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Abstract

This paper studies dynamic principal-agent problems, i.e., games in which a principal and an agent
repeatedly interact, where the agent’s type is unknown and the agent is non-myopic. A natural question
to ask is, can the principal learn the optimal strategy against the unknown agent through these repeated
interactions? The No Learning Theorem from dynamic pricing, a special class of dynamic principal-agent
problems, would suggest that the principal cannot learn effectively from the agent. In contrast, we
demonstrate, for the first time, that in general principal-agent problems, the principal can improve her
utility through learning in repeated plays. We show that this dynamic policy continues to be nearly
optimal even when allowing for the principal to have a larger static strategy space, specifically if we
permit communication between the principal and agent. We also provide an algorithm based on a novel
and compact mixed-integer linear program for finding the principal’s optimal dynamic policy. In addition,
we develop an algorithm to compute a Markovian policy for the principal that approximates the optimal
dynamic policy while allowing for more efficient computation. Through simulations, we examine the
efficiency, compared to static policies, and the runtime of the proposed algorithms. Lastly, we apply
the generalized principal-agent framework to a specific contract design problem. We show that with
the special structural properties of contract design, the optimal dynamic principal policy has a compact
representation. Furthermore, in the case where the agent’s type is known, dynamic principal policies
enable full surplus extraction from the agent when the interaction with the principal extends over a
sufficiently long time horizon.

1 Introduction
Optimal pricing given unknown demand is a well-studied problem that comes up in many settings [Aggarwal
et al., 2006, Varian, 2009, Vickrey, 1961]. A natural extension of the problem is to assume that there is an
opportunity for a seller to learn the demand through repeated interactions using dynamic pricing. However,
even in the simplest setting, a single buyer with a fixed valuation drawn from a known distribution (i.e., the
fishmonger’s problem), it is impossible for a seller to exploit any information learned to improve her revenue.
Formally, no dynamic pricing policy can outperform the fixed (or static) policy of simply offering the optimal
single round price, i.e., the Myerson price [Myerson, 1981], at every round [Devanur et al., 2014, Vanunts
and Drutsa, 2019], at least when the buyer is both strategic and patient. This negative result, the No Learning
Theorem, is a function of the buyer behaving strategically in his purchase decisions in order to influence
future prices. The effect on the literature of this strong negative result has been to adopt assumptions that
weaken the strategic behavior of the buyer [Amin et al., 2013, 2014, Dawkins et al., 2021, 2022, Immorlica
et al., 2017, Vanunts and Drutsa, 2019]. A natural question arises from this impossibility result, “Is a static
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policy always optimal in a dynamic setting with strategic agents?” Or stated another way, “Can one both
learn and exploit the information learned when facing strategic agents if we move beyond the fishmonger’s
problem?”

A natural generalization of the fishmonger’s problem is a principal-agent problem with uncertainty over
agent types. Specifically, principal-agent problems model a two-step sequential decision-making process
between two players, a principal, and an agent. The principal moves first by committing to a randomized
strategy. Then the agent acts after observing the principal’s strategy; generally, it is assumed that the
agent best responds to the observed principal strategy by playing the utility-maximizing action, i.e., the
Strong Stackelberg Equilibrium (SSE). This canonical model for strategic principal-agent interactions has
been adopted for many applications in the real world, such as contract design theory, security resource
allocation, and optimal traffic routing [Bolton and Dewatripont, 2004, Paruchuri et al., 2008, Roth et al., 2016,
Roughgarden, 2001, Yang et al., 2014]. The SSE can be easily solved if the principal has access to the agent’s
utility information [Conitzer and Sandholm, 2006]. However, in practice, this utility information is usually
private and unknown to the principal, and instead, the principal may only have a distribution over possible
agent types. Therefore, in a repeated setting, similar to the fishmonger’s problem, there is an opportunity to
learn from the behavior of the agent.

In this work, we demonstrate, in a general repeated principal-agent problem with an unknown agent type,
that it is indeed possible to improve the principal’s utility using a dynamic policy in a repeated principal-
agent problem with unknown agent types relative to any static policy. This indicates that the No Learning
Theorem is not fundamental to learning against strategic agents, and it is instead specific to the fishmonger’s
problem. We further demonstrate that this policy is provably nearly optimal even relative to stronger static
strategy spaces for the principal that allow for such things as communication between the principal and agent.
Through experiments on both several standard principal-agent problems and randomly generated bimatrix
principal-agent games, we show that the dynamic policies meaningfully outperform the optimal static policy.
However, the computation of the optimal dynamic policy for the principal is NP-Hard in general. Therefore,
we additionally propose a novel Markovian principal policy, where the principal’s strategy only depends on
the agent’s response at the previous round. We demonstrate experimentally that the Markovian principal
policy both approximates well the optimal dynamic principal policy and is significantly more computationally
efficient. Finally, we apply our generalized principal-agent problem to the well-studied contract design
problem. We show the unique structural properties of contract design allow for a compact representation of
the optimal dynamic principal policy. In addition, when the agent’s type is known and the principal engages
in a long-term interaction, this policy empowers the principal to fully extract the surplus from the agent,
maximizing their gains.

1.1 Related Work
This work is closely related to the literature on learning in Stackelberg (security) games. When the agent’s
payoff information is unknown, [Balcan et al., 2014, Letchford et al., 2009, Peng et al., 2019, Roth et al.,
2016] propose various policies that allow a principal to learn the agent’s utility or optimal principal policy
by observing the agent’s response to a particular principal’s strategy. These policies can learn the optimal
principal strategy efficiently with a polynomial number of learning rounds. This literature assumes that
the agent behaves myopically, i.e., the agent always best responds to the posted principal strategy without
regard for future rounds. Recently, Haghtalab et al. [2022] studied learning in Stackelberg games with
non-myopic agents and proposed a no-regret learning policy for the principal. However, their work relies
on the assumption that the agent discounts the future utility at a greater rate than the principal. In a slightly
different direction, [Deng et al., 2019] studies dynamic policy design in a repeated setting when the agent’s
payoff information is public but instead of best responding the agent follows a no-regret learning algorithm to
interact with the principal.

Additionally, this work is related to the literature on learning optimal prices [Amin et al., 2013, 2014,
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Dawkins et al., 2021, 2022, Immorlica et al., 2017, Vanunts and Drutsa, 2019]. When the buyer discounts the
future at a greater rate than the seller, there are positive results, e.g. there exists a no-regret learning policy to
learn the optimal price [Amin et al., 2013]. If the buyer does not discount future utility or if the buyer is more
patient than the seller, the optimal pricing policy is to post a constant price for every round [Devanur et al.,
2014, Vanunts and Drutsa, 2019].

Our work is also related to the algorithmic contract design problem. Most of the previous works have
focused on the computational issues of contract design [Alon et al., 2021, Castiglioni et al., 2021, 2022,
Dütting et al., 2019]. In recent studies, the sample complexity of online contract design has been explored
by researchers such as Ho et al. [2014], Zhu et al. [2022]. These studies investigate the number of samples
required to effectively design contracts in an online setting. Cohen et al. [2022] further extend the analysis to
a specific scenario where the agent’s utility function exhibits bounded risk aversion.

Other related work considers dynamic policy design in extensive-form games Hart [1992], which is an
extremely well-studied problem. One well-known solution concept for extensive-form games is the subgame
perfect equilibria Fudenberg and Levine [1983], Moore and Repullo [1988]. We remark that our problem can
be thought of as a stateless dynamic principal-agent problem with incomplete information when the principal
has the ability to commit. This commitment assumption is very often used in dynamic principal-agent
problems ranging from dynamic mechanism design Kakade et al. [2013], Pavan et al. [2014] to dynamic
Stackelberg games Lauffer et al. [2022], Li and Sethi [2017]. When the principal has the ability to commit,
we do not consider the concept of subgame perfect equilibria as in classic extensive-form games.

Recent work has also considered the computation of Stackelberg equilibria in stochastic games Shapley
[1953]. The canonical solution concept for such games is the Markov perfect Stackelberg equilibria Maskin
and Tirole [2001], which is a stationary equilibrium concept. One key difference between this line of work
Bensoussan et al. [2015], Chang et al. [2015], Goktas et al. [2022], Vorobeychik and Singh [2012], Vu et al.
[2022] and ours is that these all study Markov stationary policies. In contrast, our work studies non-stationary
principal policies for non-stochastic games.

Finally, our setting is different from the traditional bandit setting in a very significant way. In a bandit
problem, the arm does not behave strategically Slivkins et al. [2019]. In our setting, and this is the difficulty
that drives results like the No Learning Theorem, the agent can behave strategically to throw off the principal.
So, traditional no-regret learning results do not apply. The No Learning Theorem states that for at least some
settings (since the Fishmonger’s problem is a sub-problem of our setting) the regret is unbounded for any
learning algorithm.

2 Preliminaries and Problem Setup
Principal-Agent Problems. The principal-agent problem is a game played by two players, who are referred
to as the principal (she) and the agent (he). The agent has a finite action set [n] = {1, · · · , n}, while the
principal’s strategy space X ⊆ Rm can be any closed convex set, which may have infinite size. This is
because in practice, the principal has the privilege to move first by committing to a randomized strategy,
while the agent responds with a pure action.1 The utility functions of the principal and the agent are denoted
as U and V , respectively, where u/v : X × [n] → R. Throughout this paper, we assume the agents’
utility functions are linear with respect to the principal strategy x ∈ X and agent action j ∈ [n], which
is correct in many specialized principal-agent problems. We explicitly write U(x, j) = ⟨x,uj⟩ + αj and
V (x, j) = ⟨x,vj⟩+ βj where uj/vj ∈ Rm, αj/βj ∈ R are utility parameters.

In a single round (i.e., static) principal-agent problem setting, the principal moves first by committing
to a randomized strategy x ∈ X . After observing the principal strategy x, the agent responds by playing
some action j which leads to an expected agent utility V (x, j). A rational agent will pick the optimal action

1Since the agent moves after the principal, there is no need for the agent to randomize his strategy. If there are ties, we assume
the agent breaks the tie in favor of the principal, which is without loss of generality [Von Stengel and Zamir, 2004].
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j∗(x) = argmaxj∈[n] V (x, j) to maximize his own utility. The corresponding principal utility is denoted as
U(x, j). When the agent’s utility function V is fully known to the principal, the principal can predict the
agent’s reaction j∗(x) to any x. The rational principal thus will commit to x∗ = argmaxx∈X U(x, j∗(x)).
This bi-level optimization problem can be solved in poly(m,n) time via a linear programming approach
[Conitzer and Sandholm, 2006], and the optimal x∗ is the Strong Stackelberg Equilibrium (SSE).

Bayesian Principal-Agent Problems. In many settings of interest, the principal may not know the agent’s
utility function V . To capture the principal’s uncertainty about agent payoffs, we follow the literature and
model the uncertainty as a random agent type θ ∈ Θ which is known privately to the agent while the principal
only has a prior distribution µ ∈ ∆|Θ| = {µ :

∑
θ∈Θ µ(θ) = 1} over the types. We denote the utility function

of a θ-type agent as V θ, and the best response for agent type θ to any principal strategy x is j∗θ(x) =
argmaxj∈[n] V

θ(x, j). As a natural extension of SSE to this Bayesian setup, a principal with prior knowledge
µ will play an x∗ to maximize her expected utility, formally, x∗ = argmaxx∈X

∑
θ∈Θ µ(θ)U θ(x, j∗θ(x)),

known as the Bayesian Stackelberg Equilibrium (BSE). Unlike the SSE, computing a BSE is NP-hard
[Conitzer and Sandholm, 2006]. For notation convenience, we drop the principal utility’s dependence on the
agent type θ and simply use U instead of U θ. All results generalize trivially.

