
THE UNIVERSITY OF CHICAGO

MACHINE LEARNING METHODS FOR LEARNING INVERSE PROTEIN FOLDING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTERS OF SCIENCE

DEPARTMENT OF DEPARTMENT OF COMPUTER SCIENCE

BY

MATTHEW MCPARTLON

CHICAGO, ILLINOIS

SEPTEMBER XX, 2022

Copyright © 2022 by Matthew McPartlon

All Rights Reserved

Dedication Text

Epigraph Text

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Inverse Folding : Background and Motivation 1

2 RELATED WORK . 4

3 AN SE(3)-EQUIVARIANT MODEL FOR LEARNING INVERSE FOLDING . . 6
3.1 Methods . 6

3.1.1 Input Representation . 6
3.1.2 Masking Strategies . 9

3.2 Datasets . 11
3.2.1 Training Data . 11
3.2.2 Test Datasets for Inverse Folding Comparison 11
3.2.3 Deep Mutational Scanning Datasets for Mutation Effect Prediction . 11
3.2.4 Train and Test Similarity . 12

3.3 Data Collection . 12
3.4 Evaluation Metrics . 13

3.4.1 Inverse Folding . 13
3.4.2 Zero-shot Protein Mutation Effect Prediction 14

3.5 Hyperparameter, Training, and Loss Details 14
3.5.1 Training . 14
3.5.2 Loss . 15
3.5.3 HyperParameter Overview . 15

4 RESULTS . 17
4.1 Inverse Folding Results for CASP Targets 17

4.1.1 Recovery and Perplexity . 17
4.1.2 Precision, Recall, and F1 . 18

4.2 Zero-shot mutation effect prediction . 19
4.3 Ablation Studies . 20

4.3.1 Mask Strategy Evaluation . 20

5 FUTURE WORK . 23

6 CONCLUSION . 24

v

LIST OF FIGURES

3.1 Approach Overview . 7
3.2 Input Embedding . 9
3.3 Input Embedding . 9
3.4 Cumulative frequency plot of top-1 TM-Align score and sequence identity from

CASP13 and CASP14 test sets to CATH4.2 and BC40 training sets 13

4.1 Comparison of GVP-GNN, DenseCPD and Our method on CASP13 and CASP14
targets . 18

4.2 Impact of architectural components on NSR for CASP13 targets 22

vi

LIST OF TABLES

3.1 Input feature and shape overview . 10
3.2 Hyperparameter Overview . 16

4.1 Results for CASP13 and CASP14 targets . 17
4.2 Predicted likelihoods correlate with mutation effects in de novo - designed mini

proteins . 20
4.3 Comparison of Masking Strategies on CASP13 targets 21

vii

ACKNOWLEDGMENTS

viii

ABSTRACT

In this work, we establish a framework to tackle the inverse protein design problem; the task

of predicting a protein’s primary sequence given its backbone conformation. To this end,

we develop a generative SE(3)-equivariant model which significantly improves upon existing

autoregressive methods. Conditioned on backbone structure, and trained with our novel

partial masking scheme and side-chain conformation loss, we achieve state-of-the-art native

sequence recovery on structurally independent CASP13, and CASP14 test sets. On top of

accurately recovering native sequences, we demonstrate that our model captures functional

aspects of the underlying protein by accurately predicting the effects of point mutations

through testing on Deep Mutational Scanning datasets. We further verify the efficacy of

our approach by comparing with recently proposed inverse protein folding methods and by

rigorous ablation studies.

ix

CHAPTER 1

INTRODUCTION

1.1 Inverse Folding : Background and Motivation

Computational protein design (CPD) broadly attempts two goals: (i) inverse folding, also

known as fixed-backbone design which aims to produce novel amino acid sequences conforming

to a predefined protein backbone structure and (ii) de novo design which seeks to develop

sequences encoding proteins with some desired properties. Success in these areas has led to

the development of enhanced therapeutics (Chevalier et al. 2017), biosensors (Quijano-Rubio

et al. 2021), enzymes (Siegel et al. 2010) and more (Lucas and T. Kortemme 2020; Tinberg

et al. 2013).

Owing to the conventional wisdom that a protein’s native state corresponds to its free

energy minimum, CPD tasks are traditionally framed as an energy minimization problem.

In this setting, the energy function typically consists of some combination of physics-based

terms (J.H. et al. 2018; Alford et al. 2017; X. Huang et al. 2019; Junmei Wang et al.

2004) and knowledge-based terms (Park et al. 2016; C. Zhang et al. 2004; Zhou et al.

2020; Xiong et al. 2014), the latter of which are often derived from experimental data.

During optimization, sequences are sampled and mutated until an energy minima is reached.

Although this approach has garnered some success, it has a few major drawbacks. First, the

size of the search space increases exponentially in the designed sequence length. This presents

considerable challenges for designing large proteins. Next, for computational efficiency, score

terms regularly approximate the total energy as the sum of weighted one and two-body

terms. As a consequence, more complicated many-body interactions are ignored. Moreover,

the extent to which designed sequences reflect their native analogs is limited by the accuracy

of the underlying score function.

Over the past decade, computational biology has seen a spate in research replacing tra-

ditional physics and knowledge-based approaches with machine learning (ML) methods. In

1

terms of structural modelling, the recent advent of rotation-invariant (Schütt et al. 2018;

Andrearczyk et al. 2020) and rotation-equivariant architectures (Thomas et al. 2018; Fuchs

et al. 2020; Satorras et al. 2021; Jing et al. 2021; Weiler et al. 2018) for learning from

3D-coordinates has helped facilitate explicit representations of geometric information, which

has in turn led to improved performance in molecular modelling tasks. Most notably, Al-

phaFold2 (Jumper et al. 2021) and RoseTTAFold (Baek et al. 2021) introduced two-stage

architectures, relying on equivariant neural networks and innovative attention mechanisms,

which are capable of accurately predicting the structure of many novel proteins. Given the

success of these architectures, coupled with the inherent geometric nature of inverse protein

folding, we sought to develop a similar architecture for this task.

Parallel to the inverse folding task, we also sought to understand the extent to which

protein function can be captured from structural information alone. As protein function

is jointly determined by its 3-dimensional conformation and primary amino acid sequence

(Mitchell et al. 2019; Dawson et al. 2017) this suggests that functional effects of mutations

should be modeled jointly as well. It has been shown that protein structure information can

be used to predict its function (Gligorijevic et al. 2021; Lai and J. Xu 2022). Although the

most successful existing methods for protein mutation effect prediction rely on sequence and

evolutionary information (Meier et al. 2021; Hopf et al. 2017; Riesselman et al. 2018), we

hypothesized that a generative model, conditioned solely on structure and partial sequence,

could be used as a zero-shot predictor for functional effects on single point mutations.

