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ABSTRACT

The dramatic growth in the importance of large-scale data analytics has driven the transformation

of data center storage from hard disk drives to solid-state drives (SSD). Central to increased

capability is the rapid growth in SSD/flash bandwidth and associated compute requirements,

resurrecting the question of how to distribute compute across CPUs and storage resources.

In this dissertation, we address three fundamental questions on architecting general-purpose

computational storage. First, what are key opportunities for computational storage acceleration?

Second, what SSD architecture provides the most efficient support for computational storage?

Third, what computational storage processor architecture enables high performance that can

match the continued rapid improvement in flash bandwidth?

Based on a broad survey of computational storage proposals and research, we show that

function properties of ‘data size change’, ‘offload direction’ and ‘vectorizable’ determine

the system efficiency and performance benefits of computational SSD offloads and thus

determines the priority of offloading. Common properties including streaming access and

variable-width values exposed by first-priority functions call for architectural support.

Existing computational SSD architectures suffer from poor cost scaling. This is exacerbated

by the continued improvement in flash array bandwidth, creating a SSD DRAM bottleneck.

We propose the ASSASIN SSD architecture, which provides a unified set of compute engines

between SSD DRAM and the flash array to eliminate the bottleneck by enabling direct

computing on flash data streams with streambuffers. ASSASIN thus delivers 1.5x - 2.4x

speedup for various computational SSD offloads along with 2.0x power efficiency and 3.2x

area efficiency.

Existing processor architectures suffer from low datapath efficiency when computing on

variable-width values for requiring padding each value to 32/64 bits. Variable-width values

are central to coding and storage efficiency, and thus critical for computational storage.

We propose VarVE, a vector instruction set architecture extension that provides native

xi



variable-width value vector support to compute directly without padding. VarVE delivers

1.3x - 5.4x speedup over ARM’s current best, scalable vector extension (SVE), on popular

file system and database computational SSD kernels by achieving higher datapath efficiency.

VarVE builds on the vector-length agnostic (VLA) approach, which is gaining widespread

adoption. As a result, VarVE has broad potential impact as a general SIMD extension

for all processors, increasing datapath efficiency and mitigating the SIMD instruction count

explosion.
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CHAPTER 1

DISSERTATION STATEMENT

Computational storage has demanding performance and low-power requirements that are

not met by conventional CPU core and SSD architecture designs. Desirable computational

storage architectures can not just meet these requirements, but must also do so with flexible

and general-purpose programmability. We show this is possible in three parts:

1. Study of proposed and extant applications shows that the most promising offloads

are those reduce data size on read-path or increases data size on write-path and

are vectorizable. Further, the properties of most promising computational storage

applications create opportunities for better core and system architecture design.

2. With computational storage applications dominated by streaming data access, SSD

architecture and organization are critical for cost-efficient performance. ASSASIN, a

novel SSD architecture providing direct computation on data streams between flash

channels and SSD DRAM with a streaming-oriented memory hierarchy, is essential to

provide cost-efficient and power-efficient performance.

3. With variable-width values abundant in storage data, efficient computation on them

is critical for high performance. VarVE, a variable-width value vector instruction

set architecture is flexible, high-efficiency, and high-performance for a wide variety of

computational storage workloads. This VarVE extension to the fixed-width vector

architecture provides aforementioned benefits not only for computational storage, but

also for general-purpose CPUs.

In the computational storage community, many advocate customized hardware approaches,

including both special function ASICs and FPGAs, these approaches are limited by their

inflexibility and inability to catalyze new applications. In this dissertation, we present

1



workload, SSD architecture, and computational storage processor architecture results that

demonstrate a focused but generally programmable approach can meet the challenging

performance requirements. We believe this is the most promising path forward to delivering

the widespread benefits of computational storage.
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CHAPTER 2

INTRODUCTION

2.1 Storage is the Heart of Data Centers

The past two decades have seen explosive growth in large-scale data, ranging from internet

services (web search, e-commerce, social networking, music and video streaming), scientific

research (sequence search, high-energy physics, weather forecasting, etc.) to nearly every

aspect of the economy and society through the explosion of data science and analytics. More

recently, the success of machine learning in deriving functions from a large amount of data

has accelerated this trend. These data sets range from a few hundred terabytes to hundreds

of petabytes, largely transcending the storage capacity of a single server. Further, to provide

timely insights and analysis on top of these massive data, massive compute resources grow

rapidly and accordingly, and co-locate with the data storage for efficiency. As a result,

gigantic global networks of data centers [1, 9, 14, 32] each with thousands to millions

servers are rapidly growing.

The efficient storage and processing for these massive amount of data is the raison d’etre

of ‘big data’ and ‘cloud’, i.e. the modern distributed systems hosted in these data centers.

As shown in Figure 2.1, distributed block storage services, e.g. GFS [62]/S3 [23], sit at

Figure 2.1: Storage sits at the heart of modern distributed systems
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the core of the distributed systems as the backbone to provide durability, reliability and

availability for the massive amount of data. On top of the backbone storage, efficient and

application-facing management of the data are provided by by different midd-level storage

services, including key-value storage (Bigtable [52], Cassandra [83], etc.), relational storage

(Spanner [54], Aurora [109], etc.) and so on to support high-performance high-bandwidth

and low-latency retrieval for massively parallel distributed computing middle-ware, e.g.

Spark [114], Kafka [11] etc. Applications are built on top of these computing middleware to

provide fast and reliable services for millions to billions of users across the globe.

2.2 Challenges from the Growing Flash Bandwidth

While rotating disks (HDDs) remain cheaper capacity storage, the continued scaling of

NAND flash has reduced the cost of SSD capacity sufficiently such that its superior bandwidth

and IOPS performance make it a mainstay of modern data centers. Leading enterprise SSDs

can reach 6.95 GB/s and 900K IOPS [20], and consumer SSDs exceed 7 GB/s and 690K

IOPS [24] at a lower price tag. However, the computing and interconnect resources coupled

with the storage system are not ready for this bandwidth jump. Quantitatively, it is common

for a storage server to hold 20 HDDs, delivering 3GB/s read throughput. Switching to 20

SSDs would deliver 120 GB/s instead, a 40x bandwidth capacity increase. Compute resources

in data centers strive to match this increase. But it is costly and architecturally difficult to

scale computing resources at least forty times to match the storage bandwidth improvement.

Moreover, cloud data centers have evolved into separate managements of compute clusters

and storage clusters for separate scaling and management as shown in Figure 2.2, because

storage devices and computing resources have different failure models, lifetime as well as

scalability. Simply scaling the computing capabilities at the compute cluster would result

in network bandwidth bottlenecks when fetching data from storage nodes with twenty times

higher data rates. A natural idea comes alone: Part of the computation should be moved

4



Figure 2.2: Modern data center architecture: Separate compute and storage

into the storage cluster to reap the storage bandwidth and avoid network bottlenecks.

How to best divide computation across compute and storage has long been important

to system performance, cost-effectiveness, and the subject of research going back to the

1990s [39, 98], when HDDs scaled to higher bandwidth and microprocessors were becoming

largely available at low costs. However, with later aggressive scaling of microprocessors

to multi-core architectures, and per HDD bandwidth capacity stagnating at hundreds of

megabytes, ‘active disks did not blossom into the mainstream storage systems.

2.3 Computational SSDs to the Rescue

But the recent rapid increases in storage device bandwidth in terms of flashes and non-volatile

memories has reopened a set of critical research questions about what kinds of computation

is beneficial to be added to storage, how to redistribute work and rebalance systems, etc. As

a result, an explosion of innovation [80, 109] and research [53, 59, 73, 75, 82, 88, 108, 113] is

exploring computational storage [27] as shown in Figure 2.2.

Flash chip architecture is highly parallel with a wide interface (see Section 3.2), further

combined with chip-level parallelism, the flash array in SSDs possess huge excessive bandwidth [59],

not exposed by the SSD interface and thus guarantees further SSD bandwidth improvement

for the upcoming decade. On the other hand, with the ending of Dennard scaling and

the slowdown if not the end of the moore’s law, microprocessor performance improvement
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has been mostly stagnating. These two trends warrant the development of computational

storage, where compute elements are brought into SSDs, as shown in Figure 2.2, to exploit

the surplus internal bandwidth capacity. Additional compute elements in a SSD drive can

carry out computation on data coming from or going to the flash array. The goal is to bring

synergic system benefits, including early data filtering, late data incrementing and automatic

computation capacity scaling benefits that would reduce traffics on the storage interface and

thus address the interconnect and compute bottlenecks.

Presuming data center operators want to preserve the modern data center architecture (as

shown in Figure 2.2) and associated usage model (how the compute resources are allocated

and how the storage is shared), computational storage enriches storage systems with broader

capabilities to alleviate the compute and interconnect bottlenecks in modern data centers,

but also invites numerous questions.

First, what kinds of operations are suitable to be offloaded to the compute engines?

Although existing studies considered several workloads for offload, without systematic understanding

of offload benefits, many of them fall into local optimum of just seeking compute speedup.

Missed by much existing work considering computational storage, the criterion here is

really "Is computational storage the most efficient approach to implement this workload"

rather than "Does computational storage increase application performance". As for some

applications, despite being acceleratable by the computational storage, compute-side acceleration

may provide even higher performance and/or system efficiency. A good example is compression,

different computational storage work [41, 68, 73, 86, 99, 102, 108] considered offloading

compression to storage before data is written to flashes. Although acceleratable through

special hardware, compression offloaded to storage increases the data traffic between compute

and storage as uncompressed data have to travel to storage to be compressed. Compute-side

acceleration would be a better solution for compression in terms of system efficiency, as

data traveling on the link between compute and storage are compressed which leads to
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Figure 2.3: Computational storage drives considered in existing work

lower bandwidth utilization and lower latency. As a result, the first research question to be

understood is how to systematically consider workloads for computational storage offload.

A good understanding of this workload question would also later help shape architectures.

Second, what SSD architecture is beneficial for the integration of computing elements?

State-of-the-art work considers using additional cores in the firmware processor [65, 75, 78,

82, 103] for in-SSD computation or adding other computing elements (e.g. FPGA [73, 99, 113]

or ASIC [41, 79, 90]) as peers of the firmware processor. As shown in Figure 2.3, the SSD

DRAM, which originally serves as a buffer for firmware data structures and storage data,

would additionally serve the in-SSD compute traffic from the added compute elements. Not

only would SSD DRAM become a memory wall when hit with these different requests, but

the increase in requirements on DRAM capacity and bandwidth would also constitute as

overhead to the SSD drive, raising the cost. It is worth considering a new SSD organization

that is efficient for computational storage and addresses the memory bottleneck.

Third, what kinds of architecture features are beneficial for compute elements to match

continuously improving flash bandwidth? To enable general support across a broad set of

storage-intensive applications, in our vision, programmability is necessary for the computing

elements. Much existing work considered employing general-purpose cores for in-SSD compute.

However, this just shifts compute bottlenecks from the compute cluster into SSDs, because

the power envelope of an SSD device limits the scaling out of general-purpose cores to provide

enough computing power to match the flash bandwidths, especially for compute-intensive
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offloads such as parsing or cryptography. Further, if employing SIMD units, the compute

performance improvement is hindered by the deficiency of existing SIMD ISAs to specify and

exploit fine-grained parallelism for variable-width data elements which are extremely common

for data in storage. Thus, a new SIMD ISA and its efficient implementation addressing these

issues are worth investigating.

2.4 The Problem

To summarize, high performance is critical for computational storage, but it must be delivered

with high flexibility to support diverse offloads and within the power budget of an SSD

which is now becoming the backbone of the data centers. Existing approaches present a

trade-off between performance and flexibility. ASIC approaches deliver high performance

but target a single application or domain and hard if not impossible to re-purpose for other

applications. Approaches employed general-purpose core can target different applications,

but the in-SSD compute performance it provides cannot match the continuously improving

flash array bandwidth.

The approach of this dissertation project is to address a set of focused questions. We

aim to explore what characteristics a successful computational storage system should have

in terms of the criterion on what workloads to be offloaded to computational storage,

efficient computational SSD architectures that would address the SSD memory bottleneck,

and high-performance computational storage processor architectures to match in-storage

compute performance with the flash bandwidth. A feasible solution to the above problems

should be general-purpose to target diverse offload, high performance, but lightweight that

hides the additional power under the power envelope of an SSD. And it should also provide

scalable performance that matches the continuously improving flash bandwidths.
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2.5 Contributions

The contributions of the dissertation are threefold:

• A classification methodology based on workload properties to identify, and characterize

most promising workloads for computational storage.

• ASSASIN: An SSD architecture providing direct computation data streams between

flash channels and SSD DRAM, with a streaming-oriented memory hierarchy. It allows

flash data to bypass SSD DRAM, eliminating the memory wall in SSD.

• VarVE: An instruction set architecture with native variable-width value vector support.

The ISA enables high-performance and efficient processing of variable-width values and

the exploitation fine-grained data-level parallelism for computational storage processors.

And the ISA is also applicable and beneficial for general-purpose CPUs.

2.6 Organization of the Dissertation

The rest of this dissertation is organized as follows. First we provide backgrounds on

SSD architectures and SIMD ISAs in Chapter 3, to prepare the SSD architecture and

processor architecture discussions for computational SSDs in data centers. The overview

of the dissertation project is provided in Chapter 4, where the research questions and the

approaches to solve them are highlighted. The landscape of computational SSD and SIMD

ISA is covered in Chapter 5. Then, our research to answer the hanging questions on the

workload properties and classification, the SSD architecture with stream computing support

to address the in-SSD memory wall, and the VarVE-full instruction set architecture for

computational storage processors with support for variable-width data elements are discussed

in Chapter 6, Chapter 7, Chapter 8 respectively. We discuss the integration of our high

performance SSD and processor architectures and the performance results after putting
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everything together in Chapter 9. And then we summarize the dissertation and identify

future directions in Chapter 10.
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CHAPTER 3

BACKGROUND

3.1 Solid-state Drive Architecture

As shown in Figure 3.1, an SSD is composed of several flash chips organized in multiple

channels, a DRAM chip and a controller chip. The controller chip comprises a firmware

processor, a host interface controller, a DRAM controller and one flash controller for each

flash channel.

The firmware processor runs the flash translation layer (FTL). FTL maintains the mapping

between logical block addresses and physical block addresses. A physical block address

specifies a physical location composed of a flash chip ID and the specific location inside the

chip. FTL would consider both flash’s read/write/erase granularity and the wear-leveling.

The flash chips organized in multiple channels are managed by the flash controllers, one

per channel. The firmware processor would issue requests to the flash controller in charge

to access a specific flash chip. And the flash controller would respond with the required

flash page if needed. The flash chips of the same channel share the same bus but operate

independently. It is firmware and flash controllers’ responsibility to exploit the operation

interleaving opportunities among the flash chips sharing the same channel, analogous to the

notion of ranks and rank-level parallelism in the memory system.

There is a DRAM chip in high-performance SSDs serving as a buffer to store both page

data relevant to recent requests from/to flash controllers and request queues between the

firmware and flash controllers. It also buffers FTL-related data structures for the firmware.

The host interface controller implements the storage protocol the SSD would use to

communicate with the host, e.g. SATA, NVMe, etc. The firmware running on the firmware

processor would pull requests and send responses from/to the host via this host interface

controller.
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Figure 3.1: SSD architecture diagram

Figure 3.2: NAND flash

3.2 NAND Flash

We look deeper into the underlying NAND flash internals and flash interface. This is detailed

in Figure 3.2. NAND flash is composed of multiple (B in the figure) erase blocks. Each block

is an array of floating-gate MOSFET transistors sharing the substrate. The transistors on

the same row sharing a selection line form the smallest read or program granularity which

is called an flash page.