Dynamic Principal-Agent Problems. We consider dynamic principal-agent problems, which (1)
generalize Bayesian principal-agent problems by allowing repeated principal-agent interactions; and (2) also
generalize dynamic pricing by allowing general player payoff functions. Formally, a principal-agent game is
played repeatedly for T rounds. The agent has a fixed private type θ drawn from µ. The principal plays a
Dynamic Stackelberg Policy2 (DSP) π which specifies a principal strategy xt = π(jt−1) ∈ X at each round
t, where jt−1 = (j1, · · · , jt−1)

3 is the agent’s past responses. The principal commits to a DSP π before
the game starts and the agent observes the policy in advance. This commitment assumption is common in
the literature, e.g. the fishmonger’s problem Devanur et al. [2014], Vanunts and Drutsa [2019], dynamic
mechanism design [Amin et al., 2013, Mirrokni et al., 2020, Pavan et al., 2014] and Stackelberg security
games [Sinha et al., 2018]. We call the optimal DSP the Dynamic Stackelberg Equilibrium (DSE).

Learning in Dynamic Principal-Agent Problems. The principal is not primarily concerned with
identifying the agent type, as in the traditional learning paradigm. Instead, the principal seeks to maximize
her utility over the rounds of the game. However, to do this, the principal may take advantage of the revealed
preferences [Beigman and Vohra, 2006, Roth et al., 2016] of the agent, so that she can distinguish the agent
type and tailor her strategies accordingly. As a byproduct of such optimization, the optimal dynamic policy
π may learn and exploit the agent type. Formally, the principal learns effectively if there exists θ, θ′ and t
such that π(j∗θt−1) ̸= π(j∗θ

′
t−1). From this perspective, the DSE as the optimal dynamic policy is a concept that

combines learning with utility optimization.

3 From Pricing to General Principal-Agent Problems
A key motivation for this work is the widely known folk theorem, commonly referred to as the No Learning
Theorem [Devanur et al., 2014, Vanunts and Drutsa, 2019], for the dynamic pricing game with a single buyer
with fixed valuation. Formally, a seller (she) repeatedly sells an item to the same buyer (he) for T rounds.
The buyer has a private value v ∈ R+ for the item, which is drawn from some prior distribution µ before
the game starts and is fixed throughout the game. The seller knows the prior distribution µ and can post
a price pt ∈ R+ at each round t; the buyer responds with jt ∈ {0, 1}, indicating accepting the price and
buying the item (jt = 1) or not. The buyers value is jt(v − pt) for round t. Before this game starts, the seller
commits to a dynamic pricing policy π that maps any buyer’s past responses to a price at the current round t,
i.e., pt = π(j1, · · · , jt−1).

2Following conventions in sequential decision making, we use “policy” to denote a dynamic scheme that maps history to a
strategy, whereas “strategy” is only used for one-round interactions.

3We use bold jt to denote a vector throughout the paper, where the subscript t represents the vector’s length.
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One potential policy is to repeatedly post the Myerson price [Myerson, 1981], p∗ = argmaxp[p(1 −
Pr(v ≤ p))], which maximizes the single-round revenue with respect to the seller’s prior knowledge µ. This
policy would seem to be highly sub-optimal – for example if the buyer rejects the item in the first round, he
will reject it in all future rounds, leading to a revenue of zero. One might conjecture that the seller should be
able to gradually learn the exact v from repeatedly observing the buyer’s responses, and then set the price to
v, extracting maximum revenue in all future rounds. However, the no learning theorem shows that, due to
the buyer’s strategic responses to seller’s learning, it is impossible for the seller to achieve higher expected
revenue using any other strategy [Vanunts and Drutsa, 2019]!

3.1 Learning in Dynamic Principal-Agent Problems
Dynamic pricing is a special case of general dynamic principal-agent problems with the seller as the principal
and the buyer as the agent. Given the optimality of static pricing due to the No Learning Theorem, it becomes
very natural to ask the following research question:

Is it possible to learn from a strategic agent in general dynamic principal-agent problems?

As the following example illustrates, it is indeed possible to learn from a strategic agent.

U j0 j1

i0 5 2

i1 5 7

V 0 j0 j1

i0 5 2

i1 4 2

V 1 j0 j1

i0 5 7

i1 4 3

Table 1: A bimatrix principal-agent game instance with two actions for the principal and agent. The
principal’s utility is defined by the first subtable U ; the agent has two possible types, with utility matrix
V 0, V 1 respectively, each having equal probability 0.5. The principal’s strategy is a randomized strategy
x ∈ X = ∆2, which denotes the probabilities of playing two leader actions i0 and i1. The leader’s utility
U(x, j) = ⟨x, U [:, j]⟩, where U [:, j] represents the j’th column of the utility matrix. The agent’s utility
function if defined similarly.

Dynamic policies outperform the optimal static policy. Consider a Bayesian principal-agent problem
with payoffs listed in Table 1. As can be computed, the optimal static policy for the principal in this game
turns out to be the (BSE) principal strategy x = (13 ,

2
3), i.e., the principal commits to a randomized strategy

which plays action i0 with probability 1
3 and i1 with probability 2

3 .4 This BSE strategy results in an expected
principal utility of 51

6 .
Consider the simplest possible dynamic setup with two rounds of principal-agent interactions. The

optimal dynamic principal policy is to play x1 = (0, 1) in the first round. If the agent responds with j0
in the first round, the principal still plays x2 = (0, 1) in the second round; otherwise, the principal plays
x2 = (1/2, 1/2). Agent V 0 best responds by playing j0 in both rounds, i.e., j∗02 = (j0, j0), while V 1 plays
j1 in both rounds, i.e., j∗12 = (j1, j1). This implies that the principal plays different strategies against the two
types in the second round, i.e π(j∗01 ) ̸= π(j∗11 ); the optimal policy requires that the principal learns about
the agent’s type. Moreover, this dynamic policy results in a total principal utility of 103

4 , averaged to 53
8 per

round, which is strictly larger than the static optimal principal utility of 51
6 .

The optimal dynamic policy also outperforms the principal’s static strategy with complete knowledge.
Specifically, suppose the principal can observe the agent’s type before the game and can play the optimal
static strategy against each type (i.e., the SSE), which is x = (1, 0) against V 0 and x = (13 ,

2
3) against V 1.

4The BSE is actually not the optimal static principal strategy in general. In this example, the BSE happens to be optimal,
simplifying the discussion. We will discuss the optimal single-round equilibrium concept in Section 5.
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In this case, the principal obtains expected utility 5 against agent type V 0 and 51
3 against V 1, both of which

are less than the averaged dynamic utility 53
8 . This is because dynamic strategies, with commitment, are

intrinsically more powerful than static strategies.
This observation provides some intuition as to why learning is valuable in general principal-agent

problems and not in the pricing game. A key insight in the proof of the no learning theorem is that the seller
can implement, in a single round, a mechanism, i.e., a price and a probability that she gives (or allocates) the
item to the buyer, that generates the average revenue of any dynamic policy. Specifically, the single round
simulation of the dynamic pricing policy takes the average of the offered prices and the average of the accept
decisions, i.e., the probability that the buyer accepts the item over a randomly chosen round. This is possible
to implement with a single round mechanism because the seller can set an arbitrary price and, crucially,
an arbitrary allocation probability. We can upper bound this single round mechanism with the well-known
Myerson optimal revenue [Myerson, 1981], and we can then upper bound the performance of any dynamic
policy. If the seller can achieve the upper bound with a static policy in the pricing game, which is true when
she can set the Myerson price, then a static policy is optimal.

However, in the general principal-agent problem, there is not always a natural corresponding mechanism
with something as simple as price and allocation given the broader action space of the agent. Moreover, even
if there is an imaginable action that is somehow globally optimal, in the same way as the Myerson optimal
price, the principal’s action space may not contain the optimal action. In fact, as we show in Section 4.3, even
a slight modification of the pricing game where we remove the Myerson optimal price from the principal’s
action set leads to the optimal pricing policy being a dynamic policy. In a general principal-agent problem,
the principal must use dynamic policies to overcome the limitations of all static policies.

4 The Possibility of Learning in Dynamic Principal-Agent Problems
Next, we present a full discussion of how the no learning theorem fails for general dynamic principal-agent
problems. To begin with, let us revisit the no learning theorem in dynamic pricing games.

4.1 The No Learning Theorem in Dynamic Pricing
The key technique for proving the optimality of static constant pricing is an elegant reduction from dynamic
pricing interactions to a single-round feasible auction mechanism Myerson [1981]5. Specifically, for any
pricing policy π, we construct an auction mechanism Mπ that works as follows. First, the seller asks the
buyer to report his value v and simulates j∗ based on the reported v, denoted as:

j∗(v) = argmax
j∈{0,1}T

∑
t∈[T ]

jt ·
(
v − π(j1, · · · , jt−1)

)
. (1)

Then the seller randomly chooses a round t ∈ [T ] with probability 1/T and allocates the item to the buyer
with price π

(
j∗1(v), · · · , j∗t−1(v)

)
if j∗t (v) = 1.

Proposition 1 (Proposition A.1 Vanunts and Drutsa [2019]). The auction mechanism Mπ is feasible and its
expected revenue is equivalent to the dynamic pricing policy π’s average expected revenue over T .

Proof. To begin with, we formally define the auction mechanism Mπ’s allocation probability QM and
payment PM with respect to a buyer report v.

QM (v) =
T∑
t=1

j∗t (v)

T
and PM (v) =

T∑
t=1

j∗t (v)π
(
j∗1(v), · · · , j∗t−1(v)

)
T

(2)

To prove Mπ is a feasible auction mechanism, we prove it satisfies incentive compatibility, individual
rationality, and QM (v) ≤ 1.

5Details about feasible auction mechanisms can be found in Section 3 of Myerson [1981]
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First, because j∗t (v) ∈ {0, 1}, we have that QM (v) ≤ 1.
Next, we prove the individual rationality of the mechanism, i.e., the buyer’s expected utility v ·QM (v)−

PM (v) ≥ 0. By definition,

v ·QM (v)− PM (v) =
1

T

T∑
t=1

j∗t (v)
(
v − π

(
j∗1 (v), · · · , j∗t−1(v)

))
. (3)

In other words, we need to prove
∑T

t=1 j
∗
t (v)

(
v − π

(
j∗1(v), · · · , j∗t−1(v)

))
, which is exactly the buyer’s

optimal utility, is greater than or equal to 0. From the definition of j∗(v) in equation (1), this is trivially
satisfied, since 0 is the buyer’s utility when setting jt = 0, ∀t.

Finally, we prove the incentive compatibility of the mechanism

v ·QM (v)− PM (v) ≥ v ·QM (u)− PM (u). (4)

It is equivalent to prove

T∑
t=1

j∗t (v)
(
v − π

(
j∗1 (v), · · · , j∗t−1(v)

))
≥

T∑
t=1

j∗t (u)
(
v − π

(
j∗1 (u), · · · , j∗t−1(u)

))
, (5)

which is correct by the definition of j∗(v) from (1). As a result, we have proved that the mechanism Mπ is a
feasible mechanism.

Last but not least, note that Mπ’s expected revenue is the expected payment,

PM (v) =
1

T

T∑
t=1

j∗t (v)π
(
j∗1 (v), · · · , j∗t−1(v)

)
(6)

where
∑T

t=1 j
∗
t (v)π

(
j∗1(v), · · · , j∗t−1(v)

)
is exactly the seller’s expected revenue when running dynamic

policy π for T rounds, proving the proposition.

As a result, we have Mπ as a feasible mechanism for any dynamic pricing policy π and the seller’s
revenue must be bounded by the Myerson revenue Myerson [1981]:

1

T

∑
t∈[T ]

j∗t (v)π
(
j∗1 (v), · · · , j∗t−1(v)

)
≤ MyersonRev, ∀π

Note that
∑

t∈[T ] j
∗
t (v)π

(
j∗1(v), · · · , j∗t−1(v)

)
is exactly the seller’s total revenue in T rounds when she uses

dynamic pricing policy π. Hence, we have shown that any dynamic pricing policy’s revenue is upper bounded
by the revenue of running constant Myerson price for T rounds.