Here, we extend our recent work on side-chain coordinate prediction (McPartlon and

J. Xu 2022) and introduce a deep SE(3)-equivariant graph transformer architecture which

simultaneously predicts each residue’s identity and side-chain conformation. We compare to

several existing inverse folding methods on CASP13, CASP14, CATH4.2, and TS50 test sets

and show that our method achieves significantly higher native sequence recovery (NSR) rates

across all datasets. In addition, we verify our models efficacy in capturing functional aspects

of proteins by comparing predicted likelihoods against Deep Mutational Scanning (DMS)

2

experiments. This result sheds light on the use of structure information in future studies on

protein mutation effect prediction. To achieve these results, we explore several novel training

and loss strategies and demonstrate their effectiveness through careful ablation studies.

3

CHAPTER 2

RELATED WORK

Several deep learning (DL) approaches have been proposed for inverse protein folding. These

methods almost invariably employ convolutional neural networks (CNNs) or Graph Neural

Networks (GNNs) as their underlying architecture. For a given architecture, the primary

differences between approaches mainly stems from their feature representations; namely the

representation of backbone geometry. We now give a brief overview CNN and GNN-based

methods for inverse folding. For a more detailed review of feature representations applied to

CPD models, see (Defresne et al. 2021).

Several CNN-based architectures have been applied to CPD (Yi Zhang et al. 2019; Qi

and J. Z. H. Zhang 2020; Chen et al. 2020; Anishchenko et al. 2021; Shroff et al. 2019). In the

fixed-backbone setting, Chen et al. employ 2D-CNNs in SPROF (Chen et al. 2020), which

incorporates two-dimensional pairwise distance features to improve on the performance its

predecessor SPIN2 (O’Connell et al. 2018). More recently, ProDCoNN (Yi Zhang et al.

2019), and DenseCPD (Qi and J. Z. H. Zhang 2020) applied convolutions to 3D volumetric

regions of the input, allowing sequential features to be represented with rotation invariant

voxel encodings of residue microenvironments. This approach has the benefit of allowing the

network to extract spatial and geometric features without delegating to hand-crafted feature

representations used in the 2D architectures.

In contrast to CNN architectures, GNN-based methods treat the input protein as an

augmented graph, with features attached to each node (residue) and pair of nodes (edge).

Some examples include the GNN variant of geometric vector perceptrons (GVP-GNN) (Jing

et al. 2021), the Structure Transformer (Ingraham et al. 2019), ABACUS-R (Liu et al. 2022),

and ProteinSolver (Strokach, Becerra, et al. 2020). These methods parallel language models,

where each residue identity is iteratively predicted by conditioning on an encoded repre-

sentation of the input graph. With the exception of ProteinSolver, each of these methods

attempts to explicitly model 3D coordinates. The Structure Transformer, and Abacus-R
4

accomplish this using relative orientation encodings of invariant local coordinate systems.

On the other hand, the SE(3)-equivariance of GVP’s enables GVP-GNN to operate directly

on backbone coordinates as input. To the best of the author’s knowledge, GVP-GNN is the

first fully equivariant architecture applied to inverse protein folding.

Akin to fixed-backbone design, several DL-based architectures have been applied to de

novo design (Jue Wang et al. 2021; Anishchenko et al. 2021; Lin et al. 2022; Jin et al. 2022).

For general reviews and background on de novo and fixed-backbone design, we refer the

reader to (Castorina et al. 2021; Ovchinnikov and P.-S. Huang 2021; Coluzza 2017; Pan and

Tanja Kortemme 2021). For a more complete review of model classes applied to protein

design, see (Strokach and Kim 2022).

Alongside CPD, considerable progress has been made in predicting the effect of point

mutations on protein stability. These methods often rely on sequence evolutionary informa-

tion such as EVmutation (Hopf et al. 2017), DeepSequence (Riesselman et al. 2018), SIFT

(Ng and Henikoff 2003), and PolyPhen-2 (Adzhubei et al. 2013) or large language models

trained on massive sequence databases such as ESM-1v (Meier et al. 2021). While these

methods have considerable merit, they inherently rely on adequate evolutionary information

to make predictions. In contrast, our structure conditioned sequence model can be used as

a zero-shot predictor for mutation effects when evolutionary information is absent.

Aside from CPD-specific models, our architecture draws from recent advancements in

DL-based methods for 3D-modelling and protein structure prediction. Notably, we utilize

memory efficient variants of triangle multiplication and triangle attention introduced in

AlphaFold2 along with a TFN-based SE(3)-equivariant transformer inspired by the SE(3)-

Transformer of Fuchs et al (Fuchs et al. 2020). Our work on side-chain coordinate prediction

(McPartlon and J. Xu 2022) details these modifications, which were used to construct a deep

GNN for protein side-chain packing.

5

CHAPTER 3

AN SE(3)-EQUIVARIANT MODEL FOR LEARNING INVERSE

FOLDING

3.1 Methods

In this work, we model the inverse folding problem with an SE(3)-equivariant architecture

operating directly on features derived from backbone coordinates. Our architecture consists

of two main sub-modules. The first is a deep locality-aware graph transformer which uti-

lizes the geometry of the input backbone to refine scalar features and restrict attention to

spatially local residue pairs. The output of this component, along with the input backbone

coordinates, are passed to a deep TFN-transformer which produces side chain conformation

and sequence identity predictions for each input residue. The details of these architectural

components are fully described in (McPartlon and J. Xu 2022), and a schematic overview is

given in Figure 3.1.

3.1.1 Input Representation

We represent a protein as a graph G = (V , E) where each node vi ∈ V represents a residue, and

an edge
{
eij

}
i̸=j ∈ E exists between each residue i and it’s k nearest neighbors computed by

pairwise Cα distance. The number of nearest neighbors differs for the two components of our

network. We choose k = 30 for our first submodule, and k = 16 for the TFN-Transformer.

A brief description of scalar, coordinate, and pairwise input features is given below.

We note that all input features are derived directly from backbone coordinates. Our input

embedding procedure, along with a more detailed description of input features can be found

in Figure 3.3, and Table 3.1.

