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ABSTRACT

Distributed computing systems are subject to system-wide power limits, which are broken

down into limits for each computing node. Constant power caps is a common practice. The

runtime power consumption, however, is varying. Because of the different application being

executed on each cluster and the different computing loads of each application phase, at

a certain time, only a number of nodes are capped and the others are wasting the power

budget allocated to them, which creates the problem of how to allocate the system-wide

power budget so that the limit is respected and application performance is maximized. State

of art works tackle this problem with either stateless systems or model-based approaches.

Stateless systems do not need prior data to deploy, but they ignore the power changing speed

and sequence of each node, and often fail to assure application performance due to lagging

in cap adjustment and lacking ideas of node priorities. Model-based approaches improve

application performance, but the need for a lot of hardware or application feedback data to

build the models renders a huge deployment overhead.

In this paper, we propose the Dynamic Power Scheduler (DPS) that sustains the low-

overhead advantage of model-free approaches and provides performance-boosting power cap

allocations by analyzing the dynamics in a short online power history. Compared to constant

power allocation, DPS achieves at most 17.5% increase in performance for compute-intense

applications and guarantees no decrease for other applications under the same power budget.
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CHAPTER 1

INTRODUCTION

As the scale of distributed systems increases, power becomes the bottleneck of the system

design. The US Department of Energy (DoE)’s goal for Exascale Computing is to operate

in a power envelope of 20–30 MW. Messina [2017] Overprovisioning, limiting the power to

nodes, has thus been proposed in distributed systems to increase scale while respecting a

power budget. Patki et al. [2013] Modern processors are capable of adjusting power caps

in hardware. Since the Sandy Bridge architecture, Intel processors have supported power

capping in hardware with the RAPL (Running Average Power Limit) interface, by managing

voltage and frequency. David et al. [2010] The ability to set the power cap for each machine

allows distributed systems to be overprovisioned. In real-world cloud centers, it is rare

that all machines are operating at power cap. Cloud servers operate between 10 to 50%

utilization most of the time, Barroso and Hölzle [2007] allowing unused power budget on low-

power machines to be migrated to those operating at power caps to increase performance

with dynamic overclocking. This creates the need for a power management system that

assigns the cluster-level power budget such that application performance is maximized on

overprovisioned systems.

Prior work proposes a number of power management systems that broadly fall into three

categories: Constant allocation systems, Model-based systems, and Model-free stateless sys-

tems.

• Constant allocation systems assign an equal power budget to each node. This ap-

proach ensures fairness in power allocation for an overprovisioned system and provides

cluster-budget assurance. However, a constant allocation is rarely optimal as power

can be migrated away from nodes that are not using it and allocated to nodes that can

benefit from additional power.
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• Model-based systems use machine learning or similar approaches to capture the re-

lationship between measureable system behavior and power and performance tradeoffs.

They use these models to predict the power and performance of various power alloca-

tions and then allocate power accordingly. Various kinds of models have been proposed

for power capping, such as characterization Meisner et al. [2011], machine learning

Whiteside et al. [2017], and feedback-based models Zhang and Hoffmann [2019]. These

approaches adapt to changes in the operating conditions and provide significant perfor-

mance improvement without violating the cluster-level power limit. But such models

require a huge amount of data to train or build up the relationship between power

and other metrics, which creates a non-negligible deployment overhead to migrate to

new architectures or other types of services. They can also be brittle and subject to

failure if the system enters an operating regime that is not captured in the training

data Wang et al. [2022].

• Model-free stateless systems (later referred as stateless systems) keep no knowledge

or reference to past operations and make decisions based solely on current power. Such

systems are lightweight and ready to operate once configured. They are also robust

to different scenarios as they make decisions based solely on current power usage.

However, as they are stateless and model-free, they do not have the data necessary to

predict future power states or to make optimal power allocation decisions.

Figure 1.1 compares 4 different power management systems (row 2 to 5) operating on a

two-node (depicted in solid bars) overprovisioned system over 5 timesteps (shown on x-axis).

The caps assigned at each timestep are depicted in dotted frames. In this example, both

nodes could eventually use maximum node power (as shown in the top row with infinite

budget); however, Node 0 increases its power needs 2 timesteps before Node 1 (shown on

the first row). The constant allocation (row 2) wastes part of the budget at T2 and T3 but

ensures fairness at T4. A Perfect Model-based system and a stateless system fully utilize
2



the budget through time T3. At T4, a perfect model-based system uses its model and

optimal scheduler to reassign part of Node 0’s budget to Node 1, but a stateless system

sees both nodes operating at their power caps and continues with this disproportionate

power allocation, starving node 1. This raises the question of whether there is a practically

realizable power management system that can arrive at the same place while looking only

at power data and not relying on the complicated model.

In fact, this paper argues that there is an important, yet unexplored, middle ground

between model-based systems and stateless model-free systems. Specifically, power dynam-

ics—changes in node power usage over time—reveal a great deal of information that can

be used to allocate power budgets in a distributed system without reliance on complicated

models. Consider again the example in Figure 1.1. From time T1 to T3, node 1 is increas-

ing power, based on that power change, it is likely that it will continue to need power in

the future. By tracking this power change, it is possible to recognize that power should be

redistributed based on the systems power dynamics, without reliance on the complicated

model.