4.2 Why the No Learning Theorem Ceases to Hold in Principal-Agent Problems?
A natural question to ask is why does this argument fail in a general principal-agent problem? Note the key
step to proving the no learning theorem of the pricing game is the connection between the constructed feasible
auction mechanism Mπ’s revenue and the dynamic pricing policy π’s revenue (i.e., (6)). Specifically, for
every round t ∈ [T ] that is sampled by the auction mechanism Mπ with probability 1

T , the seller get revenue
j∗t (v)π

(
j∗1(v), · · · , j∗t−1(v)

)
with allocation probability j∗t (v) and payment π

(
j∗1(v), · · · , j∗t−1(v)

)
. In other

words, the seller can impose the action j∗t (v) on the buyer with the allocation rule in the constructed auction
mechanism, which results in exactly the same revenue the seller would get at the round t when interacting
with the buyer using the dynamic policy π.

However, for a general principal-agent problem, an important distinction from traditional auction mecha-
nisms is the feature known as moral hazard or hidden action [Grossman and Hart, 1992, Holmström, 1979]:
the action cannot be imposed on the agent like the allocation rule in an auction. Specifically, in a general
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principal-agent problem, the principal can only play a strategy (like the payment rule) and recommend an
action (instead of imposing an action like the allocation rule) to the agent. But whether or not the agent
adopts the recommended action depends on the incentives induced by the principal’s strategy. For example,
consider the same reduction from dynamic principal-agent interactions using π to a single round mechanism
Mπ. Similarly, the principal can ask the agent to report a type θ and simulate the agent’s response:

j∗(θ) = argmax
j∈[n]T

∑
t∈[T ]

V θ
(
π(j1, · · · , jt−1), jt

)
Then Mπ samples a round t ∈ [T ] with probability 1

T and plays principal strategy π
(
j∗1(θ), · · · , j∗t−1(θ)

)
.

The important distinction is that the principal can not impose action j∗t (θ) on the agent as the alloca-
tion rule does in an auction mechanism, and therefore, the principal can not obtain the same utility (i.e.,
U
(
π
(
j∗1(θ), · · · , j∗t−1(θ)

)
, j∗t (θ)

)
) as the dynamic policy π’s utility at round t. On the contrary, a rational

agent would be incentivized to play

j∗Mπ,t(θ) = argmax
j∈[n]

V θ
(
π
(
j∗1 (θ), · · · , j∗t−1(θ)

)
, j
)
,

which is not necessarily equivalent to j∗t (θ), i.e., agent’s best response with respect to π
(
j∗1(θ), · · · , j∗t−1(θ)

)
in a T rounds repeated interactions. Because the agent also needs to consider his response’s influence on the
principal’s strategy in future rounds in repeated interactions. As a result, the principal’s expected utility of
Mπ would be

1

T

T∑
t=1

U
(
π
(
j∗1 (θ), · · · , j∗t−1(θ)

)
, j∗Mπ,t(θ)

)
, (7)

which is not comparable to the principal’s utility of running a dynamic policy π

T∑
t=1

U
(
π
(
j∗1 (θ), · · · , j∗t−1(θ)

)
, j∗t (θ)

)
, (8)

since j∗Mπ ,t
(θ) ̸= j∗t (θ). And we remark again the reason is that the principal can not impose action j∗t (θ) on

the agent like the allocation rule in an auction mechanism.

4.3 An Example for the Failure of No Learning
Note that a pricing game can be considered a specific principal-agent problem. For example, let us consider a
pricing game where the seller sells a single item to a buyer, whose value v over the item is drawn uniformly
over v ∼ V = {8, 35, 96} (three arbitrarily generated numbers). It is easy to compute that the optimal
Myerson price in this setting is 96, which gives the seller an expected revenue of 32.

We can also write the utility matrices of the seller and the buyer in this example as follows. It can be

U j0 j1

i0 0 8

i1 0 35

i2 0 96

V 0 j0 j1

i0 0 0

i1 0 -27

i2 0 -88

V 1 j0 j1

i0 0 27

i1 0 0

i2 0 -61

V 2 j0 j1

i0 0 88

i1 0 61

i2 0 0

Table 2: A pricing game example where U represents the seller’s utility matrix, and V 0, V 1, V 2 represents
the buyer’s utility matrices when his type is v = 8, v = 35, and v = 96 correspondingly. In addition,
i0, i1, i2 represents setting a price of 8, 35, 96, while j0/j1 represents the buyer rejects/accepts the price.

verified with the approach we proposed in Section 6 that the optimal dynamic seller policy is to set the

8



Myerson price 96 at every round, which gives us the same revenue as the optimal static price and is consistent
with the No Learning Theorem for the pricing game.

Notably, the reason Table 2 represents the pricing game example we introduced before is that it is
without loss of generality to consider the seller has three available prices {i0 = 8, i1 = 35, i2 = 96} when
v ∼ {8, 35, 96}. However, we can consider this pricing game example (i.e., the seller sells a single item to
a buyer, whose value v over the item is drawn uniformly over v ∼ V = {8, 35, 96}) in a more traditional
principal-agent problem perspective. In this case, the seller may have a finite action set I = {i0, i1, i2} which
may not necessarily be the same as the buyer’s value set V . For example, let us consider {i0 = 22, i1 =
40, i2 = 61} (again, some arbitrarily generated numbers). Similarly, we can write out the seller/principal’s
and the buyer/agent’s utility matrices as in Table 3.

U j0 j1

i0 0 22

i1 0 40

i2 0 61

V 0 j0 j1

i0 0 -14

i1 0 -32

i2 0 -53

V 1 j0 j1

i0 0 13

i1 0 -5

i2 0 -26

V 2 j0 j1

i0 0 74

i1 0 56

i2 0 35

Table 3: A pricing game example where U represents the principal’s utility matrix, and V 0, V 1, V 2

represents the agent’s utility matrices when his type is v = 8, v = 35, and v = 96 correspondingly. In
addition, i0, i1, i2 represents setting a price of 22 , 40 , 61 (note the difference from Table 2), while j0/j1
represents the agent rejects/accepts the price.

Interestingly, with this small modification to the pricing game, represented by Table 3, a dynamic
policy indeed outperforms the optimal static policy. The optimal static principal policy can be computed
as ( 5

18 ,
13
18 , 0), which gives the principal an expected average utility of 231

3 . On the other hand, the optimal
dynamic policy is to play a mixed strategy (0, 0, 1) (i.e., set a price of 61) in the first round. If the price is
rejected, the principal switches to the mixed strategy of (23 , 0,

1
3); the principal keeps the same price if the

price is accepted in the first round. As a result, Agent V 0 with private value 8 rejects for two rounds; Agent
V 2 with private value 96 accepts the price for two rounds; Agent V 1 rejects the price in the first round and
then accepts in the second round. This dynamic policy gives the principal an expected average utility of 261

6 ,
showing that the optimal dynamic policy outperforms the optimal static policy.

This example also provides some intuition about one question some attentive readers might ask, “Given
that the allocation rule gives the seller more power than the principal in a general principal-agent problem,
why is the seller less able to learn than in the general principal-agent problem?” Notably, in the above
example, the optimal dynamic utility is still worse than Myerson’s revenue of 32 when the seller has an
available price of 96. Therefore, we remark that even though the no learning theorem breaks down in the
principal-agent problem (Table 3) in the sense that the optimal dynamic policy outperforms the optimal static
policy, it actually does not outperform the Myerson revenue. In general principal-agent problems, there
actually does not exist an exact analogy of the Myerson optimal price or the single-round mechanism with
something as simple as price plus allocation from pricing games.

5 Efficacy of the DSE
In this section, we analyze the utility the DSE can secure for the principal — in particular, is it truly better
than the optimal principal utility for all possible static policies? We provide an affirmative answer to this
question, up to an O(1/

√
T ) discrepancy. Before stating our main result of this section, we introduce the

optimal static principal utility in a Bayesian principal-agent problem, played against an unknown agent drawn
from a prior distribution.
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Benchmark: the Theoretically Optimal Static Strategy. By invoking the revelation principle of
Myerson [1982] for general principal-agent problems, the principal’s optimal static strategy is to offer
an incentive compatible (IC) menu of randomized strategies. Such a menu can be described by a pair
(p,x) = {pθ,j ,xθ,j}j∈[n],θ∈Θ. After committing to this menu, the principal asks the agent to report his type θ.
She then draws xθ,j with probability pθ,j and plays xθ,j , which will incentivize agent type θ to best respond
with action j ∈ [n]. The computation of the optimal menu, which we coin the Randomized Menu Equilibrium
(RME), has been studied recently in general principal-agent problems Gan et al. [2022] and contract design
Castiglioni et al. [2022]. Specifically, Gan et al. [2022] shows that the RME can be computed in polynomial
time.

Note that this is no longer, strictly, a Bayesian Stackelberg equilibrium since it requires both communi-
cation between the principal and the agent and that the principal must randomize over a menu of (already
randomized) mixed strategies. This implies the RME may not be applicable in many settings since: (1)
principal-agent communication is not possible in many domains, such as security games [Sinha et al., 2018];
(2) the randomized menu over mixed strategies may not be plausible as a commitment due to the infeasibility
of verifying the two layers of randomness. Therefore, we treat it mainly as a strong theoretic “optimality
benchmark” for us to compare against. The main result of this section shows that the DSE is guaranteed
to achieve nearly identical utility, up to a small O( 1√

T
) discrepancy. This illustrates the power of using

dynamic policies. Note that we could, alternatively, consider the dynamic RME, i.e. the menu of dynamic
policies, which would, by the revelation principle, be the strongest possible dynamic policy. However, we are
concerned with identifying and comparing to the strongest static policy, so we restrict our attention to the
static RME in this work.

Let UDSE and URME denote the principal’s utility at DSE and RME. Our result on the comparison between
UDSE and URME hinges on a non-degeneracy assumption pertaining to a notion coined the inducibility gap,
denoted by δ, a concept adopted in previous work [Gan et al., 2023, Wu et al., 2022].

Definition 1 (Inducibility Gap). The inducibility gap of a Bayesian principal-agent problem with agent types
Θ is the largest δ such that there exists an IC randomized menu {xθ,j , pθ,j}θ∈Θ,j∈[n] where for any agent
type θ:

∑
j pθ,jV

θ(xθ,j , j) ≥
∑

j pθ′,j maxj′ V
θ(xθ′,j , j

′) + δ, ∀ θ′ ̸= θ.

A positive inducibility gap simply means that every agent type θ ∈ Θ can be strictly incentivized to
report truthfully by some randomized menu. This is a non-degeneracy assumption since any Bayesian
principal-agent problem trivially has δ ≥ 0 because playing any fixed mixed strategy x, irrespective of agent
types, already (weakly) incentivizes truthful reports from every agent type. A randomized menu with δ
inducibility gap is called δ-strictly IC.

Theorem 1. For any principal-agent problem with inducibility gap δ and T ≥ Ω(log2n |Θ|), we have
UDSE

T ≥ URME −O(
√

log |Θ|
Tδ2

). Moreover, there exist instances where UDSE

T ≤ URME − Ω( 1
T ).