6

Figure 3.1: Approach Overview. (A) Our method employs several different strategies
for masking input residue identities. Our best performing model employs one of (i-iv),
sampled uniformly at random during training. Further details of each strategy can be found
in Section 3.1.2. (B) Our deepest model consists of two main components: A 12-layer
Locality Aware graph transformer, and 8-layer TFN-Transformer. Aside from predicting
residue identities, the network also predicts full-atom side-chain conformations and pairwise
distances between 6 pairs of atom types (described in Section 3.5.2).

Residue Features

Scalar residue features are comprised of sin and cosine encodings of backbone dihedral angles,

one-hot encodings of each residue’s relative sequence position, and a one-hot encoding of

residue identity (when applicable). A separate ⟨mask⟩ token is used for masked residues

whose identities are left to be determined.

Pair Features

Input pair features consist of one-hot encodings of pairwise distance between atom pairs

(Cα,Cα), (Cα,N), sin and cosine encodings of dihedral and planar angles defined by Yang

et al (Yang et al. 2020), and a joint embedding of signed relative sequence separation i− j

7

and pairwise residue-types (when applicable). To produce pairwise orientation information,

we impute a unit vector in the direction Cβi −Cαi before computing the respective angles.

The imputed vector is calculated as in (Jing et al. 2021) using

√
1

3
⟨n× c⟩ −

√
2

3
⟨n+ c⟩

where ⟨x⟩ = x/∥x∥2, n = Ni − Cαi, and c = Ci − Cαi.

Coordinate Features

For a given backbone conformation X, let Xi denote the coordinate of atom X in residue

i. Input coordinate features for residue i consist of unit vectors Ni − Cαi, Ci − Cαi, and

Oi − Cαi. This input is passed through a TFN to produce a hidden encoding of dimension

16× 3 for each residue. Note that only the TFN-Transformer component of our architecture

operates on coordinate features. Furthermore, we use the raw positions of backbone Cα

coordinates to compute an initial (equivariant) basis for our TFN-Transformer module.

Input Feature Embedding and Shapes

Our input features are embedded following the strategy proposed in (McPartlon and J. Xu

2022). The primary difference is that we we remove one-hot encodings of angle-based fea-

tures. add an extra token to the residue type input representing a "masked" residue identity.

The full procedure can be found in Figure 3.3. We note that the extra "masked" residue

token enables us to generate designs in the classical setting, from backbone information

alone.

In Table 3.1 we briefly review our model’s input features and their respective shapes. We

note that each feature (aside from residue-type) can be derived entirely for protein backbone

coordinates.

8

Figure 3.2: Input Embedding

Figure 3.3: Input Embedding The input feature embedding concatenates and projects
residue and pair features directly to the hidden dimensions specified in Table 3.2. For one-
hot encodings of distance, we use an encoding dimension of dD = 32 for all models in the
manuscript. For relative sequence separation and residue type encodings we use an encoding
dimension of dRp

= 48.

3.1.2 Masking Strategies

While the ultimate goal of inverse folding is to predict sequence given structure alone, we

hypothesized that providing the model with partial sequence information during training

could lead to improved results. This decision was motivated by Ingraham et al., who demon-

strate that unconditional language models struggle to assign high likelihoods to sequences

from out-of-training folds (Ingraham et al. 2019). On the other hand, the authors show that

conditional autoregressive modelling helps facilitate adaptation to specific and potentially

novel parts of structure space. In light of this, we developed several masking strategies,

allowing our model to condition on partial sequence information via input scalar and pair

features during training (see Figure 3.3). The strategies are described below. We use L to

denote sequence length, and use the notation x ∼R S to denote uniform random sampling

from the set S.

9

Features Name
& Shape

Description

res_type
[L]

A number in the range 0..21 representing the
corresponding amino acid type. The first 20
labels correspond to the 20 standard amino acid
types, and the final label corresponds to a
“missing” identity.

bb_dihedral
[L, 3]

Backbone phi, psi, and omega dihedral angles.

seq_pos
[L]

The sequence index of the respective residue,
from 1..L

centrality
[L]

The number of Cα atoms within 16Å of residue
of the respective residue’s Cα atom.

atom_distance
[L,L, 3]

One-hot encoded binned distance between
Cα− Cα, Cα−N , and N −O atoms in each
residue. Each bin represents a distances from
2Å-20Å with two separate bins used for distances
falling outside of this range.

tr_orientations
[L,L, 3]

Dihedral and planar angles defined by Yang et al
(Yang et al. 2020).

Table 3.1: Input features and shapes Feature names and shapes are shown in the left
column, and a description of each feature (row) is given in the right column.

Spatial A random residue i ∼R [1..L] is chosen, and the identity of this residue, along

with the k nearest neighbors are masked. Nearest neighbors are computed by

pairwise Cα distance. In practice, we chose k = pL, where p ∼R (0.1, 0.5) .

Linear We first choose a length ℓ ∼R [m..M] and then choose an index i ∼R [1..L− ℓ].

We then mask all residue identities in the range i..i + ℓ − 1. In choosing the

length ℓ, we set m = 0.25L, and M = 0.75L.

Random A threshold probability p ∼R (0, 1) , is sampled, and then each residue’s sequence

identity is masked independently with probability p.

Full All residue sequence identities are masked, and no sequence information is given

to the model. This is the typical strategy used for inverse protein folding.

To evaluate the effect of masking strategies on model performance, we train four separate

10

models using each strategy independently, and an additional model which chooses one of the

four strategies with equal probability for each training example. Detailed results are given

in Section 4.3.1.

3.2 Datasets

3.2.1 Training Data

We trained and validated all models using the BC40 training dataset and validated on BC40

validation set (January 2020 release). The training and validation splits contain 37k, and

1.5k and chains (resp.), which are selected from PDB database by 40% sequence identity

cutoff. In addition, we also filtered our training and validation sets against CASP13 targets,

removing any chain with >40% sequence similarity as reported by MMSeqs (Mirdita et al.

2021). There is some discrepancy between sequence identity returned by MMseq and those

computed by TM-Align (Y. Zhang and Skolnick 2005) shown in Figure 3.4 which is likely

due to the (potentially) local alignment used by TM-Align.

3.2.2 Test Datasets for Inverse Folding Comparison

We chose to evaluate each method on CASP13 and CASP14 test sets as there is no canonical

training or validation sets for fixed-backbone design, and in most cases, these test sets have

little overlap with the training sets used for the methods in comparison. We empirically

verify this claim by comparing sequence and structural similarity of all training chains in

CATH4.2 (curated by Ingraham et al. (Ingraham et al. 2019)) and BC40 against target

chains for each test set in Section 3.2.4.

