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ABSTRACT

As large language models (LLMs) take on complex tasks, their inputs are supplemented with

longer contexts that incorporate domain knowledge or user-specific information. Yet using

long contexts poses a challenge for responsive LLM systems, as nothing can be generated

until the whole context is processed by the LLM. While the context-processing delay can be

reduced by reusing the KV cache of a context across different inputs, fetching the KV cache,

which contains large tensors, over the network can cause extra network delays.

CacheGen is a fast context-loading module for LLM systems. First, CacheGen uses a

custom tensor encoder, which embraces KV cache’s distributional properties, to encode a

KV cache into more compact bitstream representations with negligible encoding/decoding

overhead. This reduces the bandwidth demand to fetch the KV cache. Second, to main-

tain low context-loading delay and high generation quality, CacheGen adapts the streaming

strategies to cope with changes in available bandwidth. When available bandwidth drops,

CacheGen may raise the compression level for a part of the context or choose to recompute

its KV cache on the fly. We test CacheGen on four popular LLMs of various sizes and four

datasets (662 contexts in total). Compared to the recent systems that reuse the KV cache,

CacheGen reduces the KV cache size by 3.5-4.3× and the total delay in fetching and pro-

cessing contexts by 3.2-3.7× while having negligible impact on the LLM response quality in

accuracy or perplexity.
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0.1 Introduction

With impressive generative quality, large language models (LLMs) are ubiquitously used [8,

1, 5, 15] in personal assistance, AI healthcare, and marketing. The wide use of LLM APIs

(e.g., OpenAI GPT-4 [10]) and the industry-quality open-source models (e.g., Llama [3]),

combined with popular application frameworks (e.g., HuggingFace [27], Langchain [12]),

further boosts LLMs’ popularity.

To perform complex tasks, users or applications often prepend the LLM inputs with long

contexts containing thousands of tokens or more. In this paper, we regard a long prefix

used by different LLM inputs as a context. For example, some context supplements user

prompts with domain-knowledge text so that the LLM can generate responses using specific

knowledge not embedded in the LLM itself. As another example, a user prompt can be

supplemented with the conversation histories accumulated during the interactions between

the user and the LLM. Though short inputs can still be useful [80, 105], longer inputs often

improve response quality and coherence [42, 109, 119, 53, 97, 43, 63, 45], which drives the

ongoing race to train LLMs that accept ever longer inputs, from 2K tokens in ChatGPT to

100K in Claude [7].

Using long contexts poses a challenge to the response-generation latency, as no re-

sponse can be generated until the whole context is loaded and processed by the LLM. The

amount of computation in processing a long context grows super-linearly with the context

length [110, 54, 42, 127, 97]. While some recent works increase the throughput of processing

long context [33], the delay of processing the context can still be several seconds for long

contexts (2 seconds for a 3K context) [33, 60]. Many systems reduce the context-processing

delay by storing and reusing the KV cache of the context to skip redundant computation

when the context is used again (e.g., [72, 37, 60]).

Yet, the KV cache of a reused context may not always be in local GPU memory when the

next input comes; instead, the KV cache may need to be retrieved from another machine(s)
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first, causing extra network delays. For instance, a database of background documents might

reside in a separate storage service, and the documents (i.e., context) assisting LLM inference

are only to be selected and fetched to the LLM when a relevant query is received [17, 2, 4,

16, 42].

The extra network delay for fetching the KV cache has not yet received much attention.

Previous systems assume the KV cache of a context is always kept in the same GPU memory

between different requests sharing the same context [60], or the KV cache is small enough

to be sent quickly by a fast interconnection [133]. Yet, as elaborated in §0.3, the delay for

fetching a KV cache can be non-trivial, since a KV cache consists of large high-dimensional

floating-point tensors, whose sizes grow with both the context length and model size and

can easily reach 10s GB. The resulting network delay can be 100s milliseconds to over 10

seconds, hurting the interactive user experience [19, 18, 75].

Some emergent systems reduce the run-time KV cache size to accommodate the GPU

memory-size constraint, but, as elaborated in §0.4, they do not directly optimize for the

network delay of KV cache. In short, when loading contexts from other machines, solely

optimizing computational delay may cause higher response latency, as loading the KV cache

increases the network delay.

We present CacheGen, a fast context-loading module in LLM systems for reducing the

network delay in fetching and processing long contexts. It entails two techniques.

KV cache encoding: CacheGen encodes a precomputed KV cache into more compact

bitstream representations, rather than keeping the tensor shapes of the KV cache. This

greatly saves the bandwidth and delay for sending a KV cache. Our KV cache encoder

employs a custom quantization and arithmetic coding strategy to leverage the distributional

properties of KV cache, such as locality of KV tensors across nearby tokens and different

sensitivities towards quantization losses at different layers of a KV cache. Moreover, the

KV cache encoder incurs negligible compute overhead compared to LLM inference, and the
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encoding is pipelined with network transmission to minimize its impact on the end-to-end

delay.

KV cache streaming: CacheGen streams the encoded bitstreams of a KV cache in a way

that adapts to changes in available bandwidth. Similar to video streaming, before a user

query arrives, CacheGen splits a long context into chunks and encodes the KV of each chunk

separately at various compression levels. When streaming a context, CacheGen fetches the

chunks one by one and adapts the per-chunk compression level to maintain high generation

quality while keeping the network delay within a Service-Level Objective (SLO). When the

bandwidth is too low, CacheGen can also fall back to sending a chunk in text format and

leave it to the LLM to recompute the KV cache of the chunk.

In short, unlike prior systems that optimize the KV cache in GPU memory, CacheGen

focuses on the network delay for sending the KV cache. We compare CacheGen with a range

of baselines, including KV quantization [101], loading contexts in text form, and state-of-

the-art context compression [66, 130], using four popular LLMs of various sizes (from 7B to

70B) and three datasets of long contexts (662 contexts with 1.4 K to 16 K tokens) (Table 1

gives a preview of results). Our key findings are:

• In terms of the delay of transmitting and processing contexts (i.e., time-to-first-token),

CacheGen is 3.2-3.7× faster than the quantization baseline at the similar generation quality

(F1 score and perplexity), and 3.1-4.7× faster than loading the text contexts with less than

2% accuracy drop. Notably, under lossless compression, CacheGen is able to reduce the

delay of loading context by 1.67-1.81×.

• In terms of the bandwidth usage for sending KV cache, CacheGen achieves the same

generation quality while using 3.5-4.3× less bandwidth than the quantization baseline.

• Compared with applying quantization on context compression methods [130, 66], CacheGen

further reduces the bandwidth usage for sending their KV caches by 3.3-4.2×.