Proof Sketch. The high-level proof idea is as follows. Given any RME {p∗θ,j ,x∗
θ,j}j∈[n],θ∈Θ, we want to con-

struct a dynamic policy (not necessarily the optimal DSE) that can “simulate” the given RME. Unfortunately,
this construction has two main challenges that we have to overcome. First, the RME offers a menu of random-
ized strategies {p∗θ,j ,x∗

θ,j}j∈[n] for each type θ. Because of incentive compatibility, the follower reports type
θ truthfully and the leader plays a randomly selected strategy. However, the dynamic policy plays a single
strategy at each round. As a result, the dynamic policy must use the initial rounds to learn the follower’s type
θ and then simulate the corresponding randomized strategy on the RME. Another challenge comes from the
simulation of randomization over strategies with deterministically chosen strategies. An intuitive idea is to
play x∗

θ,j for the number of rounds that is proportional to p∗θ,j . Unfortunately, this requirement cannot be
exactly fulfilled unless the number of rounds can be divided evenly for every j according to p∗θ,j ; Otherwise,

10



the follower’s incentives may be distorted. A timeline of this high-level idea is sketched in the following
figure. We show how to address these challenges in three steps.

Step 1: Eliciting follower type θ. This phase takes t = ⌈logn(|Θ|)⌉ rounds. Construct function
H : Θ → [n]t such that H(θ) equals precisely the length-t bit sequence of the n-nary representation of θ
(interpreting θ as an integer equaling at most |Θ|). By definition, each θ has a unique H(θ) value. The leader
strategies in these first t rounds can be arbitrary. The main challenge is deferred to the second phase below,
during which we will carefully design the strategies to incentivize each follower type θ to respond exactly
with action sequence H(θ) in this first phase.

Step 2: Constructing an approximately-optimal strictly-IC randomized menu. There are two reasons
why we need strict incentive compatibility when simulating the randomized menu. The first is to incentivize
every follower θ to respond with H(θ) in the above Step 1. To achieve this, we need to guarantee that, from
θ’s point of view, the strategy sequence in the remaining T − t rounds for him is strictly better — in fact at
least additively t better — than the strategy sequence for any other θ′. The second reason is more intrinsic: we
have to round all the probabilities in the randomized menu being played after t into multipliers of 1/(T − t),
such that they can be precisely realized by deterministic strategies. Because of this, we also need a strictly IC
menu to make up for the incentive distortion during the rounding of probabilities. In this step, we show that

there always exists such a randomized menu that is O(
√

log |Θ|
Tδ2

) optimal and O(

√
log |Θ|

T )-strictly IC (this is
where the non-degenerate inducibility gap is needed). A high-level idea is to construct a new randomized
menu that is both near-optimal and strictly IC by mixing the RME with the δ-strictly IC menu.

Lemma 1. For Stackelberg games with inducibility gap δ and T ≥ Ω(t
2
), there always exists a randomized

menu that is O(
√

log |Θ|
Tδ2

) optimal and O(

√
log |Θ|

T )-strictly IC.

Step 3: Existence of (T − t)-uniform, O(
√

log |Θ|
Tδ2

) optimal, and IC menu. From the previous step, we

can construct a O(
√

log |Θ|
Tδ2

) optimal O(

√
log |Θ|

T )-strictly IC randomized menu ⟨p,x⟩. But the pθ cannot be
exactly fulfilled by deterministic strategies unless the number of rounds can be divided evenly for each action
according to pθ. Next, we introduce a useful lemma for rounding the probabilistic distribution pθ to be a
k-uniform distribution pθ

6 with a bounded loss on the utility of all players.

Lemma 2 ([Althöfer, 1994]). For any ϵ > 0 and any {pθ,j ,xθ,j}j∈[n], there exists a k-uniform pθ with

k = ⌈ log 2(|Θ|+1)
2ϵ2

⌉ such that

|
∑
j

pθ,jul(xθ,j , j)−
∑
j

pθ,jul(xθ,j , j)| ≤ ϵ, and for all θ′

|
∑
j

pθ,j max
j′

uθ′

f

(
xθ,j , j

′)−∑
j

pθ,j max
j′

uθ′

f

(
xθ,j , j

′)| ≤ ϵ.

A complete proof of the last two steps can be found in appendix A.
Lastly, an instance with Ω(1/T ) lower bound. We remark that the upper and lower bound of the utility

comparison above is off by a factor of O(1/
√
T ). Closing this gap is an interesting open question. To prove

the Ω(1/T ) bound, we consider the following bimatrix game instance,

6pθ vector can be chosen such that pθ,j = kj/k with natural numbers kj for all j = 1, · · · , n.
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U j0 j1

i0 1 0

i1 0 1

V 0 j0 j1

i0 1 0

i1 1 0

V 1 j0 j1

i0 0 1

i1 0 1

in which the principal has a prior distribution (0.5, 0.5) over the two agent types (V 0, V 1). It is straightforward
that the RME is to offer xV 0

= (1, 0) with probability 1 for type V 0; xV 1
= (0, 1) with probability 1 for type

V 1. As a result, uRMEl = 1. If the principal cannot offer a menu of strategies but applies a dynamic policy
instead, the optimal policy would be to use the first round to learn the agent’s type based on his response
(either j0 or j1) and play pure strategy i0 or i1 accordingly. The optimal expected utility at the first round,
however, is at most 0.5. In this case, we have UDSE = 0.5 + (T − 1) while playing RME gives the principal a
utility of T , if the principal and the agent interact for T rounds. Therefore, we get uDSEl

T =RME− 1
2T , proving

the theorem.

Remark. Theorem 1 shows that DSE always outperform RME, up to a O(
√

1
T ) gap. It turns out that one can

easily find examples in which RME will be significantly worse — specifically, Ω(1) worse — than the average
DSE utility, even when there is only a single agent type.

Consider the following bimatrix game example:

L j0 j1

i0 0.5 1

i1 0 0

F j0 j1

i0 1 0.5

i1 0 0

The optimal static principal strategy is (1, 0), i.e. playing the pure action i0, leading to a principal utility of
0.5 per round or 0.5T in total. On the other hand, we propose the following dynamic policy for the principal:

x1 = (1, 0); xt =

{
(0, 1) if ∃ t′ < t and jt′ = j0

(1, 0) otherwise
for t > 1. (9)

The agent’s optimal responses turn out to be always responding with j1 for the T − 1 interactions and
responding with j0 at the final T ’th round, leading to a total principal utility of T − 0.5. As a result, there is a
gap of 0.5(T − 1) between the total utility under the optimal static strategy and the dynamic policy (9).

6 Computing the DSE Both Approximately and Exactly
We remark that when T = 1, the DSE is the BSE, which is known to be NP-hard [Conitzer and Sandholm,
2006]. With T > 1, even writing down a dynamic policy takes space exponential in T as it has to specify a
strategy for each possible sequence of agent actions. Thus, our computational study focuses on developing
practical algorithms for computing the DSE. First, we explore the computation of the optimal Markovian
principal policy, i.e. a policy where the principal’s strategy in any round is a function of the agent’s response
in the previous round only. We demonstrate that the optimal Markovian principal policy can be computed
through a novel Mixed Integer Linear Program (MILP) formulation using only a polynomial number of
decision variables. Additionally, by drawing on techniques similar to those used in constructing the MILP for
the Markovian principal policies, we construct a MILP for the optimal (non-Markovian) dynamic principal
policy. While the second program does involve an exponential number of decision variables, this is to
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be expected given that the size of the dynamic policy description is Ω(nT ). However, we demonstrate,
using industry-standard optimization solvers such as Cplex [2009], Gurobi Optimization, LLC [2022], that
even the optimal dynamic policy can be practically computed for Bayesian principal-agent problems. In
Section 8, we implement both programs and demonstrate that the optimal Markovian policy can serve as a
strong approximation to the principal utility realized under the optimal policy, while significantly improving
computational time.

6.1 Efficient Approximation of DSE via Markovian Policies
In this subsection, we present a heuristic approach to improve the scalability. The approach is inspired by the
Markov Decision Process (MDP), where an environment interacts with an agent and the transition of the
environment from one state to another depends only on the current state and the action taken by the agent.
Similarly, we consider the Markovian principal policy, where principal strategy xt only depends on the time
step t and the agent response jt−1 (i.e. Markovian policy xt

jt−1

7 = π(jt−1) : [n]× [T ] → ∆m). Specifically,
we can formally define the optimal Markovian principal policy as the solution to the following program (10).

max
∑

t∈[T ]

∑
θ∈Θ

[
µ(θ)U(xt

jθt−1
, jθt )

]
s.t.

∑
t∈[T ] V

θ(xt
jθt−1

, jθt ) ≥
∑

t∈[T ] V
θ(xt

ĵt−1
, ĵt),∀θ ∈ Θ, ĵT ∈ [n]T

jθT ∈ [n]T , ∀θ ∈ Θ (10)

Note that in Program (10), the decision variables jθt−1 appear in the indices of other decision variables,
xt
jt−1

, which cannot be solved by any known optimization software. Towards that end, the main result of
this section is a Mixed Integer Linear Program (MILP) formulation for computing the optimal Markovian
policy. Deriving such a MILP is nontrivial since a naive formulation of the problem is not solvable. Indeed,
our development of the MILP formulation is divided into three technical steps, as shown in the following
theorem.

Theorem 2. The optimal dynamic Markovian policy can be computed by a MILP with a O(T |Θ|mn2)
number of continuous variables and T |Θ|n integer variables.

Proof. At every round t, a dynamic Markovian principal policy determines the principal strategy according to
the agent response at the previous round, denoted as xt

jt−1
. The principal’s cumulative utility throughout the

interaction can be written as
∑

t∈[T ]

∑
θ∈Θ[µ(θ)U(xt

jθt−1
, jθt )]. We represent the agent’s response sequence

as yθ ∈ {0, 1}T×n, where yθt,j = 1 if the agent type θ plays j at round t. Thus, the principal’s expected
cumulative utility can be written as∑

θ µ(θ)
∑

t,jt−1,jt

(
⟨xt

jt−1
,ujt⟩+ αjt

)
yθt−1,jt−1

yθt,jt , (11)

where yθt−1,jt−1
yθt,jt is non-zero when both of them are 1. We can characterize the agent’s optimal response

history with y using the following constraint:

0 ≤ aθ − (
∑

t⟨xt
jt−1

,vθ
jt
⟩+ βjt) ≤ M(T −

∑T
t=1 y

θ
t,jt

), ∀jT , θ 8 (12)

where M is a very large constant and a ∈ R|Θ| is a set of newly introduced decision variables. Formally,
Program (10) can be transformed into a Mixed Integer Program (MIP) as shown by the following lemma.

Lemma 3. Program (10) can be written as a MIP.
7At the starting round t = 1, there does not exist a historical agent response, the principal plays initialization strategy. We denote

it x1
j0 throughout the paper for the notation consistency, where j0 can be thought as NULL.
8We omit the feasible regions of variables (e.g. t ∈ [T ], i ∈ [m], jT ∈ [n]T , θ ∈ Θ) in some programs for the sake of space

when they are clear from the context.
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Proof. Program (10) is equivalent to the following MIP (13).

max
∑

θ µ(θ)
∑

t,jt−1,jt

(
⟨xt

jt−1
,ujt⟩+ αjt

)
yθt−1,jt−1

yθt,jt

s.t.
∑

i x
t
jt−1,i

= 1;
∑

j y
θ
t,j = 1, ∀jt−1, t, θ

0 ≤ aθ − (
∑

t⟨xt
jt−1

,vθ
jt
⟩+ βjt) ≤ M(T −

∑
t∈[T ] y

θ
t,jt

),∀jT , θ

0 ≤ x ≤ 1; y ∈ {0, 1}. (13)

Reformulating agent’s incentive constraints in Program (10). We argue that under our new variable
yθ ∈ {0, 1}T×n, the following constraint is equivalent to the first set of constraints in Program (10) and thus
correctly captures the agent’s dynamic optimal responses:

0 ≤ aθ − (
∑
t

⟨xt
jt−1

,vθ
jt⟩+ βjt) ≤ M(T −

T∑
t=1

yθt,jt), ∀jT , θ, (14)

where M is a very large constant, a ∈ Rk is a set of newly introduced decision variables.
To see how Inequality (14) characterizes the optimality condition of the agent’s best responses, consider

any variables x,y and a feasible to Inequality (14). Recall that yθ
t ∈ {0, 1}n is a one-hot vector of length

n for any θ ∈ Θ and t ∈ [T ]. We denote j∗θt ∈ [n] as the index of the unique 1-valued entry in yθ
t , and

vector j∗θT = (j∗θ1 , · · · , j∗θT ). We argue that if x,y and a satisfy Inequality (14), then j∗θT must be an optimal
response sequence for type θ.

