
THE UNIVERSITY OF CHICAGO

PROVING ARROW’S IMPOSSIBILITY THEOREM USING REFINEMENT TYPES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

BENJAMIN WALDMAN

CHICAGO, ILLINOIS

MAY 2024

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

1 INTRODUCTION . 1

2 MATHEMATICAL LOGIC . 3

3 REFINEMENT TYPES . 5

4 PROVING ARROW’S THEOREM WITH REFINEMENT TYPES 8

5 FUTURE WORK . 12

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Stuart Kurtz, for guiding me throughout this process

and for teaching the class that initially piqued my interest in formal verification. I would

like to thank Robert Rand and Adam Shaw for being on the committee and always having

time to meet with me to talk through this project. I would like to thank my friends for

supporting me and for listening to me ramble about Arrow’s Theorem to no end. I would

like to especially thank Kanchan Naik for suggesting that I execute the code I wrote for this

project. I would like to thank Benjamin Caldwell for putting up with me during many Type

Theory and Programming Proofs office hours. Lastly, I would like to thank my parents for

their endless support.

iii

ABSTRACT

Arrow’s impossibility theorem is a landmark result in theoretical economics that led to the

formation of modern social choice theory. I develop a new, computer-verified proof of Arrow’s

impossibility using refinement types, a concept from type theory that allows functions to

return both data and predicates on that data. I then argue that refinement types are a

natural paradigm for formally verifying many theorems in economics and political science.

iv

CHAPTER 1

INTRODUCTION

In his 1950 paper “A Difficulty in the Concept of Social Welfare,” Kenneth Arrow [1] proved

that all systems to aggregate group preferences violate at least one (and possibly multi-

ple) seemingly innocuous assumptions about how group preferences ought to be aggregated.

When Arrow received the Nobel Prize in Economics, the Swedish Academy of Sciences de-

scribed this theorem as “perhaps the most important of [Arrow’s] many contributions to

welfare theory.” [8]

However, like most important social science results, Arrow’s Theorem has been largely

ignored as a target for formal verification. This is unfortunate, as the social sciences generally

and social choice theory specifically are excellent targets for computer-verified proof. Many

of the concepts involved in social choice theory (e.g. preference relations) are easy to define

and reason about in proof assistants.

Furthermore, many proofs of Arrow’s theorem are disappointingly unclear, including

some of the most cited in the literature. For example, Amartya Sen’s proof [7] notes that

“We are cutting a corner here by assuming that a, b, x, and y are all distinct social states.

The reasoning is exactly similar when two of them are the same alternative.” This charac-

terization of those edge cases is debatable at best. As seen in LemmaFour in Arrow.Agda,

the reasoning for these edge cases is significantly different than the main case and was a

significant barrier in completing a verification of Sen’s proof. It is worth highlighting again

how prominent Arrow’s Theorem is: it is considered one of the most important theoretical

results in economics. If even celebrated proofs of Arrow’s Theorem suffer from vagueness, it

is likely that many lesser known results could be substantially clarified by formal verification.

Theoretical economics is thus both a technically feasible and academically rewarding site for

work in formal verification.

However, there exist meaningful stumbling blocks to verification of social scientific theo-

1

https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Arrow.agda

rems. While many of the basic concepts involved in social scientific proofs are easy to reason

about in a proof assistant, many of the proof techniques used are not. For example, many

hand-written proofs of Arrow’s theorem [5] involve pictures that show how one can alter

a list of candidates representing a voter’s preferences in a certain way while maintaining a

certain desired property. While these intermediate results are easy to see visually, the Agda

type checker does not have eyes (as of version 2.7), and formalizing these pictures within a

type system is not intuitive.

The limited verifications of Arrow’s theorem that do tend to rely heavily on proof au-

tomation techniques that are difficult if not impossible for human eyes to parse. In addition,

these proofs tend to be extremely long and difficult to compartmentalize into lemmas be-

cause the automation techniques require the context provided by the prior parts of the proof

to solve the goal. For example, Peter Gammie [4] notes in his verification of Arrow’s theorem

in the proof assistant Isabelle that his proof “is unfortunately long. Many of the statements

rely on a lot of context, making it difficult to split it up.”