The NAND flash interacts with external entities with the page register through the flash

interface. During a page read process, the selected row is first loaded into the page register,

and the page streams out in a word-by-word (either 8b or 16b) fashion. During a page write

process, data stream into the page register first, and the page register is used to program a
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specific row in the array. ONFI [55] is the standardization effort on the flash interface. The

newest version as of writing is 5.0 which supports up to 2400 MT/s at the interface.

3.3 SIMD and Vector-length Agnostic SIMD

SIMD instruction set extensions are based on a straightforward premise. Many workloads

expose data-level parallelism that the same operation sequence would be applied to a set of

data. Internalizing an execution mechanism in hardware that applies the same instructed

operation to a vector of values and providing this semantic interface in the ISA allows

programmers to efficiently specify and exploit such data-level parallelism, delivering speedup

and power efficiency gains.

Earliest SIMD extensions like MMX [94] stems from multimedia workloads. They are

fine approaches at birth, limited by silicon technology then. Later extensions gradually grow

the datapath width (e.g. AVX, AVX2 and then AVX-512 [3]), granted by the more and

more silicon resources available via technology scaling. Although, this leads to instruction

duplications. New instructions are added which perform the same operation but with

different datapath bitwidths. And old instructions are kept for compatibility. Further,

programs have to be rewritten for a newer wider SIMD extensions. And, at the same time,

managing different versions of SIMD programs to match specific hardware capabilities is a

cumbersome task.

Vector-length agnostic (VLA) SIMD ISAs like SVE [105] and RVV [22, 93] were proposed

to address the above issues. In VLA SIMD, the datapath width (i.e. vector length) is

determined at runtime when reported by hardware. The semantics of each VLA SIMD

instruction (number of elements processed by an instruction) as well as the strip mining

process both follow this runtime-determined datapath width. VLA SIMD not only addresses

the instruction duplication issue that only one SIMD instruction is needed for various

datapath widths for each operation, but also allows the same program binary to be reused
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Figure 3.3: aX+Y for byte vectors in SVE: an example of VLA

on different hardware with different datapath widths, eliminating the mundane management

process.

Figure 3.3 shows an VLA example that performs linear combination of two vectors x

and y with coefficient a. In each iteration, it loads two vector strips from memory, perform

vectorized linear combination of the strips and store the result back to memory. The program

(or compiled binary) can run on hardware with different datapath widths (vector lengths),

which is reflected by ‘svcntb()’. On hardware with wider datapath, the vector strips are

longer, more elements processed in one iteration, and less iterations.
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CHAPTER 4

PROJECT OVERVIEW

In this chapter, we provide an overview of the dissertation project. We dissect the problem

of architecting computational storage in data centers into three integral parts:

• Computational storage workload and offload opportunities

• Computational storage drive architecture

• Computational storage processor architecture

For each part, related research questions are discussed and analyzed. And the approaches

to answer these questions are described.

4.1 Computational Storage Workload and Offload Opportunities

4.1.1 Research Questions

In the first part of the thesis project, the goal is to identify opportunities of system efficiency

improvement and compute speedups when offloading kernels to computational storage and

provide guidelines on the support priority among different workloads, as depicted in Figure 4.1.

This would not only shape the contexts and roadmaps for designing a computational storage

processor/accelerator, but also help application designers to make decisions whether to

employ computational storage and which part to offload.

Here, the specific criterion is really ‘Is computational storage the most efficient approach

to implement this workload’ rather than ‘Does computational storage increase application

performance’. As for some applications, despite being acceleratable by computational storage,

compute-side acceleration may provide even higher system efficiency and/or performance.

Moreover, we hope that the answers to the aforementioned question could apply to workload
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Figure 4.1: What to offload?

in the foreseeable future, not just the ones that are currently considered. As a result,

although diverse workloads may exhibit different computation structures and arithmetic

characteristics, the goal would be distilling common properties of workload that would justify

offloading to computational storage.

To summarize, the key research agenda around the computational storage workload is to

systematically characterize computational storage offload opportunities.

4.1.2 Approach

Our approach to answering this question is to perform an extensive survey to cover the

workload considered for computational storage in existing research or industry products.

The results of the survey represent a cross-section of computational storage studies. To

ensure the soundness of our answer, we conduct a thorough characterization of each workload

along with the analysis of the corresponding efficiency of each offload scenario. These results

would give birth to a classification based on analyzed workload properties through careful

synthesis. The classification would provide a general perspective on computational storage

opportunities across both current and future workload candidates. Further, this classification

would, in turn, define the workload corpus that our later design on computational storage

drive architecture and computational storage processor architecture should prioritize and

accelerate.
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Figure 4.2: How to efficiently integrate compute into SSDs?

4.2 Computational SSD Architecture

4.2.1 Research Questions

The second part of the thesis project focuses on how to efficiently integrate compute elements

into SSDs, as shown in Figure 4.2. State-of-the-art computational SSDs [65, 82, 102], as

shown in Figure 4.3, employ additional compute elements which are the peers to the processor

running SSD firmware to carry out the in-SSD computation. These elements all use SSD

DRAM as their main memory. As a result, flash data have to first be fetched to SSD

DRAM, waiting to be fetched by compute processor/cores. And in-SSD computation results

have to be written to SSD DRAM before transferring to host or flash. This inefficient SSD

architecture brings memory bottleneck and data access latency issues for computational

storage, aggravating with the continuous improvement of flash bandwidths. As a result,

we are in search of solid-state drive architectures that can eliminate the aforementioned

bottlenecks and, at the same time, efficiently support the promising workloads identified in

Chapter 6.

The research question regarding computational storage drive architecture is how should

compute elements interact with flash data, firmware and SSD DRAM to enable low latency

data access and low memory bandwidth overhead.
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Figure 4.3: Organization of state-of-the-art computational SSDs

4.2.2 Approach

The approach is to systematically consider the needs of compute elements and how should

they interact with flash data. Compute elements’ needs of data access come from a thorough

survey and characterization of offload opportunities from Chapter 6. Careful analysis is

conducted to sift through different data access, looking for opportunities for innovative

interaction mechanisms. For soundness, evaluations of different interaction mechanisms

between compute elements and flash data are conducted to understand pros and cons, and

to distill general knowledge on how a computational storage SSD should be architected to

address the memory wall problem and the data access latency issues.

4.3 Computational Storage Processor Architecture

4.3.1 Research Questions

With a clear context of workload and SSD architecture, the third part of the thesis centers

around the in-SSD processor architecture, as shown in Figure 4.4. What processor architecture

features would bring compute performance that can match and exceed continuously improving

flash bandwidth? At the same time efficiency and the flexibility to support different workloads

should be maintained, if the acceleration is to deliver the greatest benefit.

Existing computational storage approaches [65, 75, 82, 90, 99, 113] exploit task- and

block-level parallelism as shown in Figure 4.5, through scaling out the number of cores
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Figure 4.4: What architecture features bring high performance?

available to compute offloaded tasks inside storage. However, none of these approaches

feature software programmability combined with efficient support for byte-level parallelism.

Recent efforts have begun to add vector extensions to popular embedded architectures

such as ARM [30] or RISCV [22]. However, these vector-length agnostic SIMD, to date,

do not support sub-byte or variable-width value parallelism. On the other hand, storage

data are diverse, usually packed, featuring plenty of variable-width values. Thus, another

important challenge is how to extend the benefits of SIMD acceleration for packed and

variable width-values stored in SSDs.

To sum up, the fundamental challenge is for an instruction set architecture to simultaneously

enable efficient handling of variable-sized data elements (as exemplified in Figure 4.6) and

improve datapath efficiency. Thus, the key research questions around computational storage

processors are:

• What are the key elements of instruction-set architecture that enable both flexible

programmability across storage workload and efficient exploitation of variable-width

(sub-byte) parallelism and dependency resolution for high performance?

• What are the key design and structure elements of a microarchitecture that would

efficiently implement the novel ISA?
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Figure 4.5: Compute unit replication for task- and block-level parallelism

Figure 4.6: Fixed-width elements and variable-width elements

4.3.2 Approach

Our approach is to systematically explore the design of a new class of SIMD operations

that exploit byte and sub-byte -level parallelism, including parallelism inside a vector of

differently-sized data elements, all of which which are common in storage workloads. To

ensure soundness, we characterize vastly different ways of handling variable-width data

elements, including first unpack/pack these elements from/to byte-aligned elements and

process them with conventional SIMD instructions, or design new SIMD instructions that

directly compute on logical vectors comprised of variable-width values. These methods

are compared with each other along with the conventional SIMD approach to understand

the pros and cons of each. From these understandings, we will be able to distill general

knowledge on handling variable-width values and exploit byte/sub-byte -level parallelism for

computational storage workload.
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CHAPTER 5

RELATED WORK

5.1 Computational SSD Architecture

Pioneering work includes “Active Storage” in the 1990s [39, 98] that focused on rotating

hard disks in a single system, not the modern context of shared cloud storage services

with high-performance flash SSDs. More recent efforts study computational storage in SSD

systems. Some propose general [40, 82, 99, 102] or application-specific (i.e. data analytics)

[65, 75, 108] software architecture on top of general-purpose hardware architectures as

shown in Figure 7.1. Others propose application-specific hardware and associated software

architectures for deduplication [41, 81], key-value storage [53, 73], deep learning [66, 90],

graph analytics [77, 87], and data analytics [79, 113, 118] in computational SSDs. Such

studies showcase the benefits of offloading (comparing to non-offloading) or application-specific

hardware customization, but give little insight as what computation structures/properties

enables system efficiency when employing computational SSD, how to build general-purpose

architecture support (with associated software architecture adaptations) based on these

properties and how to efficiently integrate these architecture support, which are the essence

of this dissertation.

5.1.1 General-purpose Hardware Architecture for Computational SSDs

QuerySSD [57] pioneered the database-oriented function offloads and assessed the speedups

and energy benefits. ActiveFlash [108] showcases similar computational SSD potential but

for data reduction functions from scientific computing workloads. Biscuit [65] advances the

art with a flow-based programming model for computational SSD offload. Summarizer [82]

materializes the system software architecture design including a detailed NVMe command

interface. YourSQL [75] provides richer software operator support to enable the offload
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of all TPC-H queries. BlockIF [40] argues for a software architecture for computational

storage that conforms to traditional block-oriented storage interface for increased adoption.

IceClave [78] proposes a low-overhead trusted execution environment for in-SSD computations

and advances on the security front.

These software and system architecture advancement are all based on the general-purpose

hardware architecture for computational SSDs where compute engines are embedded-class

general purpose cores computing on top of the conventional cache-DRAM memory hierarchy,

as depicted in Figure 7.1, and thus amenable to the in-SSD memory wall. As would be shown

in Chapter 7, ASSASIN builds on top of these software architecture innovations in terms

of NVMe command adaption and block-interface conformance but advances the hardware

architecture integration with efficient flash data stream handling and addresses the in-SSD

memory wall.

5.1.2 Application-specific Hardware Architectures for Computational SSDs

DedupInSSD [81] proposes hardware hash acceleration for in-SSD deduplication and showcase

the SSD write latency reduction and lifespan improvement. CIDR [41] proposes more detailed

scalable hardware architecture for deduplication which utilizes additional scratchpads for

signature management and integrates compress engines. LightStore [53] augments the general

purpose architecture with a hardware network module to expose a scalable key-value storage

onto the datacenter network. Caribou [73] further maps the flash management into hardware

modules of cuckoo hash and slab allocation manager and also supports hardware accelerated

in-SSD processing primitives like select and compression. GList [87] proposes to integrate

hardware sampling unit and a PE array in the SSD board for graph learning workloads to

enjoy internal excessive storage bandwidth. GrafBoost [77] employs a sort-reduce accelerator

in storage for vertex-centric graph processing. Deepstore [90] integrates systolic arrays at

SSD, channel and chip-level for accelerated neural network inference. Thrifty [66] proposes
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chip-level binary compute accelerator and SSD-level training accelerator for hyper-dimension

compute training.

Despite employing application-specific hardware architecture, in all above work except

DeepStore and Thrifty, compute engines source flash data via SSD DRAM, thus amenable

to SSD DRAM bottleneck. And the employment of hardware acceleration modules actually

further increases the bandwidth requirements of SSD DRAM, as discussed in Section 7.3.2.

Although channel and chip-level compute engine integration employed by Deepstore and

Thrifty has the potential of addressing the SSD memory wall, it further requires application-specific

control on data (SSD page) layout for parallelism exploitation. This is fine for neural network

applications featuring regularly-shaped tensors which can be easily split into the flash array,

but a deal breaker for general workloads with diverse basic unit sizes. ASSASIN, as will be

discussed in Chapter 7, pools compute elements at the SSD-level, and thus supports different

basic unit sizes by piecing a unit form pages across channels and dies. ASSASIN addresses

the memory wall while leaving the flash translation layer and the SSD interface unchanged.

5.1.3 FPGA-based Hardware Architecture for Computational SSDs

There is a middle ground of computational SSDs where an FPGA chip is integrated into the

SSD board and assumes the computation responsibility [58, 99, 102]. This allows the storage

vendor to either support more flexible and fast iterations through hardware reconfiguration

or shift the responsibility of architecting the compute engines including both general-purpose

or application-specific ones in computational SSDs to the customer, but at the cost of both

increased power and silicon area compared with a fixed hardware architecture, and ease of

use for requiring hardware expertise for reconfiguring the FPGA.

Both Insider [99] and Access [102] try to address the ease-of-use aspects by providing

system software architecture support of file system filter [99] or pipe [102] abstractions for the

FPGA computing kernels to enable easy system pipelines and embracing high-level synthesis
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for developing these kernels. However, because the SSD FPGA still fetches the data from

SSD DRAM or even requires data to be staged in an additional FPGA DRAM [58], the

in-SSD memory wall is left unaddressed.

5.1.4 Disaggregated Storage

Disaggregated storage is a different approach than computational storage. It has the advantage

of separate management and scaling of compute and storage, thus allowing compute to

scale out and catch up with continuously improving flash bandwidth. Good examples of

disaggregated storage include JBOF with NVMe-oF [10] and Amazon EBS [5]. However,

comparing to computational storage, it doesn’t offer the ability of matching more effective

storage bandwidth to a single compute unit (a single point of consistency), and requires

higher interconnect bandwidths and also puts high burdens of packets and data processing

on the compute processors.

A related trend is Open-channel SSD[47] and Zoned Namespace SSD[48] that enable

better control of placement and performance by externalizing management. But they do

not address the system architecture aspects (driving more storage bandwidths, reducing

interconnect bandwidth requirement, offloading packet and data processing) which computational

storage strives for.

5.2 Compute Element Architecture

5.2.1 SIMD ISA

SIMD instruction-set architecture exploiting data-level parallelism dates back to the ILLIAC

IV [49] and later popularized by the Cray-1 vector architecture [100]. Widely-used general-purpose

SIMD ISA like MMX/SSE arose from multimedia workloads in the 1980s. Incremental

improvements via expanding the datapath width, i.e. AVX, AVX2, and AVX512 [3], lead
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to the explosion of number of instructions and binary management incompatibility issues.

Vector-length agnostic (VLA) SIMDs like ARM SVE [105] or RISC-V Vector [22], allow a

single program to run in a variety of different vector hardware. VarVE goes one step further

advancing the VLA SIMD concept to abstract away the bitwidth of each vector element. This

not only eliminates instruction duplication for different vector types but also allows more

efficient use of VecReg and VecALU to process more elements per instruction, improving the

datapath efficiency.

5.2.2 Matrix Extension

Matrix ISA extensions are growing to drive up parallelism exploitation and improve efficiency.

AMX [72] provides native BLAS-3 operations on tiled matrices for x86. SME [26] provides for

AArch64 native inner product accumulation on a matrix tile. Tensor Cores [33] on NVIDIA

GPUs also exploit exposing matrix multiplication, and even consider going beyond to provide

application-specific operations [116]. VarVE-full is going in the opposite direction providing

a simpler interface and more flexible operations to mitigate the instruction-set explosion. It

is possible to extend VarVE-full to two-dimension strip mining on variable-value matrices to

support matrix multiplication.