By construction, we have
∑

t y
θ
t,j∗θt

= T, for all θ and j∗θT by definition. Plugging this into Inequality (14),

we obtain M(T −
∑

t y
θ
t,j∗θt

) = 0. Thus Inequality (14) becomes 0 ≤ aθ− (
∑

t∈[T ]⟨xt
j∗θt−1

,vθ
j∗θt

⟩+βj∗θt
) ≤ 0,

which implies
aθ =

∑
t∈[T ]

⟨xt
j∗θt−1

,vθ
j∗θt

⟩+ βj∗θt
, ∀θ. (15)

That is, aθ is precisely agent type θ’s total utility from response yθ.
Now let us consider any other possible response sequence jT ∈ [n]T ̸= j∗θT . Since yθ

t is a one-hot vector
and yθt,jt = 1 if and only if jt = j∗θt . Therefore, if jT ̸= j∗θT , there must exists some t such that yθt,jt = 0,
hence, ∑

t

yθt,jt < T, ∀θ, jT ̸= j∗θT .

Plugging this jT into (14), we must have M(T −
∑

t y
θ
t,jt

) ≥ M as a very large constant, which makes
the right-hand-side inequality void for any jT ∈ [n]T ̸= j∗θT . Thus, the only useful constraint is 0 ≤
aθ − (

∑
t∈[T ]⟨xt

jt−1
,vθ

jt
⟩+ βjt) for any jT ̸= j∗θT , which implies∑

t∈[T ]

⟨xt
jt−1

vθ
jt⟩+ βjt ≤ aθ, ∀θ, jT ̸= j∗θT . (16)

It is now clear to see that j∗θT is the optimal response for type θ by combining (16) and (15).
Reformulating the objective function in Program (10). We claim that for any feasible variable x,y

and a, the objective of Program (10) equals to the following expression:∑
θ

µ(θ)
∑

t,jt−1,jt

(⟨xt
jt−1

,ujt⟩+ αjt) y
θ
t−1,jt−1

yθt,jt (17)

The objective above enumerates all possible path histories jt−1, jt ∈ [n] for any t ∈ [T ]. However, the product
yθt−1,jt−1

yθt,jt is only non-zero when both yθt−1,jt−1
and yθt,jt are non-zero, i.e. when yθt−1,jt−1

and yθt,jt is on
the optimal agent response path for agent type θ. This guarantees that Objective (17) only counts the jt−1

and jt on the optimal path j∗θT . Therefore, it correctly calculates the expected principal utility when each
agent type θ follows their optimal response paths.
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Showing the equivalence. Consider x and j as a feasible solution of (10). We will show that x, yθt,j ={
1 if j = jθt
0 otherwise

, and aθ =
∑

t∈[T ] V
θ(xt

jθt−1
, jθt ) is a feasible solution of (13) of the same objective function

value. The last four constraints of (13) are satisfied by construction. To see how the first constraint is
satisfied, note for any jT ̸= jθT returned by (10) of type θ, we have

∑
t∈[T ] y

θ
t,jt

< T by construction, and its
corresponding agent utility

∑
t⟨xt

jt−1
,vθ

jt
⟩+βjt ≤ aθ by the definition that jT is not the best response. When

jT = jθT , we have M(T −
∑

t∈[T ] y
θ
t,jt

) = 0 and aθ =
∑

t⟨xt
jt−1

,vθ
jt
⟩+βjt by construction. Hence, the first

constraint of (13) is also satisfied. The fact that yθt,j = 0 guarantees that yθt−1,jt−1
yθt,jt = 0 if jt−1 or jt /∈ jθT .

Then we have
∑

t,jt−1,jt
(⟨xt

jt−1
,ujt⟩ + αjt) y

θ
t−1,jt−1

yθt,jt =
∑

t⟨xt
jθt−1

,ujθt
⟩ + αjθt

=
∑

t U(xt
jθt−1

, jθt ),

which shows the constructed feasible solution of (13) has the same objective value as (10).
Let us now consider x, y, and a feasible for (13). We construct jθT such that jθt ∈ [n] and yθ

t,jθt
=

1. We will show that x and y are feasible for (10) with the same objective value. Recall the dis-
cussion from equations (15)– (16), we have that jθT captures the agent’s optimal behavior and satisfies∑

t∈[T ] V
θ(xt

jθt−1
, jθt ) ≥

∑
t∈[T ] V

θ(xt
ĵt−1

, ĵt). What is more, by the same argument as in the previous

direction, we have
∑

θ µ(θ)
∑

t,jt−1,jt
(⟨xt

jt−1
,ujt⟩+αjt) y

θ
t−1,jt−1

yθt,jt =
∑

θ µ(θ)
∑

t U(xt
jθt−1

, jθt ), which

shows the equivalence between the objective values of these two programs.

Finally, we can linearize the production of decision variables xtjt−1,i
yθt−1,jt−1

yθt,jt in the MIP of the
previous Lemma.

zt,θjt−1,jt
= yθt−1,jt−1

yθt,jt and wt,θ
jt−1,jt,i

= xtjt−1,i y
θ
t−1,jt−1

yθt,jt . (18)

The key challenge for deriving our re-formulation is to set up the right set of constraints for these new
variables so that they will exactly enforce the feasibility of the original variables.

max
∑

θ µ(θ)
∑

t,jt−1,jt
⟨wt,θ

jt−1,jt
,ujt⟩+ αjtz

t,θ
jt−1,jt

(19a)

s.t. zt,θjt−1,jt
≤ yθt,jt ; z

t,θ
jt−1,jt

≤ yθt−1,jt−1
; zt,θjt−1,jt

≥ yθt,jt + yθt−1,jt−1
− 1; ∀jt−1, jt, t, θ (19b)

wt,θ
jt−1,jt,i

≤ xt
jt−1,i; w

t,θ
jt−1,jt,i

≤ zt,θjt−1,jt
; ∀jt−1, jt, t, θ, i (19c)

wt,θ
jt−1,jt,i

≥ xt
jt−1,i −M(1− zt,θjt−1,jt

); ∀jt−1, jt, t, θ, i (19d)∑
i x

t
jt−1,i

= 1;
∑

j y
θ
t,j = 1; ∀t, jt−1, θ (19e)

0 ≤ aθ − (
∑

t⟨xt
jt−1

,vθ
jt
⟩+ βjt) ≤ M(T −

∑
t y

θ
t,jt

); ∀jT , θ (19f)

0 ≤ z ≤ 1; 0 ≤ w ≤ 1; 0 ≤ x ≤ 1; y ∈ {0, 1}. (19g)

Lemma 4. Program (10) can be written as the MILP (19).

The proof of Lemma 4 has two steps. We first show that any optimal solution for MIP (13) must
correspond to a feasible solution of MILP (19) with the same objective value, and then show its reverse
direction.

Step 1: OPT (19) ≥ OPT (13). Consider any optimal solution x, y, and a for MIP (13). We
argue that x, y, a, together with constructed z,w via Equations (18), forms a feasible solution of (19).
The equivalence of the objective function is immediately satisfied by construction. It is also obvious that
0 ≤ z ≤ 1 and 0 ≤ w ≤ 1 by construction. Next, we show that constraints (19b) – (19d) are satisfied. Recall
that each entry of y is binary. For any θ, t and (j1, · · · , jt), we consider the following two possible cases:

• If either yθt−1,jt−1
= 0 or yθt,jt = 0, then we have zt,θjt−1,jt

= 0 and wt,θ
jt−1,jt,i

= 0 by construction, As
a result, it is obvious that the first two constraints of (19b) and (19c) are satisfied. To see why the
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last constraint of (19b) holds, note that as long as either yθt−1,jt−1
= 0 or yθt,jt = 0, then we have

yθt,jt + yθt−1,jt−1
− 1 ≤ 0 = zt,θjt−1,jt

. Finally, when zt,θjt−1,jt
= 0, we have the right-hand side of (19d)

be a large negative number, so (19d) is satisfied as well.

• If yθi,ji = 1 for all i = 1, · · · , t, then we have zt,θjt−1,jt
= 1 and wt,θ

jt−1,jt,i
= xtjt−1,i

by construction.
It is also straightforward to see that constraint the first two constraints of (19b), (19c), and (19d) are
satisfied. Moreover, we have

∑
i∈[t] y

θ
i,ji

= t in this case, and thus
∑

i∈[t] y
θ
i,ji

− (t− 1) = 1 = zt,θjt−1,jt
so the last constraint of (19b) is satisfied as well.

Therefore, we have shown the constructed z,w together with x,y,a form a feasible solution to MILP (19)
with the same optimal objective value as (13). This implies OPT (19) ≥ OPT (13), where OPT denotes the
optimal solution value of the program.

Step 2: OPT (19) ≤ OPT (13). We now prove the reverse direction, which is the more interesting and
non-trivial step. Specifically, suppose that we are given an optimal solution x,y,a, z,w of MILP (19). We
show that these x,y and a form a feasible solution of (13) with the same objective function. It is obvious
to see that x,y and a are still feasible to (13) since the constraints of (13) is a subset of constraints of
(19). The key step is to show these x,y and a achieve the same objective value in (13). To show this, we
prove that for any optimal solution x,y,a, z,w of (19), we must have wt,θ

jt−1,jt,i
= xtjt−1,i

yθt−1,jt−1
yθt,jt and

zt,θjt−1,jt
= yθt−1,jt−1

yθt,jt for any θ, t, and jt. We prove this is correct through a careful case analysis:

(1) If either yθt−1,jt−1
= 0 or yθt,jt = 0, then we have zt,θjt−1,jt

= 0 from (19b) and wt,θ
jt−1,jt,i

= 0 from
(19c), proving the equivalence.

(2) If yθt−1,jt−1
= yθt,jt = 1, we have zt,θjt−1,jt

= 1 = yθt−1,jt−1
yθt,jt from (19b). Next, we claim

wt,θ
jt−1,jt,i

= xtjt−1,i
yθt−1,jt−1

yθt,jt . Note that we must have wt,θ
jt−1,jt,i

≤ xtjt−1,i
and wt,θ

jt−1,jt,i
≤ zt,θjt−1,jt

by

constraint (19c). Note that when yθt−1,jt−1
= yθt,jt = 1, we have zt,θjt−1,jt

≤ 1 by the first two constraints of

(19b), as well as zt,θjt−1,jt
≥ 1 by the last constraint of (19b). Hence, zt,θjt−1,jt

= 1, and the second constraint

of (19c) will not add additional constraint on wt,θ
jt−1,jt,i

. In addition, we also have wt,θ
jt−1,jt,i

≥ xtjt−1,i
from

constraint (19d) when zt,θjt−1,jt
= 1, leading to wt,θ

jt−1,jt,i
= xtjt−1,i

. As a result, we have shown that for any

optimal solution x,y,a, z,w of MILP (19), we must have wt,θ
jt−1,jt,i

= xtjt−1,i
yθt−1,jt−1

yθt,jt . Thus, x,y,a
form a feasible solution to MIP (13) with the same objective value, implying OPT (19) ≤ OPT (13).

We remark that the MILP (19) has nT |Θ| integer variables, and the sizes of continuous variables are
mnT for x, the size |Θ|Tn2 for z, and the size |Θ|Tmn2 for w. Therefore, the total number of decision
variables of (19) is O(|Θ|Tmn2), proving the theorem.