Our code is publicly available at: https://github.com/UChi-JCL/CacheGen.
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Figure 1: An illustration of Key & Value Tensors (KV cache).

0.2 Background and Motivation

0.2.1 Language model basics

Transformers [110, 46, 52] are the de facto models for most language generative services. At

a high level, a transformer takes a sequence of input tokens1 and generates a sequence of

output tokens through two phases.

During the prefill phase, an attention neural network takes in the input token. Then each

of the l layers in the attention module produces two three-dimensional tensors, a key (K)

tensor and a value (V) tensor (shown in Figure 1). These K and V tensors contain information

essential for LLM to utilize the context later. All the KV tensors across different layer are

together called the KV cache.

During the generation phase, also called the decoding phase, the KV cache is used to

compute the attention score between every pair of tokens, which constitute the attention

matrix, and generate output tokens in an autoregressive manner. For performance reasons,

the KV cache, which has a large memory footprint [72], is usually kept in GPU memory

during this phase and released afterward. Some emergent optimizations save and reuse the

KV cache across different LLM requests, as we will explain shortly.

In all mainstream models, the compute overhead of the prefill phase grows superlinearly

with the input length. Since the prefill phase must be completed before generating the first

1. A “token” can be a punctuation, a word, or a part of a word. Tokenizing an input is much faster than
the generation process.
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output token, its duration is called Time-to-First-Token (TTFT). This paper focuses on

reducing TTFT during prefilling while not changing the decoding process.

0.2.2 Context in LLM input

LLMs may generate low-quality or hallucinated answers when the response requires knowl-

edge not already embedded in the models. Thus, many LLM applications and users supple-

ment the LLM input with additional texts, referred to as the context [57, 77]. The LLM

can read the context first and use its in-context learning capability to generate high-quality

responses.2

The contexts in LLM input can be used for various purposes.

(i) a user question can be supplemented with a document about specific domain knowl-

edge, to produce better answers [24, 98, 20], including using latest news to answer fact-

checking inquiries [26, 25], using case law or regulation documents to offer legal assistant

[99, 106], etc.; (ii) code analysis applications retrieve context from a code repository to answer

questions or generate a summary about the repository [41, 65, 67], and similarly financial

companies use LLMs to generate summaries based on detailed financial documents [89]; (iii)

gaming applications use the description of a particular character as context so that the LLM

can generate character dialogues or actions matching the character personality [92, 118, 102];

(iv) in few-shot learning, a set of question-answer pairs are used as context to teach the LLM

to answer certain types of questions [34, 83, 104]; (v) in chatting apps, the conversational

history with a user is often prepended as the context to subsequent user input to produce

consistent and informed responses [69, 38].

We observe that in practice, contexts are often long and often reused to supplement

different user inputs.

2. An example of this process retrieval-augmented generation (RAG), which uses a separate logic to select
the context documents for a given query, It is well-studied in natural-language literature and widely used in
industry.
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Long contexts are increasingly common in practice. For example, those contexts discussed

above, such as case law documents, financial documents, news articles, code files, and chat

history accumulated in a session, easily contain thousands of tokens or more. Intuitively,

longer contexts are more likely to include the right information and hence may improve the

quality of the response. Indeed, FiD [63] shows that the accuracy increases from 40% to

48% when the context increases from 1K tokens to 10K. Retro [45] similarly shows that the

generation quality (perplexity) improves significantly when the context increases from 6K

tokens to 24K.

These long contexts are often reused by different inputs. In the financial analysis example,

consider two queries, “write a short summary based on the company’s earning report last

quarter” and “what were the company’s top sources of revenue in the last quarter”; the same

earning reports are likely to be supplemented to both queries as the contexts. Similarly, the

same law enforcement document or latest news article can be used to answer many different

queries in legal assistant or fact-checking apps. As another example, during a chat session,

early chat content will keep getting reused as part of the context for every later chat input.

In short, longer contexts lead to higher prefill delays and hence longer TTFT, but since the

same contexts are often reused, it is promising to reduce TTFT by caching the intermediate

results (i.e., the KV cache) and hence avoid prefill recomputation. This solution has indeed

been explored recently [72, 37, 60] and shown its potential with just one caveat, which we

discuss in the next section.

0.3 Hidden network bottleneck

Although promising in drastically reducing TTFT, recent studies of reusing the KV cache

[72, 37, 60] all rely on the assumption that the KV cache to be re-used is locally available in

GPU memory.

In practice, however, the reused KV cache of a long context may need to be fetched from
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another machine(s). This is because GPU memory is likely not enough to store the KV

cache of all repeated contexts. For instance, for the Llama-33B model, the KV cache of a

16K-token3 context, a common context length in practice [40], is 25 GB, on par with the

size of the LLM itself. Storing the KV cache on the GPU for a long time will be even more

challenging when the model size increases. Even in chat-based apps that route all requests

of a user to the same GPU, the KV cache of the conservation history may not always be

in the GPU memory, especially if the next query from the user comes after several hours,

during which the KV cache may have been offloaded to make space for fresh chat sessions.

However, the network delay for fetching the KV cache can be substantial, yet it has not

received enough attention. Existing LLM systems assume that the KV cache is always in

GPU memory or that the KV cache is small enough to be retrieved quickly via a high-speed

interconnection. Taking the KV cache size of 25 GB from the previous example, to send it

over a 20Gbps link takes 10 seconds whereas running the prefill phase on the text context by

the same Llama-34B model takes about the same time. Even with a 100Gbps link, sending

the KV cache will take 2 seconds, which damages user experience for its long TTFT [19, 75].

In short, we need a solution to reuse KV cache while reducing the network delay to fetch

the KV cache.

0.4 CacheGen: KV Cache Streaming

The need to reduce KV cache transmission delay motivates a new module in LLM systems,

which we call a KV cache streamer. The KV cache streamer serves three roles:

• (1) Encoding a given KV cache into more compact bitstream representations — KV bit-

streams. This can be done offline.

• (2) Streaming the encoded KV bitstream through a network connection of varying through-

put.

3. About 12,000 English words or merely one SIGCOMM paper!
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Figure 2: How different ways of loading context affect the network delay (to transfer context
or KV cache) and the computation delay (to run the attention module on the context).

• (3) Decoding the received KV bitstream into the KV cache.