We hereby present DPS, a model-free stateful runtime power management system for

overprovisioned systems that improves performance while maintaining a cluster-level power

limit. Inheriting the low-overhead advantage of the model-free stateless approaches, DPS

assumes no a priori knowledge of undergoing applications and only needs to monitor power

consumption data. It manages the power cap of each node in a centralized way, leveraging

an online monitoring framework. Burdens on computing nodes only include reading and

sending power data to the central node, and setting the power cap with RAPL to the value

received from the central node, leaving most of the software on the central node. Yet unlike a

stateless system, to address the challenge of accounting for power dynamics, DPS includes a

state module that assigns a priority of either high or low to nodes based on a denoised power

history. Besides, DPS has two major control modules, the MIMD (Multiplicative Increase
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Infinite Budget

Constant

Perfect Model-based

Stateless

T0 T1 T2 T3 T4
Time Step

{NAME}

Power increase in order
Node 0 power Node 1 power Cap

Figure 1.1: Motivational Example: Node 0 increases power sooner than Node 1. Constant
allocation does not always fully utilize the budget; A perfect model-based system allocates
enough budget to Node 0 till T2 and balances out as Node 1 power increases, returning to
the same as constant caps; A stateless system will keep assigning enough budget to Node
0 and underallocating budget to Node 1 after T2; DPS detects the increasing trend Node
1 power at T3 and returns to an equal allocation for both nodes a time step sooner than a
perfect model-based system.
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Multiplicative Decrease) module, and the resetting module. The MIMD module first makes

a stateless decision for power cap adjustments. Meanwhile, DPS updates a smoothed power

history with the new data, and the state module updates the priority of each node with the

history. Taking the priorities as input, the resetting module takes the power dynamics into

account, adjusts the stateless decision together with the remaining budget, and makes the

final decision.

In a scenario where a stateless system fails to make the right decision, DPS is able to

correct that decision and further improve performance. Figure 1.1 includes DPS as the

last row. DPS makes the same decision as the stateless system till T2. When the power

needs exceed the power budget at T3, different from the stateless system, DPS detects the

increasing trend of Node 1 power and resets both nodes to the same cap. Then at T4, it is

able to continue assigning balanced caps as a perfect model-based system does.

We implement DPS and test it on an 11-node Linux/x86 server cluster with the ma-

chine learning benchmarks in the HiBench benchmark suite. Applications are launched in

Apache Spark. We implement a random application scheduler that mimics a real-world

cloud service utility at an average 40%. We compare DPS to constant allocation and a

state-of-art model-based approach. Our results show that DPS improves compute-intensive

application performance by up to 17.5% and remains similar performance for other resource-

bound applications. We also compare DPS to SLURM and an oracle representing the op-

timal model-based system. DPS generates similar performance as SLURM and the oracle

when cluster-wide power demands always exceed the budget, and guarantees a lower-bound

performance as the constant allocation and out-performs SLURM by up to 22.76% when

cluster-wide power demands rarely exceed the budget.

To our best knowledge, this paper proposed the first model-free stateful power manage-

ment system, covering future power needs with the assumption that power changes with

inertia. The major contributions are listed as followed:
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• Develops a model-free stateful power management system to maximize performance

under a power cap.

• Designs a experiment setup with utility of real world cloud systems.

• Evaluates this implementation on a real system with standard Spark benchmarks ad-

dressing multiple scenarios.

• Makes all scripts, code, data, from this evaluation available as open source, so others

can test or extend these results.
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CHAPTER 2

RELATED WORK

Power and energy have become first-order concerns for computer system design. Therefore,

power management has been proposed at both node and cluster-level. We first briefly cover

node-level designs before reviewing cluster level solutions (the topic of this paper). Cluster-

level solutions, of course,q require some node-level support Bianchini and Rajamony [2004].

Several OS projects add support for node-level power monitoring and energy allocation

Fonseca et al. [2008], Roy et al. [2011], Snowdon et al. [2009], Shen et al. [2013], Weissel

et al. [2002], Yuan and Nahrstedt [2003], Vardhan et al. [2009]. Several studies profile

applications or hardware-level metrics to improve energy efficiency Hoffmann [2015], Mishra

et al. [2015]. With power dissipation physically unable to match consumption of modern

processors, hardware designs are constrained by dark silicon, the part of a chip staying

unpowered Esmaeilzadeh et al. [2011], and so operating within power limits becomes essential

Venkatesh et al. [2010]. To support setting power limits, Intel’s SandyBridge and later

processors provide power management in hardware David et al. [2010]. RAPL provides an

interface for specifying a power limit and then keeps the processor at or below that limit.

As we enter the exascale era, the United States Department of Energy (DoE) is antic-

ipating a cluster-level power envelope of 10s of Megawatts (MW )Messina [2017]. In this

scenario, it is anticipated that large scale systems for supercomputing and datacenters will

be overprovisioned ; that is, it will not be possible to power each server at its TDP (Ther-

mal Design Power) while still respecting the cluster-level budget . For example, prior work

proposes improving performance for HPC systems by overprovisioning and using RAPL to

set node-level power limits below TDP and guarantee a tight cluster-level power limit Patki

et al. [2013]. In industry, Google has deployed overprovisioned systems worldwide for several

years Sakalkar et al. [2020]. The overprovisioned system has become a practical and critical

approach to addressing tight cluster-level power limits in current and future cloud clusters.
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As introduced in section 1, prior works on cluster-level power management systems can be

generally separated into three categories and we cover each in the rest of this section.

2.1 Constant allocation systems

Some early works in cluster-level power management explore constant allocation systems

with Dynamic Voltage Scaling (DVS) to reduce cluster power consumption in multi-node-

scale distributed systems Ge et al. [2005], Rountree et al. [2009]. Patki et al. [2013] first

explored application scalability in a strictly overprovisioned system with a constant allocation

system using RAPL to set node-level power limits. Sarood et al. [2013] extended this system

to include power limits on DRAM. Constant allocation systems assure cluster-level power

limits and are easy to implement (given RAPL’s hardware support), but using the same

peak power limit for all nodes leads to sub-optimal application performance, as nodes with

compute-heavy workloads run at the limits, and other nodes run below their limit, making

poor use of the available power.