6.2 Computing the Exact DSE
In this subsection, we show that we can also develop a corresponding MILP for computing the exact optimal
dynamic principal policy. Even though this MILP has an exponential number of decision variables, it provides
a practical solution for the previously unexplored NP-Hard problem.

Proposition 2. The exact DSE can be computed by a MILP with a O(T |Θ|mnT ) number of continuous
variables and T |Θ|n integer variables.

Proof. Given a sequence of interaction history {(xt, jt)}t∈[T ], the principal’s total utility is computed as∑T
t=1 U(xt, jt) whereas the total utility of any agent type θ is

∑T
t=1 V

θ(xt, jt). This leads to an initial
optimization formulation to compute the DSE with integer variables jθT ∈ [n]T denoting the response
sequence of agent type θ, and continuous variables xt

jt−1
= π(jt−1) ∈ ∆m denoting the principal’s mixed

strategy at round t given any agent response sequence jt−1 ∈ [n]t−1. The program maximizes the principal’s

16



total utility subject to the constraint that jθT is the optimal response sequence for agent type θ:

max
∑
t∈[T ]

∑
θ∈Θ

[
µ(θ)U(xt

jθ
t−1

, jθt )
]

s.t.
∑
t∈[T ]

V θ(xt
jθ
t−1

, jθt ) ≥
∑
t∈[T ]

V θ(xt
ĵt−1

, ĵt),∀θ ∈ Θ, ĵT ∈ [n]T

jθT ∈ [n]T , ∀θ ∈ Θ (20)

At every round t, a dynamic principal policy determines the principal strategy according to the historical
agent responses, denoted as xt

jt−1
. The principal’s cumulative utility throughout the interaction can be written

as
∑

t∈[T ]

∑
θ∈Θ[µ(θ)U(xt

jθt−1
, jθt )]. Similar to our formulation in the previous subsection, we represent the

agent’s response sequence as yθ ∈ {0, 1}T×n, where yθt,j = 1 if the agent type θ plays j at round t. Thus,
the principal’s expected cumulative utility can be written as∑

θ µ(θ)
∑

t,jt
(⟨xt

jt−1
,ujt⟩+ αjt)

∏t
t′=1 y

θ
t′,jt′

, (21)

where
∏t

t′=1 y
θ
t′,jt′

is non-zero when all of them are 1. We can characterize the agent’s optimal response
history with y using a similar constraint as (12), which gives us the following MIP to solve for the optimal
dynamic policy.

max
∑

θ µ(θ)
∑

t,jt
(⟨xt

jt−1
,ujt⟩+ αjt)

∏t
t′=1 y

θ
t′,jt′

s.t. 0 ≤ aθ − (
∑

t⟨xt
jt−1

vθ
jt
⟩+ βjt) ≤ M(T −

∑
t∈[T ] y

θ
t,jt

),∀jT ∈ [n]T , θ ∈ Θ∑
i x

t
jt−1,i

= 1, ∀jt−1 ∈ [n]t−1, t ∈ [T ]

xt
jt−1,i ∈ [0, 1], ∀i ∈ [m], jt−1 ∈ [n]t−1, t ∈ [T ]∑
j y

θ
t,j = 1, ∀t ∈ [T ], θ ∈ Θ (22)

yθt,j ∈ {0, 1}, ∀j ∈ [n], t ∈ [T ], θ ∈ Θ

Finally, we can linearize the production of decision variables xtjt−1,i

∏t
t′=1 y

θ
t′,jt′

with zt,θjt =
∏t

t′=1 y
θ
t′,jt′

and wt,θ
jt,i

= xtjt−1,i
·
∏t

t′=1 y
θ
t′,jt′

. As a result, we can rewrite the above program (22) as the MILP (23).

max
∑

θ µ(θ)
∑

t,jt
⟨wt,θ

jt
,ujt⟩+ αjtz

t,θ
jt

s.t. zt,θjt
≤ yθt,jt ; z

t,θ
jt

≤ zt−1,θ
jt−1

; zt,θjt
≥ yθt,jt + zt−1,θ

jt−1
− 1; ∀jt ∈ [n]t, t ∈ [T ], θ ∈ Θ

wt,θ
jt,i

≤ xt
jt−1,i; w

t,θ
jt,i

≤ zt,θjt
; ∀jt ∈ [n]t, t ∈ [T ], θ ∈ Θ, i ∈ [m]

wt,θ
jt,i

≥ xt
jt−1,i −M(1− zt,θjt

); ∀jt ∈ [n]t, t ∈ [T ], θ ∈ Θ, i ∈ [m]∑
i x

t
jt−1,i

= 1; ∀t ∈ [T ], jt−1 ∈ [n]t−1 (23)∑
j y

θ
t,j = 1; ∀t ∈ [T ], θ ∈ Θ

0 ≤ aθ − (
∑

t⟨xt
jt−1

vθ
jt
⟩+ βjt) ≤ M(T −

∑
t y

θ
t,jt

); ∀jT ∈ [n]T , θ ∈ Θ

0 ≤ z ≤ 1; 0 ≤ w ≤ 1; 0 ≤ x ≤ 1; y ∈ {0, 1}.

We note that the MILP for Proposition 2 takes time exponential in T, |Θ| to solve. The exponential
time dependence on T, |Θ| is as expected since the size of the policy description is already Ω(nT ) and the
exponential-in-|Θ| time is due to the NP-hardness even when T = 1. We remark that our MILP’s running
time does not depend on n exponentially. This is because any row of yθ (i.e. yθ

t ) has only a single non-zero
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entry, thus there are in total O(nT |Θ|) many feasible y. Given a feasible y, the program will be an LP with
the size of variables bounded by a polynomial in m and n (given constants T, |Θ|). This argument leads to
the following corollary of Proposition 2.

Corollary 1. The DSE can be computed in poly(m,n) time with constant numbers of time steps and agent
types.

7 Application to Dynamic Contract Design
In this section, we discuss a specific principal-agent problem known as the contract design problem, in order
to illustrate the implications of our previous results. What is more, by utilizing certain structural properties
of the contract design game, we are able to show more intriguing outcomes regarding the characteristics of
dynamic principal policies.

The agent has [n] = {1, · · · , n} actions to choose from. Each action j ∈ [n] results in a probabilistic
distribution pj ∈ ∆m over [m] = {1, · · · ,m} outcomes and has a corresponding cost cj ∈ R+. Therefore,
every agent’s type θ is determined by the matrix P ∈ Rn×m together with the cost vector c ∈ Rn. On the
other hand, the principal has a reward ri ∈ R+ for every outcome i ∈ [m]. The principal designs contract
x ∈ Rm

+ which specifies payment xi to the agent if outcome i is realized. As a result, the principal’s utility
function can be computed as follows.

U(x, j) =
∑
i

(ri − xi)pj,i = Rj − ⟨x,pj⟩, (24)

where Rj =
∑

i ripj,i denotes the expected reward for action j ∈ [n]. The agent’s utility function is denoted
as follows.

V θ(x, j) = ⟨x,pj⟩ − cj . (25)

As standard assumptions in the contract design model [Alon et al., 2021, Castiglioni et al., 2021, Dütting
et al., 2019], we assume the first outcome has zero rewards for the principal and this outcome only occurs if
and only if the agent takes the first action, which has zero cost as well. In addition, there are no actions that
can be considered “dominated”, meaning that for any two actions j and j′, their expected rewards Rj and Rj′

are distinct and the action with a higher expected outcome (Rj > Rj′) also incurs a higher cost (cj > cj′).
There is a unique action j∗ that maximizes the welfare, i.e., j∗ = argmaxj Rj − cj . Next, we show that there
exists a compact representation of the optimal dynamic policy to the leader utilizing the structural assumption
on the contra design problem.

Theorem 3. Computing the optimal dynamic contract is a problem in NP. That is, there always exists an
optimal dynamic contract (as the certifier for the decision version of the problem) that has description size
poly(m,n, T, |Θ|).

Proof. For any optimal dynamic contract (i.e. the DSE, x∗ and j∗, which forms an optimal solution to (20)),
there exists a best response path j∗θT for every type θ ∈ Θ. Also, note that the description size of x∗ is
O(nTm) since x∗ needs to specify the principal contract for any possible agent action history. Next, we
propose to construct a dynamic x̂ that only needs polynomial description size but achieves the same expected
principal revenue as x∗. Specifically, for any round t ∈ [T ] and for any possible agent action history jt−1,
we construct x̂t

jt−1
as follows.

1. If there exists θ ∈ Θ such that jt−1 = j∗θt−1, then we set x̂t
jt−1

= x∗t
jt−1

.

2. Otherwise, set x̂t
jt−1

= 0, i.e. does not pay the agent anything.
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Note that the dynamic contract x̂ only specifies contract for |Θ| types of action paths (denoted as JT ), where
each path has a length of T . As a result, the above dynamic contract only has a description size of O(mT |Θ|).
Next, we show that x̂ achieves the same expected revenue for the principal, which is equivalent to showing
that every agent type θ follows the same response path under x̂ and x∗. Given a dynamic contract x and
follower response history jT , we denote the follower’s cumulative utility as

V θ(x, jT ) =
∑
t∈[T ]

∑
i∈[m]

xtjt−1,i p
θ
jt,i − cθjt

Next, we consider the following two cases for any follower type θ.
For any path jT ∈ JT and jT ̸= j∗θT , we have

V θ(x∗, j∗θT ) ≥ V θ(x∗, jT ) = V θ(x̂, jT ) (26)

by the incentive compatibility of x∗ and the definition of x̂.
For any path jT /∈ JT , there must exist a time step t̂ ≤ T such that jt = 0 for all t̂ ≤ t ≤ T , and t̂

represents the time step when the leader discovers the jT /∈ JT and does not pay the agent (i.e. x̂t = 0 for all
t̂ ≤ t ≤ T ). First of all, we still have V θ(x∗, j∗θT ) ≥ V θ(x∗, jT ) by the incentive compatibility of x∗. In
addition, we have

V θ(x̂, jT ) =

t̂−1∑
t=1

m∑
i=1

x̂tjt−1,i p
θ
jt,i − cθjt =

t̂−1∑
t=1

m∑
i=1

x∗tjt−1,i p
θ
jt,i − cθjt

by the definition of x̂. Next, we show V θ(x∗, j∗θT ) ≥ V θ(x̂, jT ).

V θ(x∗, j∗θT ) =

T∑
t=1

m∑
i=1

x∗t
j∗θt−1,i

pθ
j∗θt ,i

− cθ
j∗θt

(i)

≥
t̂−1∑
t=1

m∑
i=1

x∗tjt−1,i p
θ
jt,i − cθjt

=

t̂−1∑
t=1

m∑
i=1

x̂tjt−1,i p
θ
jt,i − cθjt = V θ(x̂, jT )

(27)

Note the inequality (i) is by the fact that j∗θT is optimal for the follower. Suppose (i) does not hold, then we
can come up with a follower response sequence, which plays j1, · · · , jt−1 for the first t̂− 1 rounds followed
by non-effort actions (i.e. the action with 0 utility for the agent) afterward, contradicting the optimality j∗θT .

Combing (26) and (27), we show that it is still optimal for the follower type θ to follow the path j∗θT
under the contract x̂, proving that x̂ achieves the same expected principal utility as x∗.

In line with our previous outcomes concerning generalized principal-agent problems, we present practical
algorithms to address the optimal dynamic contracts and Markovian contracts utilizing MILP.

Corollary 2. The optimal dynamic Markovian contract can be computed by a MILP with a O(T |Θ|mn2)
number of continuous variables and T |Θ|n integer variables; The exact DSE can be computed by a MILP
with a O(T |Θ|mnT ) number of continuous variables and T |Θ|n integer variables.