At first glance, our KV cache streamer may look similar to recent techniques (e.g., [66,

130, 81]) that compress long contexts by dropping less important tokens. Yet, they differ in

crucial ways:

Those recent techniques aim at reducing the run-time size of the KV cache to accom-

modate the GPU memory-size constraint or LLM input-window constraint, and yet we aim

at reducing the transmission-time size of the KV cache to reduce network delay. As a re-

sult, previous techniques have to maintain the KV caches’ shapes of large floating-point

tensors so that the shrunk KV caches can be directly consumed by the LLM at the run-time;

meanwhile, they can use information during the generation phase to know which tokens in

the context are more important to the particular query under processing. In contrast, we

need not to maintain the original tensor shapes, and can encode them into more compact
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bitstreams and adapt their representation to network bandwidth. Meanwhile, we have to

decide which compression scheme to use before a particular query is processed and hence

cannot use information from the generation phase.

This paper presents CacheGen, a concrete design of the KV cache streamer. First,

CacheGen uses a custom KV cache codec (encoder and decoder) to minimize the size of KV

bitreams, by embracing several distributional properties of KV cache tensors (§0.5.1). This

greatly reduces the bandwidth demand to transmit the KV cache, thus directly reducing

TTFT. Second, when streaming the KV bitstreams under dynamic bandwidth, CacheGen

dynamically switches between different encoding levels or computing the KV cache on de-

mand, in order to keep the TTFT within a given deadline while maintaining a high response

quality. The KV encoding/decoding incurs a negligible compute overhead and is pipelined

with network transmission to minimize the impact on end-to-end delay.

0.5 CacheGen Design

We now describe the design of CacheGen, starting with the insights on KV cache (§0.5.1)

that inspires KV cache encoder (§0.5.2), followed by how CacheGen adapts to bandwidth

(§0.5.3).

0.5.1 Empirical insights of KV cache

We highlight three observations on the characteristics of KV cache values. Though it is

intrinsically hard to prove they apply to any LLM on any context, here, we use a represen-

tative workload to empirically demonstrate the prevalence of these observations. The work-

load includes two LLMs of different capacities (Llama-7B and Llama-13B) and LongChat

dataset [78] (which contains 100 long contexts between 9.2K and 9.6K tokens, randomly

sampled from the whole set of 200 contexts), one of the largest datasets of long contexts.

Details of this workload can be found in §0.7.1.
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Figure 3: Contrasting the distribution of the original values and the delta values. We model
two Llama models with various long contexts (§0.5.1). We show absolute values for clarity.

Token-wise locality

The first observation is about how the K and V tensor values change across tokens in a

context. Specifically, we observe that

Insight 1. Within the same layer and channel, tokens in closer proximity have more similar

K/V tensor values compared to tokens that are further apart.

For each model, we contrast the distribution of K (or V) tensors’ original values and the

distribution of the deltas—the differences between of K (or V) tensors’ values at the same

layer and channel between every pair of consecutive tokens in the contexts. Figure 3 shows

the distribution of absolute values in the original tensor and the deltas of one layer across

all the contexts4. In both models across the contexts, we can see that the deltas are much

more concentrated around zero than the original values. Consequently, the variance of the

deltas is 2.4-2.9× lower than that of the original values. The token-wise locality of K and V

tensors inspires CacheGen to encode deltas rather than original values.

This token-wise locality can be intuitively explained by the transformer’s self-attention

mechanism, which computes the KV tensors. Though KV cache is computed in a layer-by-

layer manner, this is mathematically equivalent to calculating the KV tensors of one token

based on the KV tensors of the previous token. This means KV tensors at one token are

intrinsically correlated with those of the previous token.

4. We randomly sampled a single layer from the K tensor because the values in the different layers have
different ranges.
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Figure 4: Applying data loss to different layers of a KV cache has different impact on
accuracy. (Same workload as Figure 3).

Layer-wise sensitivity to loss

The second observation concerns how sensitive different values in the K and V tensors are

to data loss. Our observation is the following.

Insight 2. The output quality of LLM is more sensitive to losses in the KV cache values of

the shallower layers than to those in the deeper layers.

The heterogeneous loss sensitivity on different layers suggests that our KV cache encoder

should compress different layers differently. Figure 4 shows how much accuracy is affected

by applying data losses to the values of a specific layer group in the K and V tensors. Here,

we apply rounding as the data loss, and we compute the average resulting response accuracy

(defined in §0.7.1) across 100 contexts in the dataset. We can see that the average response

accuracy drops significantly when the loss is applied to the early layers of a model while

applying the same loss on the deeper layers has much less impact on the average response

accuracy. This result holds consistently across different models we tested.

Intuitively, the deeper layers of a KV cache extract higher-level structures and knowledge

than the shallower layers of a KV, which embed more primitive information [111, 100]. As a

result, the loss of information by removing precision on the early-layer cache might propagate

and affect the later-layer cache and thus hinder the model’s ability to grasp the higher-level

structures necessary to produce quality responses.
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load as Figure 3.) Grouping values by token position (red) reduces entropy much less than
grouping by channel (yellow) or by layer (green).

Distribution along layers, channels, and tokens

Finally, regarding the distributions of values along the three dimensions of KV cache—layers,

channels, and token positions—we make the following observation.

Insight 3. Each value in a KV cache is indexed by its channel, layer, and token position.

The information gain of grouping values by their channel and layer is significantly higher

than the information gain of grouping values by their token position.

Intuitively, this can be loosely interpreted as: different KV values in the same channel

(or layer) are more similar to each other than different KV values belonging to the same

token position. To show the insight empirically, we first group the values in the KV caches

produced by the two models and 100 contexts based on their layers, channels, or token

positions, and compute the entropy of each group. Figure 5 shows the average entropy (bits

per element) when different grouping strategy is applied, including no grouping, grouping

by tokens positions, grouping by channels, and grouping by layers.

0.5.2 KV cache encoding

The aforementioned insights inspire the design of CacheGen’s KV cache encoder. The en-

coding consists of three high-level steps (elaborated shortly):

First, it calculates the delta tensors (defined later) between the K and V tensors of nearby

tokens. This is inspired by the token-wise locality observation (§0.5.1) which suggests deltas
12
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Figure 6: Within a token group, CacheGen computes the delta tensors between the KV
tensors of the first anchor token and those of each remaining token.

between tokens might be easier to compress than the original values in the KV tensors.

Second, it applies different levels of quantization to different layers of the delta tensors.

The use of different quantizations at different layers is inspired by the observation of hetero-

geneous loss sensitivity (§0.5.1).

Third, it runs a lossless arithmetic coder to encode the quantized delta tensors into bit-

streams. Specifically, inspired by the observation in §0.5.1, the arithmetic coder compresses

the values in each layer and channel separately (§0.5.1).

