set of global functions.

Definition 1.2 (Distance to Global). Given an ensemble F = {fS}S∈X , we define the distance
dist(F,Global(X)) of F to global as

dist(F,Global(X)) := min
g∈Global(X)

Pr
S∼D

[g|S 6≡ fS ] .

Definition 1.3 (Agreement Expansion). Given (X,D) we define its agreement expansion as

Y(X,D) = min
F={FS}S∈X

disagree(X,D)(F )

dist(F,Global(X))
,

where the minimization is over non-global ensembles.

Definition 1.4 (Agreement Expander). We say that a family of {(X,D)} is an agreement expander
family if there exists a constant γ0 > 0 such that

Y(X,D) ≥ γ0,

for every member (X,D) of the family.

Note that if (X,D) has agreement expansion γ0 > 0 and F = {FS}S∈X is an ensemble satisfying
disagree(X,D)(F ) = ε then we conclude that

dist(F,Global(X)) ≤
disagree(X,D)(F )

γ0
=

ε

γ0
,

that is F is close to being a global ensemble. Note that this definition shows that agreement
expanders indeed satisfy the meta-theorem 1.3.

1.2 High-dimensional Expanders

For us a high-dimensional expander (HDX) is particular kind of hypergraph satisfying some ex-
pansion conditions. It is important to stress that there are a few definitions of the notion of
high-dimensional expansion. Dinur and Kaufman [1] introduced a new one used in their work
which we make precise momentarily.

As a hypergraph a HDX is downward close in the sense that for every hyperedge all hyperedges
contained in it are also part of the hypergraph. This kind of hypergraph is known as simplicial
complex.

Definition 1.5 (Simplicial Complex). We say that a collection X of subsets of [n] is a simplicial
complex if for every S ∈ X and T ⊂ S we have T ∈ X.
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Hyperedges are usually denoted as faces. Moreover, if S ∈ X has size k, then we define its
dimension to be k − 1. We say that a non-empty simplicial complex X has dimension d if the
largest face has dimension d, i.e., size d+ 1.

Remark 1.4. The dimension nomenclature comes from the fact that simplicial complexes can
arise as geometrical objects. However, for our applications size would be an arguably more natural
quantity.

It is convenient to consider the “slices” X(i) of X according to dimension. More precisely, we
set

X(i) := {S ∈ X | dim(S) = i}.

Hence if X is d-dimensional X = X(−1) tX(0) t · · · tX(d), where X(−1) = ∅ by convention.
Recall that expander graphs can be seen as (possibly) sparse approximations of complete graphs.

A similar phenomenon happens with HDXs where they mimic several properties of a distinguished
simplicial complex known as the complete complex.

Definition 1.6 (Complete Complex). We denote by ∆d(n) the collection of all subsets of size d+1
of [n] also known as the complete complex of dimension d.

To talk about the expansion requirements for a simplicial complex to be HDX we need to
introduce the standard notion of links.

Definition 1.7 (Link). Let S ∈ X. We define the link XS of S as

XS := {T \ S | S ⊂ T and T ∈ X}.

Remark 1.5. The link XS is itself a simplicial complex.

Remark 1.6. The link X∅ is the entire complex, i.e., X∅ = X.

To any simplicial complex X we can associate a natural graph the so-called 1-skeleton (or simply
skeleton).

Definition 1.8 (Skeleton). The skeleton (or 1-skeleton) of X is the graph G = (X(0), X(1)).

We will work exclusively with a particular kind of simplicial complex called pure.

Definition 1.9 (Pure). A d-dimensional simplicial complex is pure if for every face S ∈ X there
exists a face T ∈ X(d) containing S.

Remark 1.7. A pure simplicial complex is fully determined by the top slice X(d).

Let Πd be a distribution on X(d). Then Πd gives rise to natural distributions on every X(i).
For this we define the following probabilistic experiment. Sample Sd ∼ Πd and for i = d, . . . , 1 do

• Select a uniformly random element x ∈ Si, and

• Set Si−1 = Si \ {x}.
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This process defines a couple array ~S = (Sd, . . . ,S0) of random variables. It is important to
stress that the distribution of ~S is essential in defining the probabilities and natural random walks
associated to HDXs. We define the marginal distribution on Sk to be Πk.

Let S ∈ X(k). We view the skeleton graph GS = (V,E) of the links Xs as a weighted graph
where the weight of e ∈ E is proportional to Πk+2(e t S).

Now we have all the pieces to define a high-dimensional expander.