5.2.3 Stream Computing Acceleration.

Recent work proposes different acceleration for streaming workloads. UVE [60] proposes

an extension that provide general padded element streaming support, mitigating the loop

control and memory indexing overhead. SparseCore [96] proposed stream ISA support that

abstracts sparse data as streams of key-value pairs and provides instructions that compute on

these streams. Bison-e [97] proposes mechanism that embed multiple small values from two

streams into two 32b/64b integer respectively, and carry out regular integer multiplication

(this technique is called binary segmentation) to get inner products or convolution of the
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two streams. VarVE is a more general approach that provides full SIMD operation support

for variable width values as an VLA SIMD extension. Sparsity or small values could also be

exploited as a special case of our variable-width value support, as shown in Section 8.3.4.
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CHAPTER 6

COMPUTATIONAL STORAGE WORKLOADS AND

OPPORTUNITIES

6.1 The Spectrum of Computational Storage Offloads

We survey the research literature considering offloading computations into storage systems,

on storage links (network/PCIe) or inside storage devices (SSDs) [40, 41, 57, 65, 66, 69, 70,

73, 75, 77–79, 81, 82, 86, 87, 90, 92, 99, 102, 108, 109, 113]. We extract the specific offloaded

functions from each system and summarize them in Table 6.1. Offload functions are shown

as columns and system/literature names as rows.

File system and database domain encapsulate most of the functions considered for computational

SSD offloads surveyed in our literature study. As domains providing durability and associated

analysis, management as well as performance optimization capabilities, these two domains

are highly contingent on the storage functionality as well as storage interface changes. As

a result, they are popular domains to be involved in considerations for function relocation

between compute and storage. We group the functions under their corresponding domain in

the table. The table collectively represents a cross-section of system research on computational

storage.

For file system domain, functions considered offloading to computational SSDs include

Cryptography, Compress, Deduplicate, Erasure coding, and Replicate They provides security,

efficiency, capacity-saving, and failure-recovery for the file system respectively. Existing work

consider offloading these functions to enjoy compute acceleration (e.g. ASIC for Galois Field

operations), parallelism exploitation (e.g. multiple compress or deduplicate FPGA kernels),

constraining the storage traffic (e.g. replicate to present a eventual consistent distributed

storage interface).

For database domain, functions considered are mostly for data analytics workloads,
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Access [102] x x x
ActiveFlash [108] x x x x x
Aurora [109] x x
Azure [70] x
Biscuit [65] x x
BlockIF [40] x
Caribou [73] x x x x x
CIDR [41] x x
DedupInSSD [81] x
DeepStore [90] x
Glist [87] x
Grafboost [77] x
Ibex [113] x x x
IceClave [78] x x x x
Insider [99] x x x x x
Lepton [69] x
MithriLog [79] x x x x
QuerySSD [57] x x
Skyhook [86] x x x x
Summarizer [82] x x x
Thrifty [66] x x
YourSQL [75] x x x

Table 6.1: Functions from different application domains proposed for computational storage

including parse, select, filter, statistics. Parse decode structures and values both specified

by plain texts and structure them to database structures of binary data. Offloading Select

enables column pruning to get table data out of SSDs selectively. Offloading Filter enables

row-wise predicate pushdown to trim down rows. And offloading statistics tasks enable

aggregation inside SSD, transferring only the collected stats out, largely reducing the data

size. Finally, write-ahead logging (WAL) is from transnational DBMS rather than analytical

ones. Offloading WAL replay, allows distributed SSDs storing database to contain traffics

and present to the upper-level software as a highly available eventually consistent durability
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storage. This is similar to the Erasure coding and Replicate offloading in file system domain.

Despite numerous studies considering offloading functions to SSDs, systematic considerations

of computational storage offload opportunities is sparse. This can lead to local optimum of

pursuing performance increase, in lack of considerations for costs of additional computational

storage engines or the alternative of compute-side acceleration (FPGAs/ASICs/GPUs). For

example, multiple research promote compression offload on the write-path, based on the

computation speedups delivered by ASIC or FPGA compression accelerators [41, 73, 99] or

simply CPU-saving benefits [86, 108]. However, they failed to recognize that compute-side

acceleration of compression could deliver the same or better acceleration and CPU-saving

benefits with the same accelerators. Further, compression at the compute-side (CPU or

accelerator) would make the data transfer on data center interconnect to the storage cluster

as compressed data instead of original data, saving interrconnect traffics. But offloading

compression to computational SSD would instead transfers uncompressed data on the interconnect,

wasting interconnect traffics. In this sense, compute-side offload of compression is strictly

better than offloading to computational SSD> As a result, our goal is to provide a systematic

way to reason about offloading benefits for a function and determine its feasibility of computational

SSD offload.

6.2 Offload Function Classification

To form a methodology that systematically evaluate whether a function is good for computational

storage offloading, we start from qualitative analysis. The analysis consider multifaceted

metrics and function features. And to reiterate, the criterion is really whether computational

storage offloading brings the most performance speedups and system efficiency improvement,

not just whether computational storage offloading brings compute speedups.

Qualitatively, the benefits we are seeking in computational storage are offloading (free

up precious compute CPUs), interconnect traffic reduction (mitigate interconnect bottleneck
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and reduce energy), and compute speed improvement (from architecturally exploiting acceleration).

The offloading benefits are automatic after move the functions to storage. But interconnect

traffic reduction and compute speed improvement are not a given. Computation speedup

benefit is less distinctive. Generally, if one function can enjoy computation speedup from

in-SSD acceleration, it can also enjoy same maybe higher (because of looser power constraints)

speedups with compute-side acceleration. It is the interconnect traffic reduction benefits

that uniquely warrant a function to be offloaded to the storage, as compute-side acceleration

cannot generate this benefit. And then, computation speedup benefit would be a nice plus. It

would not only improve throughput of the in-SSD compute, but also reduce the possibilities

of in-SSD computation requests reducing the availability of SSD, which is critical as a shared

resource (e.g. slow compute requests blocking the internal request queues of SSD).

Based on the understanding from the qualitative analysis, a classification is proposed

to identify and prioritize computational storage offload opportunities. The classification

considers three workload properties: Data Size Change Offloading Direction and Vectorizable.

Data Size Change captures whether the size of the output of the function is smaller, the

same, larger than its input. Or, in other words, whether the function reduces/keeps/increases

the size of the data after applied. Offloading Direction captures the direction data flows

through. A function can either be on read path, where input data come from flash array

and gets processed by the function with results are transferring out the SSD, or on the

write path, where input data comes from outside of the SSD and gets processed by the

function with results writing into the flash array. Offloading Direction is coupled with Data

Size Change to reflect traffic reduction benefits. A size-increase function on the write-path

or a size-reduce function on the read-path would lead to SSD interface and interconnect

(PCIe links or networks) traffic reduction, if the function is offloaded to computational

storage. Vectorizable reflects whether the function expose data-level parallelism that

could be exploited by SIMD architectures for high-performance computing. Vectorization
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is a natural match to computational storage as storage data are usually set of objects,

amenable for SIMD acceleration. Further, SIMD ISA improves instruction expressiveness

and in turn improves compute efficiency by reducing instruction traffics, making itself a

good fit for computational SSD with stringent power constraints. And the community have

good understanding on architectures exploiting vectorized operations, which priorities the

corresponding architecture support.

The results of applying the classification on the functions from Table 6.1 is shown in

Figure 6.1. The x and y axis are for Data Size Change and Offloading Direction respectively.

And we futher dashed-understore or full-underscore the functions that are moderately difficult

to vectorize or highly difficult to vector respectively.

For filesystem functions, Compress and Deduplicate are considered offloading on the write

path to reduce data written into flashes, saving storage and provide effectively higher storage

bandwidth. Reversely, Decompress restores the original data on the read path, increasing

data size. Decrypt and Encrypt are dual functions that take place on read and write path

respectively to securely store the data in storage, without changing data size. Erasure Coding

and Replicate enables failure recovery and increase availability by introducing redundancy,

increasing data size on the write path. All these filesystem functions feature data-level

parallelism at least on the block level. However, it is hard to vectorize compress, blocked

by the dynamic huffman tree creation process which is highly branchy. Branches creates

divergence, leading to low utilization of SIMD datapath and high overhead for branch

management, eliminating the acceleration benefits from vectorization. For decompress, there

are less branch kernels involved. And thus there are sporadic work [13, 76, 112] vectorizing

it. Other functions feature straightforward vectorization opportunities, including specialized

SIMD support for Cryptography [42].

For database functions, read-paths functions like Filter, Select, Parse and Statistics

all reduce data size through reducing either the data amount or size per data element.
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Write-ahead-log (WAL) Replay reapplies transactions records the updated entries to to the

database stored in storage. It is size-increasing for having to writeback updated entries

by the blocks. Filter, Select, Statistics all feature tuple-level parallelism for row-oriented

databases or element-level parallelism for columnar databases, amenable to vectorization.

Parse was slightly hard to vectorize, due to its automaton-like structure. But we have seen

widely-adopted vectorized json parsing research [74] and software library [84]. WAL Replay

is hard to vectorize due to the parsing job embedded, immensely scattered data, and the

stringent transactional requirements.

Statistical modeling and Neural networks usually happens on read-path where the data

to be mined or to train the neural network stream from flashes. And they provide hugely

smaller amount of results to the outside compared to the mining/training data, thus greatly

reducing the data size. They are also highly vectorizable due to regular computational

structures.

As discussed in the qualitative analysis, functions that provides interconnect traffic

reduction benefits and are easily vectorizable to match the in-SSD compute performance

to the flash array to avoid SSD availability reduction are the first candidates to consider for

offloading to computational SSDs. In other words, the offloading functions should ideally

be a size-reducing one on the read path, or size-increasing one on the write path, or one

that operates alone in storage and does not communicate outside the storage. And they

should be vectorizable to to exploit data-level parallelism through SIMD, the most accessible

architecture approach to bring high performance with high efficiency. These first candidates

are shaded in green in Figure 6.1.

6.3 Workload Properties and Architecture Opportunities

Dwelling on the functions identified as most suitable to be offloaded to computational SSD,

i.e. the ones shaded in green in Figure 6.1, key properties can be identified that further
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Figure 6.1: Function classification

encapsulate architecture opportunities.

The first observation is that these functions are diverse, calling for general-purpose

architecture supports instead of ASIC approaches. Functions may process text input (Parse),

binary input (Filter, Select, Statistics) or even treat input in a content-agnostic way (Erasure

coding, Replicate). The inputs may be organized in be tuples, binary columns, matrices,

or just fix-sized data blocks. The computation could take place in This observation align with

our vision of that general-purpose high-performance architectures are needed for computational

SSDs. Further, in chapter 8, we explore processor architecture support for efficient computation

on these diverse inputs, improving efficiency along with performance.

The second observation is that all these functions feature streaming accesses to input

data, with almost no reuse of input data elements. For example, database functions stream in

tuples or binary data. Neural network functions stream in both input images and layer weight

matrics. And Erasure Coding and Replicate stream in data blocks to general additional data

blocks for availability, reliability and failure-recovery. This observation is the root insight

for our SSD architecture support exploration in Chapter 7

6.4 Summary

To summarize, in this section, we explore a methodology to systematically determine whether

a function is good candidates to offload to computational SSD, and enables the projection
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of the offloading benefits at the same time. Through qualitative analysis on fundamental

benefits of computational SSD offload and comparative advantages against compute-side

offload, we propose to classify offloads based on three properties: data size change, offload

direction and vectorizable.

Offloading data-size-reducing function on the read-path and data-size-increasing function

on the write-path would lead to SSD interface and interconnect traffic reduction, producing

the comparative advantages against other compute-side offload. Further coupled with vectorizability,

functions offloaded to storage would have the potential to enjoy compute performance

matching or excceeding the bandwidth of the flash array, providing further compute speedup

benefits.

This classification not only answer the fundamental question on what functions to offload

but also provide a group of high-benefits functions as the workload base to guide us making

architectural decisions for SSD architecture and processor architecture in computational

SSDs, as will be discussed in in Chapter 7 and Chapter 8 respectively.
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CHAPTER 7

ASSASIN: AN SSD ARCHITECTURE WITH EFFICIENT

STREAM COMPUTING SUPPORT

7.1 Motivation: Memory Wall in Cost-effective SSDs

In this section, we show that to support in-SSD compute with continuously increasing

flash bandwidth capacity, the bandwidth requirement on the SSD DRAM would have to

scale accordingly in the state-of-the-art general-purpose computational SSD architecture.

However, the DRAM scaling requirement not only is contingent on the silicon technology

development of whether DRAM improves better than flash throughput-wise towards future,

but also goes against the goal of high efficiency and low power for cost-effective SSDs, which

are the backbone of modern data centers. As a result, exploring new SSD architectures to

provide efficient support for in-SSD compute is necessary.

7.1.1 A Motivating Example

Let us consider an exemplar function, Filter, offloaded to computational storage from data

analytics workload to understand the performance characteristics inside the state-of-the-art

general-purpose computational SSD architecture shown in Figure 7.1, which is employed in

multiple computational SSD studies [40, 65, 75, 78, 82, 99, 102, 108].

The function filters tuples based on given predicates on certain fields. Tuples come from

the database (to be specific, TPC-H lineitem table) stored in the SSD flash array of which

the schema is known and no parsing is needed. This Filter function features early data

reduction benefits when carried out with computational SSD because unselected data would

not come out of the SSD interface. Further, the function features tuple-level parallelism,

such that it is easy to exploit scaled-out compute engines inside SSD for high performance,

as each engine could process tuples in a small batch of flash pages. Thus, this Filter function
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Figure 7.1: State-of-the-art computational storage architecture

is very suitable for offload to computational SSDs, and is considered in most computational

storage studies (see Table 6.1).

In the state-of-the-art general-purpose computational SSD architecture, which is depicited

in Figure 7.1, offloaded functions execute on compute engines (embedded-class cores). Data

is first staged in the SSD DRAM, and then accessed by compute engines through the

cache-DRAM memory hierarchy for processing. With a 1GHz in-order RISC-V scalar core

on top of a 32KB 8-way L1 data cache and a 256KB 16-way L2 cache, the offloaded Filter

function runs at 0.63 GB/s. The simulation is done in Gem5 [46] with cache performance

measured through Cacti [45] @ 14nm.

Although the Filter function is light on computing intensity, the achieved performance is

far from the bandwidth of a flash channel (1.6GB/s or 3.2 GB/s depending on channel width

as defined in ONFI 4.2 [55]). Digging deeper, we find that the performance is hindered by

memory access stalls, as shown in the cycle decomposition detailed in Figure 7.2. Even if

we assume the L1 cache is tiny (no extra delay for memory accesses) but perfect (no cache

misses except compulsory). Compulsory misses and DRAM accesses would still slow down

the performance by three times.

At the SSD level, let us consider the setting of eight 8-bit flash channels delivering

12.8GB/s to maximally utilize the current and future NVMe over PCIe storage interface (4

lanes of PCIe 4.0 combined peaks at 8GB/s). The memory bandwidth requirement of the

SSD DRAM is at least 25.6GB/s (firmware processor load pages from flash controllers into
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Figure 7.2: Cycle decomposition for ‘Filter’

DRAM, and compute engines read pages from DRAM to perform in-SSD computing). This

is shown with thick red arrows in Figure 7.1. The full requirement will be higher, as there

is additional traffic for storing and transferring the in-SSD computing results or firmware

DRAM access needs. These requirements exceed the capabilities of LPDDR4 DRAM used in

current SSD products [24], and even exceed a DDR4 DRAM of 16GB/s sustained bandwidth.