3.2.3 Deep Mutational Scanning Datasets for Mutation Effect Prediction

We evaluate models on stability data collected from a systematic design of mini proteins

Rocklin et al. 2017 which spans a diverse fold space with varies experimental measurements.
11

https://drug.ai.tencent.com/protein/bc40/download.html

All DMS measurements are single point mutations. We evaluate each DMS experiment

separately using the zero-shot transfer method described in (Method 3.3). Performance for

each task is then evaluated using the spearman’s rank correlation between the predicted

effect and the experimental measurement of the given task.

We remark that, although our model out-performs GVP-GNN on the zero-shot mutation

effect prediction task, the CATH4.2 training set has larger overlap with these targets in

terms of both structural and sequence similarity.

3.2.4 Train and Test Similarity

No canonical training or test dataset exists for fixed backbone design. Still, recent ML-

based fixed-backbone design methods have been trained on CATH4.2 dataset. In light of

this, we provide an assessment of sequence and structural similarity (see Figure 3.4) between

CATH4.2 and BC40 datasets to the CASP13 and CASP14 test sets used in our results.

Overall, the chains in each of the two training sets have comparable sequence and structural

similarity with the most top-1 most similar CASP target chains.

3.3 Data Collection

Results for ProteinSolver were generated following the instructions on the author’s github

page. We ran the program with pre-trained model 191f05de/e53-s1952148-d93703104.state,

using the A∗ search strategy until 1k sequences were designed, or 10k iterations of search

were performed (whichever came first). The designed sequence with the smallest cumulative

log-probability was chosen as the design for comparison. Results for GVP-GNN-CATH4.2

were generated using the pretrained model available on the author’s github page (here).

Results for GVP-GNN-BC40 were gathered by retraining the model using the training loop

from the same github repo with the default hyperparameters described in (Jing et al. 2021).

Results for DenseCPD were collected by correspondence with the authors. All results for

12

https://github.com/ostrokach/proteinsolver
https://github.com/ostrokach/proteinsolver
https://github.com/drorlab/gvp

Figure 3.4: Cumulative frequency plot of top-1 TM-Align score and sequence
identity from CASP13 and CASP14 test sets to CATH4.2 and BC40 training
sets. For each plot, the x-axis shows similarity - TM-score (red) or sequence identity (blue) -
of test targets to the most similar training target in CATH4.2 or BC40 datasets. The y-axis
shows the cumulative proportion of similar targets. For example, the upper left plot tells
us that roughly 20% of targets in CASP13 have TM-score greater than 75% to some target
in CATH4.2. TM-scores and sequence identity were computed using TM-Align. For each
target in the test sets, the sequence identity and TM-Align score of the most-similar model
in the training set was added to the frequency plot.

RosettaDesign were generated using Pyrosetta4, running fixbb protocol with flags -ex1 -ex2

-ex3 -ex4 -multi_cool_annealer 10 -minimize_sidechains -linmem_ig 1 -nstruct 10 using

the ref2015 score function. With these settings, ten designs are generated for each target,

and we choose the design with the lowest energy for comparison.

3.4 Evaluation Metrics

3.4.1 Inverse Folding

Computational protein design methods are notoriously difficult to benchmark, as some se-

quences may recapitulate nearly identical structures, while some structures may have no

conforming sequences. In line with Ingraham et al., we report (i) native sequence recovery

(NSR) rate, and (ii) model perplexity (when applicable). The rationale is that NSR assesses

how closely a designed sequence matches the native sequence of an input backbone struc-

ture, and perplexity tests the ability of the model to assign a high likelihood to the native

13

sequence. Following Jing et al. (Jing et al. 2021), NSR is reported as the median (over all

structures) of the average percentage of residues correctly recovered.

3.4.2 Zero-shot Protein Mutation Effect Prediction

To quantify our models ability to predict protein mutation effects, we use the log ratios of

the wild-type amino acid and the mutated amino acid at the mutated index i. Formally,

for a protein sequence S = s1, . . . sn and backbone conformation C, we compare the log

probability ratio of mutation xmutant appearing at sequence position i against the wild-type

xwild−type while conditioning on the backbone conformation C. and S−i; the identities of all

amino acids aside form si. The calculation is shown in Equation (3.1).

log p(si = xmutant|S−i, C)− log p(si = xwild−type|S−i, C) (3.1)

3.5 Hyperparameter, Training, and Loss Details

3.5.1 Training

To optimize our models, we use Adam (Kingma and Ba 2015) with and an initial learning

rate of 10−3and parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8, and use a minibatch size

of 24. To stabilize training we apply gradient clipping by global norm to clip the gradients

of each example in a minibatch to have ℓ2 norm at most 1. For every residual connection in

our transformer blocks we use ReZero (Bachlechner et al. 2020), initialized with α0 = 0.1.

To conserve GPU memory, we also apply gradient checkpointing on the triangle attention

logits and TFN kernel outputs.

All of our models were trained using early stopping based on validation loss, and for a

total of at most 10 epochs. Because of the memory overhead of TFNs and Triangle updates,

we used a sequence crop size of 300 to avoid running out of memory. Overall, each model

was trained for roughly five days on a single nvidia RTX A6000 gpu.

14

3.5.2 Loss

Three separate loss functions are applied to the output - one for each of the predicted residue,

pair, and coordinate features. Cross entropy (NSR) loss is computed on predicted residue

features after applying a shallow feed-forward network to produce residue-type logits. No-

tably, we compute loss on the predicted residue feature even if the corresponding amino acid

type was included in the input. Pair features are treated similarly, the output is passed

through a shallow feed-forward network to obtain predicted pairwise distance logits between

each Cα and side chain atoms Cβ, Cγ, Cγ1 Cγ2 Oγ1. Masked cross entropy loss is ap-

plied to this output based on the corresponding native structure’s residue type. Side chain

conformation loss is computed as in (McPartlon and J. Xu 2022). The pair and side-chain

conformation loss are given a weight of 0.15, and the NSR loss is given a weight of 1.

3.5.3 HyperParameter Overview

In tuning our model, we mainly experimented with feature hidden dimensions and model

depth. We trained two main variants of our model which we refer to as small and large.