These steps may seem similar to video coding, which encodes pixels into bitstreams.

Video coding also computes the delta between nearby frames, quantizes them, and encodes

the delta by arithmetic coding [107]. Yet, blindly applying existing video codecs could not

work well since they were only optimized for pixel values in natural video content. Instead,

the exact design of CacheGen is inspired by domain-specific insights on LLM-generated KV

cache (§0.5.1).

Next, we explain the details of each step.

Change-based encoding: To leverage the token-wise locality, we first split the context

into groups of tokens each containing ten contiguous tokens. As shown in Figure 6, in each

group, we independently (i.e., without referencing other tokens) compress the KV tensor of

the first token, called the anchor token, and then compress and record the delta tensors with

respect to the anchor token for every other token.

This process is analogous to video coding, where the frames are separated into groups
13



of pictures, within which it runs similar delta-based encoding. The difference, however, is

that instead of compressing the delta between each pair of consecutive tokens, we reference

the same anchor token for every token in the chunk. This allows us to do compression and

decompression in parallel and saves time.

Layer-wise quantization: After partitioning the tokens into groups, CacheGen uses quan-

tization to reduce the precision of elements (floating points) in a KV cache so that they can

be represented by fewer bits. Quantization has been used recently to reduce attention ma-

trices to pack longer contexts in GPU memory [101]. However, in previous work, elements

are uniformly quantized with the same number of bits without leveraging any unique prop-

erties of KV cache. Driven by the insight of heterogeneous loss sensitivity (§0.5.1), we apply

more conservative quantization (i.e., using more bits) on the delta tensors of earlier layers.

Specifically, we split the transformer layers into three layer groups, the first (earliest) 1/3

of layers, the middle 1/3 of layers, and the last 1/3 of layers, and apply different amounts

of quantization bin size on the delta tensors at each layer group respectively. The size of

the quantization bin grows larger (i.e., larger quantization errors) from earlier to later layer

groups. Following previous work [55], we use the vectorwise quantization method, which

has been usually used for quantizing model weights.

Note that we still use 8-bit quantization, a relatively high precision, on the KV cache

of the anchor token (the first token of a token chunk). This is because these anchor tokens

account for a small fraction of all tokens, but their precision affects the distribution of all

delta tensors of the remaining tokens in a chunk. Thus, it is important to preserve higher

precision just for these anchor tokens.

Arithmetic coding: After quantizing the KV cache into discrete symbols, CacheGen uses

arithmetic coding [114] (AC) to losslessly compress the delta tensors and anchor tensors of a

context into bitstreams. Like other entropy coding schemes, AC assigns fewer bits to encode

more frequent symbols and more bits to encode less frequent symbols. For it to be efficient,
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AC needs accurate, low-entropy probability distributions of the elements in the KV cache.

Driven by the observation of the KV value distributions along layers, channels, and

token positions (§0.5.1), we group KV values by channel and layer to obtain probability

distributions. Specifically, our KV encoder offline profiles a separate probability distribution

for each channel-layer combination of delta tensors and another for anchor tensors produced

by an LLM, and uses the same distributions for all KV caches produced by the same LLM.

CacheGen uses modified AC library [85] with CUDA to speed up encoding and decoding

(§0.6). In §0.7.5, we empirically show that our method reduces the bitstream size by up to

53% compared to the strawman of using one global symbol distribution.

0.5.3 KV cache streaming adaptation

Since the transmission of a KV cache may take up to hundreds of milliseconds to a few

seconds, the available bandwidth may fluctuate during a transmission. Thus, streaming the

encoded KV bitstreams at a fixed encoding level may violate a given service-level objective
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(SLO) [44] of fetching the KV cache.5 In Figure 7, for example, at the start of the transmis-

sion, the available throughput is 2 Gbps, and if the bandwidth remains at 2 Gbps, sending

a KV stream of 1 GB can meet the SLO of 4 seconds. However, at t = 2s, the throughput

drops to 0.2 Gbps and only increases to 1 Gbps at t = 4s, so the actual transmission delay

increases from 4 seconds to 7 seconds, which violates the SLO.

Workflow: To handle variations in bandwidth, CacheGen splits a context into multiple

context chunks (or chunks for short) of consecutive tokens and uses the KV cache encoder

to encode each chunk into multiple bitstreams of different encoding (quantization) levels

that can be decoded independently (explained shortly). This can be done offline. When

fetching a context, CacheGen sends these chunks one by one, and each chunk can choose

one of several streaming configuration (or configurations for short): it can be sent at one

of the encoding levels or can be sent in the text format to let the LLM recompute K and V

tensors.

CacheGen adapts the configuration of each chunk while streaming the KV cache to keep

the transmission delay within an SLO. Figure 7 illustrates an example adaptation where

CacheGen switches to sending text context and recomputing KV cache from the text at

t = 2s due to the bandwidth drop, and at t = 4s, since the bandwidth increases back to

1 Gbps, and CacheGen switch to sending KV bitstreams of subsequent chunks at smaller

size. With our adaptation logic (specific algorithm in §0.11.1), CacheGen can meet the SLO.

However, to adapt efficiently, several questions remain.

First, how to stream multiple chunks at different streaming configurations without affecting

compression efficiency? To encode the chunks offline, CacheGen first computes the KV cache

of the entire context (i.e., prefill) and splits the K and V tensors of the KV cache along the

token dimension into sub-tensors, each of which contains the layers and channels of the

tokens in the same chunk. It then uses the KV encoder to encode the K or V sub-tensor of

5. In practice, SLO is defined on TTFT. Once the KV cache of the long context is loaded in GPU, the
remaining delay of one forward pass is marginal [72].
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a chunk with different encoding (quantization) levels. Each chunk is encoded independent

to other chunks without affect the compression efficiency as long as a chunk is longer than a

group of tokens. This is because encoding the KV tensor of a token only depends on itself

and its delta with the anchor token of the group of tokens (§0.5.2). Thus, chunks sent with

different encoding levels can be independently decoded and then concatenated to reconstruct

the KV cache. In the case that a chunk is sent in text format, the LLM will compute its

K and V tensors based on the previous chunk’s KV tensors that have been received and

decoded.6

Would streaming chunks at different configurations affect generation quality? If one chunk

is sent at a smaller-sized encoding level than other chunks (due to low bandwidth), it will

have high compression loss on that single chunk, but this will not affect the compression loss

of other chunks. That said, we acknowledge that if the bandwidth is too low to send most

chunks in a high encoding level, the quality will still suffer.

Second, how long should a context chunk be? We believe that the chunk length depends

on two considerations.