7.1.2 The Problem

Our example illustrates the memory wall problem inside a computational SSD. State-of-the-art

computational SSDs read data from the flash array into the SSD DRAM. And compute

elements then process these data on DRAM through the cache. This makes SSD DRAM

bandwidth a critical performance limit for hosting both compute and flash traffics. As

flash bandwidth scales, so must the computation, producing increasing demands on DRAM

bandwidth and creating a hot spot in the SSD architecture.

CPU solutions to the memory wall, including caching and increase on memory parallelism

(multi-channel or HBM), do not readily apply. Caches do not work well for streaming data

due to low reuse. Increased memory parallelism is both expensive and high-power. These

costly CPU approaches are not viable in the extremely cost and power-sensitive SSD storage

space (backbone of modern data centers).

The computing and memory hierarchy architecture inside computational SSDs should

be lightweight but effective. It should enable compute engines inside to access data with
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low latency, low power, but high bandwidth. It should also feature moderate consumption

of silicon resources. We dive into the workloads for insights that may help us resolve the

memory wall scaling problem in computational SSDs.

7.2 ASSASIN Design

7.2.1 Workload Feasibility for Stream Computing

To find a solution to the memory latency issue and the memory wall problem we uncovered,

we go back to the workload for insights. Dwelling on functions that are first candidates

for computational storage offload as discussed in 6.3, we find that implementations of these

functions feature streaming access to storage data and random access to relatively-limited

function states (relative to the storage data that are streaming through).

Starting with file system functions, for Cryptography, the key schedule is usually determined

at the beginning and thus suitable for storing as function states. Encryption or decryption

would be applied to the input data or code blocks in a streaming fashion. For compression

and decompression, besides the input data streaming in, the recent history of the data

streaming in (compression) or out (decompression) needed as the dynamic dictionary could

be seen as function states. Different implementations all have an explicit upper bound on the

history size, which also limits the size of an additional suffix tree or a hash table for indexing

this dynamic dictionary. Deduplication is similar to compression except the dictionary is

metadata on seen blocks. For erasure coding, it reads in multiple streams of data blocks and

generates extra coded blocks through various Galois field operations before streaming out.

There are no states but a Galois field multiplication lookup table used across erasure coding

operations for different blocks.

For database functions like Filter, Select, Parse, these workloads feature a highly parallel

nature where computation is applied to each row of data independently. As a result, aside

38



Streaming Function States
Cryptography Data blocks / Code blocks Keys & GF table
(De)compress Data and history Dictionary indexes
Erasure coding Data blocks / Code blocks Galois Field (GF) table
Filter Tuples –
Select Tuples –
Parse Tuples –
Statistics Tuples Accumulators
NN Training Training data Model parameters
NN Inference Inference sample Model parameters

Table 7.1: Stream computing implementation of computational storage workload

from temporaries and streaming input/output of table data and results, there are no function

states for state transfers. It is similar for the Statistics function which generates statistical

summaries from data tuples, it only needs additional accumulators as the function states.

For neural network training and inference, it is sensible for either a general-purpose

processor or an accelerator to keep weights of the model stationary as function states and

streaming in the inference or training data. We summarized how functions are mapped to

stream computing in Table 7.1.

7.2.2 ASSASIN SSD: Stream Computing Between Flash Controllers and

DRAM

The ASSASIN SSD architecture is shown in Figure 7.3. Contrast to a regular SSD architecture

as shown in Figure 3.1, ASSASIN adds scalable stream computing cores (ASSASIN cores)

on the SSD controller chip logically between the SSD DRAM and the flash array. ASSASIN

cores carry out offloaded functions as inline stream computing on the data stream (denoted

by the blue arrows in Figure 7.3) between SSD DRAM and the flash array. Note that

flash controllers hide the electrical complexity of flash, such that ASSASIN cores can be

implemented with standard CMOS VLSI methodologies.

Comparing to the state-of-the-art general-purpose computational SSD architecture as
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Figure 7.3: ASSASIN SSD (Compare with Figures 7.1 and 7.4)

Figure 7.4: Application-specific computational storage proposals [66, 90, 91] bind
acceleration to channels, and thus cannot flexibly share compute and compose data from
across the flash array

shown in Figure 7.1, where compute engines fetch storage data through a traditional cache-DRAM

memory system only after data are first staged in SSD DRAM, ASSASIN saves at least half

of the SSD DRAM traffic. Further, function offloads to computational storage often reduce

data (read) or increment data (write), generating system benefit by decreasing traffic at the

storage interface. ASSASIN allows these functions to be implemented between SSD DRAM

and the flash array via ASSASIN cores, harvesting these traffic reduction benefits for the SSD

DRAM as well. As a result, ASSASIN SSD architecture largely reduces SSD DRAM traffic

and bandwidth requirement, addressing the memory bottleneck issue raised in Section 7.1.

ASSASIN also differs significantly from proposed application-specific computational SSD

architectures (Figure 7.4) that add specialized compute engines to each channel/controller

or to each flash die [66, 90, 91]. ASSASIN has two key advantages: First, ASSASIN

flexibly shares compute engines across the SSD with a crossbar interconnect, delivering
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Table 7.2: Instruction set extension for stream access and management

Instruction Description

StreamLoad Hangs if empty, i.e. IHead[rs1] == ITail[rs1]. Otherwise:
R[rd] = IStream[rs1][IHead[rs1]], IHead[rs1] += width

StreamStore Hangs if full, i.e. OHead[rs1] + 8 > OTail[rs1]. Otherwise:
OStream[rs1][OHead[rs1]] = R[rs2], OHead[rs1] += width

ReadIStream R[rd] = IStream[rs1][ITail[rs1] - R[rs2]]
ReadOStream R[rd] = OStream[rs1][OHead[rs1] - R[rs2]]
Instruction Encoding
StreamLoad unused[11:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]
StreamStore unused[11:5] rs2[4:0] rs1[4:0] width[2:0] unused[4:0] opcode[6:0]
ReadIStream unused[6:0] rs2[4:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]
ReadOStream unused[6:0] rs2[4:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]

robust performance even with uneven data distribution across channels. Second, ASSASIN’s

crossbar interconnect enables aggregating pages from different channels and presenting them

to the compute engines. This allows FTL placement and management decisions to be

completely independent (and thus, no customized FTL is required for ASSASIN). As a

result, ASSASIN can support flexible interleaving of read/write requests that do not exploit

computational storage with computational storage operations.

7.2.3 ASSASIN Core: Efficient Streaming

An ASSASIN core is based on a general-purpose core (like the firmware processor) but

extends it in following aspects.

Hybrid Hierarchy for Inline Streaming Each ASSASIN core employs a hybrid memory

hierarchy consisting of input/output streambuffers, a scratchpad and a cache, as shown

in Figure 7.5. Input and output streambuffers are for low-latency storage stream access.

Scratchpad is tightly integrated with core pipeline and thus offers low-latency random access

to function state. The cache which is further backed by SSD DRAM is for holding data

structures larger than scratchpad’s limit (i.e. a fallback capacity memory).
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Figure 7.5: ASSASIN core

Stream Buffer Under a Microscope As drawn in Figure 7.5, a stream buffer can hold

up to S streams. For each stream, there is a circular buffer with the capacity of P flash

pages. Here, P and S are both microarchitecture parameters. There are two pointers on

each circular buffer, Head and Tail, which are both control status registers (CSR) of an

ASSASIN core. Head points to a core’s current position on the stream. The word at the

Head position could be easily prefetched into the core pipeline, allowing low-latency access.

The Tail CSR acts as a doorbell register to be used by the SSD firmware. The firmware

would update (advance) this Tail register to let an ASSASIN core know that new data are

fetched into the circular buffer, ready to be processed.

Instruction Set Extension for Streaming Besides the CSRs described in previous

paragraphs, the ASSASIN core augments a general-purpose ISA (we use RISC-V [110] in

evaluation) with additional instructions to access (and automatically manage) input and

output streams, which we summarized in Table 7.2. The first two instructions StreamLoad

and StreamStore feature automatic stream pointer increments (i.e. Header CSR) based on

the ‘width’ immediate, while the latter two have no effects on streambuffer pointers.

7.2.4 Flexible Interconnect: Scalable Compute

We architect ASSASIN to be scalable with the flash array bandwidth through pooling cores

at the SSD-level connected with a crossbar interconnect. This allows a flexible N:M pairing

(as the ‘N’ and ‘M’ in Figure 7.3), between the ASSASIN cores and flash channels to scale
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Listing 7.1: ‘compute’ specified as a function
void compute (char∗ scratchpad ) {

while ( t rue ) {
// An i t e r a t i o n proce s s e s one ob j e c t , e . g . a t u p l e .

char input = StreamLoad (0 , 1 ) ; // InStreamId == 0 , width == 1.
char output ;
// Compute on input or f e t c h more data
// from input stream to produce output .
// Maybe a l s o use scra tchpad in the proces s .
// . . .
StreamStore (0 , 1 , output ) ; // OutStreamId = 0 , width = 1.

}
// The loop e x i s t s when StreamLoad hangs ,
// i . e . input stream i s exhaus ted .
// Firmware would r e s e t ASSASIN core (PC & p i p e l i n e )
// be f o r e next compute r e que s t s t a r t s .

}

out compute performance, as opposed to the fixed 1:1 pairing for channel-level compute

engines [66, 90].

One may wonder whether ASSASIN is just shifting the traffic and bandwidth requirements

from the SSD DRAM to the interconnect. The insight here is that the interconnect and

stream buffers are streaming-oriented (small and restrictive thus allowing optimizations).

They can be scaled to high bandwidth at much lower power when compared with the

NV-DDR [55] facility that transfer pages from channels to the SSD DRAM (huge and random

accesses). This advantage is the root of the system efficiency of ASSASIN. As a confirmation,

a 16-bit per input/output lane, 16x16 crossbar is implemented as the interconnect in SystermVerilog.

It easily closes timing at 2GHz with 14nm SAED library and is only one eighth of a core in

silicon area (see Section 7.3.7).

7.2.5 ASSASIN Programming Model

Software Stack Extensions Generally, computational SSD requests are specified in the

form of ‘(compute, pData, List[List[LPA]])’. ‘compute’ represents a stream computing function,

the specification of which is detailed in the third part of this subsection. ‘pData’ is a host
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Figure 7.6: Software stack extensions for ASSASIN

Figure 7.7: ASSASIN core management FSM in firmware

pointer to either the input data for write-path computational SSD requests the results of

which would be writing to storage, or the destination to store the results for read-path

computational SSD requests. The 2-dimensional array specifies the logical page addresses

(LPA) that the output stream(s) of a write-path offloaded function should be written to or

that form the input stream(s) for a read-path function. And the size of the outer dimension

corresponds to the number of input/output streams. A computational SSD request would

be wrapped as a new NVMe command ‘scomp’, as shown in Figure 7.6.

If upper-layer applications would rather specify compute inputs in List[List[objects]], a

storage engine would be responsible of transforming that in to List[List[LPA]]. This is the

original responsibility a storage engine (a file system or a DBMS storage engine) would

assume even without computational storage, so no changes are required here. Further, this

is where task decomposition would take place to exploit the task-level parallelism through
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the multiple ASSASIN cores at the SSD-level. Large compute requests can be decomposed

into multiple smaller ones with consistent splitting of each object/LPA stream.

ASSASIN Core Management in the Firmware Following the insights of control plane

and data plane separation [99], the firmware processor (as shown in Figure 7.3) runs firmware

(i.e. the control plane) independent of compute-oriented ISA/uArch innovations employed

by ASSASIN cores. Compared to conventional SSDs, the firmware is extended with the

capability of managing ASSASIN core resources. This includes schedule stream computing on

any ASSASIN core and schedule page read and write to/from any input/output streambuffer

(ISB/OSB).

As shown in Figure 7.7, the firmware periodically checks control status registers (Head/Tail

for each ISB and OSB) of each ASSASIN core, performing state transitions (hanging avoids

overflow) and schedules pages in and out streambuffers. This is where the construction of

streams from pages at specified LPAs in computational storage requests (see the first part

of this subsection) takes place. ASSASIN cores only process streams, without the need

of knowing any flash array data layout or LPAs (preserving generality). The management

process is similar to that of in-DRAM buffers which firmware originally assumes, thus no

new challenges are involved.

Specify Streaming ‘compute’ ‘compute’ needs to be written in a streaming fashion, as

shown in Listing 7.1. It reads from the input data stream(s) using StreamLoad instructions,

performs required computation and appends output to the output data stream(s) via StreamStore

instructions.

For existing applications, offload functions will in general need to be rewritten in a

streaming fashion with ASSASIN ISA extension instructions (wrapped in intrinsics for

high-level programming languages). However, compiler support to automate this task is

feasible via automatic streaming access pattern identifications [106].
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Figure 7.8: Erasure coding and encryption pipeline

Composing Complex Pipelines ‘compute’ could actually be generalized into a tree of

compute functions, where the function at a tree node would read input stream(s) from

its parent and provide output stream(s) to its children. This generalization only expands

the notion of output stream destination to additionally include input stream buffers of all

ASSASIN cores. Recall that ASSASIN cores’ stream buffers are all mapped in the SSD

address space, no actual changes are needed in hardware. The generalized programming

model allows us to compose complex function pipelines that will map to several ASSASIN

cores with the help of ASSASIN’s flexible architecture and interconnect.

Let’s discuss an example of a write-path erasure encoding and encryption pipeline. It

first applies a Hamming(3, 2) code in the granularity of an SSD page that adds a code page

for every two data pages for additional reliability over a single flash chip failure. Then each

page including the additional code page is symmetrically encrypted with a block cipher before

writing to flash chips. This example is detailed in Figure 7.8. The generalized programming

model allows load-balancing decisions to be specified. One light-weight Hamming(3,2)

running on a core could generate input for two cores running the computing-intensive

encryption function.

A complex neural network inference pipeline could also be programmed. Following the

insights from inference accelerator work [67, 89], it is better to keep the neural network

weights stationary inside the scratchpad to enjoy low-latency high-bandwidth memory access

and reduce DRAM traffics. However, with limited scratchpad sizes, all weights of a model
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Figure 7.9: Neural network inference pipeline

Table 7.3: Configurations of in-SSD compute engines (8 1GHz cores in each configuration)

Data Source ISA MemArch per Core. 32KB L1I omitted

Baseline DRAM (8GB/s) RISCV32IM L1D: 32KB, 8 way, 64B cache line
L2: 256KB, 16 way, 64B cache line

UDP [61] DRAM (8GB/s) UDP ISA 256KB scratchpad

Prefetch DRAM (8GB/s) RISCV32IM
L1D: 32KB, 8 way, 64B cache line
L2: 256KB, 16 way, 64B cache line
DCPTPrefetcher [63] (best in Gem5)

AssasinSp Scratchpad RISCV32IM 64KB scratchpad
64KB I + 64KB O ping-pong scratchpads

AssasinSb Streambuffer RISCV32IM
+Stream ISA

64KB scratchpad
64KB I + 64KB O streambuffer (S=8 P=2)

AssasinSb$ Streambuffer
+ Cache

RISCV32IM
+Stream ISA

64KB scratchpad, 32KB 8W L1D
64KB I + 64KB O streambuffer (S=8 P=2)

may not be able to fit in the scratchpad. Our flexible architecture makes it possible to form

a pipeline as shown in Figure 7.9 where each ASSASIN core handles one layer of inference

and only stores one layer of weights in the scratchpad. This is analogous to the cross-node

pipeline considered for distributed neural network training [71].