For each variant, self-attention and triangle updates are restricted to the same number of

spatially-nearest neighbors. Our small architecture uses a hidden dimension of 120 for residue

and pair features, and a hidden dimension of 16 for coordinate features. This variant consists

of eight locality-aware graph transformer blocks stacked on six TFN-transformer blocks. The

large model uses the same dimensions for pair and coordinate features, but increases the

hidden dimension of residue features to 180. The submodule depths are increase to twelve

and eight layers respectively. The parameter values for each are shown in Table 3.2.

The same training and loss strategies are employed for each variant. we randomly select

one of the masking strategies overviewed in Section 3.1.2 for each sample, and compute three

separate loss terms, one for each output feature, corresponding to predicted residue identity,

pairwise distance between side-chain atoms, and predicted side-chain conformation. The

latter two terms are given weight 0.15 relative to the predicted residue identity loss term.
15

graph
transformer
(residue, pair)

TFN-
Transformer
(scalar, coord.)

Depth Large: 12
Small: 8

Large: 8
Small: 6

Hidden Dim. Large : 180, 120
Small: 120, 120

Large: 180, 20
Small: 120, 16

Num. Attention
Heads

10, 4 10, 10

Head Dim. Large: 20, 32
Small: 20, 28

20, 4

Neighbor
Distance
Cutoff

15, 15 15

Max. Nearest
Neighbors

30, 30 16

Table 3.2: Hyperparameters Model depth, and hidden dimensions for residue (scalar),
coordinate, and pair features used in the locality-aware graph transformer and TFN-
Transformer submodules of our network. items are listed separartely for small and large
variants of our model when the values differ.

More details on the loss function can be found in Section 3.5.2.

16

CHAPTER 4

RESULTS

We begin by comparing our method to GVP-GNN (Jing et al. 2021), DenseCPD (Qi and

J. Z. H. Zhang 2020), ProDCoNN (Yi Zhang et al. 2019), ProteinSolver (Strokach, Becerra,

et al. 2020), and Rosetta Design (Chaudhury et al. 2010; J. K. Leman et al. 2020). Details

on data collection for these five methods can be found in Section 3.3.

4.1 Inverse Folding Results for CASP Targets

4.1.1 Recovery and Perplexity

CASP13 CASP14
Recovery ↑ Perplexity ↓ Recovery ↑ Perplexity ↓

Ours (Large) 50.6% 4.88 41.1% 6.17
Ours (Small) 48.9% 4.82 41.3% 6.17
DenseCPDNet1 48.1% 5.14 39.0% 7.18
GVP + BC40 43.3% 5.04 38.3% 5.58
GVP + CATH4.2 44.0% 5.12 36.4% 6.40
ProteinSolver 37.0% - 32.8% -
SPROF 37.4% 7.30 33.8% 8.02
Rosetta 34.2% - 27.1% -

Table 4.1: Results for CASP13 and CASP14 targets. We report median NSR (higher
is better) and median perplexity (lower is better) over target chains in CASP13 and CASP14
datasets. Perplexities are omitted for ProteinSolver and Rosetta. The former calculates log
probabilities only for the predicted residue type, and the latter is energy-based. Methods
GVP + BC40 and GVP + CATH4.2 use the same hyperparameters as reported in (Jing
et al. 2021), but differ on the training set used - CATH4.2, and BC40, respectively.

Our method outperforms all competitors in terms of NSR across both datasets. Interest-

ingly, DenseCPD retains the second highest recovery scores on the CASP14 dataset while

having much higher perplexity than our method and GVP-GNN. To better understand this,

1. Results obtained for DenseCPD have residue probabilities truncated to 3 significant digits. To compute
perplexity, we replace probabilities of 0 with 10−3. Consequently, the perplexities obtained for DenseCPD
in Table 4.1 serve as a lower bound on the true perplexity.

17

we further compare our method with GVP-GNN and DenseCPD in terms of precision, recall,

and F1-score for each amino acid type on these datasets.

4.1.2 Precision, Recall, and F1

Figure 4.1: Comparison of GVP-GNN, DenseCPD and Our method on CASP13
and CASP14 targets. (A) Precision, Recall and F1-score for all 20 amino acid types;
F1-score is computed as 2pr/ (p+ r) where p and r denote precision and recall respectively.
(B) Comparison of prediction accuracy conditioned on number of residues in the target’s
immediate microenvironment. The x-axis shows the number of residues whose Cα atom is
within 10Å of the target residue. The dotted-gray line shows the cumulative percentage of
residues in the dataset with (up to) the number of neighbors given on the x-axis.

From Figure 4.1 we see that our method achieves top F1 scores for the majority of amino

acids (13/20). DenseCPD also performs well, achieving top F1-scores for the remaining seven

residue types. Not surprisingly, all three methods perform well in predicting glycine (G) and

proline (P) which can be attributed to the unique structural features of the two amino acids.

In terms recall, we see that DenseCPD outperforms GVP-GNN for most residue types

(16/20), and exceeds our method for 7/20 residue types. In contrast, we surpass DenseCPD

in terms of precision for 5/7 residue types where DenseCPD achieves higher recall. As

precision measures the number of correct predictions normalized by the number of predictions

of a given type, and recall measures the proportion of correct predictions, the relatively

low perplexity and high recall of DenseCPD helps explain why the method achieves high
18

perplexity while still maintaining high prediction accuracy.

We also compare the accuracy of the three methods conditioned on residue degree cen-

trality; the number of neighboring Cα atoms in the target amino acid’s immediate microen-

vironment. This measure correlates with solvent accessible surface area, and acts as a proxy

indicator of whether the corresponding amino acid is closer to the protein surface (low cen-

trality) or core (high centrality). Analogous to Zhang et al. (X. Huang et al. 2020) we define

core residues those amino acids with at least 20 Cα atoms within a 10Å radius of the target

residue’s Cα atom. Similarly, surface residues are defined as those amino acids with as most

15 Cα atoms within the same region.

When conditioned on centrality, DenseCPD outperforms our method and GVP-GNN

for surface residues, but quickly falls behind for residues closer to the protein’s core. For

surface and core residues, GVP-GNN and our method improve their accuracy from 33% to

48% and 36% to 55% respectively. On the other hand, DenseCPD does not realize large

accuracy improvements, improving from 40% to 45% when considering the same criteria.

This observation may stem from the difference in modelling approaches used by the two

methods. Whereas our method and GVP-GNN model the input as a graph and jointly update

residue features via self-attention or message passing, DenseCPD models joint interactions

only at the input level; updating hidden features independently for each residue.

4.2 Zero-shot mutation effect prediction

To better understand the extent to which our model’s designs capture functional aspects of

the underlying protein, we compare predicted log likelihoods assigned to point mutations

using stability data gathered from several DMS datasets.