2.2 Model-based systems

Researchers quickly realized the limits of constant allocation schemes and turned to more

sophisticated solutions to allocated power. A prominent example is the class of model-based

systems that use learned models to make intelligent decisions on how to set node-level caps

to meet cluster-wide budgets. For example, Lee et al. [2016] models I/O behavior to dynam-

ically adjust per-node power budgets by shifting power from I/O bound nodes to compute

bound ones. Power management with workload characterization models has been studied

within various types of services, including online data-intensive services Meisner et al. [2011],

parallel workloads Huang and Feng [2009], non-interactive workloads Feng et al. [2005], vi-

sualization workloads Brink et al. [2021], and microservices Hou et al. [2020]. Several works
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build job performance models to manage an isolated component or coordinate multiple com-

ponents Sarood et al. [2014], Georgiou et al. [2014], Labasan et al. [2017], Gholkar et al.

[2016], Marathe et al. [2015]. Machine learning models are also widely studied for power

management. The PowerShift project models coupled applications offline to make power

cap decisions based on its model’s predictions Zhang and Hoffmann [2018]. The PoDD

project upgrades this idea by building machine learning models online Zhang and Hoffmann

[2019]. The PANN project uses neural networks to dynamically allocate power in overpro-

visioned systems Whiteside et al. [2017]. Some other works build feedback-based models

to improve power efficiency. Wang et al. [2008] establishes a feedback control framework

to improve power efficiency with DVFS. Several feedback-based systems are proposed to

adaptively apply power capping and maximize performance Wang and Chen [2008], Zhang

and Hoffmann [2016], Gholkar et al. [2018]. Model-based systems generally achieve near-

optimal performance under the assumption that their models have sufficient training data.

Once trained, their optimality (and sometimes even ability to meet the power budgets) is

dependent on the assumption that runtime workloads are drawn from the same distribution

as the their training data. If the architecture or underlying workloads change significantly

from this training set, the models will no longer maximize performance, and in some cases

might fail to maintain the power budget.

2.3 Stateless model-free systems

Stateless model-free systems are proposed to eliminate the dependence on a well-trained

model. SLURM is a widely used cluster job and resource management system that incorpo-

rates a power management plugin. SLURM’s power management system adjusts maintains

a cluster-wide power limit by setting node-level power caps using only the current power

measurements Yoo et al. [2003]. A power management framework extending SLURM is pro-

posed to provide safe hardware overprovisioning on a 965-node cluster at Kyushu University
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Sakamoto et al. [2017]. The Argo project incorporates a conclave-node two-level stateless

power management system. Ellsworth et al. [2015b,a], Perarnau et al. [2015], Ellsworth

et al. [2016] The Japan supercomputer Fukagu incorporates a core retention mode to turn

off idle nodes based on current processes and improve energy efficiency Kodama et al. [2020].

These systems demonstrate the practical benefits that can be derived from approaches with-

out models. However, stateless model-free systems make power assignments only based on

current power usage, forcing a greedy optimization strategy. Without models, they lack the

ability to predict future power usage and escape local optima, tending to provide sub-optimal

performance in an overprovisioned system.

Surprisingly, to the best of our knowledge, only model-free systems are deployed in real

clusters. As of June 2022, SLURM is the default resource and job management system

of 5 supercomputers in the top 10 of the Top 500 list, including Frontier, LUMI, Sunway

TaihuLight, Perlmutter, and Tianhe-2A top [2022]. Fukagu still remains as the second

top supercomputer in the world. Therefore this paper takes the position that a power

management system that can be applied in real-world systems should not rely on a model

that introduces a high deployment cost with training data and limits the operating scope.

That creates a need for a model-free system that overcomes the vital drawback of a stateless

system—unable to foresee future power needs and escape local optima. This paper explores

the power dynamics in the power usage history and presents a model-free power management

system that is capable to escape local optima, by consiering the power dynamics.
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CHAPTER 3

POWER MANAGEMENT WITH POWER DYNAMICS

Overprovisioned systems must divide a cluster-wide power budget among individual nodes.

We refer to the maximum power that a node could draw as its power demand. Generally,

meeting a node’s power demand will result in higher performance; compute-bound nodes

tend to have high power demands ?, while IO-bound nodes tend to have lower demands ?.

So, a power manager should meet a node’s demands whenever possible. However, sometimes

there is not sufficient budget to meet all node’s demands simultaneously. In this case we

would like to ensure each node is equally penalized so the power budget is fairly distributed

according to demands. While conceptually simple, the process of meeting power demands

is challenging in practice for two reasons: (1) the true demand cannot be measured directly

as the system might be capped and (2) the demands vary dynamically, so even once the

demand is known at some point, it is not clear what it will be in the future. This section

first discusses the challenges that fluctuating power demands place on a power management

system, specifically predicting future power demand; describes relevant power dynamics

in computing systems, then shows how these power dynamics can be used to address the

challenge of estimating power demand. Because different machines may support different

power management scale (cores, sockets, or nodes), in the following text we refer to each

part of a machine that supports power capping individually as a unit.

3.1 Observation in power demands

Power demand is continually changing. At any time, a unit’s power demand is dependent

on its application workload and even different phases within an application. Figure 3.1

includes three distinctive Apache Spark applications executed on a 4-node dual-socket dis-

tributed system. The system supports per-socket power cap allocation. The left column
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includes three periods of the per-socket power consumption of the three applications, LDA,

Bayes, LR, respectively, executed separately without power limit. So we can refer to the

power consumption as the power demand at any time. From the figures we summarize three

observations in the continuously changing power demands.

• Power phase duration is diverse. Applications put different computing loads on

the system at different time, resulting in phases in power. Such power phases are

different based on the undergoing applications. In Figure 3.1.a, LDA has a long phase

ranging from second 0 to 125. Yet in Figure 3.1.c, LR has phases shorter than 10

seconds, for example from second 140 to 149. in Figure 3.1.b has phase duration in

between, but each phase has different length. One longer duration ranges from second

50 to 75, but a shorter can last only 13 seconds, from second 235 to 248.