7.3 Evaluation

We simulate several computational storage kernels and full-system TPC-H data-analytics

pipelines and compare ASSASIN against state-of-the-art SSD architectures.
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Figure 7.10: Hybrid simulation infra with Gem5 and MQSim

Figure 7.11: Compstor-accelerated analytics pipelines

7.3.1 Methodology

Configurations We compare six computational SSDs that differ in compute engines and

their integration in the SSD architecture, as summarized in Table 7.3. In other aspects the

SSDs are similar, employing an 8-channel flash array (each channel has 1GB/s read/write

performance), a 2GB LPDDR5 DRAM [24] (8GB/s effective bandwidth), and a PCIe Gen4

x4 host interface. In all cases, the host CPU driving the computational SSD is four-core

eight-thread with 32GB main memory.

Compute engines in each SSD (except the UDP, see Table 7.3) are eight in-order scalar

RISC-V cores with different memory hierarchies. RISC-V cores are selected because of the

availability of open-source designs (we use ibex cores [101]) and toolchain [36]. Baseline,

as drawn in Figure 7.1, represents the state-of-the-art general-purpose computational SSD

architecture [40, 65, 75, 82, 99, 102, 108], where compute engines fetch data from SSD DRAM
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before computing on it. The other variants (Prefetch, AssasinSp, AssasinSb and AssasinSb$)

add varied memory hierarchies at each core. Prefetch adds a prefetcher from SSD DRAM

for latency reduction. There are three ASSASIN variations. In AssasinSp, conventional

Scratchpads are used to double-buffer storage data in a ‘ping-pong’ fashion. Storage data is

fetched from flash into the ‘pong’ scratchpad, bypassing the SSD DRAM while the compute

engines process data already in the ‘ping’ scratchpad and vice versa. AssasinSb employs a

Streambuffer which not only enables direct computation on storage data streams bypassing

SSD DRAM, but also automatically manages the stream pointers through the core-level

stream ISA extension (Section 7.2.3). AssasinSb$ adds a data cache (backed by DRAM)

for increased flexibility, with graceful degradation if the scratchpad size is not large enough

for offload functions’ needs of random access.

UDP [61], designed to accelerate data analytics, represents another dimension of computational

SSD architectures [41, 73, 79, 90, 91, 113] where application- or domain- specific accelerator(s)

are employed. A UDP lane computes using a private scratchpad. The firmware processor

copies data to be processed from SSD DRAM into these scratchpads.

Simulation We adopt a hybrid simulation methodology as shown in Figure 7.10. Gem5 [46]

is employed to model different memory hierarchy configurations and the compute performance

of each. MQSim [107] is used to model flash performance. By combining one of the best

simulators of the two worlds, the simulation results should be representative.

Gem5 is extended with scratchpad and streambuffer module [6] that features single cycle

access to model AssasinSp, AssasinSb, and AssasinSb$ configurations. And the best-performant

prefetcher, DCPTPrefetcher [63], in our benchmark is employed to evaluate Prefetch. At the

same time of the simulation, access to scratchpads or streambuffers are traced to generate

timed page-level IO traces which are further used as inputs to MQSim. Extended MQSim [7]

simulates SSD internals and calculates the completion of each IO request, which we use to

retime the computing process simulated by Gem5, i.e. adding additional latency if a page
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doesn’t come out of the flash as early as compute engines modeled by Gem5 first access the

specific page.

For UDP, UDPSim [61], the cycle-accurate simulator, is used instead of Gem5, but the

SSD simulation and retiming by MQSim is the same.

Workload We first evaluate ASSASIN with four standalone function offload to a computational

SSD: Statistics, RAID4 erasure coding, RAID6 erasure coding, AES encryption. Each of

these functions is in its own an application. And we program these functions in C++

through the programming model we discussed in Section 7.2.5.

Then we consider TPC-H [37], which featured in much computational storage research

[65, 73, 75, 82, 86, 99, 108, 113]. Our SparkSQL implementation [4] of TPC-H offloads

Parse, Select and Filter operation through the datasource API [28] to computational storage

simulated with Gem5 [46] or UDPSim [61]. Here we assume that the storage containing

the TPC-H data would employ systematic coding (as in most erasure coded systems) so

that source data are available even after coding, and that erasure coding blocks are large,

reducing the boundary overhead (piecing together an object across SSDs/nodes).

Figure 7.12: Throughput of offloaded standalone functions
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Figure 7.13: Computational SSD’s throughput of offloaded PSF pipeline from TPC-H queries

Figure 7.14: End-to-End latency. In each cluster: PureCPU, Baseline, UDP, Prefetch,
AssasinSp, AssasinSb, AssasinSb$

7.3.2 Single-function Offload

We evaluate the performance of different computational SSD configurations running Stat

(summing a column), RAID4 and RAID6 erasure coding and AES encryption over the

same 8 GiB data array serialized in binary flatly (No deserialization or parsing is needed).

Figure 7.12 shows the achieved throughput, with speedups over baseline labeled.

With the best prefetcher from Gem5, Prefetch is effective on reducing access latency.

However, it only brings limited performance improvement because of the memory wall. The

theoretically required DRAM bandwidth of Stat and RAID4 exceed what the LPDDR5

DRAM offers (∼ 8 GB/s), leading to stalls for Prefetch. AssasinSp and AssasinSb address the

memory wall issue through bypassing DRAM with Ping-Pong scratchpads or streambuffers,

which leads to 1.3x-2.0x speedup for the first three functions and little to none memory

bandwidth requirement. AssasinSb further outperforms AssasinSp by 10% on these cases

with the stream ISA extension that enables automatic stream pointer management. AssasinSb
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and AssasinSb$ achieve the same performance as function states all fit in the scratchpad.

Effectively the L1D cache provides no benefit (is not exercised by the program).

Please note that Stat, RAID4, RAID6 and AES are a sequence of functions with progressively

greater computation intensity (ops per bytes). Generally, ASSASIN gives greater benefit for

less compute-intensive functions, alleviating a memory bottleneck. As compute intensity

increases, computing becomes the performance bottleneck. But it’s worth pointing out that

by employing acceleration, some originally compute-intensive functions (e.g. AES-NI for

AES) could become memory-intensive and thus benefit from ASSASIN.

7.3.3 Database Function Pipeline Offload

Now we look at computational SSD offload of a database function pipeline consisting of

Parse, Select and Filter (PSF) from TPC-H workload with scaling factor 10 (∼10GiB data),

the system architecture of which is shown in Figure 7.11. Performance of offloaded functions

is detailed in Figure 7.13.

UDP ISA [61] employs multiway dispatch and instructions that fuse operations to accelerate

branch executions and unstructured data computation. This is the reason that UDP achieves

on average (GeoMean) 1.3x speedup on offloaded PSF database function pipeline (this

workload is well supported by UDP ISA specialization) over the Baseline.

On the other hand, we consider the progression of changes on Baseline’s memory hierarchy

while keeping general-purpose cores. PSF, bottlenecked by the Parse function, is moderate

in terms of compute intensity. Prefetch achieves small speedup averaging (GeoMean) at 15%

by hiding DRAM latency for accessing storage data. Adopting the idea of inline computation

of storage data streams, AssasinSp matches UDP’s speedup without UDP’s exotic ISA

customization. This comes from the low latency access to function states as well as storage

data streams. Finally, both AssasinSb and AssasinSb$ further improve performance by 18%

through the use of streambuffers and the stream ISA extension that eliminates the address
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Figure 7.15: Compute performance scales linearly with cores.

calculations and pointer management instructions. This is 1.5x - 1.8x higher throughput

than Baseline. The variation in speedup generally reflects the memory intensity of each

offloaded pipeline.

Finally, we look into the overall data analytics performance for all 26 TPC-H queries,

which stacks the host compute latency and computational SSD latency together. We also

include the pure-CPU performance without computational SSD offload for comparison which

essentially represents disaggregated storage architecture. Figure 7.14 details overall latency.

Comparing to the Baseline, AssasinSb’s 1.5x - 1.8x higher performance on in-storage compute

translates to 1.1x - 1.5x end-to-end speedup which averages (GeoMean) at 1.3x. And please

notice this is on top of the 1.9x speedup Baseline already brings over the no-computational-SSD

pure-host-CPU (i.e. disaggregated storage) scenario.

7.3.4 Performance Scalability

The ASSASIN SSD features an all-to-all interconnect between ASSASIN cores and flash

channels (through flash controllers) as discussed in Section 7.2.4 to enable flexible performance

scaling. Here we evaluate scalability and whether the crossbar interconnect potentially

creates hot spots at a flash channel or causes ASSASIN cores to stall and wait for requested
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Figure 7.16: Normalized core utilization (left), normalized by ideal utilization (right).

Figure 7.17: Ext4/MQSim layout combined with Xbar produces even load across flash
channels

storage data. We consider a dummy workload where each ASSASIN core (AssasinSb variation)

scans each byte of input, using the TPC-H datasets. If input data is always available, a 1

GHz core achieves 1 GB/s.

Various numbers of ASSASIN cores are considered to evaluate scalability. Figure 7.15

shows the achieved compute throughput of the computational SSD during scaling. Figure 7.16

shows the corresponding core utilization (normalized by the ideal utilization, derived by

considering nominal bandwidth relationships between cores and channels). As shown, the

interconnect allows linear scaling of compute performance until bounded by flash array

throughput (8GB/s in total). Cores have high utilization, more than 98%, reflecting that the
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Figure 7.18: Performance sensitivity to skew across channels (flash data layout)

flash array and the interconnect deliver pages in time to keep the cores busy. Further, flash

channels also feature balanced high throughput as shown in Figure 7.17. This is because

independent FTL (FTL modeled by MQSim is employed here) already aims to distribute

pages evenly across the channels for better storage performance, separate from computational

SSD considerations.

7.3.5 Sensitivity to Flash Array Data Layout Skew

We further evaluate ASSASIN’s (AssasinSb variation) performance sensitivity to flash array

data layout skew, which is defined as (Di denotes the amount of the to-be-processed data in

the i-th channel):

Skew =
1

n− 1
maxi(

Di

avgi(Di)
) Skew ∈ [0, 1]

ASSASIN with the SSD-level crossbar interconnect to redistribute flash data to compute

engines is compared with the alternative architecture (Figure 7.4) from application-specific

computational storage [66, 90, 91]. Ignoring FTL generality issues of the alternative architecture
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Figure 7.19: Timing for ASSASIN MemArch extensions (SB = Streambuffer,
SP=Scratchpad)

discussed in Figure 7.4 and Section 7.2.2, ASSASIN cores are switched in at each channel

to perform channel-local compute. Four layouts with varied skew for requested data are

evaluated (from low skew (Skew=0.25) to extreme skew (Skew=1)) in additional to the no

skew senario. Respective performance normalized to no skew one are shown in Figure 7.18.

The two clusters of bars show that the crossbar architecture consistently outperforms the

channel-local compute architecture in the presence of skew. Further as skew increases the

benefits increase to as much as 8-fold.

Within the XBar cases, for flash-read limited functions like Stat, uneven layout aggravates

the storage read bottleneck, and XBar-based global compute helps less. But for compute-limited

functions like RAID6, TPC-H and AES, XBar-based global compute can source pooled

compute engines effectively for the data read out from the most-skewed channel, matching

the overall throughput with that of the even data layout scenario.

We conclude that ASSASIN’s XBar interconnect architecture achieves robust performance,

thereby enabling flexible, independent FTL layout mananagement. Benefits compared to

channel-local proposals (as in Figure 7.4) can be as large as 3-8x.
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Figure 7.20: Throughput after timing adjustment (TPC-H is GeoMean across queries))

7.3.6 Clock-speed Benefits and Adjusted Performance

To assess the clock-speed benefits of ASSASIN’s streaming architecture, we implement

the ISA extension described in Section 7.2.3, using SystemVerilog and with SAED14nm [25].

The implemented streambuffer (for AssasinSb) provides 1B-64B access to the stream heads

in the ’MEM’ pipeline stage of each ASSASIN core. As a comparison, scratchpads (for

AssasinSp) with varied widths (8B for a scalar core, 64B for SIMD extensions) and sizes are

implemented.

Our results (see Figure 7.19) show AssasinSb’s streambuffer achieves 0.5ns per cycle

even with a wide, i.e. 64B, interface provisioned for SIMD. A small and prefetched FIFO,

built upon restricted streaming semantics (head-only) of ‘StreamLoad’ and ‘StreamStore’

instructions, on top of streambuffer with coarse-grained (128B aligned) accesses is the key

to this high speed.

In contrast, the scratchpad implementations are significantly slower because they require

random access (large MUXes / access trees). At 64KB, the scratchpad even with a narrow

8B interface, requires 2 cycles for each access in a 1GHz core. Thus, AssasinSp where most

accesses are served by the scratchpads would take performance penalty.
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Power (mw) Area (mm2)
Ibex Core 0.241 0.039
UDP Core 1.210 0.059
32KB 8way $ 0.379 0.044
256KB 16way $ 1.136 0.282
64KB SRAM 0.145 0.030
Crossbar 0.439 0.005
Baseline 14.048 2.923
UDP 14.333 1.444
ASSASIN 12.625 1.625

Table 7.4: Power and silicon area

We consider these results in the context of a RISC-V core, with a classical five-stage

pipeline (IF, DE/RR, EX, MEM, WB). In this design, the prefetch FIFO for the streambuffer

is added where the dcache access would occur. Substituting dcache to much faster streambuffer

allows the clock period to be reduced by 11% (the critical path shifts to ‘IF‘). On the other

hand, scratchpads would have to be timed for 2-cycle accesses, and without any cycle time

benefits.

Finally, we adjust the performance based on above findings, as shown in Figure 7.20.

Overall, AssasinSb’s throughput improves to 1.5x-2.4x (from 1.4-2.1x) over Baseline, resulting

from the cycle time reduction. AssasinSp, with one additional cycle needed for scratchpads’

accesses, degrades to only 1.1x-1.4 (from 1.3 to 2x). In short, on top of the DRAM bypassing

feature, AssasinSb’s streaming memory architecture and instructions delivers a further 1.5x

increase in performance.

7.3.7 Power and Area Efficiency

We evaluate the cost of the in-SSD computing engines and their memory hierarchy in terms

of power and silicon area of different configurations. Synopsys design compiler and 14nm

SAED technology library [25] are used to evaluate the costs of logic. The in-order RISC-V

cores we use in baseline and ASSASIN (i.e. AssasinSb variation) are based on ibex [101].
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Figure 7.21: Relative speedup, relative power efficiency and relative area efficiency

For UDP, we evaluate with its SystemVerilog-based ASIC implementation. And Cacti [45]

is used for caches, streambuffers and scratchpads.

The power and silicon area costs for subcomponents and three evaluated configurations

are summarized in Table 7.4. One thing worth pointing out is that a L1 cache or similar-size

SRAM are at the same order of magnitude with the compute logic of a core in area and power.

This shows the significance of memory hierarchy innovation as pursued by ASSASIN. The

speedup over baseline, relative power efficiency (speedup per unit power) and relative area

efficiency (speedup per unit area) of each configuration are plotted in Figure 7.21. ASSASIN

(i.e. AssasinSb) achieves 2.0x and 3.2x higher power and area efficiency comparing to

Baseline through its streambuffer and scratchpad based memory hierarchy and streaming

instruction-set extension. And ASSASIN(i.e. AssasinSb) with general-purpose RISCV

cores also outperforms a UDP accelerator which employs an exotic customized ISA for

unstructured data processing.

7.4 Summary

The memory wall problem in the computational storage emerges when in-SSD compute tries

to match the continuously improving flash bandwidth. It would produce increase demands

on the SSD DRAM bandwidth, creating a hot spot int he SSD architecture. With further
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limitations of memory scaling by the power-efficiency and cost-efficiency requirements on

SSDs, the backbone of data centers, in-SSD memory wall surfaces.

To dissect the problem clearly, we studied a broad range of research proposals for domain-specific

properties that allow architecture innovations. Key insight arises that computational storage

functions all feature implementations with streaming accesses to storage data and random

accesses to function states of limited size.