Definition 1.10 (γ-HDX). We say that a d-dimensional simplicial complex X is a γ-HDX provided
for every face S ∈ X of dimension at most d − 2 the skeleton GS of XS is a γ-two-sided spectral
expander, i.e., all the eigenvalues of the normalized random walk operator of GS but the trivial have
absolute value at most γ.

Remark 1.8. By definition if X is a γ-HDX then the skeleton of X is a γ-two-sided spectral
expander.

Using the distributions Πk. We define Ck := L2(X(k)) space where the inner product is defined
as

〈f, g〉 := ES∼Πk
f(S)g(S),

for every f, g ∈ Ck.

Remark 1.9. It is not hard to show that the complete complex ∆d(n) is a γ-HDX with γ = Od(1/n).
The issue is that ∆d(n) is not sparse, it has ≈ nd hyperedges (assuming d constant). Surprisingly,
it is possible to obtain γ-HDXs with arbitrarily small constant γ but only Oγ,d(n) hyperedges.

Using the algebraically deep Ramanujan complex constructions of Lubotzky, Vishne and Samuels [5,
4], Dinur and Kaufman showed that sparse γ-HDX do exist.

Theorem 1.10. For every dimension d ∈ N and every expansion γ ∈ (0, 1), there exists an
infinite family X1, X2, . . . of explicitly constructible γ-HDXs such that |Xi| ≤ C · |Xi(0)| where
C = (1/γ)O(d2).

Open Question 1.11. Give a combinatorial construction of sparse HDXs (possibly inspired by
Zig-Zag product [6]).

1.3 Natural Random Walks

We define two natural Markov operators. The up operator Uk : Ck → Ck+1 is defined as

(Ukf)(S) := ESk|Sk+1=S [f(Sk)] =
1

k + 2

∑
x∈S

f(S \ {x}).

for every f ∈ Ck and S ∈ X(k + 1). The down operator Dk : Ck → Ck−1 is defined as

(Dkf)(T ) := ESk|Sk−1=T [f(Sk)] ,

for every f ∈ Ck and T ∈ X(k − 1).

Remark 1.12. The constant fuction 1 ∈ Ck is a singular function of both Uk and Dk with singular
value 1. Moreover, since Uk and Dk are Markov operators their largest singular value is at most 1.
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Claim 1.13. Uk and Dk+1 are adjoint operators.

Note that Uk and Dk+1 may be “rectangular” matrices since |X(k)| may differ from |X(k+ 1)|
so the spectral expansion is quantified in terms of singular values.

Definition 1.11 (Spectral Bound). Let M : L2(V ) → L2(W ) be a Markov operator mapping two
finite dimensional vectors spaces V and W . We denote by λ(M) be largest non-trivial singular
value of M , i.e., largest singular value different from 1.

Dinur and Kaufman proved that up to γ-error the spectral bound of up and down operators of
a γ-HDX match the bound for the complete complex. We defer the proof of the following theorem
to 1.5.

Theorem 1.14 (Expansion of Natural Operators). If X is a γ-HDX, then

λ(Uk)
2 = λ(Dk+1)2 ≤ 1− 1

k + 2
+O(k · γ).

For our application it will be important that when up (and/or down) operators are composed
the resulting operator has arbitrarily good expansion.

Corollary 1.14.1 (Spectral Amplification). λ(Uk−1 . . . Ut+1Ut)
2 ≤ t+1

k+1 +O((k2 − t2) · γ).

Proof. Indeed

λ(Uk−1 . . . Ut+1Ut)
2 ≤ λ(Uk−1)2 . . . λ(Ut+1)2λ(Ut)

2

≤ k

k + 1
. . .

t+ 2

t+ 3

t+ 1

t+ 2
+O((k2 − t2) · γ)

≤ t+ 1

k + 1
+O((k2 − t2) · γ).

1.4 Double Samplers

To prove the main theorem of Dinur and Kaufman a possibly weaker object than a HDX suffices,
namely, a double sampler. However, currently double samplers are only known to exist as derived
objects of HDXs.

Theorem 1.15 (Existence of Double Samplers). For every 1 < k < d and ε > 0, there exist an
infinite family of tripartite weighted inclusion graphs G1, G2, . . . where each Gi has vertex partition
A = [ni], B =

([ni]
k

)
and C =

([ni]
d

)
. Furthermore,

• |A tB t C| = Od,ε(ni);

• For a ∈ A, b ∈ B, c ∈ C, a ∼ b iff a ∈ b and b ∼ c iff b ⊂ c; 1

• λ(Gi(A,B))2 ≤ 1
k+2 + ε; and

• λ(Gi(B,C))2 ≤ k+1
d+1 + ε,

1We use a ∼ b to denote adjacency of vertices a and b.
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where Gi(A,B) and Gi(B,C) are induced bipartite graphs with bipartitions (A,B) and (B,C),
respectively.