• Peak power at each phase is diverse. Based on the computing loads, the resources

need to execute the tasks can be different, letting the system to consume different peak

power throughout a phase. In Figure 3.1.a, LDA’s peak power is around 160W but

changing lightly. In Figure 3.1.b, Bayes’s peak power is different for different phases.

For example, for the phases from second 50 to 75, power increases to 165W, but for

the phases from second 175 to 192, the peak power is only 110W. In Figure 3.1, the

power peaks at 165W.

• The 1st derivative of power is diverse. When power changes, its 1st derivative

can also be different based on the current computing loads. In Figure 3.1.a, power

increases from 20W to 160W in 3 seconds starting from second 3, but decreases slowly

from 160W to 70W in 20 seconds starting from second 97. In Figure 3.1.b, changing

speeds are different in different phases. For example, for the phase from second 50 to

75, power both increases and decreases fast, but for the phase from second 195 to 225,

power both increases and decreases slower.

12
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(b) Bayes: Versitle changing speeds and frequencies
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(c) LR: High changing speed and high frequency
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(d) LR: A greedy stateless system lagging increasing the cap
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(e) LDA: A greedy stateless system allocates imbalanced caps
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Figure 3.1: Per-socket power demand series data of different applications

3.2 Challenges in power management under a power budget

An overprovisioned system maintains a cluster-wide power budget that is not enough to

power each unit at its physical upper bound. Under such a limited power budget, the

diverse power demands lead to two challenges for power management.

• Matching the power demands and the budget. Under a limited power budget,

the excess budget while meeting all units’ demands can be small. To respect all units’

demands as much as possible, the power management system is required to not over or

under allocate the budget to any unit. Under-allocating is limiting the unit’s perfor-

mance, while over-allocating the budget means taking it from other units. Yet given

the diverse peak power and 1st derivative of power, this requirement is challenging for

a power management system to allocate the budget by matching the demand precisely.

• Special mechanism when the power management system cannot react fast

enough. A power management system is operating in a fixed time granularity. But

the diverse power phase duration can be too short for the system to react. How to

react specially in this scenario can be another challenge.
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Variable Description
t Timestep t
Tt Time at t
dT The granularity of

timesteps
Et Energy consumption till t
Pt Power consumption at t
dPt
dT Derivative at t

Et(P ) Estimated power at t
Ct Power cap at t

Table 3.1: Terminology.

3.3 Power dynamics

The power usage is related to the hardware performance, amounts and types of tasks to

finish, and other aspects. The system load increases as new tasks come in and decreases as

tasks are finished. Therefore, When we look at the power solely at any instinct, it isn’t a

random distribution, yet instead, power changes with inertia. That is to say, the changes in

power stay with a trend for a while, meaning we can predict future power changes to some

extent by only taking measurements of power consumption analyzing the changing trend

residing in the most recent power history. Hereby we define the components in the power

history that contribute to a more adaptive power management system together as power

dynamics, which consist of two components, the 1st derivative and the frequency. Both

terms are estimation from the measurement of power over a short period. Terminologies

explaining the 1st derivative and other measurements in section 4 are included in Table 3.1.

The 1st derivative is as defined in equation 3.1. The 1st derivative indicates that power is

increasing over the period if it is positive, and decreasing if negative. If power is increasing,

we can at least predict that power demand will stay high at the next time step and it is

demanding power budget. Similarly, if power is decreasing, we can at least predict that it

will not need more power budget than its current power consumption at the next time step.

The frequency is inferred from the number of power phases during the period. If the

14



frequency is too high for a power management system to react to, for example, LR in Figure

3.1.c, the system can allocate the power budget differently in this edge case to ensure that

whenever a unit’s power peaks, it will not be capped.

dPt =
Pt − Pt−1

dT
(3.1)
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CHAPTER 4

DPS DESIGN

DPS is a model-free stateful power management system that periodically reads power con-

sumption data of each node and adjusts the power cap of each node accordingly while re-

specting a cluster-level power limit, aiming to maximize undergoing application performance

in an overprovisioned system. It’s designed on top of a stateless system, differed by taking

power dynamics into consideration and attaching a state to each power-allocation unit.

4.1 Design principles

Generally, under the requirement of respecting the cluster-level power demand, DPS has two

fundamental goals in design: overhead minimization and performance maximization. As

discussed in Section 3, optimal performance in the context of a power management system is

allocating the cluster-wide budget such that either all nodes’ demands are met or all nodes

are equally penalized when demand exceeds budget. On the other hand, overhead is referring

to both operating overhead and deploying overhead. The operating overhead is the cost of

making decisions, including data collection, signal transition, power cap setting, etc. A lower

operating overhead contributes to a higher performance generally. The deploying overhead

is the preparation cost for the system to operate as intended, which, on the contrary, is

potentially beneficial to performance. For example, a machine-learning model-based power

management system has high deploying overhead because it needs data and time to train

the model, but once it’s trained, it delivers maximized performance. The goal to minimize

operating overhead leads to the first principle and the deploying overhead and performance

trade-off leads to the next three principles in designing DPS as followed.

• Minimum load on executing nodes. A power management system has a server that

received metric readings from and sends cap decisions to the clients on the executing
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nodes. While applications are being executed on the executing nodes, it is necessary

to keep the power management load on those nodes at minimum, minimizing the

operating overhead. Such load includes reading metrics, setting caps, communication

with the central node, and the client runtime.

• No profiling/feedback model is required. A model of any kind that involves

profiling or converging on application feedbacks will increase the deploying overhead

to another level compared to a model-free system. Instead of relying on a model to

predict the power demand, DPS incorporates power dynamics to make close-to-perfect

decisions on power caps.

• Only power usage data is involved. Taking any metric other than power usage

requires a profiling model, which brings a huge deploying overhead. DPS needs only

the minimum amount of power-related data —- power consumption itself. Such a

restriction brought by the goal of minimizing deploying overhead is allowed to be met

by power dynamics while providing close-to-perfect performance.