Following Ingraham et al. (Ingraham et al. 2019), we first assess our models performance

on predicting protein stability in response to single point mutations using deep mutational

scanning data from (Rocklin et al. 2017). In Table 4.2 we observe that conditioning on

the partial input sequence (in addition to backbone conformation) leads to improvements in

19

Design ββαββ αββα αα avg.
ID 37 1498 1702 1716 779 223 726 872 134 138 -
Structure Trans. 0.47 0.45 0.12 0.47 0.57 0.36 0.11 0.21 0.24 0.33 0.33
Ours (given S−i, C) 0.74 0.43 0.28 0.58 0.58 0.51 0.33 0.42 0.51 0.58 0.50
Ours (given C) 0.70 0.39 0.26 0.52 0.48 0.49 0.33 0.42 0.51 0.52 0.46
GVP-GNN 0.53 0.39 0.26 0.57 0.48 0.47 0.19 0.39 0.44 0.44 0.42
GVP+AF2 0.70 0.33 0.22 0.58 0.64 0.55 0.26 0.42 0.50 0.58 0.48

Table 4.2: Predicted likelihoods correlate with mutation effects in de novo - de-
signed mini proteins. Pearson Correlation between high-throughput mutation effect data
from a systematic design of mini proteins. Each design (column) includes 775 experimentally
tested mutant protein sequences. Results are split by fold topology (first row) and design
model (second row) as referenced in (Rocklin et al. 2017). Results for the Structure Trans-
former are generated on rigid backbones, and taken from Table 5 of (Ingraham et al. 2019).
Results for GVP-GNN and GVP+AF2 are taken from (Hsu et al. 2022), table C.2.

stability prediction for eight of the ten de novo designed mini-proteins. Moreover, our model

improves over the Structure Transformer for nine of the ten targets.

4.3 Ablation Studies

To validate the impact of our training strategy, and to understand the influence of particular

architectural components, we conducted ablation studies focused on our masking techniques,

loss, two-stage architecture, and model hyperparameters.

4.3.1 Mask Strategy Evaluation

In Section 3.1.2 we outlined four different masking strategies. We now evaluate the perfor-

mance of five different models Spatial, Linear, Random, Full, and All, each of which was

trained using only input derived from the respective strategy (all strategies were used for

All).

In Table 4.3 we see that both recovery (NSR) and perplexity are improved by training

with an equal combination of our four masking strategies. Most notably, the perplexity of the

model trained with all mask types is significantly lower than those trained with a single mask

type across all test strategies. When evaluating on fully-masked input, the corresponding

20

Train Strategy (row) / Test Strategy(col)
NSR ↑ Perplexity ↓

Spatial Linear Random Full Spatial Linear Random Full
Spatial 45.6% 46.3% 46.3% 43.5% 5.26 5.10 5.12 5.80
Linear 46.4% 46.1% 45.0% 43.5% 5.25 5.05 5.25 5.69

Random 48.1% 46.2% 47.0% 44.5% 5.13 4.91 5.02 5.47
Full - - - 46.6% - - - 5.14
All 53.2% 49.9% 52.0% 48.9% 4.64 4.52 4.54 4.82

Table 4.3: Comparison of Masking Strategies on CASP13 targets. The Training
Strategy (rows) refer to the masking type(s) used to train each model. The Test Strategy
(columns) refers to the type of mask applied to the input to obtain the results. The cell values
indicate the median NSR rate and perplexity for the corresponding mask-type pair. For a
given test strategy, ten separate masks were applied to each test chain. The perplexity and
NSR values for the chain was taken as the average over the ten samples (with the exception
of full-masking). The same masks were used to evaluate each training strategy. For all
results, recovery (NSR) and perplexity scores are evaluated only on the masked region of the
input chain. We performed a paired t-test to confirm that the combined masking strategy
(All) significantly outperformed the other four models in terms of NSR and perplexity and
obtained p-values less than 0.05 for all tests.

training strategy produces second-best results for both NSR and perplexity. Of the other

three single-mask input strategies, the random masking strategy performs best overall for

the test criteria. Surprisingly, the random strategy achieves similar results or outperforms

spatial and linear masking on the corresponding test input.

We also consider the impact of architectural choices in terms of model loss, hidden di-

mension of residue features, the use of transformer submodules, and model depth. In Fig-

ure 4.2(A), we see that removing side-chain RMSD (vii) and predicted pairwise distance be-

tween side-chain atoms (viii) from the loss function significantly degrades NSR for CASP13

targets. With the default loss held constant, removing the TFN-Transformer has the largest

impact on NSR, which drops nearly five percentage points when this component is ablated.

Surprisingly, our locality-aware graph transformer module (Tri) still slightly outperforms

GVP-GNN for CASP13 targets (44.3% NSR vs. 44.0% NSR) without making explicit use

of backbone coordinates.

We further compare the benefits of our two-stage architecture in Figure 4.2(B). From this,

21

Figure 4.2: Impact of architectural components on NSR for CASP13 targets.
(A) Contribution of features towards network performance; all ablations are taken with
respect to the baseline small model model (i). The bars show the median NSR of the
corresponding model on CASP13 targets. The gray dotted line shows the median NSR
of (i). (ii) shows performance when increasing the residue hidden dimension from 120 to
180 and (iii) when also increasing the depth from 14 to 20. (iv) shows the result of using
distance vs. dot-product based coordinate attention. (vi) and (vi) remove the locality-
aware graph transformer and the TFN-Transformer submodules, respectively. vii ablates
side-chain coordinate loss and viii removes both side-chain and pairwise distance loss. (B)
Performance of the baseline model (i) and models (v), (vi) where triangle updates and
the TFN-Transformer are ablated (respectively). The gray dotted shows the cumulative
percentage of residues with respect to the number of Cα neighbors (x-axis) in a 10Å radius
of the central residue being predicted.

we observe that the two stage architecture significantly outperforms each single component

when conditioned on all nine levels of degree centrality. These results suggest that the

representations learned by each submodule are at least partially disjoint - and there is a

clear benefit to combining the two representations.