1. The encoded KV bitstream of a chunk size should not be too big because, otherwise, it

cannot react to bandwidth changes in a timely manner.

2. The chunk should not be too small either since then we can not fully utilize the batching

ability of GPU to compute KV tensors if text format is chosen.

With these considerations in mind, we empirically pick 1.5K tokens as the default chunk

length in our experiments7, though more optimization may find better chunk lengths.

Finally, how does CacheGen decide the streaming configuration of the next chunk? CacheGen

chooses the configuration for the next chunk based on the measured throughput when sending

the previous chunk. Specifically, CacheGen first assumes the same throughput will remain

6. A similar concept has been used to split LLM input into prefill chunks for more efficient batching [33].

7. The chunk length is also long enough for the KV bitstream of each chunk to fill the sender’s congestion
window in our experiment setting.
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and calculates the expected delay of each streaming configuration if it is applied to all re-

maining chunks. The delay of sending an encoded KV bitstream is calculated by dividing its

size by the throughput (more details in §0.8). It then picks the configuration that has the

least compression loss (i.e., text format or lowest encoding level) with an expected delay still

within the SLO, and uses the configuration to send the next chunk. For the first chunk, if

some prior knowledge of the network throughput is available, CacheGen will use it to choose

the configuration of the first chunk the same way. Otherwise, CacheGen starts with a default

medium encoding level (140 MB per chunk for Llama 7B).

0.6 Implementation

We implement CacheGen with about 2K lines of code in Python, about 1K lines of CUDA

kernel code, based on PyTorch v2.0 and CUDA 12.0.

Integration into LLM inference framework: CacheGen operates the LLM through

two interfaces:

• calculate_kv(context) -> KVCache: given a piece of context, CacheGen invokes LLM

through this function to get the corresponding KV cache.

• generate_with_kv(KVCache) -> text: CacheGen passes a KV cache to the LLM and

lets it generate the tokens while skipping the attention computation (prefill) of the context.

We implement these two interfaces in HuggingFace models using the transformers li-

brary [11] with about 500 lines of Python code. Both interfaces are implemented based

on the generate function provided by the library. For calculate_kv, we let LLM only cal-

culate the KV cache without generating new text, by passing the options of max_length = 0

and return_dict_in_generate = True when getting the KV cache. The generate_with_kv

is implemented by simply passing the KV cache through the past_key_values argument

when calling the generate function. Similar integrations are also applicable to other LLM

libraries, such as FastChat [132], llama.cpp [13], and GGML [9].
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We have also integrated CacheGen in LangChain [12], a popular LLM application frame-

work. CacheGen is activated in the _generate function of LangChain’s BaseLLM module.

CacheGen first checks whether the KV cache of the current context already exists (explained

shortly). If so, CacheGen will invoke generate_with_kv to start generating new texts. Oth-

erwise, CacheGen will invoke calculate_kv to create the KV cache first before generating

new texts.

KV cache management in CacheGen: To manage the KV cache, CacheGen implements

two modules:

• store_kv(LLM) –> {chunk_id: encoded_KV}: calls

caculate_kv, splitting the returned KV cache into context chunks, and encodes each

chunk. Then, it stores a dictionary on the storage server, where it maps the chunk_id to

the encoded bitstreams for the K and V tensors for the corresponding chunk.

• get_kv(chunk_id) –> encoded_KV fetches the encoded KV tensors corresponding to chunk_id

on the storage server and transmits it to the inference server.

Whenever a new piece of context comes in, CacheGen first calls store_kv, which first gen-

erates the KV cache, and then stores the encoded bitstreams on the storage server. At run

time, CacheGen calls get_kv to fetch the corresponding chunk of KV cache and feed into

generate_with_kv.

Speed optimization for CacheGen: To speed up the decoding of KV cache in GPU, we

pipeline the transmission of context chunk i with the decoding of context chunk i − 1. We

implemented a GPU-based AC library [85] with CUDA to speed up encoding and decoding.

Specifically, each CUDA thread is responsible for decoding the KV cache from bitstreams

for one token. The probability distributions are obtained by counting the frequencies of

quantized symbols in the KV feature for the corresponding context.
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0.7 Evaluation

The key takeaways of our evaluation are:

• Across four datasets and models, CacheGen can reduce TTFT (including both network

and compute delay) by 3.1-4.7× compared to prefill from text context, and by 3.2-3.7×

compared to the quantization baseline (§0.7.2).

• CacheGen’s KV encoder reduces the bandwidth for transferring KV cache by 3.5-4.3×

compared to the quantization baseline (§0.7.2).

• CacheGen’s reduction in bandwidth usage is still effective when applied to recent context

compression baselines [130, 66]. Specifically, CacheGen further reduces the bandwidth

usage by 3.3-4.2×, compared to applying quantization on context compression baselines

(§0.7.2).

• CacheGen’s improvement is significant across various workloads, including different context

lengths, network bandwidths, and numbers of concurrent requests (§0.7.3).

• CacheGen’s decoding overhead is minimal, in delay and compute, compared with LLM

inference itself (§0.7.5).

0.7.1 Setup

Models: We evaluate CacheGen on four models of different sizes, specifically the fine-

tuned versions of Mistral-7B, Llama-34B, Llama-70B. All models are fine-tuned such that

they can take long contexts (up to 32K). We did not test CacheGen on other LLMs (e.g.,

OPT, BLOOM) because there are no public fine-tuned versions for long contexts to our best

knowledge.

Datasets: We evaluate CacheGen on 662 contexts from four different datasets with different

tasks (Table 2):

• LongChat: The task is recently released [78] to test LLMs on queries like “What was the
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Technique KV cache size Accuracy
(in MB, Lower the better) (Higher the better)

CacheGen 176 0.98
8-bit quantization 622 1.00
CacheGen on H2O 71 0.97
H2O [130] 282 0.97
CacheGen on LLMLingua 183 0.94
LLMLingua [66] 492 0.94

Table 1: Performance of CacheGen and the baselines on Mistral-7B with LongChat
dataset [78]. Full results are shown in §0.7.
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Figure 8: Time-to-first-token (TTFT): Across different models and different datasets,
CacheGen reduces TTFT with little negative impacts on quality (in accuracy, perplexity or
F1 score).
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Dataset Size Med. Std. P95
LongChat [78] 200 9.4K 164 9.6K
TriviaQA [68] 200 9.3K 4497 15K

NarrativeQA [71] 200 14K 1916 15K
WikiText [86] 62 5.9K 4548 14.8K

Table 2: Size and context lengths of datasets in the evaluation.

first topic we discussed?” by using all the previous conversations as the context. Most

contexts are around 9-9.6K tokens.