• The system ensures lower-bound performance as the constant allocation

There are several challenges model-free power management systems facing. If not han-

dled well in certain scenarios, a model-free power management system can make poor

decisions on power caps such that performance is worse than dividing the cluster-wide

power budget equally for each unit. However, DPS ensures a lower-bound performance

as the constant allocation. As demonstrated in Section 3, DPS is able to address all

the problems with power dynamics.

4.2 Hardware support: RAPL in DPS

DPS interacts with the hardware in 2 ways, reading power usage data and setting power caps.

Both abilities are supported by Intel’s RAPL system David et al. [2010]. RAPL observes
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Figure 4.1: DPS control system design

various low-level hardware events and estimates energy consumption based on event counters.

Still, the accuracy of RAPL’s energy readings is shown to be high and the overhead is low

since it is implemented in hardware Khan et al. [2018]. All RAPL counters are stored in

the Model Specific Registers (MSR), among which RAPL provides two MSR’s for reading

the energy counter and setting the power cap. To read the power consumption between

time steps, DPS accesses the MSR twice. The exact duration between the two readings is

calculated with two timestamps, as shown in equation 4.1. The DPS then calculates the

average power consumption throughout the time window, as shown in equation 4.2. To set

the power cap, DPS writes the value into a specific location inside the MSR. Reading power

usage data involves two readings from the MSR, and setting the power cap involves one write

to the MSR, each renders about 5-millisecond overhead.

dT = Tt − Tt−1 (4.1)

Pt =
Et − Et−1

dT
(4.2)

4.3 DPS control system

DPS consists of a server on the central node and clients on each computing node. Each

Client is responsible for reading power, setting caps, and communicating with the server for
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all the power capping units on the node. The control system is excluded from the client so

that the only necessary load is added to the computing node, delivering minimum operating

overhead. The server keeps a list of all the power capping units, including their current

power caps, estimated power histories, and priorities, which we will go into detail about

later in this section. The control system on the server, as shown in Figure 4.1, consists

of 4 modules and two important global data sets. At each time step, the control system

receives current power usage data from all computing nodes. The stateless module takes in

current power and outputs a temporary cap allocation decision. The priority module takes

in the power history and updates the priorities attached to all units. Due to the variance

residing in the power usage data, the priority module can make mistakes easily. Therefore

DPS incorperates the Kalman Filter to mitigate the effect power variance brings on the

priority module’s judgements. The Kalman Filter takes in power usage data and updates

the estimated power history which is then fed into the priority module as input. The cap

readjusting module finally takes the priorities and the stateless result as input and outputs

the cap decisions. The control system then sends the new caps to all computing nodes. This

section introduces each individual module and how the control system incorporates power

dynamics to provide close-to-perfect power cap allocation.

4.3.1 Stateless Module

As indicated by the name, the stateless module alone is a stateless power management

system, which takes in the current power and decides the power caps only based on the

current power. This cap result serves as a temporary allocation which will be readjusted by

the Cap resetting module. As shown in Algorithm 1, the stateless module is a Multiplicative-

Increase-Multiplicative-Decrease (MIMD) based controller. It is inspired by SLURM’s power

management system Yoo et al. [2003] and only changes the power cap with different speeds

in some corner cases. It maintains two thresholds for increasing and decreasing the power
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cap respectively, which are at certain percentages of the current cap. If the current power

of a unit is below the decreasing threshold, its power cap will be decreased by a percentage

or to its current power. If the current power of a unit is above the increasing threshold, its

power cap will be increased by a percentage or by what’s left in the cluster-wide budget. The

cap-increasing loop is done in a random manner so that no unit has priority in increasing

the cap over others.

Algorithm 1: Stateless module
1 Function multp_inc_multp_dec(inc_threshold, dec_threshold, inc_percentile,

dec_percentile):
// power: list of current power consumption of all units
// cap: list of current power cap of all units
// set_flag: list of flags for all units of whether the cap is changed

2 global power, cap, set_flag ;

// Initialize set_flag to 0
3 for u ∈ units do
4 set_flag[u]← 0 ;
5 end

// First loop: decrease caps
6 for u ∈ units do
7 if power[u] < cap[u] ∗ dec_threshold then
8 cap[u]← max(power[u], cap[u] ∗ dec_percentile) ;
9 set_flag[u]← 0;

10 end
11 end

// Second loop: increase caps in random order
12 avail_budget← total_budget - sum(cap);
13 for u ∈ random(units) do
14 if power[u] > cap[u] ∗ inc_threshold then
15 tempt← min(cap[u] ∗ inc_percentile, avail_budget);
16 cap[u]← tempt;
17 avail_budget← avail_budget− tempt;
18 end
19 end
20 return
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4.3.2 Kalman Filter

The Kalman Filter (KF) produces an estimation of a joint probability distribution over a

single measurement for each time frame by taking unknown noise and variance as other

variables. We use the version of a 1-d Kalman Filter that renders minimum computing

loads while providing reliable estimations. As shown in algorithm 2, the KF module keeps

an estimation uncertainty which is updated at the end of each time step. The estimation

uncertainty is initialized with an estimated process noise and updated with it every time.

At each time step, the KF module calculates the Kalman gain based on the estimation un-

certainty and the uncertainty standard deviation of the current time step. Then it produces

an estimation of current power which reduces the variance in power. And lastly, it updates

the estimation uncertainty.