This result is directly implied by Theorem 2 and Proposition 2. For example, We can substitute the
previous utility functions of the principal and the agent with equations (24) and (25) and get the following
MILP for computing the DSE for dynamic contract design games.

max
∑
t∈[T ]

∑
θ∈Θ

µ(θ)
∑

jt∈[n]t

∑
i∈[m]

pθjt,i(riz
t,θ
jt

− wt,θ
jt,i

)
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s.t.
∑

t′∈[t] y
θ
t′,jt′

− t+ 1 ≤ zt,θjt ≤ yθt′,jt′
, ∀jt ∈ [n]t, t′ ∈ [t], t ∈ [T ], θ ∈ Θ

wt,θ
jt,i

≤ xtjt−1,i; w
t,θ
jt,i

≤ zt,θjt ; w
t,θ
jt,i

≥ xtjt−1,i − (1− zt,θjt )M, ∀jt ∈ [n]t, t ∈ [T ], θ ∈ Θ, i ∈ [m]

0 ≤ aθ −
(∑

t,i x
t
jt−1,i

pθjt,i − cθjt
)
≤ M(T −

∑
t y

θ
t,jt

), ∀jT ∈ [n]T , θ ∈ Θ∑
j y

θ
t,j = 1, ∀t ∈ [T ], θ ∈ Θ (28)

0 ≤ w; 0 ≤ x; 0 ≤ z ≤ 1; y ∈ {0, 1}

Similar to Theorem 1, we can show that the dynamic contract is provably nearly optimal even relative
to stronger static strategy spaces for the principal that allow for such things as communication between the
principal and the agent. We also have a specific contract design example, which shows RME will be Ω(1)
worse than the average DSE utility, even when there is only a single agent type.

Consider the following contract design example.

P o1 o2

a0 0 0

a1 0.5 0.5

a2 0 1

Table 6: An example contract design game, where P denotes each agent’s action aj’s (j ∈ {0, 1, 2})
probabilistic distribution over outcomes {o1, o2}. Each action ai has a corresponding cost vector ci and the
agent’s cost vector is c = [0, 0.1, 0.3]. In addition, every outcome o1/o2 has a corresponding reward 0.5/1
for the principal.

It can be computed that the optimal single-round contract for the principal is to design a contract as
x = (0, 0.2), i.e. pay the agent with payment 0.2 is outcome o2 is realized, resulting in a utility of 0.65 for
the principal where the agent responds by playing action a1.

On the other hand, for any T > 1, the principal can design the contract as follows:

xt = (0, 0), ∀t = 1, · · · , T − 1; xT =

{
(0, 0.3T ) if jt = a2 ∀t < T

(0, 0) otherwise
. (29)

As a result, the agent will always play action a2, resulting in a total utility of 0.7T . There is a gap 0.05T
between the total principal utility under the optimal static contract and the dynamic contract (29), equivalently
Ω(1) gap between the average DSE utility and RME utility.

Note that in the example of Table 6, the principal can extract the maximal full surplus from the agent (i.e.,
pay the agent the exact amount of cost he spent such that the agent gets zero utility). It turns out that this is
not a coincidence. Next, we show that the principal is always able to extract the maximal full surplus from
the agent utilizing the special structural property of the contract design game.

Definition 2 (Payment-dominance Region and Ratio). Let j∗ = argmaxj Rj − cj be the agent action that
achieves the maximal welfare. The payment dominance region X∗ is defined as the set of all contracts whose
expected pay on j∗ is strictly more than that of any other action, or formally,

X∗ = {x :
∑

i xi(Pj∗,i − Pj,i) > 0,∀j ̸= j∗};

The payment dominance ratio q(x) for any x ∈ X∗ is defined as

qj(x) =

∑
i xiPj∗,i∑

i xi(Pj∗,i − Pj,i)
∀j ̸= j∗.
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Non-emptiness of the payment dominance region X∗ guarantees the existence of a contract such that its
expected payment of playing the action j∗, which maximizes the social welfare, is greater than the expected
payment of other actions. With this definition, we are ready to show that the principal is always able to extract
the maximal social welfare (i.e., maxj Rj − cj) with a dynamic contract when T is large enough and the
principal knows the agent’s utility function.

Proposition 3. For any contract design instance with non-empty payment-dominance region X∗, the optimal
dynamic contract extracts full surplus within any interaction period T ≥ T0 where

T0 =
⌈
min
x∈X∗

max
j∈{j:cj<cj∗}

qj(x)(1− cj/cj∗)
⌉

is an instance-dependent parameter that depends on the payment-dominance ratio.

Note that the set {j : cj < cj∗} is always non-empty, since argminj cj cannot be j∗ due to its social welfare
being 0 as defined. Next, we will demonstrate the construction of such a dynamic contract.

Proof. Denote j∗ = argmaxj∈[n]
∑

i Pj,iri − cj , i.e. the agent action that achieves the maximal welfare. We
propose the following contract to extract the first-best surplus from the agent.

xt = 0, ∀t = 1, · · · , T − 1; xT =

{
x∗ if jt = j∗ ∀t < T

0 otherwise
. (30)

where x∗ satisfies the following linear system:∑
i

Pj∗,ix
∗
i = Tcj∗ ;∑

i

Pj,ix
∗
i ≤ (T − 1)cj∗ + cj , ∀j ̸= j∗.

(31)

or equivalently, ∑
i

Pj∗,ix
∗
i = Tcj∗ ;∑

i

x∗i (Pj∗,i − Pj,i) ≥ cj∗ − cj , ∀j ̸= j∗.
(32)

By definition 2 of X∗, for any x̂ ∈ X∗, it satisfies the following property:∑
i

x̂i(Pj∗,i − Pj,i) > 0, ∀j ̸= j∗.

Next, we prove there always exists a x∗ that satisfies (32) by construction. First of all, we must have∑
i x̂i(Pj∗,i − Pj,i) ≥ cj∗ − cj if cj∗ ≤ cj . On the other hand, for the actions j ∈ {j′ : cj∗ > cj′} let

α = minj∈{j′:cj∗>cj′}

∑
i x̂i(Pj∗,i−Pj,i)

cj∗−cj
and we define x = x̂/α. Thus we have

∑
i

xi(Pj∗,i − Pj,i) =

∑
i x̂i(Pj∗,i − Pj,i)

α
≥

∑
i x̂i(Pj∗,i − Pj,i)

cj∗ − cj∑
i x̂i(Pj∗,i − Pj,i)

= cj∗ − cj ,

where the inequality is by definition of α. As a result, we have x satisfies the second constraint of (32).
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Finally, we construct x∗, which satisfies both constraints of (32), based on x. If
∑

i xiPj∗,i = Tcj∗ for
some natural number T ∈ N = {1, 2, 3, · · · }, we already have the existence of x∗ = x that is feasible to
(32). On the other hand, if

∑
i xiPj∗,i ̸= Tcj∗ , we let x∗ = T

cj∗∑
i xiPj∗,i

x where T ∈ N. Thus, we have

∑
i

Pj∗,ix
∗
i = Tcj∗

∑
i xiPj∗,i∑
i xiPj∗,i

= Tcj∗ .

To make sure x∗ still satisfies the second constraint of (32), we must have T is large enough such that
T ≥

∑
i xiPj∗,i
cj∗

(i.e., T cj∗∑
i xiPj∗,i

≥ 1), which guarantees the left-hand side values (positive for all j ̸= j∗) of
the second constraint of (32) increase. As a result, we have shown the existence of x∗ when

T ≥
1
α

∑
i x̂iPj∗,i

cj∗
= max

j∈{j′:cj∗>cj′}

∑
i x̂iPj∗,i∑

i x̂i(Pj∗,i − Pj,i)
(1− cj/cj∗) = max

j∈{j′:cj∗>cj′}
qj(x̂)(1− cj/cj∗),

where x̂ is any feasible strategy in X∗. Minimizing over x̂ ∈ X∗ completes the proof of the proposition.

8 Experiments
To examine the efficacy of the DSE and the efficiency of our proposed algorithm, we perform several
experiments using Gurobi 9.5.1 solver on a machine with Ubuntu 20.04.5 LTS operating system, 2 × 18
cores 3.0 GHz processors, and 256GB RAM.

The Dynamic Pricing Game. First, we test our MILP to compute the exact DSE from Section 6 on
the dynamic pricing game as described in Section 3 to experimentally verify the no learning theorem. We
examine a game with finite buyer value set V = {0.4, 0.5, 0.6} and a uniform value distribution. It is easy to
compute that the optimal single-round mechanism is to post the Myerson price of 0.4, inducing expected
revenue of 0.4. This game can be written as a principal-agent game, whose payoff matrices can be written as
follows.

U j0 j1

i0 0 0.4

i1 0 0.5

i2 0 0.6

V 0 j0 j1

i0 0 0

i1 0 -0.1

i2 0 -0.2

V 1 j0 j1

i0 0 0.1

i1 0 0

i2 0 -0.1

V 2 j0 j1

i0 0 0.2

i1 0 0.1

i2 0 0

Here, U represents the seller’s utility matrix; V 0, V 1, V 2 represent the buyer’s utility matrix when
v = 0.4, v = 0.5, v = 0.6 accordingly; i0, i1, i2 represent the seller sets a posted price 0.4, 0.5, 0.6; j0, j1
means the buyer rejects or accepts the item.

We run experiments for varying T = 1, · · · , 10, and always observe uDSEl = 0.4T . That is, the average
optimal dynamic pricing utility is indeed the same as the optimal static revenue.

Battle of the Sexes. In this game, two players receive higher utilities when they take the same action, though
one of them enjoys this action more than the other. We consider a variant of this game with a principal-agent
structure and two uniformly distributed agent types V 0, V 1 as follows:
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where V 0 is a type as in a standard battle of the sexes game whereas V 1 is an agent type who “stubbornly”
insists on the Basketball action though they would enjoy it more if the principal also picks this action. The
right-most subtable shows the principal’s expected average utility in the dynamic setup for different numbers
of interaction rounds.

Stackelberg Security Game (SSG). We consider a specific SSG, where there is a defender (principal)
trying to protect 2 targets with 1 resource from the attack of an attacker (agent). Specifically, there are two
uniformly distributed agent types whose utility information is as follows:

where each row represents the principal’s action (i.e. protecting the target) and each column represents
the agent’s action (i.e. attacking the target). Follower type V 0 prefers target t0 while V 1 prefers target t1.
The right-most subtable shows the principal’s expected average utility in the dynamic setup for different
numbers of interaction rounds.

From the experimental results, we can see that the utility improvement of DSE compared to RME is quite
evident in both games. Note that when T = 1, the optimal DSE is exactly the BSE, which is always less than
or equal to RME. We also want to highlight the increasing property of average uDSEl in the presented results.
As shown by the results, though the uDSEl might be lower than uRMEl in the beginning rounds, it catches up
with uRMEl as T increases, consistent with Theorem 1. Another interesting observation is that uDSEl converged
within two rounds in the battle of sexes game. In the SSG, uDSEl did not converge within five rounds. We
remark that the convergence of uDSEl is an interesting open question for future research. Finally, in appendix
B, we also increase the size of some games (e.g. the number of types in the battle of sexes game and the
number of targets in the SSG) and present additional experimental results on the Game of Chicken, another
classical structured game.

Experimental Results on Randomized Games. Finally, we conduct experiments on random game
instances in which each agent’s utility is uniformly drawn from [0, 1]. As in the previous experiments, we
compare the average principal utility between DSE and the optimal static policy. In addition, to demonstrate
the performance of our Markovian policy, we also compare the runtime and average principal utility of
solving the optimal Markovian policy, versus solving the optimal dynamic policy. The results from T=1, 2, 3
have been averaged over 50 random instances and the standard deviation is reported in the table. As for
T = 4, 5, the runtime is high and the advantage of Markovian policy is significant (note the runtime of DSE
when T = 4 is already much higher than the Markovian method when T = 5), so we only test the first
10 random instances out of the 50 randome instances, which explains why the RME performs differently
when T = 4, 5. The advantage of DSE over RME on the average principal utility is also consistent with our
observation in structured games. Last but not least, we also highlight that Markovian policies achieve nearly
optimal utility while being much more computationally efficient compared to the optimal dynamic policies.