• TriviaQA: The task tests the reading comprehension ability of the LLMs [40], by giving

the LLMs a single document (context), and letting it answer questions based on it. The

dataset is part of the LongBench benchmark [40] suite.

• NarrativeQA: The task is used to let LLMs answer questions based on stories or scripts,

provided as a single document (context). The dataset is also part of LongBench.

• Wikitext: The task is to predict the probability of the next token in a sequence based on

the context consisting of relevant documents that belong to a specific Wiki page [86].

Quality metrics: We measure generation quality using the standard metric of each dataset.

• Accuracy is used to evaluate the model’s output on the LongChat dataset. The task

predicts the first topic in the conversational history between the user and the LLM. The

accuracy is defined as the percentage of generated answers that exactly includes the ground-

truth topic.

• F1 score is used to evaluate the model’s response in the TriviaQA and NarrativeQA

datasets. It measures the probability that the generated answer matches the ground-truth

answer of the question-answering task.

• Perplexity is used to evaluate the model’s performance on the Wikitext dataset. The

perplexity is defined as the exponentiated average negative log-likelihood of the next to-

ken [39, 49]. A low perplexity means that the model likely generates the next token

correctly. While perplexity does not equate to text-generation quality, it is widely used
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Figure 9: Reducing KV cache size: Across different models, CacheGen reduces the size
of KV cache with little accuracy decrease on different datasets.

as a proxy [30] to test the impact of pruning or quantizing LLMs on generation perfor-

mance [55, 120, 82, 97].

Baselines: We compare CacheGen with baselines that do not change the contexts or model

(more baselines in §0.7.5).

• “Default quantization” uses the uniform quantization of KV cache, specifically the same

quantization level for every layer in the LLM (which was used in [101]).

• “Text context” fetches the text of the context and feeds it to LLM to generate the KV

cache for it. It represents the design of minimizing data transmission but at the expense

of high computation overhead. We use the state-of-the-art inference engine, vLLM [72], to

run the experiments. vLLM’s implementation already uses xFormers [73], which includes

speed and memory-optimized Transformers CUDA kernels and has shown much faster

prefill delay than HuggingFace Transformers. This is a very competitive baseline.

• “Context compression” either drops tokens in the text context (LLMlingua [66]) or in the

KV cache (H2O [130]).
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Hardware settings: We use an NVIDIA A40 GPU server with four GPUs to benchmark

our results. The server is equipped with 384GB of memory and two Intel(R) Xeon(R) Gold

6130 CPUs with Hyper-threading and Turbo Boost enabled by default.

0.7.2 Overall improvement

We first show the improvement of CacheGen over the baselines, as described in §0.7.1.

TTFT reduction: Figure 8 demonstrate CacheGen’s ability to reduce TTFT, across four

models and four datasets. Under bandwidth of 3 Gbps, compared to text context, CacheGen

is able to reduce TTFT by 3.1-4.7×. Compared to default quantization, CacheGen is able

to reduce TTFT by 3.2-3.7×.

It is important to note that even when the compression is lossless, specifically applying

our AC on the KV cache after 8-bit quantization, CacheGen can still reduce the TTFT by

1.67-1.81×. CacheGen’s reduction in TTFT is a result of a shorter transmission delay to

send the smaller KV caches.

Reduction on KV cache size: Figure 8 show that, across three datasets and four models,

CacheGen’s KV encoder reduces the KV cache size by 3.5-4.3× compared to default quan-

tization when achieving similar performance for downstream tasks after decoding. Thus, it

achieves better quality-size trade-offs across different settings. The degradation caused by

lossy compression is marginal—the degradation is no more than 2% in accuracy, less than

0.1% in F1 score, and less than 0.1 in perplexity [14].

Some example text outputs for different baselines are available in §0.8.

Gains over context compression baselines: We also apply CacheGen to further reduce

the size of context compression baselines’s KV cache, including H2O and LLMlingua. Note

that H2O drops tokens from KV cache which have low attention scores. Specifically, it

requires the query tensors of the prompt to compute the attention scores in order to determine

which tokens to drop. H2O requires the query tensors of the prompts in order to compress
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Figure 10: Reducing KV cache size on top of H2O [130]: Across different models,
CacheGen further the size of KV cache, compared to the KV cache shortened by H2O, with
little accuracy decrease on different datasets.

the context’s KV cache, which are not present in the offline compression stage. In our

experiments, we implement an idealized version of H2O, where the query tensors of the

prompts are used in the offline compression stage.

As shown in Figure 10 and Figure 11, compared to the context compression baseline,

H2O [130], CacheGen can further reduce compressed KV cache (in floating point). Specifi-

cally, CacheGen reduces the size of KV cache by 3.5–4× compared to the H2O’s quantized

KV caches, and 3.3–4.2× compared to LLMlingu’s quantized KV caches, without losing qual-

ity. This suggests that even after condensing contexts by H2O and LLMlingua, the resulting

KV caches may still have the statistical observations behind CacheGen’s KV encoder. Thus,

the techniques used in CacheGen’s encoder remain beneficial when we encode the KV cache

after applying these techniques.

Understanding CacheGen’s improvements: CacheGen outperforms various baselines

for slightly different reasons. Compared to the text context baseline, CacheGen has lower

TTFT, because it reuses KV cache to avoid the long prefill delay for processing long contexts.
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Figure 11: Reducing KV cache size on top of LLMlingua [66]: Across different
models, CacheGen further reduces the size of KV cache, compared to the context shortened
by LLMlingua, with little accuracy decrease on different datasets.

Compared to the basic quantization baseline, CacheGen compresses KV cache with layer-

wise dynamic quantization and further encodes the KV cache tensors into bitstreams, thus

able to reduce the transmission delay.

Finally, compared to H2O and LLMlingua, two recent context-condensing techniques,

CacheGen can still compress the KV cache produced by H2O. In short, H2O and other

context-condensing techniques all prune contexts at token level and their resulting KV caches

are in the form of floating-point tensors, so CacheGen is complementary and can be used to

further compress the KV cache into much more compact bitstreams.

0.7.3 Sensitivity analysis

Available bandwidth: The left and right figures in Figure 12 compares the TTFT of

CacheGen with baselines under a wide range of bandwidth from 0.1–10 Gbps and 10–100

Gbps, while we fix the context length at 9.6K tokens. We can see that CacheGen consis-

tently outperforms baselines under almost all bandwidth situations. Arguably, the absolute
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Figure 12: CacheGen improves TTFT under a wide range of different bandwidths. Plotted
with Mistral-7B.
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Figure 13: CacheGen consistently reduces TTFT when there are multiple concurrent requests
on one GPU. Plotted with Mistral-7B.

reduction in TTFT becomes smaller under high bandwidth (over 20Gbps).