Algorithm 2: One-dimensional Kalman Filter Module
1 Function kf_update(current_std, est_uncertainty, process_noise):
2 global power, power_history

3 for u ∈ units do
// Remove oldest history and read the most recent one

4 power_history[u].dequeue()
5 est_powern−1 ← power_history[u][−1]

// Calculate the Kalman Gain

6 KG← est_uncertainty[u]
est_uncertainty[u]+current_std2

// Estimate power and enqueue it
7 est_powern ← est_powern−1 +KG ∗ (power[u]− est_powern−1)
8 power_history[u].enqueue(est_powern)

// Update the history variance
9 est_uncertainty[u]← est_uncertainty[u] ∗ (1−KG) + process_noise

10 end
11 return
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4.3.3 Priority Module

The priority module estimates the two properties of power dynamics, the 1st derivative and

the frequency, from the estimated power history, and attaches a priority of either high or low

to each unit correspondingly. A high priority indicates the unit is executing with large loads

and needs power, and a low priority indicates the unit is either idle or executing with small

loads and not demanding much power. In general, a unit increasing power fast is attached

with a high priority, so as a unit changing power with high frequency because it will be

under-allocated if no extra power is attached to it.

Since the length of the power history is longer than what a changing trend of power can

last, the module is passed with the length of history, which is used to calculate the average

1st derivative, as an argument. As an estimation of the changing frequency, which is hard

to extract given the uncertainty in power, it instead calculates the number of prominent

peaks in the estimated power history. The module is separated into two parts, the first part

analyzing the number of prominent peaks and the second part analyzing the average 1st

derivative.

As shown in algorithm 3, the priority module keeps track of whether a unit is identified

as of high frequency. At each time step, the module first tries to identify the high-frequency

units and attaches high priorities to them. For those who have already been identified as

high-frequency units, the module checks both the number of prominent peaks and the stan-

dard deviation over the power history. If the two measures are both below their thresholds

respectively, they are identified as low-frequency units. The addition check on the standard

deviation is because of the uncertainty in the power and the fixed threshold in calculating the

number of prominent peaks. Sometimes the number of prominent peaks can fall below the

threshold yet power is still changing with high frequency. Bringing in the standard deviation

can help identify such scenarios.

After attaching the priority according to the frequency, the module calculates the average
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1st derivative of a shorter range in the estimated power history for all units that are identified

as low frequency. Two thresholds are involved in classifying the 1st derivative, a positive one

and a negative one. If the 1st derivative is above the positive threshold, a high priority is

attached. If it is below the negative threshold, a low priority is attached. If it is in between,

the unit’s current priority is not changed. The positive threshold is used to detect a fast

increase in power, and the negative threshold is used to detect a fast decrease in power.

The reason behind using two thresholds is that after the power change, the unit’s priority

should be kept unchanged until the power changes again. For example, if a unit is set as

high-priority when its power increases, it should be considered as high-priority till tasks are

finished and power decreases.

4.3.4 Cap Readjusting Module

After the Stateless Module makes a temporary cap allocation decision, there could be left

some unassigned cluster-wide power budget. The cap readjusting module allocates this

unassigned budget to all the high-priority units. If there is no power budget left after the

Stateless Module’s adjustment, this module instead readjusts the caps of all the high-priority

units to ensure all units increasing power in order are not penalized equally. However, if there

are no large loads in the whole system at all, and every unit is demanding power lower than

the initial cap, this module will ignore all the decisions made by previous modules and restore

the cap of each unit to the initial cap if necessary. Such restoration makes sure of enough

headroom in the power cap for any unit’s incoming tasks. Therefore the Cap Readjusting

Module is separated into restoring and readjusting.

As shown in algorithm 4, the restoring part of this module checks if the current power

usage of each unit is under a threshold and restores the cap of each unit if so. The boolean

flag indicating whether such restoration is made is further passed to the readjusting part as

an argument.
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Algorithm 3: Priority Module
1 Function set_priority(inc_threshold, dec_threshold, std_threshold,

pp_threshold, direv_length):
// duration_history: list of duration of each power reading
// high_freq_flags: list of flags of whether the unit is demonstrating

high-frequency power changes
2 global power_history, duration_history, high_freq_flags, priority_arr

3 for u ∈ units do
4 pp_count←count_prominent_peaks(power_history[u], inc_threshold)
5 if not high_freq_flags[u] then
6 if pp_count > pp_threshold then
7 high_freq_flags[u]← True
8 priority_arr[u]← True
9 continue

10 end
11 else
12 if pp_count < pp_threshold and std(power_history[u])

< std_threshold then
13 high_freq_flags[u]← False
14 priority_arr[u]← False
15 continue
16 end
17 end
18 if not high_freq_flags[u] then
19 avg_direv ← power_history[−1]−power_history[−direv_length]

sum(duration_history[u][-direv_length:])
20 if avg_direv > inc_threshold then
21 priority_arr[u]← True
22 continue
23 end
24 if avg_direv < dec_threshold then
25 priority_arr[u]← False
26 continue
27 end
28 end
29 return
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As shown in algorithm 5, the readjusting part first checks the boolean flag passed by the

restoring part. If all caps are already restored, this part will be skipped at once. If, not,

then it calculates the remaining unassigned budget and readjusts the caps accordingly.

If there is some remaining unassigned budget, the module will assign the budget to all

high-priority units in a way that units with lower caps currently will get allocated more

additional budget. Such an allocation decision is made considering two aspects. First, units

with lower caps will need more budget for them to reach peak power compared to those with

higher caps. Second, if these units are increasing power in order, units with lower caps will

eventually be penalized harder if they are not allocated more additional budget at this time

step.

On the other hand, if there is no remaining unassigned budget, the module will readjust

the caps of all high-priority units in case units increasing power in order but capped are not

penalized equally. The module leaves low-priority units unchanged and equalizes the caps

of all high-priority units. Such a decision not only limits all high-priority units to the same

power cap, but also ensures that this power cap is no lower than the initial cap, because

low-priority units cannot increase power and get allocated with additional budgets before

this time step. Therefore, the Cap Readjusting Module ensures lower-bound performance as

the constant allocation.