Proof. Follows directly from the existence of sparse HDXs 1.10 and the spectral amplification 1.14.1.

Open Question 1.16. Construct double samplers without using HDXs.

1.5 Spectral Bound

We prove the expansion of up and down operators. The proof we present is a slightly simplified
argument by Tulsiani of the original proof of Dinur and Kaufman [1].

Theorem 1.17 (Expansion of Natural Operators (restatement)). If X is a γ-HDX, then

λ(Uk)
2 = λ(Dk+1)2 ≤ 1− 1

k + 2
+O(k · γ).

Proof. It is enough to prove the theorem for Dk+1 since Uk is its adjoint. Take f ∈ Ck+1 such that
‖f‖2 = 1, 〈f, 1〉 = 0 and

λ := λ(Dk+1) =
‖Dk+1f‖2
‖f‖2

.

For i = −1, . . . , k + 1 set fi := (Di+1 . . . DkDk+1) f . Clearly, fi ∈ Ci. Furthermore,

0 = ‖f−1‖2 ≤ ‖f0‖2 ≤ · · · ≤ ‖fk+1‖2 = 1.

Set ∆i = ‖fi‖2 − ‖fi−1‖2 so that ∆0 + ∆1 + · · ·+ ∆k+1 = 1.
We will need the following claim which crucially uses link expansion.

Claim 1.18.
(∀i ≥ −1)(∆i+2 ≥ ∆i+1 − γ).

We assume the claim and finish the proof of theorem. Then

1 = ∆0 + ∆1 + · · ·+ ∆k+1 ≤ (k + 2) ·∆k+1 + (k + 2)2 · γ,

implying

∆k+1 ≥
1

k + 2
− (k + 2) · γ.

Alternatively,

∆k+1 = 1− (∆0 + · · ·+ ∆k) = 1− ‖fk−1‖2 = 1−
(
‖Dk+1f‖2
‖f‖2

)2

= 1− λ2.

Hence

λ2 ≤ 1− 1

k + 2
+ (k + 2) · γ,

as desired.

Finally, we prove the claim used in 1.17.
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Claim 1.19 (restatement).
(∀i ≥ −1)(∆i+2 ≥ ∆i+1 − γ).

Proof. Let i ≤ d− 2. For every S ∈ X(i) define

hS(u, v) := fi+2(S t {u, v}),

where u, v are such that S t {u, v} ∈ X(i+ 2). Then

∆i+2 = ‖fi+2‖2 − ‖fi+1‖2

= ES∼ΠiE{u,v}∼XS(1) (fi+2(S t {u, v}))2 − ES∼ΠiEu∼XS(0) (fi+1(S t {u}))2

= ES∼ΠiE{u,v}∼XS(1) (hS(u, v))2 − ES∼ΠiEu∼XS(0)

(
Ev|uhS(u, v)

)2
= ES∼ΠiE{u,v}∼XS(1)

(
hS(u, v)− Ev′|uhS(u, v′)

)2
.

Similarly,
∆i+1 = ES∼ΠiEu∼XS(0)

(
Ev|uhS(u, v)− E{u,v}∼Xs(1)hS(u, v)

)2
.

LetGS = (V,E) be the weighted graph of the 1-skeleton of the linkXs. Let µS := E{u,v}∼XS(1)hS(u, v).
Define

h2(u, v) := hS(u, v)− µS ,

and
h1(u) := Ev|uhS(u, v)− µS .

Observe that Eu∼Xs(0)h1(u) = 0. Let AS be the normalized random walk operator of GS . Then

E{u,v}∼XS(1) (h2(u, v)− h1(u))2 ≥ Ev∼Xs(0)

(
Eu|vh2(u, v)− Eu|vh1(u)

)2
(Jensen’s Inequality)

= Ev∼Xs(0)

(
h1(v)− Eu|vh1(v)

)2
= ‖(I −AS)h1‖2

≥ (1− γ) ‖h1‖2 . (γ-two-sided spectral expander)

Combining the above expressions gives ∆i+2 ≥ (1− γ) ·∆i+1.
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