Inspired by this insight, we designed ASSASIN, which allows inline stream computing on

flash data streams through a hybrid high-bandwidth memory hierarchy composed of stream

buffers and scratchpad and a streaming instruction-set extension. ASSASIN allows flash

data streams to completely bypass SSD DRAM, decoupling DRAM bandwidth requirements

from the flash array bandwidth scaling, thus fundamentally addressing the in-SSD memory

wall. As a result, ASSASIN achieves 1.5x - 2.4x speedup on functions offloaded in storage

which translates to 1.1x - 1.5x overall end-to-end speedup, compared to the state-of-the-art

general-purpose computational SSD architecture.

However, with memory wall addressed by ASSASIN, the compute performance of in-storage

compute elements becomes the new bottleneck, especially for compute-intensive offloads as

shown in Section 7.3.2. The hope is that the third part of the thesis project would address

the bottleneck with an efficient high-performance computational storage processor design.
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CHAPTER 8

VarVE: BRINGING SIMD PERFORMANCE TO

VARIABLE-WIDTH VALUES

Within the SSD, compute engines are a critical bottleneck for computational storage systems.

This is particularly true for compute-intensive tasks like parsing or cryptography today,

and for future tasks such as data analytics employing machine-learning inference. In the

third part of the thesis project, the goal is to architect a high-performance computational

storage processor to meet these needs. Specifically, we address the deficiencies identified in

conventional processors in computing on variable-width data elements, a staple of sensor

data, and efficient information storage, both of which are critical limits towards matching

and exceeding the continued increase in flash bandwidth.

As an approach, we focus on a single-instruction multiple-data (SIMD) extension of

conventional CPU architectures. SIMD has been an extraordinarily successful instruction-set

architecture approach in scaling the performance of both large-scale parallel and microprocessor

architectures [2, 3, 15, 49, 95, 100]. In particular, SIMD’s benefit combination of higher

performance and lower energy per operation make it the most attractive option for computational

storage processors.

Conventional SIMD approaches are unsuitable for computational storage, as storage data

are diverse in width and often stored in unaligned layout. Thus, existing SIMD designs

produce little benefit in this setting, with variable width data leading to not only divergence

that eliminates the SIMD performance benefits, but also low datapath utilization as many

of the bits are data pads for alignment. To overcome these problems, we consider a new

type of vector ISA extension, VarVE, that builds on recent advances in the vector-length

agnostics (VLA) SIMD, and extend it to capture computing over vectors of variable-width

values. This extension can be done gracefully within the VLA context, and yields significant

benefits for both performance and the integration of SIMD capabilities into the conventional
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Figure 8.1: Wastes from value-datapath mismatch

ISA generally. We evaluate this extension using a variety of storage workloads from our

workloads study (Section 6.3).

8.1 Problem and Approach

8.1.1 Observations on Datapath Efficiency

Real world data is diverse, and much of them does not need 64 bits to represent. The

diversity usually comes from the biases, precisions and ranges embedded in the digitization

process. Moreover, good programming practice considers the maximum value that could

occur, even as a possible intermediate result, and type the variable accordingly. Execution

of such programs on a conventional x64 processor leads to waste in memory traffic and

bandwidth, cache capacity and bandwidth, and ALU, as in Figure 8.1.

For example, we consider a TPC-H filter [37]. To generate predicates on an enum column

‘c_mktsegment’ (the cardinality is five), all 64 bits of the datapath are involved in the

compare instruction when only three bits are doing the essential work, producing a low

datapath efficiency of 4.7%. Ideally, all of the datapath and register bits would be used for

essential compute and storage. Here, 95% of them are wasted.

SIMD can partially mitigate the problem. MMX [94], was developed on this exact

premise. By grouping a set of 8-bit values into a 64-bit register, one MMX instruction

could apply the same operation to each value, both increasing performance, and wasting
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Figure 8.2: Padding wastes both the VecReg and datapath

far fewer ALU and register bits. Of course, MMX has evolved in to a long series of SIMD

instruction set extensions for x86: SSE, AVX, AVX2, AVX-512 [3].

Most SIMD instruction sets support four vector types, with uniform bitwidths b (b ∈

{8, 16, 32, 64}) for each element. However, they still do not deliver high datapath efficiency.

The primary reason is that programming must be conservative. When a programmer selects

an element type, they must account for the largest outlier inputs, results, or even intermediate

results, i.e. the worst case. This causes poor efficiency. In our motivating example, the

TPC-H filter, the predicates need to be applied to the ‘c_custkey’ column, which is defined

in schema to hold 32-bit integers. As a result, all predicates from the ‘c_mktsegment’ column

have to be calculated in 32-bit-per-value vector types in ARM SVE. So even with multiple

vector bitwidths, the program only achieves 9.4% datapath efficiency. Thus, existing SIMDs

lead to huge padding wastes in both vector registers and datapath, as in Figure 8.2. Our

observations exemplify the low datapath efficiency of existing architectures – in both SIMD

and scalar processor architectures.

8.1.2 The Problem

The fundamental problem that gives rise to low datapath efficiency is the software-hardware

interface, i.e. the instruction set, which have been defined around fixed-width datatypes for

more than seven decades [43, 111]. If an instruction-set can only address and describe
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(a) Bitpacked values misalign (b) Huffman’s irregular boundaries

Figure 8.3: Misalignment between values and SIMD vectors

operations on fixed-width datatypes, to allow for dynamic ‘fluctuation’ and outliers, an

application (and compiler) has little leeway to select the datatype size conservatively, producing

wastes. The more variable the values in the computation, the greater the waste – in memory

and cache, data movement, and computation.

8.1.3 Approach and Challenges

To address the problem, we aim to design a variant of the ARM SVE instruction-set

architecture. The new SIMD extension, VarVE, should allow programmers to address and

express computation for sets of variable-width values, improving memory and datapath

efficiency while maintaining the exposure of parallelism. Several challenges need to be

addressed in order to deliver this expressive SIMD extension.

First, there is the question of how to capture variable-width values into vectors. Large

datasets with such values are often coded or packed [18, 19, 21], creating a mismatch between

the packed data values and SIMD datatypes. As in Figure 8.3a and Figure 8.3b, such packed

values cannot easily align and load to a vector register. VarVE needs an efficient mechanism

to provide flexible loading and conversion for diverse values.

Second, traditional architectures (scalar or SIMD) adopted fixed-width datatypes to

simplify hardware. Computation on variable width values would require more complex
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management. In modern technology environment, VarVE must show that it can be implemented

with acceptable complexity and achieve performance (e.g. clock rates) compatible with

existing pipelines. This is key to delivering performance increase.

Third, over the past decade, commercial processor architects have turned increasingly to

SIMD as perhaps the most important technique to increase performance. The complexity

of expressing vector and matrix parallelism has produced an explosion in the number of

SIMD instructions (e.g. ARM SVE alone has 800+ instructions [31] with hundreds slated

to be added). The requirement of instruction variants for element widths of {8, 16, 32, 64}

compounds this problem. In adding support for variable width values, VarVE must solve the

datapath and memory inefficiency challenges without exacerbating the SIMD instruction set

explosion.

Finally, any extension of SIMD instruction-set architectures should keep in mind that ISA

complexity is a difficult challenge. Programming (or code generation) for SIMD is already a

difficult proposition, so additions to ISA should be easy to generate code for (e.g. align with

SVE codegen).

8.2 VarVE ISA Design

The VarVE ISA extension consists of two types of features, those that support 1) efficient

packing/unpacking to load/store variable-width data and 2) efficient computation on variable-width

data. In both cases, these designs leverage, and are designed to gracefully integrate with

modern vector-length agnostic (VLA) architectures [105]. Two ISA variants are proposed.

VarVE-pup is a minimal extension that contains only the pack/unpack feature to allow

conventional SIMD easily load variable-width data for compute. VarVE-full is a full variable-width

value extension that not only inherits the vpack/vunpack support for efficient loading, but

also performs SIMD computation on native variable-width vector type.
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8.2.1 Efficient Loading of Variable-width Values: Pack/Unpack

Data are diverse (ints, strings, enums, codes, etc.). Incoming values can feature arbitrary

bitwidths that are packed or coded for storage or transfers. Existing SIMD ISAs require

lengthy and complex bit operations to capture a stream of variable-width values, placing

them into a vector register. In Figure 8.4, we show an example of unpacking (and loading)

bitpacked values. ARM SVE need ∼10 instructions to first generate byte positions for each

value, gather the values, and then do bit operations to mask out the extra bits gathered.

In VarVE-pup, we introduce a set of universal pack & unpack instructions to solve this

problem (see first two rows of Table 8.1). These instructions convert between packed values

in a stream to fixed-width elements in conventional SIMD vectors. An additional interface

to describe input streams are also added, including fixed-width-value streams (FRStream),

variable-width-value streams (VRStream) and huffman (HRStream) streams, as well as those

for output streams: FWStream, VWStream, HWStream.

VarVE-pup instructions significantly reduce the instruction counts through ISA support

as shown in Figure 8.4, to one instruction per iteration. And it enables performance

improvement through microarchitecture optimizations like prefetch and preunpack [60]. Once

a stream is specified with stream description instructions, unpacking could happen in the

background and hiding its latency among the compute. Further, VarVE-pup instructions

remove the roadblocks (performance penalty of loading) of using non-padded variable-width

value format in storage and transfers, improving memory system efficiency compared to using

padded fixed-width format.
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VarVE-pup
FRSTREAM Specify an input fixwidth stream at a memory location
HRSTREAM Specify an input huffman stream at a memory location
VRSTREAM Specify an input variable-width stream at a memory location
FWSTREAM Init an output fixwidth stream to a memory location
HWSTREAM Init an output huffman stream to a memory location
VWSTREAM Init an output variable-width stream to a memory location
CRSTREAM Consume stream elements (lockstep stripmining)
ERSTREAM Ending an input stream
EWSTREAM Ending an output stream
UNPACK Unpack a vector from an input stream and consume corresponding bits
PACK Pack to output stream with vector values

VarVE-full
Stream Description and Management
FRSTREAM Specify an input fixwidth stream at a memory location
HRSTREAM Specify an input huffman stream at a memory location
VRSTREAM Specify an input variable-width stream at a memory location
FWSTREAM Init an output fixwidth stream to a memory location
HWSTREAM Init an output huffman stream to a memory location
VWSTREAM Init an output variable-width stream to a memory location
CRSTREAM Consume stream elements (lockstep stripmining)
ERSTREAM Ending an input stream
EWSTREAM Ending an output stream
VUNPACK Populate vector from input stream but not consume
VPACK Pack to output stream with vector values
Operations for Variable-width Value Vectors
VADD Add vectors

Operand Variants [31]:

Predicated Vectors
Unpredicated Vectors
Predicated Immediate
Unpredicatd Immediate

VSUB One vector substracts the other
VMAX Signed maximum
VMIN Signed minimum
VMUL Multiply vectors
VDIV One vector divide the other
VAND Btiwise and
VBIC Bitwise Vx and not Vy
VERR Bitwise xor
VORR Bitwise or
VCMPEQ Compare vectors: equal
VCMPNE Compare vectors: not equal
VCMPLT Compare vectors: less than
VCMPLE Compare vectors: less equal
VASR Arithmetic shift right
VASL Arithmetic shift left
VTVS Fixwidth vector to VarWidth vector
VCPY Copy scalar to vector
VDUP Duplicate immediate to vector
VINDEX Index generation
VNUM Num of elements in vector
VRCNUM Read & clear NumE register

Table 8.1: Summary of VarVE instructions
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Figure 8.4: SVE vs VarVE-pup: unpack and load bitpacked values

8.2.2 Efficient Computation on Variable-width Values: Native Vector

Support

In VarVE-full, we leverage the high-level view pioneered by VLA SIMD (SVE), that abstracts

away datapath width1 (see Section 3.3). The key is that with the VLA approach, the

same binary program works with different hardware datapath widths; the number of vector

elements for each iteration is determined at runtime. Thus the datapath width still determines

performance, but it is no longer embedded in the programs.

A new vector type where the bitwidth of each element in a single vector can vary, as

shown in Figure 8.5, is added. This allow denser packing of variable-width values into vector

registers. In terms of architectural states, variable-width values vectors reuse the existing

vector registers. New vector metadata registers are added, one metadata register per vector

register, storing the bitwidth of each element for the associated variable-width values vector.

1. This is a marked contrast to AVX or Neon where the datapath width is explicit in the ISA, and
embedded in every program.
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Figure 8.5: Native support for variable-width values in VarVE-full

Vector metadata register are read/written when carrying out new vector operations defined

below. No standalone instruction can read/write/change them.

Further, new vector operations defined on the variable-width-value vector type are added,

as summarized in last five rows of Figure 8.13. These instructions still carry out element-wise

operation between vectors. The number of output vector elements produced by each instruction

is dynamic, as shown in Equation 8.1. The rule reflects that output vector elements cannot

be more than the input vector elements in either operand. And if there is backpressure when

adapting corresponding input vectors to the datapath to compute the output vectors, the

number of output elements may further decline. This dynamic property gracefully hides into

the VLA scheme, as we will show in Section 8.2.4.

Eop(u,v) <= min(Eu, Ev) (8.1)

In VarVE-full, the pack & unpack instructions are upgraded as vpack & vunpack to

target variable-width-value vectors. vunpack adds a scalar argument mb and a predicate

argument pred. Argument mb constrains the maximum width vector elements can grow

to (default is 64b). This maximum constraint is transitively applied through VarVE-full

arithmetic operations. If the result of an operation is larger than the maximum, normal

SIMD overflow behavior occurs. The pred argument is needed for an optimization discussed

in Section 8.2.5.

The benefits of VarVE-full vector type and instruction design are two fold. First,
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Figure 8.6: VarVE-full mitigates SIMD instruction count explosion

VarVE-full avoid VecReg wastes on padded values. Second, dynamic adapting of value

vectors to datapath allows increased data-parallelism by putting more vector elements through

the datapath each cycle.

8.2.3 Reversing the SIMD ISA Instruction Count Explosion

All SIMD ISA’s (e.g. AVX, SVE) are suffering an instruction set count explosion. This is

because not only are new operations continually being added to support BLAS2 (Matrix-vector)

and BLAS3 (Matrix-matrix) operations [26, 72], but each of these instructions are multiplied

by the number of required datatypes (int8, int16, int32, int64, fp8, fp16, fp32, fp64, bfloat16,

and other new machine learning datatypes). This has produced the explosion in instructions

depicted in Figure 8.6. For example, ARM, often called a RISC instruction set has over 1000

instructions, with at least another thousand more in planning. The growth of instructions

presents several challenges – decode complexity (area and energy), instruction encoding

space (causing extensions to 64-bit formats in RISC-V), and pipeline complexity (additional

pipeline stages and interlock checking). The design of VarVE-full has the potential to help

with this situation.

70



VarVE-full, as a flexible class of vector instructions, subsumes many fixed-width datatype

instructions. For example, a single vadd instruction for variable-width values subsumes

existing instructions for vector-add-int8, vector-add-int16, vector-add-int32, vector-add-int64.

For the same semantics, a program need only select the appropriate maximum value size at

initialization. This means those four instructions could be removed without any loss of

expressive power. Thus, VarVE-fullrepresents a potential 4 to 8-fold reduction in many

classes of SIMD instructions – while increasing expressive power to variable width vectors.

Because SIMD instructions are the largest and fastest growing part of modern instruction

sets, VarVE-full has the potential to dramatically reduce the total number of instructions.

For example, if the 800 SIMD instructions as depicted in Figure 8.6, could be reduced to 100

instructions, the overall instruction set size would be significantly reduced with concomitant

benefits in decoding and pipelining described above. Perhaps as important, opcode space

can be freed up for other customization such as machine learning datatypes (eg. bfloat16).