4.4 State and power dynamics

DPS differs from a model-free stateless power management system by having two states —-

priority of either high or low. The additional adjustment to the power budget allocation

is made based on the priority of each unit. The priority of a unit is induced by the power

dynamics in the unit’s power history. Power dynamics include two components, yielding

multiple states —- combinations of different 1st derivatives and frequencies. This section

discusses how DPS packages the multiple states in power dynamics into the two-state priority,
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Algorithm 4: Cap Readjusting Module: Restore
1 Function restore(inc_threshold):
2 global power, cap, set_flag

// Restore all caps to the initial cap if no unit is consuming high power
3 restore_flag ← True
4 for u ∈ units do
5 if power[u] > initial_cap ∗ inc_threshold then
6 restore_flag ← False
7 break
8 end
9 end

10 if restore_flag then
11 for u ∈ units do
12 cap[u]← initial_cap
13 set_flag[u]← True

14 end
15 end
16 return restore_flag

and further addresses the challenges listed in section 3.1.

The two components of power dynamics are used to distinguish different situations. The

1st derivative tells whether a unit is demanding power. The frequency tells whether the power

oscillates too fast for a DPS to react to. When a unit is not demanding power, or when its

power is not oscillating, no special adjustments are in need for its power cap. When a unit is

demanding power, it needs to be allocated with extra power budgets, or at least capped at

the same power as others. When a unit’s power oscillates too fast, DPS cannot react to the

power increases fast enough, so it needs to always allocate extra power budgets to the unit

in response to cover the peak power. When there is no extra power budget, it needs to make

sure that the unit’s power cap stays no lower than others so that it is not penalized worse.

In both situations where special adjustments are needed, the budget allocation requirements

are the same —- extra budget if possible, otherwise no lower than others. Therefore DPS

combines these situations into a binary state. A high priority indicates the unit is demanding

power and will be ensured a power cap no lower than others when the budget is used up.
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Algorithm 5: Cap Readjusting Module: Readjust
1 Function readjust(restore_flag):
2 global power, cap, set_flag, priority

3 if restore_flag then
4 return
5 end
6 avail_budget← total_budget - sum(cap)
7 if avail_budget > 0 then

// Assign all the rest budge if any left
8 high_priority_ratios← Dictionary()
9 for u ∈ units do

10 if priority[u] then
11 high_priority_ratios[u]← cap[u]
12 end
13 end
14 budget_high←sum(high_priority_ratios.values())
15 for u ∈ priority[u].keys() do
16 high_priority_ratios[u]← budget_high/high_priority_ratios[u]
17 end
18 total←sum(high_priority_ratios.values())
19 for u ∈ priority[u].keys() do
20 cap[u]← min(spec_max_cap,

avail_budget ∗ high_priority_ratios[u]/total)
21 set_flag[u]← True

22 end
23 else

// Readjust all high-priority units
24 budget_high← 0
25 count_high← 0
26 for u ∈ units do
27 if priority[u] then
28 budget_high← budget_high+ cap[u]
29 count_high← count_high+ 1

30 end
31 end
32 readjusted_cap← budget_high/count_high
33 for u ∈ units do
34 if priority[u] then
35 cap[u]← readjusted_cap
36 set_flag[u]← True

37 end
38 end
39 end
40 return 27



The Cap Readjusting Module includes all necessary mechanisms to tackle the challenges

in power management based on the correctly induced priority for each unit. We discuss each

challenge specifically in the following.

• Matching the power demands and the budget. Power demands of the units with

different-speed power decrease speed and low-speed power increase can be covered well

by the Stateless Module. When a unit is increasing power fast, i.e. a large positive 1st

derivative, it is identified as high priority. By assigning extra power budget to such

units, the Cap Readjusting Module ensures that they always get allocated enough

budget for the next time even though the power is fast increasing. When cluster-wide

power demand exceeds budget, the Cap Readjusting Module restores all high-priority

units’ power caps to the same. Even though DPS has no knowledge of the exact power

demand at this point, it ensures a lower-bound performance as the constant allocation

by matching the power demands and the budget for low-priority units and providing

caps as low as the initial cap to the high-priority units.

• Special mechanism when the power management system cannot react fast

enough. DPS identify short-power-duration units as high priority. By assuming they

are in need for extra power budgets, DPS assures power caps as low as the initial cap

to them and further guarantees a lower-bound performance as the constant allocation.
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CHAPTER 5

EXPERIMENTAL SETUP

This section describes benchmarks and the underlying systems we use to evaluate DPS.

5.1 Platform

We experiment on the Chameleon configurable cloud computing platforms Keahey et al.

[2020]. Each experiment runs on a Server node and ten client nodes. The ten client nodes

include two clusters, each consisting of one master node and four worker nodes. Each node is

a dual-socket system running Ubuntu 18.04 (GNU/Linux 5.4) with 2 Intel(R) Xeon(R) Gold

6240 processors, 192 GB of RAM, and hyperthreads. Each socket has 24 cores/48 threads

and a 20 MB last-level cache. TurboBoost is turned on and the CPU frequency governor is

set in performance mode. All hardware resources are configured as Linux default (see Table

5.1). For all the experiments in this paper, a 66.7% power limit is forced, i.e. each socket

has a TDP at 165W, and the power budget is 110W per socket.

Configuration Settings

Sockets 2
Cores per socket 24
Hyperthreading 2
CPU frequency 1.0-4.0

GHz
Uncore frequency 1.0-2.4

GHz
Spec Lowest Power Cap 70W
Thermal Dynamic Power (TDP) 165W

Table 5.1: Hardware resources.
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5.2 Benchmarks

We test and evaluate DPS on 7 widely-used data analytic applications from the HiBench

Benchmark Suite, in their Apache Spark implementations. Huang et al. [2012] These ap-

plications are labeled as power-hungry since their peak power reaches the TDP, and their

performance will be affected when the power is capped. In addition, we also use 4 micro

applications that are not power-hungry to build up the experimental environment. The

workload sizes are in Table 5.2. The durations in Table 4 are the harmonic means of 100

runs under a 110W power cap for each socket.