In sum, the vast majority of computer verified proofs of social scientific results are painful

to produce and confusing to read. In this dissertation, I will propose a new paradigm

for formally verifying social scientific results and prove its usefulness by producing a novel

verification of Arrow’s impossibility1 theorem that does not contain any proof automation.

1. See https://github.com/bmwaldman0918/ArrowsTheorem/ for the completed proof.

2

https://github.com/bmwaldman0918/ArrowsTheorem/

CHAPTER 2

MATHEMATICAL LOGIC

Prior formalizations of Arrow’s Theorem have been written in the language of mathematical

logic [4]. This approach has a variety of obvious benefits: it allows extensive proof automation

via the use of tactics optimized for logical reasoning (e.g. Isabelle’s blast). Furthermore,

it is the language that hand-written proofs of Arrow’s Theorem are written in and that

mathematicians tend to be most comfortable with. However, these proofs have a few obvious

drawbacks.

First, proofs that rely heavily on automation are not particularly interesting or useful.

Arrow’s Theorem is a well-known result that has been proven many times in many ways.

Formalizing Arrow’s Theorem is an interesting project because new formalizations may pro-

vide us with new proof techniques or clarify certain aspects of the proof, not because there

exists any meaningful doubt about the veracity of the conclusion. Heavily automated proofs

hide most of the interesting work behind the automated tactic, making it extremely difficult

to see how the proof obligation is actually fulfilled.

Furthermore, some proof automation techniques rely on large code bases that are hard

to verify. This can lead to a solver ‘proving’ a goal incorrectly [11]. While these bugs are

incredibly rare, they do exist, and the potential for their existence weakens one of the primary

motivations for formal verification.

While automation has its drawbacks, it’s easy to see why it is so heavily used: a proof

that only used mathematical logic and no proof automation would likely be thousands of

lines of mostly uninteresting code. Producing each of the ten or so witnesses required and

proving they have every necessary property would be incredibly tedious.

Luckily, there is a better way. One fundamental idea in proof theory is the Curry-

Howard isomorphism, which says there exists an isomorphism between constructive proofs

in mathematical logic and programs in dependent type theory. In other words, if a program

3

can produce a term of a certain type, that program is, in some sense, a proof that the logical

proposition corresponding to that type is sound.

Using this insight, a formalization of Arrow’s Theorem can be constructed without au-

tomation by using the Curry-Howard isomorphism to translate the theorem from a question

of mathematical logic to a question of program verification. Using this paradigm means

that a proof can be constructed from the many tools theoretical computer scientists have

constructed to reason about functions.

This allows proof obligations to be decomposed into individual functions, and these proofs

and terms can be passed between functions to verify theorems without the drawbacks of

heavy proof automation.

4

CHAPTER 3

REFINEMENT TYPES

While decomposing proofs into helper functions that pass various proof objects between

them has obvious benefits for code readability and avoiding code duplication, it raises an

obvious question: how does a function return a proof?

The answer is simple. In a dependently typed language like Agda, a proof term is no

different that an array or a list. Thus, functions can return a dependent product that contains

a term and then a proof about the content of that term. This type signature is known as

a ‘refinement type’ because it uses a predicate to ‘refine’ the outer term to something more

specific.

Refinement types have many uses outside of proof assistants. One of the best-known

projects to use refinement types is Liquid Haskell, which bundles the programming language

Haskell with a system of logical predicates and uses an automatic proof solver (e.g. Z3) to

ensure that functions satisfy the logical predicates provided by the programmer when they

write the function’s type signature.

For example, Pena [9] uses sorted lists as a case study to show Liquid Haskell can ensure

that invariants are maintained within a data structure:

{-@ data IncList a = Emp

| (:<) hd::a, tl::IncList v:a | hd <= v @-}

insert :: (Ord a) => a-> IncList a-> IncList a

insert y Emp = y :< Emp

insert y (x :< xs) | y <= x = y :< x :< xs

| otherwise = x :< insert y xs

In the sorted lists example, Liquid Haskell queries an SMT solver to ensure that the ‘IncList’

predicate is maintained even after a new element is inserted. If someone wrote an insertion

5

function that did not maintain this predicate, the code would not compile. For example, the

following code does not compile in Liquid Haskell (though it would in regular Haskell).

insert* :: (Ord a) => a-> IncList a-> IncList a

insert* y xs = y :< xs

Because ‘insert*’ naively inserts the new element at the head of the list, the SMT solver

cannot prove to Liquid Haskell that the resulting list is sorted, so Liquid Haskell cannot

prove the output is an instance of type IncList. Using Liquid Haskell thus acts as a check on

writing bad code since code that does not provably satisfy the relevant predicates will not

compile.