8.2.4 VarVE-full Strip Mining: Lockstep Advancing

The management of strip mining pacing is the responsibility of any VLA architecture. In

existing VLA SIMDs, the strip size, i.e. the number of elements processed for one stream each

iteration, is abstracted from the program. It is instead a static property of implementation

hardware, and is a runtime constant in programming. This allows all VLA instructions

in the strip mining loop to advances in lockstep, when processing multiple streams with

element-wise correspondence among.

However, in VarVE-full, the strip size is no longer a runtime constant. the feasible strip

size is dependent on the dynamic size of the values. In principle, the strip size could be

different for each iteration of the strip mining loop. Further, the appropriate strip size may

not be determined until the last instruction, as shown in Figure 8.7, where the effective strip

size is successively constrained by the downstream instruction.
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Figure 8.7: Strip size determined at the end of the iteration

To efficiently determine the maximum feasible strip size, we introduce the ‘NumE’ misc

register. This register is updated by each of the VarVE-full instructions, using the min

function. After a sequence of VarVE-full instructions in a a strip mine loop, it contains

the lowest #elements produced by any operation, which is exactly the maximum feasible

strip size to deliver lockstep advance, i.e. maintaining element-wise correspondence across

streams. This ‘NumE’ register is similar to the ARM NZCV conditional flags [17].

For the overall scheme to work, the semantics of ‘vunpack’ are modified. It now just

populates the vector with values from a stream, but no longer consumes the corresponding

bits. At the end of the iteration, after the strip size/advance is determined, new ’crstream’

instructions would be called to advance the stream, consuming bits representing ‘NumE’

values, as shown in the end of Figure 8.8.

8.2.5 Masking Optimization

Figure 8.8 provides a concrete example of VarVE-full lockstep strip mining and its comparison

with existing SVE strip mining on a filter kernel from the TPC-H benchmark [37]. It

also exemplifies a new optimization opportunity in VarVE-full which we call ‘Masking

Optimization’.
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Figure 8.8: TPC-H filtering: SVE vs VarVE-full

One problem with VarVE-full is that one stream with wide values (in bitwidths) can

slow an entire loop. That’s because the minimum #elements of all vector operations will

determine the rate of progress (lockstep value) for the entire loop. Thus the fixed-width

datapath will be poorly utilized.

We observe that sometimes if we have a mask for a slow input stream, we can accelerate

it by pushing the mask into the stream. This idea is akin to predicate push-down in

database queries. VarVE-full allows the mask to be supplied to the vunpack instruction

(as in Figure 8.8, for v_c_custkey) to transform unneeded values to zeroes, such that they

consume neither vector register bits, nor datapath bit positions in later computation. This

optimization would produce larger strip size and thus higher datapath efficiency.

This optimization is particularly useful when mask/filtering could be calculated from
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Figure 8.9: Compilation and Simulation Infrastructure

input streams with narrower (on average) values, and then the mask is applied to the

unpacking of streams with wider values. With masking optimization, the reduction of strip

size during instructions operating wider values could be smaller or even zero.

8.3 Evaluation

8.3.1 Methodology

Modeling and Software Infrastructure Gem5 [46] is extended with VarVE instructions

as shown in Figure 8.9. Gem5 ARM-Ex5 in-order core model [8] is employed as the performance

model. The memory hierarchy is 8-way 32KB L1I, 8-way 32KB L1D, 16-way 256KB L2, all

with 64B cache blocks and a DDR4-4800 16GB DRAM. Since most of our workloads feature

streaming accesses [117], caches have little impact. Further, we added intrinsic support (for

C/C++) and code generation for VarVE instructions to LLVM [85], using unused opcodes

in the ARM SVE encoding space.

ISA Variants Four ARM ISA variants, AArch64 Scalar, SVE, VarVE-pup, VarVE-full

are evaluated. For three SIMD variants, the datapath widths (i.e. vector length), are all
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Figure 8.10: Speedup for bitpacking and RAID5 (vs. Scalar)

256 bits. As a quick recap, VarVE-pup is a partial extension that only adds the pack/unpack

instruction pair converting between packed streams and conventional vectors with fixed-bitwidth

elements as discussed in Section 8.2.1 (see Table 8.1). VarVE-full features full-fledged vector

support of variable-width values, as well as the pack/unpack instruction pair converting

between streams and vectors with variable-width values (see Table 8.1). VarVE-full’s model

considers the pressure from hardware (Section 8.4.2), that corresponding elements from two

input vector would align to the next 8-bit boundary. The performance modeled include the

negative effects resulting from this implementation limit.

Workloads Workloads include file system kernels of bitpacking and RAID5 erasure coding,

database analytics kernels of filters extracted from TPC-H [37] queries, and a neural network

inference kernel to show VarVE’s generality.

Memory efficiency improvement is investigated if the input data exploits the similar

principle: eliminating bit wastes on zeros through packing. Performance scalability with

increasing datapath width is also investigated. And we show that VarVE’s performance gain

is robust with different datapath widths.

Metrics
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• Runtime: Execution time based on Gem5 cycle-accurate simulation

• Speedup: ratio of scalar execution time to that of one SIMD implementation

• Instruction Count: Number of executed instructions.

• Memory Traffic: Bytes read/written from/to DRAM

8.3.2 File System Kernel: Bitpacking and RAID5

We study VarVE, using filesystem kernels as exemplar applications optimized for efficient

information encoding, where the use of variable-sized values is a critical technique for efficient

use of storage and memory. In Figure 8.10, we show the speedups for bitpacking and RAID5

erasure coding, compared to scalar implementation.

In the bitpacking evaluation, two TPC-H columns ‘p_brand’ and ‘o_orderdate’ which are

8-bit and 32-bit unpacked integers respectively are bitpacked to fixwidth streams of 5-bit or

15-bit per value. Lack of byte-unaligned (bit-level) scatter support, bitpack implementation

in SVE has to fall back to the Scalar implementation, achieving the same performance

as the Scalar baseline. VarVE-pup matches this workload well, and achieves 78x

and 26x speedup respectively through vectorization, ISA and microarchitecture support of

latency-hiding write-path packing (the duo of preunpacking). The 3x differences in speedup

for two columns results from the input type width: More elements can be processed in

one iteration for narrower input type. VarVE-full further improves the vectorization

density for the 15-bit per value bitpacking, achieving 38x speedup. For the 5-bit per

value bitpacking, even with the same vectorization density as VarVE-pup, VarVE-full was

limited to 60x speedup over Scalar by the additional auxiliary work (determine

advance and consume input streams) in the lockstep strip mining.

For RAID5, unpacked data from ‘l_linenumber’ in 32-bit integers are streamed in,

generating additional parity blocks. The encoding and decoding processes are duo of each
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Figure 8.11: TPC-H filters offload structure

other, thus the performance of each ISA variant are roughly the same across the two

processes. Because inputs and outputs are already unpacked 32-bit integers, VarVE-pup,

with no unpacking and packing acceleration benefits to exploit, performs roughly the same

with SVE at 3.5x speedup over Scalar. This speedup comes from wider datapath (256b

vs. 32b), less the auxiliary work of the conventional strip mining. VarVE-full benefits

from denser usage of vector register and vector ALU. Despite the schema definition of ‘int’,

values in the column never use full 32 bits but average at 8 bits. As a result, VarVE-full

first ‘vunpack’ more elements from input into dense vectors, do the parity

computation, and then ‘vpack’ back to the original thin form stream, achieving

13.1x speedup over Scalar, 3.7x over SVE or VarVE-pup.

8.3.3 Database Analytics Kernel: TPC-H Filters

Then we evaluate the performance of four ISAs on the filter kernels offloaded from TPC-H

data analytics workloads that is studied in the majority of computational SSD work [57, 65,

73, 75, 78, 79, 82, 86, 99, 102, 108, 113]. As shown in Figure 8.11, the filters are collected

from the Spark DataSource interface where a large variety of filters [29] are pushed down

to data sources. We implemented an ad hoc code generator with functionality similar to
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Figure 8.12: Speedup for TPC-H filters. TaskName = QueryID +
TableNameLeadingCharacter (vs. Scalar)

Figure 8.13: Instruction count reduction (vs. Scalar)

that of Spark Tungsten [38] to generate four variants of filter implementations in C++ with

corresponding intrinsics. All input data are unpacked as types defined by TPC-H schema [37].

Figure 8.12 and Figure 8.13 depict the speedup and dynamic instruction count reductions

over that of the Scalar implementation respectively. VarVE-pup achieves 1.2x - 7.5x

speedup over Scalar, which is 1.5x over SVE by GeoMean. This performance

benefits come from elimination of pointer increments. VarVE-full achieves 2.6x - 15x

speedup which averaged (GeoMean) at 5.7x over Scalar. This is also 1.3x - 5.4x

speedup over SVE which averaged (GeoMean) at 2.1x. The performance benefits

come from the denser representation that fits more elements in the SIMD width (256 bits).

And VarVE-full also brings the benefits of masking optimization as discussed in Section 8.2.5
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for multi-predicate filtering. The values for the rows filtered out in the first predicate are

set to zero during predicated unpack of the second column, saving VecReg and datapath

bits. Further, in terms of instruction count, VarVE-full is 10x reduction from Scalar,

and 3.4x from SVE. This showcase the instruction expressiveness of VarVE-full that one

VarVE-full instruction on average specify 3.4x more operations than SVE.

8.3.4 Neural Network Inference

Here we evaluate a neural network inference workload on MNIST [56] classification to show

that VarVE’s benefits are broadly applicable to general SIMD computing. This neural

network is small but representative as it covers important layer types like Conv2D, Relu,

MaxPooling, FullyConnected as shown in Table 8.2. It is trained with quantization awareness [35]

in float64. The trained model is then quantized to 32-bit integer while retaining 97.7%

inference accuracy. Separately, the same trained model is first pruned [34] to 80% sparsity in

its weights, and then quantized to 32-bit integers while retaining 97.58% inference accuracy.

Figure 8.14 depicts the speedup of three SIMD variants on inference with either the

quantized or the pruned model over the inference of Scalar on the quantized model. For

quantized model, VarVE-pup delivers 2.7x speedup over Scalar through vectorization.

But that’s only 3% performance edge over SVE, as inputs are already unpacked data,

VarVE-pup only saves on stream pointer increments. VarVE-full achieves 3.7x speedup

over Scalar, that is 1.4x over SVE and VarVE-pup. The performance edge comes

from higher datapath efficiency of native variable-width value vector support. For the pruned

& quantized model, SVE and VarVE-pup cannot benefit from the sparsity of weights as the

conventional predicated execution does not improve the datapath efficiency. Also, going

for an exotic execution schedule trying to skip spontaneous zero weights creates divergence

and hurts performance. As a result, their performance doesn’t change. On the other hand,

VarVE-full can exploit the sparsity in weights with the normal computation schedule as those
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Layer Configuration OutputShape
Input (28, 28, 1)
Conv2D kernel: (3, 3), padding: ’VALID’ (26, 26, 32)
Relu (26, 26, 32)
MaxPooling2D pool: (2, 2) (13, 13, 32)
Flatten (5408, )
Dense weights: (5408, 10) (10, )

Table 8.2: Architecture of the MNIST neural network

Figure 8.14: Inference speedup (vs. Scalar on Quantized)

zero weights does not consume VecReg/VecALU bits just like the situation in the masking

optimization as shown in Section 8.2.5. Thus, VarVE-full improves inference speedup

to 5.1x over Scalar, and that is 2x better than SVE or VarVE-pup.

8.3.5 Memory Traffic Improvement

All previous evaluation assumes that inputs are unpacked data, i.e. each value is padded

to 8, 16, 32, or 64 bits. As observed in Section 8.1.1 and Figure 8.1, padded variable-width

values would not only incur efficiency loss in datapaths, but also in memory systems (both

main memory and caches). With VarVE’s ability to load and process diverse values, data

are no longer needed to be preprocessed (decoded and padded) before employing SIMD

accelerations. In this section, we investigate what kinds of memory system efficiency improvement
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Figure 8.15: Memory traffic improvement (vs. padded input)

can be delivered, if the input data are in VarWidth streams, which is a format similar to

VarVE-full vectors: A tightly bitpacked data stream associated with a metadata stream,

where each byte in the metadata stream marks the bitwidth for a value in the data stream.

The only difference between a VarWidth stream and the data stored in a VarVE-full vector

register and vector metadata register pair is that the VarWidth bitstream can grow indefinitely

to store as many values as needed, while the number of values stored in VarWidth vector is

limited by the vector datapath width (vector register width).

Figure 8.15 shows that input in VarWidth streams could achieve 1.3x-4.3x memory

traffic improvement compared to the scenario where inputs are unpacked padded data.

The improvement comes from the elimination of the wastes on bits that are zeros in memory

system traffic (main memory to cache, and cache to registers), as shown in Figure 8.1, less

the consumption of bits used in metadata.

Further, we would like to point out that we deliberately use unpacked (i.e. padded)

data as inputs in previous experiments to focus the evaluation on core datapath efficiency.

If packed data like VarWidth streams are used as inputs, the performance of SVE would

take a huge toll for unpacking those values from streams, as we have seen in the bitpacking
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evaluation. On the other hand, the performance of VarVE would be mostly unchanged,

with the ISA and hardware support of packing and unpacking (Section 8.2.1), as long as the

prefetching could keep up with the computation pipeline.

8.3.6 VarVE Performance vs Datapath width

In this section, we further investigate how VarVE performance gain changes as the datapath

width is increased. This is enabled by vector-length agnosticism of SVE and VarVE. That

is, the same VarVE program can be run on implementations with different datapath widths.

Figure 8.16 demonstrates the GeoMean speedup of three SIMD variants with different

datapath widths over Scalar on TPC-H filtering workloads. The labels on top of the bars

for VarVE-pup and VarVE-full further present their respective speedup over the SVE. As

shown in the figure, VarVE-full’s speedup scales linearly with the datapath width.

And it also provides robust speedup (i.e. 2.2x) against SVE, the state-of-the-art

vector-length agnostic SIMD ISA. Performance gain still come from the the higher datapath

efficiency with VarVE-full’s native supports for variable-width values. In fact, if thinking

abstractly, higher datapath widths may actually help reduce the ratio of leftover bits in

VarVE-full.

8.3.7 Summary

Evaluation using kernels from multiple domains including file system, data analytics and

neural network inference suggest that VarVE delivers significant performance increase. These

improvements arise from greater datapath efficiency and memory traffic reduction. These

results show the promise for more general computing. Comparing VarVE-pup with VarVE-full,

we find that even sophisticated pack/unpack is not sufficient to capture this benefit. Native

support for variable-width values is the key to the greatest performance benefits.
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Figure 8.16: TPC-H filter speedup with varying datapath widths

8.4 Implementing VarVE-full

Our goal of this section is to show that VarVE-full could be implemented with same clock

frequency and limited area/power increase, compared to conventional SIMD engines.

8.4.1 VarVE-full Microarchitecture

A representative SIMD microarchitecture based on previous work [44, 51, 94, 95, 104], is

shown by light orange components in Figure 8.17. Generally, the vector register(VecReg)

provide operands for the the vector ALU (VecALU) and accepts the output vector from the

VecALU.

As discussed in Section 8.2.2, vector metadata registers are added in VarVE-full, one per

vector register, to store the bitwidth of each vector element in the vector storing variable-width

values. Vector metadata registers accept writes from VecALU and service reads for VecALU

(through EAU, discussed later in Section 8.4.2) by VarVE-full instructions.

Moreover, because elements are of variable widths, corresponding elements between two

vectors in a vec-vec operation are no longer aligned. VarVE-full adds an Element Alignment
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Figure 8.17: Microarchitecture for SIMD and VarVE-full

Instruction Width
Add/Sub Max(Wa,Wb) + 1
Mul Wa +Wb
Logical Max(Wa,Wb)
Comparison Max(Wa,Wb)

Table 8.3: Alignment width, two inputs denoted as a and b

Unit (EAU) as a VecALU pipeline step as shown in Figure 8.17.