22

CHAPTER 5

FUTURE WORK

23

CHAPTER 6

CONCLUSION

In this work, we developed and evaluated a framework for learning inverse protein fold-

ing. Our model uses features derived solely from protein backbone coordinates and further

leverages this information to restrict attention to spatially-local residue pairs. Although our

model does not make explicit use of evolutionary information, it is able to capture functional

aspects of the underlying protein as demonstrated by correlation with stability data gathered

from deep mutational scanning studies and by performance against protein language models

that trained on large sequence databases. We hope our model can prompt other researchers

to further integrate structure information for characterizing protein mutation effects. On

top of the model itself, we also showed that our loss function and training strategy offer per-

formance enhancements when compared to traditional approaches. The former effectively

exploits the properties of SE(3)-equivariance and the latter facilitates generalization to novel

parts of structure space.

24

BIBLIOGRAPHY

Adzhubei, Ivan, Daniel M Jordan, and Shamil R Sunyaev (2013). “Predicting functional

effect of human missense mutations using PolyPhen-2”. In: Current protocols in human

genetics 76.1, pp. 7–20.

Alford, Rebecca F. et al. (2017). “The Rosetta All-Atom Energy Function for Macromolecular

Modeling and Design.” In: Journal of chemical theory and computation 13 6, pp. 3031–

3048.

Alley, Ethan C, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M

Church (2019). “Unified rational protein engineering with sequence-based deep represen-

tation learning”. In: Nature methods 16.12, pp. 1315–1322.

Anand, N. et al. (Feb. 2022). “Protein sequence design with a learned potential”. In: Nat

Commun 13.1, p. 746.

Andrearczyk, Vincent, Julien Fageot, Valentin Oreiller, Xavier Montet, and Adrien De-

peursinge (2020). “Local rotation invariance in 3D CNNs”. In: Medical Image Analysis

65, p. 101756.

Anishchenko, Ivan, Tamuka M. Chidyausiku, Sergey Ovchinnikov, Samuel J. Pellock, and

David Baker (2021). “De novo protein design by deep network hallucination”. In: Nature

600, pp. 547–552.

Bachlechner, Thomas, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W.

Cottrell, and Julian McAuley (2020). ReZero is All You Need: Fast Convergence at Large

Depth.

Baek, Minkyung et al. (2021). “Accurate prediction of protein structures and interactions

using a three-track neural network”. In: Science 373.6557, pp. 871–876.

Berman, Helen M et al. (2000). “The protein data bank”. In: Nucleic acids research 28.1,

pp. 235–242.

25

Cao, Huali, Jingxue Wang, Liping He, Yifei Qi, and John Z. Zhang (2019). “DeepDDG:

Predicting the Stability Change of Protein Point Mutations Using Neural Networks”. In:

Journal of Chemical Information and Modeling 59.4. PMID: 30759982, pp. 1508–1514.

Castorina, Leonardo V., Rokas Petrenas, Kartic Subr, and Christopher W. Wood (2021).

PDBench: Evaluating Computational Methods for Protein Sequence Design.

Chaudhury, Sidhartha, Sergey Lyskov, and Jeffrey J. Gray (2010). “PyRosetta: a script-based

interface for implementing molecular modeling algorithms using Rosetta”. In: Bioinfor-

matics 26 5, pp. 689–91.

Chen, Sheng et al. (2020). “To Improve Protein Sequence Profile Prediction through Image

Captioning on Pairwise Residue Distance Map”. In: Journal of Chemical Information and

Modeling 60.1. PMID: 31800243, pp. 391–399.

Chevalier, Aaron et al. (Sept. 2017). “Massively parallel de novo protein design for targeted

therapeutics”. In: Nature (London) 550.10.

Chowdhury, Ratul et al. (2021). “Single-sequence protein structure prediction using language

models from deep learning”. In: bioRxiv.

Coluzza, Ivan (Feb. 2017). “Computational protein design: a review”. In: Journal of Physics:

Condensed Matter 29.14, p. 143001.

Dawson, Natalie L et al. (2017). “CATH: an expanded resource to predict protein function

through structure and sequence”. In: Nucleic acids research 45.D1, pp. D289–D295.

Defresne, M, S Barbe, and T. Schiex (2021). “Protein Design with Deep Learning.” In: Int

J Mol Sci. 22.21, pp. 136–144.

Fang, Yin et al. (2021). Molecular Contrastive Learning with Chemical Element Knowledge

Graph.

Fuchs, Fabian, Daniel Worrall, Volker Fischer, and Max Welling (2020). “SE(3)-Transformers:

3D Roto-Translation Equivariant Attention Networks”. In: Advances in Neural Informa-

tion Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin. Vol. 33. Curran Associates, Inc., pp. 1970–1981.

26

Gligorijevic, Vladimir et al. (2021). “Structure-based protein function prediction using graph

convolutional networks”. In: Nature communications 12.1, pp. 1–14.

Hopf, Thomas A et al. (2017). “Mutation effects predicted from sequence co-variation”. In:

Nature biotechnology 35.2, pp. 128–135.

Hsu, Chloe et al. (2022). “Learning inverse folding from millions of predicted structures”. In:

bioRxiv.

Huang, Xiaoqiang, Robin Pearce, and Yang Zhang (Oct. 2019). “EvoEF2: accurate and fast

energy function for computational protein design”. In: Bioinformatics 36.4, pp. 1135–

1142.

— (Apr. 2020). “FASPR: an open-source tool for fast and accurate protein side-chain pack-

ing”. In: Bioinformatics 36.12, pp. 3758–3765.

Ingraham, John, Vikas Garg, Regina Barzilay, and Tommi Jaakkola (2019). “Generative

Models for Graph-Based Protein Design”. In: Advances in Neural Information Processing

Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc.

J.H., Lubin, Pacella M.S., and Gray J.J (2018). “A Parametric Rosetta Energy Function

Analysis with LK Peptides on SAM Surfaces.” In: Langmuir 34.18, pp. 5279–5289.

Jin, Wengong, Jeremy Wohlwend, Regina Barzilay, and Tommi S. Jaakkola (2022). “Itera-

tive Refinement Graph Neural Network for Antibody Sequence-Structure Co-design”. In:

International Conference on Learning Representations.

Jing, Bowen, Stephan Eismann, Patricia Suriana, Raphael J. L. Townshend, and Ron Dror

(2021). Learning from Protein Structure with Geometric Vector Perceptrons.

Jumper, John et al. (Aug. 2021). “Highly accurate protein structure prediction with Al-

phaFold”. In: Nature 596.7873, pp. 583–589.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun.

27

Kingma, Diederik P., Tim Salimans, and Max Welling (2016). “Improving Variational Infer-

ence with Inverse Autoregressive Flow”. In: CoRR abs/1606.04934.