Most work with refinement types is motivated by a desire for better production code:

code written in Liquid Haskell promises to be bug free because an SMT solver has proven

that a given function meets its obligations. This is an ideal use-case for proof automation,

since the steps of the proof are basically irrelevant to a Liquid Haskell programmer: all that

matters is that the code is actually correct, and the programmer does not care why. In a

sense, the Liquid Haskell programmer has outsourced their normal unit testing to an SMT

solver that provides stronger assurances about code accuracy than unit testing ever could.

While the vast majority of refinement type-based systems use SMT solvers and other

automation techniques, there is also substantial work being done to verify code manually

[6] using the refinement type framework. SMT solvers are very powerful, but they have a

variety of limitations including the potential for bugs [11] and the fact that they cannot

decide statements that involve quantifiers. This leaves room for explicit refinement types as

a useful tool in both theorem proving and program verification.

Proof assistants like Lean and Agda are already dependently typed, so incorporating

refinement types into code can be done easily using the language’s core features. The Σ type

in Agda, which represents a dependent product, makes it easy to create type signatures with

proofs embedded in them. For example, the following code uses a Σ type to prove there

6

exists a natural number greater than one:

one : N

one = suc zero

existsNat>one : Σ N λ n → n > one

existsNat>one = (suc (suc zero)) , (s≤s (s≤s z≤n))

Agda is unique in that it is one of the only dependently typed proof assistants with no proof

automation features, making it an ideal tool to demonstrate the benefits of using refinement

types for theorem proving.

7

CHAPTER 4

PROVING ARROW’S THEOREM WITH REFINEMENT

TYPES

Discussing the usage of refinement types in a proof of Arrow’s Theorem requires a basic

understanding of the theorem itself and the concepts involved in its proof.

Arrow’s theorem says it is impossible for any system of aggregating votes with at least

three candidates to satisfy the following constraints:

• Pareto Efficiency: If all voters rank Alice over Ben, Alice will be above Ben in the

aggregated rankings.

• Transitivity: If the aggregated rankings place Alice over Ben and Ben over Chris, they

will also rank Alice over Chris.

• Non-dictatorship: there should be no single voter whose preferences determine the

outcome of the election.

• Independence of Irrelevant Alternatives (IIA): If voters change their rankings of Chris

relative to Alice and Ben but keep the relative rankings of Alice and Ben the same,

the relative aggregated rankings of Alice and Ben will not change.

For example, take the following set of voters v:

a a a b b

b b b a c

c c c c a

If we assume that an election consisting of these preferences results in a final candidate

ranking such that a is preferred to b, by IIA, the following set of voters v′ will also prefer a

to b. This is because every voter in v′ has the same relative rankings of a and b (i.e. they

prefer a to b in v if and only if they also do in v′).

8

c c c c b

a a a b a

b b b a c

IIA seeks to formalize the notion that electoral systems should not be susceptible to the

spoiler effect, which occurs when a third-party candidate ’steals’ vote share from a major

candidate. As Arrow’s Theorem proves, even systems that minimize the impact of a spoiler

effect cannot eliminate it entirely. For example, the 2022 Alaska at-large congressional

district election saw moderate Republican Nick Begich eliminated in the first round of voting

even though a majority of voters would have preferred him to both Democrat Mary Peltola

and conservative Republican Sarah Palin [2]. This happened in spite of the fact that Alaska

had recently switched to instant runoff voting, whose advocates promise that it will limit

the spoiler effect [2].

Arrow’s Theorem holds when a voter’s preference can be modeled as a total pre-order.

This is true of any electoral system where voters rank their candidates on their ballots.

Mathematically, this means that a voter’s preferences must be transitive and strongly con-

nected.

There are a few definition necessary to understand the outline of a proof of Arrow’s

Theorem. First, a coalition is a subset of a list of voters. A coalition is decisive if, for every

pair of candidates Alice and Bob, a proof that every member of the coalition prefers Alice

to Bob implies the aggregate electorate prefers Alice to Bob. A coalition is a dictator if it is

decisive and only contains one member.