Application Data
size

DurationPower-hungry

Kmeans 224.4
GB

1467.08sYes

LDA 4.1
GB

1254.12sYes

Linear 745.1
GB

928.36sYes

LR 52.2
GB

499.37sYes

Bayes 70.1
GB

342.18sYes

RF 32.8
GB

415.71sYes

GMM 8.6
GB

2432.43sYes

Wordcount 3.1
GB

44.36sNo

Sort 313.5
MB

38.48sNo

Terasort 3.0
GB

54.53sNo

Repartition 3.0
GB

44.92sNo

Table 5.2: Benchmark applications.

Industry cloud servers operate between 10 to 50% utilization most of the time Barroso and

Hölzle [2007]. To mirror real-world computing loads, the experimental enviroment launches
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benchmark applications in the two clusters with a utility goal. The system utility is estimated

with the resources used by Apache Spark executors. Applications are launched with different

executor configurations based on whether they are power-hungry or not. The two executor

settings are in Table 5.3. Note that the CPU utility will be always lower than this estimated

utility because this utility is the percentage of resources Spark is able to use rather than

actually using.

Application type Executor
num-
ber

Cores
per ex-
ecutor

Power-hungry 48 8
Not power-hungry 1 8

Table 5.3: Spark executor settings.
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CHAPTER 6

RESULTS AND EVALUATIONS

This section evaluates benchmark applications’ performance in terms of throughput time

with DPS as the power management system. To enable others to perform similar evaluations,

we have made the software and scripts used to perform this evaluation available online.

The experimental environment is set with a utility goal. As shown in Table 5.3, power-

hungry applications take up 40% utility as they use all the cores in 4 worker nodes, and

applications that are not power-hungry take up 8.33% utility. Therefore we construct two

separate experimental goals, 50% utility, aiming to have at least one cluster executing power-

hungry applications, and 80% utility, aiming to have both clusters executing power-hungry

applications all the time. We begin with the 50% utility and then the 80% utility.

6.1 50% utility

Aiming for a 50% utility goal, the cluster-wide power demands rarely exceed the budget.

We compare DPS with three power management systems The homogeneous allocation sets

the power cap for each socket at 110W and never changes. The oracle sets the power cap

for each socket at 200W and never changes since we know in advance that the cluster-wide

0.0
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(a) Kmeans (b) LDA (c) Linear (d) LR

0.0

0.5

1.0

(e) Bayes (f) RF (g) GMM (h) Harmonic Mean

Constant DPS Oracle SLURM

Figure 6.1: Normalized application performance with 50% utility
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Figure 6.2: Normalized application performance with 80% utility

power budget can almost always cover the demands. We also implement SLURM’s power

management plugin, referred as SLURM. 7 Power-hungry benchmark applications and 4

other applications that are not power-hungry are launched at random.

The harmonic mean application performance, the reciprocal of the throughput time,

normalized to the homogeneous allocation, which serves as the baseline, is reported in Figure

6.1. As shown in Figure 6.1, DPS and the oracle exceeds the baseline for all applications. DPS

provides a maximum performance improvement for GMM at 17.6%. SLURM also improves

performance for 5 applications at a similar extent as DPS and the oracle, except for Linear

and LR, which are both with short power phases. LR’s performance is decreased by 4.0%

with SLURM. Yet generally, DPS and SLURM, a stateless model-free power management

system reaches similar performance improvement as the oracle when the utility is low.

6.2 80% utility

As shown in Tabel 5.2, different applications have different power utilities. For example,

while both as clustering applications, Kmeans spent around 50% of the time doing io and

only has 50% power utility, but GMM spent around 10% of the time doing io and has 80%

power utility. Therefore the pairing of the two power-hungry applications executed on the

two clusters can affect the performance of both applications. We pair the most power-hungry
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application, GMM with every other applications. Figure 6.2 reports the normalized harmonic

mean application performance. Oracle is not included because it is impractical to implement

such a power management system given the diverse power dynamics of different applications

and the high variety resulted from Spark. We compare the baseline, DPS, and SLURM.

For all applications, DPS delivers either the same performance or improvements up to

5.2%. SLURM penalizes all applications except GMM. For applications with long power

phases, Kmeans, LDA, and RF, SLURM slows down them by from 8.9% to 14.3%. The

application with short phases, LR, is penalized by 10.7%. Bayes and Linear are not affected

much by power capping. On the contrary, GMM’s performance is improved by 14.4%, since

it’s taking the power budget from others as much as possible due to its extremely long power

phases. Compared to SLURM, DPS ensures a lower-bound performance as the constant

allocation and provides a single-digit performance improvement in the worst-case.
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CHAPTER 7

CONCLUSION

This paper presents DPS, a model-free stateful power management system that maximizes

application performance. DPS contributes a new methodology for designing a power man-

agement system by analyzing the power dynamics. Future work can explore dynamically

changing the tunable parameters in DPS or combining DPS and model-based approaches to

provide better performance.
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CHAPTER 8

FUTURE WORK

Recent specialized cloud clusters have accelerators to handle specific types of workloads.

For example, GPU-based clusters provide acceleration to diverse applications based on Deep

Learning. While the accelerators take a large part in power consumption in such clus-

ters, there lacks an efficient power management system for distributed accelerators. Power

management systems for distributed systems are widely studied for traditional CPUs, and

power capping methods for small-scale GPU devices cannot be applied to accelerator-based

clusters. An online-training based approach, CD-GPC, is proposed to minimize the train-

ing performance degradation by power capping GPUS. Yet similar to model-based power

management systems for traditional clusters, it introduces an inevitable deploying overhead.

Since the same essential assumption in this paper still stands for accelerators —- perfor-

mance is maximized when the power demand is respected, we can extend DPS to large-scale

accelerator-based clusters with a more sophisticated design. To evaluate the extended DPS,

we will compare the training performance and power utility of well-known DNN models such

as AlexNet and ResNet152 with no power management system and CD-GPC.
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