Finally, to provide operations on two elements aligned at an arbitrary bit position,

the vector ALU has to be enhanced, especially for those operations that involves passing

carry signals across element boundaries, as the element boundaries are now dynamic with

variable-width values. We will concentrate on these two changes in hardware for VarVE-full,

to show that VarVE-full is feasible in hardware implementation.

8.4.2 Element Alignment Unit

The Element Alignment Unit (EAU) aligns the corresponding elements from two variable-width-value

vectors to compute in VecALU. The alignment process not only considers value widths from

two vectors, but also considers intermediate results after applying the operations specified
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Figure 8.18: Element Alignment Unit

by the instructions. We summarize the rules of alignment width for different VarVE-full

instructions in Table 8.3.

Figure 8.18 depicts how the EAU is implemented in hardware. A vanilla Parallel Prefix

Sum (PPS) unit is used to calculate element boundaries from the alignment widths determined

according to Table 8.3. And vector elements from each vector are aligned on these boundaries

in an Aligner, which is mostly a hardware gather (i.e. per-position MUX) on the input vector.

To reduce circuit implementation cost and circuit latency, we opt to align vector elements

only to rounded-up 8-bit boundaries. This reduces the circuit scale of the PPS unit and the

MUXes in the Aligner by 8x and 64x respectively, compared to bit-level alignment. We

closed the timing of EAU implemented in SystemVerilog at 1GHz on SAED 14nm silicon

technology [25] via Design Compiler, fast enough as a pipeline step in a SIMD unit, e.g.

in Ara [51]. Please notice that the round-up of alignment is invisible to the software
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Figure 8.19: Dynamic Vector Carry Look-ahead Adder (subscriptions follow the order of
significance)

programming, because the strip mining process is already dynamic depending on the values

processed, as discussed in Section 8.2.4. The round-up of alignment hides delicately as if

each value is slightly larger. For the same reason, other and future implementations is free

to choose finer alignment granularity without worries of breaking ISA promises. This is a

similar mechanism as the vector-length agnosticism [22, 105] that allows implementation

freedom while maintaining the compatibility of an already-compiled binary program.

With the EAU, instructions without cross-bit carries can be implemented with conventional

VecALU unchanged. This is a significant milestone on hardware feasibility of VarVE-full.

8.4.3 Dynamic Carry Look-ahead Adder

Adaptations are needed for instructions that have carries across the vector to account for

the fact that element boundaries are now dynamic depending on the sizes of variable-width

values in each vector. Specifically, we dive deep into the adder hardware implementation

here as an example. The adapted carry-lookahead vector adder is drawn in Figure 8.19.

In traditional SIMD like AVX or state-of-the-art VLA SIMD like ARM SVE, the carry-lookahead

unit for vector adding should already be runtime-configurable, because vector element type

could be byte, half, word, double -sized. As a result, there are four different logics to choose
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Size/ByteID Carry Logic ‘|’ denotes ‘logical or’

AVX

NEON

SVE

(MSB)

Byte 0

Half G−1

Word G−1 | P−1G−2 | P−1P−2G−3

Double |7i=1G−iΠ
i−1
j=1P−j

VarVE-full

0 0

1 G_−1

2 G−1 | P−1G−2

3 G−1 | P−1G−2 | P−1P−2G−3

4 |4i=1G−iΠ
i−1
j=1P−j

5 |5i=1G−iΠ
i−1
j=1P−j

6 |6i=1G−iΠ
i−1
j=1P−j

7 |7i=1G−iΠ
i−1
j=1P−j

Table 8.4: Carry input logic for each 8-bit adder
Pi and Gi are propagate and generate signals [12]

from when calculating the input carry signal for each 8-bit adder, as summarized in Table 8.4

with the logic for the most significant byte (MSB) shown. For VarVE-full, this list grows

to eight different variants, with the selection signals being the in-element ByteIDs for each

8-bit adder position, which are byproducts of the Element Alignment Unit. Please notice

that the carry at most comes from the 8-bit adder 7 bytes away, which is the same with

conventional SIMD or VLA SIMD ISAs. As a result, the adaptations should have limited

impacts on the circuit critical path, timing or silicon area/power.

8.5 Summary

Existing processor architectures suffer from low datapath efficiency when computing on

variable-width values for requiring padding each value to 64 bits. However, variable-width

values are central to coding and storage efficiency, and thus critical for computational storage.
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Existing SIMDs partially address the low-efficiency problem by providing four vector types.

Not only does single instruction would specify more operations, thus reducing the instruction

traffic but also vector types allow better tailored compute to be specified for dynamic values.

However, conservative programming accounting for outliers still lead to padding for values,

leading to low datapath efficiency.

We propose VarVE, a vector instruction set architecture extension that provides native

variable-width value vector support to compute directly without padding. VarVE delivers

1.3x - 5.4x speedup over ARM’s current best, scalable vector extension (SVE), on popular

file system and database computational SSD kernels by delivering higher datapath efficiency.

And that is 3x - 15x over 64bit Scalar with 6x GeoMean, 50% higher than the 4x datapath

width improvement, signifying significant compute efficiency improvement. As will be shown

in Section 9.1, SIMD approaches, especially VarVE, are compatible with our ASSASIN

SSD architecture, and its streaming memory hierarchy, providing multiplicative performance

benefits. And VarVE combined with ASSASIN elevate the in-SSD compute performance to

match and exceed the flash array bandwidth.

Further, VarVE builds on the vector-length agnostic (VLA) approach, which is gaining

widespread adoption. As a result, VarVE has broad potential impact as a general SIMD

extension for all processors, increasing datapath efficiency and mitigating the SIMD instruction

count explosion.
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CHAPTER 9

DISCUSSION

In this section, we aim to discuss three matters. First, how does ASSASIN and VarVE

combine and whether the combined general-pupose computational SSD deliver high performance

and high efficiency at the same time? Second, what are the implications of ASSASIN and

VarVE towards emerging computational SSD products and NVMe specifications? Third,

how does ASSASIN and VarVE apply beyond computational SSDs?

9.1 Putting it Together

9.1.1 Multiplicative Performance

Both VarVE (or generally most SIMDs) and ASSASIN target streaming workloads. Thus,

VarVE equipped processor is compatible to the ASSASIN scheme to compute on top of the

streams from/to the flash array, bypassing the SSD DRAM Apparently, ASSASIN cores

have to be upgraded to support VarVE ISA extension, as shown in Figure 9.1. Caches are

already with cache blocks of 64B, providing enough bandwidth for VarVE. And, as shown

in Section 7.3.6, streambuffers, timing of which are closed at 1GHz, are already provisioned

for 64B-wide accesses. As a result, the memory system is also ready for the introduction of

VarVE.

Thus, VarVE would bring multiplicative benefits to ASSASIN SSD. We summarized the

Figure 9.1: VarVE equipped ASSASIN core
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Figure 9.2: Performance of putting ASSASIN and VarVE together

performance comparisons in Figure 9.2, where we assume there are 8 cores, datapath width of

each core is 256b and the flash array bandwidth capacity is infinite. If we further consider the

flash array throughput limit, it just bounds the performance at the flash array throughput

(e.g. 8 GB/s, the green bar in the figure) if the performance shown in Figure is higher.

As one can gather from the figure, VarVE combined with ASSASIN deliver the compute

performance that matches and exceeds the throughput of the flash array, with general

architecture support and high flexibility from programmability maintained, fulfilling our

goal of the dissertation project.

9.1.2 Cost in Silicon Area and Power

We project VarVEAssasin’s cost in silicon area and power, based on Ara [51] and Ariane [115],

as shown in Table 9.1. As we can see, 8 core VarVEAssasin each with 256b datapath

consume only 1w. This power consumption hides well under the ∼5w power budget of an

SSD device. But as depicted in Figure 9.3, this small power and silicon area cost translates

to 17x speedup, 4x power efficiency and 32x area efficiency compared to scalar baseline we

evaluated in ASSASIN.
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Assasin VarVE 256b 8 VarVEAssasin core
Area (mm2) 0.203 0.303 4.1
Power (mW) 22 103.111 1000.9

Table 9.1: Area and Power for ASSASIN Core, VarVE Core, and 8 VarVEAssasin Core

Figure 9.3: Speedup, area efficiency and power efficiency vs ASSASIN’s scalar baseline

9.2 Implications for NVMe and Computational SSD Products

NVMe 2.0 [16] added a new copy command, and comment set support for key value SSD

devices (e.g. KVSSD [80]) among other changes. The new copy command could be seen as

the first computational storage function standardized in NVMe spec, despite of its simple

functionality. And the new KV command set is an extension to SSDs’ current block interface

to support native key-value storage inteface. In some sense, it could be seen as the offload

of the adapter between the SSD block interface and the key-value storage interface required

by upper-level applications, originally implemented in the storage engine software. Further,

SNIA is working on a list [64] of computational storage functions which currently include

compress, filter, encrypt, erasure code, regex, pipline, hash, deduplication. These functions

could be the candidates for future additions to NVMe command space.

The architecture pursued in this dissertation is a direct contrast to these standardization

efforts. ASSASIN and VarVE pursue general-purpose high performance architectures, where

each ISA is designed to provide programmability that allows the offloads of arbitrary functions.

While the standardization efforts are pursuing incremental extensions with fixed functionality
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commands, which largely limits the offload freedom on application.

We venture general support is the way to encourage adoption. As shown in Section 7.2.5,

only one command ‘compute’ is needed to be added to the NVMe command space to cover

general computation, with diverse programs sent as arguments of the ‘compute’ NVMe

command. This not only largely simplifies the NVMe command interface but also preserves

application’s freedom to offload diverse functions.

9.3 Beyond Computational SSD

9.3.1 ASSASIN for Stream Computing

As discussed in Section 7.2.5, with control and data plane separation, ASSASIN cores do

not assume the responsibility of flash data layout and management. The firmware processor

takes care of flash data layout, wear-level management and so on. ASSASIN cores only know

about and compute on the streams formed by firmware, just like the response to conventional

read requests prepared by SSD firmware. Thus, the compute and DRAM bypassing ability

of ASSASIN are agnostic to any facility or constraint from the storage/flash array.

As a result, the ASSASIN design can be applied to any computing scenario that features

lots of streaming accesses. ASSASIN process these streams with only streambuffers, bypassing

caches and main memory, reducing memory traffics and cache thrashing. The streambuffer

design is also a lower-latency higher-efficiency memory hierarchy with the priori knowledge

of accessing only the stream heads compared to the cache design.

Specifically, ASSASIN can be coupled with the SIMD approaches targeting streaming

data. The StreamLoad/StreamStore instruction semantics couple well with the strip mining

programming model of both conventional fix-datapath-width SIMDs and the state of the art

vector-length agnostic (VLA) SIMDs. And this instruction pair, coupled with the streaming

hierarchy, could reduce the overheads of managing the loop and incrementing pointers, as
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shown in a similar proposition UVE [60].

Further, there are software frameworks for distributed systems [11, 50] exploiting streaming

computing paradigms. These software frameworks organize input data as stream of events

and arrange computation specified as operators on top of dataflows of streams. ASSASIN

can provide architectural support for these stream dataflows workloads, bypassing cache

hierarchies and provides low-latency accesses.

9.3.2 VarVE for General SIMD Computing

As discussed in Section 8.1, real world data are more diverse than just being 32 bits or 64 bits.

The diversity most comes from the biases, precisions and bounds in the quantization process.

As a result general computing tackle variable-width values all the time. Good programming

practice advocates selecting types conservatively, accounting for outliers in inputs, outputs

and even intermediate results. And this applies to programming for both Scalar and SIMD

architectures, leading to to padding and thus datapath wastes in general computing.

VarVE is designed to handle general SIMD computing. This is partly showcased in

Section 8.3.4 where VarVE is applied to neural network inference workload and VarVE

showcase its capabilities to exploit sparsity in weights of the pruned neural network as a

special case of variable-width values. With its root in vector-length agnostic SIMD and

similar striping model as discussed in Section 8.2.4, VarVE is expected to be applicable to

other workloads in general SIMD computing, as general as VLA SIMD ISA like RISC-V

Vector and ARM SVE, to bring improvement in datapath efficiency for computing on

variable-width values.
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CHAPTER 10

SUMMARY AND FUTURE WORK

10.1 Summary

In this dissertation, we addressed three fundamental questions on architecting general-purpose

computational storage. First, what are key opportunities for computational storage acceleration?

Second, what SSD architecture provides the most efficient support for computational storage?

Third, what computational storage processor architecture enables high performance that can

match the continued rapid improvement in flash bandwidth?

Based on a broad survey of computational storage proposals and research, we show that

function properties of ‘data size change’, ‘offload direction’ and ‘vectorizable’ are indicators

of the system efficiency and compute speedups of computational SSD offloads and thus

determine the priority of offloading. The diversity of the functions identified as best offloads

call for the general-purpose high performance architectures. With workload insights that best

functions feature streaming accesses, we propose ASSASIN SSD architecture that provides

efficient integration of compute into SSDs, and allow flash data traffics bypassing SSD

DRAM, mitigating the SSD DRAM memory wall. Further, VarVE is proposed to bring

native vector support for variable-width values, which are popular in storage, eliminating

padding wastes to improve datapath efficiency. Evaluation suggests the SSD-level (ASSASIN)

and processor-level (VarVE) architectures bring 1.9x and 8.9x throughput increase on GeoMean

respectively. Further, the two architectures are well compatible with each other. Collectively,

they bring 17x multiplicative benefits, enabling in-SSD compute performance to match and

exceed the flash array bandwidth.
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10.2 Future Work

Our work on ASSASIN and VarVE have laid the foundation for flexible, power-efficient,

high-performance computational storage. However, we believe this is just the beginning.

Interesting future direction include:

• Data Center Software Architecture. The flexibility from general high-performance

architectures (ASSASIN and VarVE) enables an ambitious view of system and application

partition for computational storage, as in in-SSD compute has the hardware capability

to support almost all kernels originally execute on compute CPUs. However, the

data center software architecture was not built to support this kind of free movement

of function kernels. Interesting questions include 1) how to provide abstraction and

naming for both flash data and compute engines across distributed storage engines

virtual machines, etc? 2) how to perform performance isolation and accounting for

the offloaded kernels from different tenants? 3) how to manage security, e.g. access

permissions, for offloads?

• Expressing Computational Storage Functions. The streaming structure of ASSASIN

and flexibility of VarVE are different from classic memory-oriented computing. While

some have proposed programming models based on UNIX file system filters [99] for

computational storage, much more flexible parallel and even distributed computation

is possible, and perhaps desirable in a cloud storage environment where data are

replicated and distributed across devices, nodes, and even data centers. Some interesting

questions include 1) how to specify compute on a logical data unit composed of

consecutive data pages scattered across storage nodes and devices? 2) how to enable

the specification of parallelism and auto-scaling among logic data units across storage

nodes and devices?

• Automating use of Computational Storage. The classification for projecting
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offloading benefits based on function properties presents a systematic methodology to

determine what functions to offloads would bring high system efficiency and compute

speedups. In principle, this classification could be applied inside the compiler and

automatically identify offload opportunities through static program analysis. However,

multiple research questions remain to be resolved: 1) where should the classification

integration in the compiler, and how does the corresponding static analysis span

through basic blocks? 2) how to identify data size change property through static

analysis? 3) how to identify dataflow directions from abstract syntax tree or IR? 4)

how to identify vectorization opportunities?

• Advanced Computational SSD Architecture. While ASSASIN and VarVE reflect

significant organizational advances for computational SSD architecture to deliver high

performance while maintaining flexibility, significant challenges remain in terms architecture

support to manage computational SSD Some interesting questions include 1) how to

support multi-tenant sharing and security in SSD? 2) how to provide hardware support

for performance isolation? 3) what are architecture opportunities for key management

or trusted execution?
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