There exist two main strategies for proving Arrow’s Theorem known as proofs by pivotal

voter and proofs by decisive coalition, respectively. The attached repository1 contains the

first published formalization of a proof of Arrow’s Theorem using the decisive coalition

strategy. Both proof strategies show that IIA, Pareto efficiency and Transitivity imply the

1. https://github.com/bmwaldman0918/ArrowsTheorem/

9

https://github.com/bmwaldman0918/ArrowsTheorem/

existence of a dictator. The proof by decisive coalition requires the following two lemmas:

1. Expansion of Decisiveness: If there exists an electorate such that if everyone in coali-

tion C prefers Alice to Bob but everyone outside of C prefers Bob to Alice and the

aggregated electorate prefers Alice to Bob, the members of C are decisive for every

pair of candidates.

2. Contraction of Decisive Sets: Every decisive coalition with more than two members

contains a decisive proper subset.

From these lemmas, Arrow’s Theorem is simple. By the Pareto efficiency assumption, the

coalition containing the entire electorate is decisive. By the contraction of decisive sets, any

decisive coalition can be made smaller until it has size 1. A decisive coalition of size 1 is a

dictator. For a more in-depth explanation of the details of the proof, see Maskin et al. 2014

[7].

To prove each of these lemmas requires manipulating voters in very specific ways such

that they maintain certain preferences they had prior to manipulation but are also provably

altered in specific ways required to apply either Pareto efficiency or IIA.

For example, the function LemmaTwo in Arrow.Agda involves taking a list of voters that

collectively prefer Alice to Bob and manipulating their preferences to prove that they must

also prefer Alice to Chris. This involves manipulating voters such that their preferences on

Alice and Bob are identical, but Chris is above Bob.

This notion is easily formalized by the refinement type framework, since a function can

take a voter and return a voter along with function that prove certain properties about the

returned voter. Take the following type signature2:

Alter-Last : { R : Fin n → Fin n → Set}

→ (p : Preference n R)

2. The full function is here: https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Util/

Voter.agda

10

https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Arrow.agda
https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Util/Voter.agda
https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Util/Voter.agda

→ (z : Fin n)

→ Σ (Fin n → Fin n → Set) λ R’

→ Σ (Preference n R’)

λ p’ → (∀ a → ¬ a ≡ z → P p’ a z)

× (∀ x y → ¬ x ≡ z → ¬ y ≡ z

→ (x R y → x R’ y)

× (x R’ y → x R y))

While dense to read, the function is relatively simple intuitively. Alter-Last takes a voter

p and a candidate z and returns a new voter p’ who prefers every candidate over z and

has the same preferences as p for every other pairing of candidates that does not include z.

Analogous functions can be constructed to move a candidate to the top of a voter’s rankings.

By making heavy use of functions like Alter-First and Alter-Last, the proof contained in

the main file Arrow.Agda is relatively clean and readable, containing few if any fine-grain

manipulation of voters since these manipulations can be passed off to auxiliary functions and

the relevant information can be returned as part of the type signature while also avoiding

automation.

Furthermore, the modular nature of these functions makes it easy to use them in future

work. Other results in social choice theory (e.g. the Duggan-Schwartz theorem [3], Sen’s

paradox [10]) make heavy use of similar manipulation of voters. A proof of the Duggan-

Schwartz theorem could use the same functions as this proof of Arrow’s Theorem, making it

much easier to verify.

11

https://github.com/bmwaldman0918/ArrowsTheorem/blob/main/Arrow.agda

CHAPTER 5

FUTURE WORK

Refinement types are a natural way to reason about and formalize results from the social

sciences. They have a variety of benefits, including improved proof readability and increased

ease of compartmentalizing code.

Furthermore, they are an especially natural fit for theorems from social choice theory,

since they make it easy to alter preference relations in clear ways. There exist several

natural directions from future work in this area. First, it would be relatively simple to use

this framework to verify other theorems. Furthermore, since this proof of Arrow’s theorem is

constructively valid, it would be interesting to translate it into a programming language like

Liquid Haskell that is more practical for executing code and constructively produce dictators

for a given election.