9 Conclusion
In this paper, we demonstrate, in surprising contrast to the No Learning Theorem in classic pricing games,
the possibility of learning from a strategic agent in general repeated principal-agent problems. Moreover, we
develop a novel methodology for finding and approximating the optimal dynamic policy for the principal, and
we give a strong lower bound on the performance of the optimal dynamic policy. We also have demonstrated
experimentally that the optimal dynamic policy often significantly exceeds the theoretical lower bound. Our
results open the possibilities for many other interesting questions. For example, given the NP-hardness of
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Runtime Average Utility

Markovian DSE Markovian DSE RME

T = 1 0.073± 0.05 0.094± 0.06 0.880± 0.04 0.880± 0.04 0.935± 0.02

T = 2 1.466± 0.51 1.403± 0.66 0.933± 0.02 0.933± 0.02 0.935± 0.02

T = 3 5.678± 2.26 54.34± 5.46 0.944± 0.02 0.951± 0.01 0.935± 0.02

T = 4 43.70± 30.7 2435.7± 484 0.949± 0.01 0.956± 0.01 0.942± 0.02

T = 5 658.8± 778 N/A 0.951± 0.02 N/A 0.942± 0.02

Table 8: Running time (columns 2-3 with the unit: second) and average utility (columns 4-6) for random
game instances with m = 10, n = 5, |Θ| = 2, where “N/A” means the algorithm can not return a solution
within 3 hours.

computing the BSE, is computing the DSE NP-hard or maybe in PSPACE-hard? Other interesting questions
include studying the convergence property of uDSEl and applying the dynamic solution concept to randomized
menu policies.
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A Omitted Details in the Proof of Theorem 1
Missing Proof. Here we present the omitted proof of lemma 1 and details of Step 3 to show that there always

exists such an IC menu that is O(
√

log |Θ|
Tδ2

) optimal and can offset the distorted incentives.

Lemma 1. For Stackelberg games with inducibility gap δ and T ≥ Ω(t
2
), there always exists a randomized

menu that is O(
√

log |Θ|
Tδ2

) optimal and O(

√
log |Θ|

T )-strictly IC.

Proof. We prove the lemma by explicitly constructing a randomized menu ⟨p,x⟩ and show that ⟨p,x⟩ is

O(

√
log |Θ|

T )-strictly IC and achieves (1−
√

log |Θ|
Tδ2

)uRMEl . Specifically, denote the RME as ⟨p∗,x∗⟩ and the
δ-strictly IC randomized menu as ⟨pδ,xδ⟩, we construct the new randomized menu ⟨p,x⟩ as follows

pθ,j = (1−
√

log |Θ|
Tδ2

)p∗θ,j + (

√
log |Θ|
Tδ2

)pδθ,j and

xθ,j =
(1−

√
log |Θ|
Tδ2 )p∗θ,j

pθ,j
x∗
θ,j +

(
√

log |Θ|
Tδ2 )pδθ,j

pθ,j
xδ
θ,j ∀θ, j

(33)

For every follower type θ, by definition∑
j

pδθ,ju
θ
f (x

δ
θ,j , j) ≥

∑
j

pδθ′,j max
j′

uθ
f (x

δ
θ′,j , j

′) + δ, and

∑
j

p∗θ,ju
θ
f (x

∗
θ,j , j) ≥

∑
j

p∗θ′,j max
j′

uθ
f (x

∗
θ′,j , j

′),∀ θ′ ̸= θ.
(34)

As a result, we have ∑
j

pθ,ju
θ
f (xθ,j , j) =

∑
j

(1−
√

log |Θ|
Tδ2

)p∗θ,ju
θ
f (x

∗
θ,j , j) + (

√
log |Θ|
Tδ2

)pδθ,ju
θ
f (x

δ
θ,j , j)

≥
∑
j

max
j′

(1−
√

log |Θ|
Tδ2

)p∗θ′,ju
θ
f (x

∗
θ′,j , j

′)+

∑
j

max
j′

√
log |Θ|
Tδ2

pδθ′,ju
θ
f (x

δ
θ′,j , j

′) + δ

√
log |Θ|
Tδ2

≥
∑
j

max
j′

(
(1−

√
log |Θ|
Tδ2

)p∗θ′,ju
θ
f (x

∗
θ′,j , j

′)+

√
log |Θ|
Tδ2

pδθ′,ju
θ
f (x

δ
θ′,j , j

′)
)
+ δ

√
log |Θ|
Tδ2

=
∑
j

max
j′

pθ′,ju
θ
f (xθ′,j , j

′) +

√
log |Θ|

T
, ∀θ′ ̸= θ.

where the first inequality is by (34) and the second inequality is by merging two max’s into one max, proving

the constructed mechanism ⟨p,x⟩ is O(

√
log |Θ|

T )-strictly IC.
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Next, we write out the leader’s expected utility for every type θ∑
j

pθ,jul(xθ,j , j) =

∑
j

(1−
√

log |Θ|
Tδ2

)p∗θ,jul(x
∗
θ,j , j) + (

√
log |Θ|
Tδ2

)pδθ,jul(x
δ
θ,j , j)

≥
∑
j

(1−
√

log |Θ|
Tδ2

)p∗θ,jul(x
∗
θ,j , j)

(35)

As a result, we have the expected utility of ⟨p,x⟩ as u⟨p,x⟩l ≥ (1−
√

log |Θ|
Tδ2

)uRMEl , proving the lemma.

Step 3: Existence of (T − t)-uniform, O(
√

log |Θ|
Tδ2

) optimal, and IC menu.

Lemma 2 ([Althöfer, 1994]). For any ϵ > 0 and any {pθ,j ,xθ,j}j∈[n], there exists a k-uniform pθ with

k = ⌈ log 2(|Θ|+1)
2ϵ2

⌉ such that

|
∑
j

pθ,jul(xθ,j , j)−
∑
j

pθ,jul(xθ,j , j)| ≤ ϵ, and for all θ′

|
∑
j

pθ,j max
j′

uθ′

f

(
xθ,j , j

′)−∑
j

pθ,j max
j′

uθ′

f

(
xθ,j , j

′)| ≤ ϵ.

By Lemma 2, there always exists an approximation of pθ denoted as pθ for all θ, which is a (T − t)-
uniform distribution and can be precisely fulfilled in the T −t rounds. Next, we show that the new randomized

menu ⟨p,x⟩ is IC and O(
√

log |Θ|
Tδ2

) optimal.

Since the original ⟨p,x⟩ is O(

√
log |Θ|

T )-strictly IC randomized menu, we have

∑
j

pθ,ju
θ
f (xθ,j , j) ≥

∑
j

pθ′,j max
j′

uθ
f (xθ′,j , j

′) +O(

√
log |Θ|

T
), (36)

for all θ and θ′ ̸= θ. When we approximate pθ with a (T − t)-uniform distribution pθ, there exists an

approximate error ϵ =
√

log 2(|Θ|+1)

2(T−t)
= O(

√
log |Θ|

T ) for all players’ utilities under the randomized strategy

{pθ,j ,xθ,j}j∈[n]. As a result, for the (T − t)-uniform distribution pθ, we have following observations by
Lemma 2 for all θ and θ′ ̸= θ:∑

j

pθ,ju
θ
f (xθ,j , j) ≥

∑
j

pθ,ju
θ
f (xθ,j , j)− ϵ and

∑
j

pθ′,j max
j′

uθ
f (xθ′,j , j

′) ≤
∑
j

pθ′,j max
j′

uθ
f (xθ′,j , j

′) + ϵ
(37)

Therefore, we can combine (36) and (37), where ϵ = O(

√
log |Θ|

T ), to get

∑
j

pθ,ju
θ
f (xθ,j , j) ≥

∑
j

pθ,ju
θ
f (xθ,j , j)−O(

√
log |Θ|

T
) and

∑
j

pθ′,j max
j′

uθ
f (xθ′,j , j

′) ≤
∑
j

pθ,ju
θ
f (xθ,j , j)−O(

√
log |Θ|

T
)

(38)

29



and equivalently, ∑
j

pθ,ju
θ
f (xθ,j , j) ≥

∑
j

pθ′,j max
j′

uθf (xθ′,j , j
′),∀θ, (39)

proving the new randomized menu ⟨p,x⟩ is IC.
Finally, the leader’s utility of the new randomized menu ⟨p,x⟩ is also bounded by Lemma 2 as follows∑

j

pθ,jul(xθ,j , j) ≥
∑
j

pθ,jul(xθ,j , j)− ϵ,

=
∑
j

pθ,jul(xθ,j , j)−O(

√
log |Θ|

T
) ∀θ.

(40)

Since by construction, the original randomized menu ⟨p,x⟩ is O(
√

log |Θ|
Tδ2

) optimal, we have

∑
j

pθ,jul(xθ,j , j) ≥
∑
j

p∗θ,jul(x
∗
θ,j , j)−O(

√
log |Θ|
Tδ2

),∀θ. (41)

Combining (40) and (41), we also have the new randomized menu ⟨p,x⟩ is O(
√

log |Θ|
Tδ2

) optimal, proving
Step 3. Since a randomized menu with (T − t)-uniform distribution can be precisely simulated by a dynamic
policy whereas uDSEl denotes the leader utility under the optimal dynamic policy, we have uDSEl

T ≥ u
⟨p,x⟩
l and

proved uDSEl
T ≥ uRMEl −O(

√
log |Θ|
Tδ2

) in the Theorem.

B Additional Experimental Results
B.1 Additional Results on Structured Games
Game of Chicken. The game of chicken models the situation in which two players use a shared resource
and a collision happens when both players use the resource. We consider a variant of this game with a leader-
follower structure and two uniformly distributed follower types C0, C1: where the first row/column action

represents “giving up the resource” whereas the second row/column action presents “using the resource”.
Type C0 is the type as in the classic game of chicken whereas C1 is an “aggressive” type who strongly prefers
using the resource. Table 9 shows the leader’s expected average utility in the dynamic setup for different
numbers of interaction rounds.

uDSEl /T uRMEl

T = 1 1/6 1/6

T = 2 0.5 1/6

T = 3 0.574 1/6

T = 4 0.597 1/6

T = 5 0.611 1/6

Table 9: average leader utility per round for the game of chicken.
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Stackelberg security game. Additionally, we consider the case where the leader has one more target that
needs to be protected (i.e. more actions for both the leader and the follower). Specifically, consider the
following utility matrices for both agents.

R t0 t1 t2

t0 1 0 0

t1 0 1 0

t2 0 0 1

C0 t0 t1 t2

t0 0 0.5 0.5

t1 1 0 0.5

t2 1 0.5 0

C1 t0 t1 t2

t0 0 1 0.5

t1 0.5 0 0.5

t2 0.5 1 0

C2 t0 t1 t2

t0 0 0.5 1

t1 0.5 0 1

t2 0.5 0.5 0

The leader has 1 unit of resource to protect three targets from the attacker whose type is drawn uniformly
from {C0, C1, C2}. Each follower type Ci, i ∈ {0, 1, 2} prefers target ti. Table 12 shows the leader’s
expected average utility in the dynamic setup for different numbers of interaction rounds. Note the leader’s
expected average utility dropped overall compared to the result in the main paper, which is reasonable since
the leader has to use the same resource to protect more targets.

uDSEl /T uRMEl

T = 1 1/3 1/3

T = 2 0.444 1/3

T = 3 0.467 1/3

T = 4 0.479 1/3

T = 5 0.493 1/3

Table 12: average leader utility per round for the SSG.
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