Number of concurrent requests: Figure 13a shows the TTFT under different numbers

of concurrent requests. When the number of concurrent requests increases (i.e., fewer avail-

able GPU cycles for one individual query), CacheGen significantly reduces TTFT than the

baselines. This is because the amount of computation required for prefilling on a long input

(9.6K in this case) is huge, as discussed in §0.2.2. §0.12 shows CacheGen’s improvement over

a complete space of workloads of different bandwidth and GPU resources.

Context lengths: Figure 13b compares CacheGen’s TTFT with the baselines under dif-

ferent input lengths from 0.1K to 15K tokens under a fixed network bandwidth of 3 Gbps.

When the context is long, the gain of CacheGen mainly comes from reducing the KV cache

sizes. And when the context is short (below 1K), CacheGen will automatically revert to

loading the text context as that yields a lower TTFT.
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Figure 14: CacheGen reduces SLO violation rate over CacheGen without adaptation and
the quantization baseline. Plotted with Mistral-7B model.

0.7.4 KV streamer adaptation

The adaptation logic described in §0.5.3 allows CacheGen to adapt to bandwidth changes and

achieve good quality while meeting the SLO on TTFT. In Figure 14, we generate bandwidth

traces where each context chunk’s bandwidth is sampled from a random distribution of 0.1 –

10 Gbps. Each point is averaged across 20 bandwidth traces on the LongChat dataset. We

can see that CacheGen significantly outperforms the quantization baseline and CacheGen

without adaptation. Specifically, given an SLO on the TTFT of 0.5s, CacheGen reaches the

same quality as the quantization baseline with an 60% lower SLO violation rate. Under an

SLO of 1s, CacheGen reaches the same quality as the quantization baseline, while reducing

the SLO violation rate from 81% to 8%. The reason why CacheGen has a lower SLO violation

rate is that when the bandwidth drops, CacheGen can dynamically reduce the quantization

level or fall back to the configuration of computing text from scratch, while the quantization

baseline and CacheGen without adaptation cannot.

0.7.5 Overheads and microbenchmarks

Decoding overhead: While having a better size-quality and TTFT-quality trade-off,

CacheGen requires an extra decoding step compared to the quantization baseline. CacheGen

minimizes the decoding overhead by pipelining the decoding of context chunks with the
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Figure 15: (a) The breakdown of TTFT for text context, quantization baseline, and CacheGen
for Llama 13B. (b) Computation overhead of the text baseline and CacheGen. (c) Offline
delay breakdown for baseline quantization and CacheGen. (d) The storage cost for CacheGen,
quantization baseline and the uncompressed KV cache.

transmission of the context chunks, so as shown in Figure 15a, the decoding has minimal

impact on the end-to-end delay. It is also important to note that although CacheGen’s

decoding is performed on GPU (see §0.6), the amount of computation needed by CacheGen’s

decoding module is negligible compared to the baseline that generates KV cache from text

context.

Offline encoding and storage overheads: Unlike prior methods that compress each

context only once, CacheGen compresses it into multiple versions (§0.5.3). CacheGen com-

presses each context almost as fast as the baselines because the encoding delay is very small

(200 ms), as shown in Figure 15c. Figure 15d evaluates the overhead in storage. We can

see that despite needing to encode and store multiple bitstream representations, the total

storage cost for CacheGen is on par with the quantization baseline.

Ablation Study: To study the impact of individual components in CacheGen’s KV en-

coder, Figure 16 progressively adds each idea into the baseline of uniform quantization and

default AC, starting with the use of our AC that uses probability distribution for each

channel-layer combination, then change-based encoding, and finally layer-wise quantization.

This result underscores the substantial contribution from each idea to the overall reduction
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Figure 17: Real user study shows CacheGen improves QoE significantly over other baselines.

of KV cache size.

Quality of Experience: We performed an IRB-approved user study to validate the effec-

tiveness of CacheGen. We selected three conversation history from the LongChat dataset

used in previous evaluations. For each user, we first present the conversation history with

ChatGPT. Then we show the same response but produced by different pipelines by adding

different TTFT and let users rate the quality of response. With 270 ratings collected from

Amazon MTurk [6], we show that CacheGen consistently outperforms other pipelines in QoE

with shorter TTFT in Figure 17.

Evaluation results of CacheGen with more baselines is available §0.10, including using a

smaller-sized model to speed up TTFT and Gisting, another context-shrinking technique.

0.8 Related work

Faster LLM serving: Most LLM systems research aims to speed up LLM training [95, 103]

or make serving systems faster. CacheGen aims at speeding up LLM serving systems by

focusing on TTFT reduction. Others explore approximately parallelizing generation [74, 87],

accelerating inference on edge devices [125], quantizing LLM weights [36], reducing memory
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I/O of GPU on-chip SRAM [54] and reducing self-attention computation complexity [97],

better scheduling strategies [117, 126, 133], and GPU memory utilization [72]. Another line of

work optimizes the communication delay of transmitting KV cache between GPUs, either by

smart model parallelism strategies [133] or by implementing a new attention operation [79].

This operation transmits query vectors to the GPUs that host smaller blocks of KV cache

during the decoding phase. A common approach for faster inference without modifying the

LLMs is by caching the KV of previously used inputs for one LLM query [101, 129, 81, 93,

87, 116]. CacheGen works as a module to enable reuse of KV caches across multiple LLM

queries in these frameworks [72, 33, 60, 45].

Longer LLM contexts: Recent efforts aim at enabling LLMs to process very long con-

texts [122]. The challenge is to fit the large attention matrices of longer contexts into limited

GPU memory. This is enabled by offloading parts of the attention matrices [101], using ex-

ternal knowledge via KNN [119], approximating via retraining self-attention to only attend

to top-k keys [43, 35], mapping long inputs to smaller latent spaces [62] and using local

windowed, dilated or sparse [56, 42, 127] attention to scale to inputs of ∼1 billion tokens.

Longer contexts inflate the KV cache and CacheGen aims to address this by fast remote

loading of the KV cache.