Lastly, translating the proof into Liquid Haskell would also provide interesting opportu-

nities to learn more about the bounds of various automated proof solvers. It is not obvious

how good these tools would be about reasoning about voters and preferences in the Arrovian

framework since they were not built for that purpose. Translating Arrow’s theorem into

Liquid Haskell would provide interesting insight into the generalizability of automated proof

solvers.

12

BIBLIOGRAPHY

[1] Kenneth J. Arrow. “A Difficulty in the Concept of Social Welfare”. In: Journal of

Political Economy 58.4 (1950), pp. 328–346. issn: 00223808, 1537534X. url: http:

//www.jstor.org/stable/1828886 (visited on 04/29/2025).

[2] Jeanne N. Clelland. Ranked Choice Voting And Condorcet Failure in the Alaska 2022

Special Election: How Might Other Voting Systems Compare? 2024. arXiv: 2303.00108

[cs.CY]. url: https://arxiv.org/abs/2303.00108.

[3] John Duggan and Thomas Schwartz. “Strategic manipulability without resoluteness or

shared beliefs: Gibbard-Satterthwaite generalized”. In: Social Choice and Welfare 17.1

(2000), pp. 85–93. issn: 01761714, 1432217X. url: http://www.jstor.org/stable/

41106341 (visited on 04/29/2025).

[4] Peter Gammie. “Some classical results in Social Choice Theory”. In: Archive of Formal

Proofs (Nov. 2008). https://isa-afp.org/entries/SenSocialChoice.html, Formal

proof development. issn: 2150-914x.

[5] John Geanakoplos. “Three brief proofs of Arrow’s impossibility theorem”. In: Economic

Theory 26.1 (2005), pp. 211–215.

[6] Jad Elkhaleq Ghalayini and Neel Krishnaswami. “Explicit Refinement Types”. In:

Proc. ACM Program. Lang. 7.ICFP (Aug. 2023). doi: 10.1145/3607837. url: https:

//doi.org/10.1145/3607837.

[7] ERIC MASKIN et al. The Arrow Impossibility Theorem. Columbia University Press,

2014. url: http : / / www . jstor . org / stable / 10 . 7312 / mask15328 (visited on

04/28/2025).

[8] NobelPrize.org. Oct. 1972. url: https://www.nobelprize.org/prizes/economic-

sciences/1972/press-release/.

13

http://www.jstor.org/stable/1828886
http://www.jstor.org/stable/1828886
https://arxiv.org/abs/2303.00108
https://arxiv.org/abs/2303.00108
https://arxiv.org/abs/2303.00108
http://www.jstor.org/stable/41106341
http://www.jstor.org/stable/41106341
https://isa-afp.org/entries/SenSocialChoice.html
https://doi.org/10.1145/3607837
https://doi.org/10.1145/3607837
https://doi.org/10.1145/3607837
http://www.jstor.org/stable/10.7312/mask15328
https://www.nobelprize.org/prizes/economic-sciences/1972/press-release/
https://www.nobelprize.org/prizes/economic-sciences/1972/press-release/

[9] Ricardo Peña. “An Introduction to Liquid Haskell”. In: Electronic Proceedings in The-

oretical Computer Science 237 (Jan. 2017), pp. 68–80. issn: 2075-2180. doi: 10.4204/

eptcs.237.5. url: http://dx.doi.org/10.4204/EPTCS.237.5.

[10] Amartya Sen. “The Impossibility of a Paretian Liberal”. In: Journal of Political Econ-

omy 78.1 (1970), pp. 152–157. issn: 00223808, 1537534X. url: http://www.jstor.

org/stable/1829633 (visited on 04/29/2025).

[11] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “On the unusual effectiveness

of type-aware operator mutations for testing SMT solvers”. In: Proc. ACM Program.

Lang. 4.OOPSLA (Nov. 2020). doi: 10.1145/3428261. url: https://doi.org/10.

1145/3428261.

14

https://doi.org/10.4204/eptcs.237.5
https://doi.org/10.4204/eptcs.237.5
http://dx.doi.org/10.4204/EPTCS.237.5
http://www.jstor.org/stable/1829633
http://www.jstor.org/stable/1829633
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261

	Acknowledgments
	Abstract
	Introduction
	Mathematical Logic
	Refinement Types
	Proving Arrow's Theorem with Refinement Types
	Future Work