Context shortening: Efforts on shortening long contexts relate well to CacheGen. They

aim to select the most important text segments and prune the rest. Using similarity between

the user query and the relevant documents [45], only keeping tokens that are less attended

to by the prompt (i.e., heavy-hitter tokens) [81, 129] or by hybrid policies including keeping

nearby tokens or heavy-hitter tokens [58], using query-aware compression with document

reordering to reduce loss-in-the-middle [66, 96] have been explored. All these methods need

to know the query, else they risk dropping potentially important tokens and they keep the

KV cache intact, to fit into limited GPU memory. Some works retrain LLM models to use

contexts rewritten by gisting [88] or auto-encoding [59].
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CacheGen differs by compressing the KV cache into bitstreams instead of shortening the

context. CacheGen’s KV compression does not need to know the query/prompt and doesn’t

risk quality loss from dropping potentially important tokens. It allows for better compression

rates by leveraging distributional properties of KV caches and achieves better delay-quality

trade-offs than existing context compressors (§0.7.5). CacheGen also does not need to retrain

the LLM.

Tensor compression: CacheGen’s KV cache encoding is essentially a tensor compression

technique tailored for LLM’s. General tensor compression has been intensively studied [131,

91]. In DNN training, tensor compression has been used to compress gradient updates of

DNN weights (e.g., [113, 32, 31]). KV caches and gradients have very different properties.

DNN training systems often leverage the sparsity of gradients which occurs due to methods

like [50, 128, 51]. However the KV cache is not known to be sparse in general.

Retrieval augmented generation(RAG): RAG [45, 64, 63, 98, 76, 112, 94] focuses on

retrieving relevant documents to the query via vector based [48, 123, 90] or DNN-based [76,

70, 121, 124] similarity search algorithms and feeding it as context to generate the answer. We

envision RAG as a fitting use case for CacheGen. Many LLM inference platforms support

feeding KV caches as retrieved context instead of text [115, 47]. Some works have also

attempted to define a systematic way to choose which KV cache to reuse[61]. Another

approach is to have LLM applications that cache the query’s generated answers to reduce

repetitive query costs [108, 84]. While caching answers is useful for reuse, CacheGen provides

a more generic way to incorporate context reuse and can generate better-quality answers.
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0.9 Text Output Examples of CacheGen

Figure 18 visualizes an example from the LongChat dataset [78] used in §0.7.2. The context

fed into the LLM is a long, multi-round conversation history between the LLM and the

user. An abridged context is shown in the upper box, where the first topic is about the role

of art in society. The prompt to the LLM asks “What is the first topic we discussed? ”

CacheGen correctly generates the answer, whereas the default quantization baseline, which

has a similar compressed KV cache size as CacheGen, generates the wrong answer.
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Response:

USER: I would like to discuss the topic of the 
role of art in society.

...
Question: What is the first topic we discussed?

Input:

The role of 
art in society

Ground truth
The first topic 
we discussed was 
the impact of 

social media on 
mental health.

Default quantization CacheGen
The first topic 
we discussed was 
the role of art 

in society.

Wrong ❌ Right ✅

Figure 18: An example of CacheGen’s output on the LongChat dataset with LongChat-7b-16k
model.

0.10 CacheGen vs. more intrusive methods

So far, all methods we have evaluated, including CacheGen, do not modify the LLM or

context. As a complement, Figure 19 tests CacheGen against recent methods that change

the context or LLM.

• Smaller models: Replacing the LLM with smaller models may speed up the computation.

Figure 19a replaces the Llama-7B model with a smaller Llama-3B and applies different

quantization levels.

• Token selection: Figure 19b uses Scissorhands as an example of removing tokens with low

self-attention scores from the LLM input [82]. Since the self-attention scores are only

available during the actual generation, it cannot reduce TTFT, but we make an effort to
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Figure 19: Comparing CacheGen and more intrusive methods, including smaller models,
token dropping (left), context selection (middle), and gisting (right).

create an idealized version of Scissorhands (Scissorhands*) by running the self-attention

offline to determine which tokens to drop and provide this information to Scissorhands*

online.

• Gisting Finally, we test Gisting as an example of a more advanced method that shortens

contexts into gist tokens and changes the LLM to accept the gist tokens [88].

We can see that CacheGen outperforms these baselines, reducing TTFT or KV cache size

while achieving similar or better LLM’s performance on the respective tasks. In particular,

CacheGen is faster than smaller models (which are slowed down by transformer operations),

and can reduce KV cache better than context selection or gisting because it compresses the

KV features to more compact bitstream representations. We want to stress that even though

CacheGen is compared head-to-head with these methods, it makes no assumption about the

context and the model, so one can combine CacheGen with these methods to potentially

further improve the performance.
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0.11 CacheGen System Settings

0.11.1 KV Streamer Adaptation Logic

We present the pseudo-code for the KV streamer logic that adapts to bandwidth here.

Algorithm 1: CacheGen Streaming Adapter Logic
chunks_to_send← context chunks
while chunks_to_send ̸= empty do

get chunk_data
throughput← network throughput
remaining_time← SLO − time_elapsed
if time_recompute ≤ remaining_time then
cur_chunk ← text of chunk_data

else
level← max(level|size(chunks_to_send, level)÷ throughput ≤ remaining_time
cur_chunk ← encode(chunk_data, level)

end if
send cur_chunk
chunks_to_send← chunks_to_send \ chunk_data

end while

0.11.2 Default Encoding Level

By default, CacheGen encoding is done with the following parameters: we partition the

layers in the LLM into three groups with equal distance, and set quantization bins to be 0.5,

1, 1.5 respectively.

0.12 CacheGen’s improvement under various workloads

Figure 20 shows CacheGen’s improvement over the best baseline (between quantization and

text context) over a complete space of workloads characterized along the two dimensions

of GPU available cycles ( i.e., 1/n with n being the number of concurrent requests) and

available bandwidth (in log scale). Figure 12 and Figure 13 can be seen as horizontal/vertical
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cross-sections of this figure.

0.13 Cost of storing KV cache

Our main focus in this paper is to reduce TTFT to achieve service SLO with minimal

impact on the generation quality of LLM. However, context loading systems, especially

CacheGen, could be an economical choice for LLM service providers as well. For example,

one piece of 8.5K-token context in Llama-13B takes roughly 5GB to store different versions

compressed with CacheGen. It costs $0.05 per month to store this data on AWS [23]. On the

other hand, recomputing the KV cache from text costs at least $0.00085 (input only) every

time [29, 22, 21, 28]. If there are more than 150 requests reusing this piece of context every

month, CacheGen will also reduce the inference cost. The calculation here only serves as a

rough estimation to highlight CacheGen’s potential. We leave the design of such a context

loading system targeting cost-saving to future work.
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Figure 20: Heatmap showing CacheGen’s improvement over the best baseline over a complete
space of workloads. Brighter cells means more TTFT reduction.
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