Lai, Boqiao and Jinbo Xu (2022). “Accurate protein function prediction via graph attention

networks with predicted structure information”. In: Briefings in Bioinformatics 23.1,

bbab502.

Leman, J. K. et al. (July 2020). “Macromolecular modeling and design in Rosetta: recent

methods and frameworks”. In: Nat Methods 17.7, pp. 665–680.

Lin, Eugene, Chieh-Hsin Lin, and Hsien-Yuan Lane (2022). “De Novo Peptide and Protein

Design Using Generative Adversarial Networks: An Update”. In: Journal of Chemical

Information and Modeling 62.4. PMID: 35128926, pp. 761–774.

Liu, Yufeng et al. (2022). Rotamer-Free Protein Sequence Design Based on Deep Learning

and Self-Consistency.

Lucas, JE. and T. Kortemme (Oct. 2020). “New Computational Protein Design Methods for

De Novo Small Molecule Binding Sites”. In: PLoS Comput Biol 16.10.

McPartlon, Matthew and Jinbo Xu (2022). “AttnPacker: An end-to-end deep learning method

for rotamer-free protein side-chain packing”. In: bioRxiv.

Meier, Joshua et al. (2021). “Language models enable zero-shot prediction of the effects of

mutations on protein function”. In: Advances in Neural Information Processing Systems

34.

Mirdita, M, M Steinegger, F Breitwieser, J Söding, and E Levy Karin (Mar. 2021). “Fast

and sensitive taxonomic assignment to metagenomic contigs”. In: Bioinformatics 37.18,

pp. 3029–3031.

Mitchell, Alex L et al. (2019). “InterPro in 2019: improving coverage, classification and access

to protein sequence annotations”. In: Nucleic acids research 47.D1, pp. D351–D360.

Ng, Pauline C and Steven Henikoff (2003). “SIFT: Predicting amino acid changes that affect

protein function”. In: Nucleic acids research 31.13, pp. 3812–3814.

28

O’Connell, J. et al. (June 2018). “SPIN2: Predicting sequence profiles from protein structures

using deep neural networks”. In: Proteins 86.6, pp. 629–633.

Ovchinnikov, Sergey and Po-Ssu Huang (2021). “Structure-based protein design with deep

learning”. In: Current Opinion in Chemical Biology 65. Mechanistic Biology * Machine

Learning in Chemical Biology, pp. 136–144.

Pan, Xingjie and Tanja Kortemme (2021). “Recent advances in de novo protein design: Prin-

ciples, methods, and applications”. In: Journal of Biological Chemistry 296, p. 100558.

Park, Hahnbeom et al. (2016). “Simultaneous Optimization of Biomolecular Energy Func-

tions on Features from Small Molecules and Macromolecules”. In: Journal of Chemical

Theory and Computation 12.12. PMID: 27766851, pp. 6201–6212.

Qi, Yifei and John Z. H. Zhang (2020). “DenseCPD: Improving the Accuracy of Neural-

Network-Based Computational Protein Sequence Design with DenseNet”. In: Journal of

Chemical Information and Modeling 60.3. PMID: 32126171, pp. 1245–1252.

Quijano-Rubio, A. et al. (Mar. 2021). “De novo design of modular and tunable protein

biosensors”. In: Nature 591.7850, pp. 482–487.

Rao, Roshan et al. (2019). “Evaluating protein transfer learning with TAPE”. In: Advances

in neural information processing systems 32.

Riesselman, Adam J, John B Ingraham, and Debora S Marks (2018). “Deep generative

models of genetic variation capture the effects of mutations”. In: Nature methods 15.10,

pp. 816–822.

Rocklin, Gabriel J. et al. (2017). “Global analysis of protein folding using massively parallel

design, synthesis, and testing”. In: Science 357.6347, pp. 168–175.

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling (2021). “E(n) Equivariant

Graph Neural Networks”. In: CoRR abs/2102.09844.

Schütt, K. T., H. E. Sauceda, P.J. Kindermans, A. Tkatchenko, and K.R. Müller (June 2018).

“SchNet - A deep learning architecture for molecules and materials”. In: The Journal of

Chemical Physics 148.24, p. 241722.

29

Shroff, Raghav et al. (2019). A structure-based deep learning framework for protein engineer-

ing.

Siegel, J. B. et al. (July 2010). “Computational design of an enzyme catalyst for a stereose-

lective bimolecular Diels-Alder reaction”. In: Science 329.5989, pp. 309–313.

Strokach, Alexey, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim

(2020). “Fast and Flexible Protein Design Using Deep Graph Neural Networks”. In: Cell

Systems 11.4, 402–411.e4.

Strokach, Alexey and Philip M. Kim (2022). “Deep generative modeling for protein design”.

In: Current Opinion in Structural Biology 72, pp. 226–236.

Thomas, Nathaniel et al. (2018). “Tensor Field Networks: Rotation- and Translation-Equivariant

Neural Networks for 3D Point Clouds”. In: CoRR abs/1802.08219.

Tinberg, Christine E. et al. (2013). “Computational design of ligand-binding proteins with

high affinity and selectivity”. In: Nature 501.7466, pp. 212–216.

Wang, Jingxue, Huali Cao, John Z. H. Zhang, and Yifei Qi (2018). “Computational Protein

Design with Deep Learning Neural Networks”. In: Scientific Reports 8.1, p. 6349.

Wang, Jue et al. (2021). “Deep learning methods for designing proteins scaffolding functional

sites”. In: bioRxiv.

Wang, Junmei, Romain M Wolf, James W Caldwell, Peter A Kollman, and David A Case

(July 2004). “Development and testing of a general amber force field”. In: Journal of

computational chemistry 25.9, pp. 1157–1174.

Weiler, Maurice, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen (2018).

“3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data”.

In: Proceedings of the 32nd International Conference on Neural Information Processing

Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., pp. 10402–10413.

Wiedemann, C., A. Kumar, A. Lang, and O. Ohlenschlager (2020). “Cysteines and Disulfide

Bonds as Structure-Forming Units: Insights From Different Domains of Life and the

Potential for Characterization by NMR”. In: Front Chem 8, p. 280.

30

Xiong, Peng et al. (2014). “Protein design with a comprehensive statistical energy function

and boosted by experimental selection for foldability.” In: Nature communications 5,

p. 5330.

Xu, Yuting et al. (2020). “Deep Dive into Machine Learning Models for Protein Engineering”.

In: Journal of Chemical Information and Modeling 60.6, pp. 2773–2790.

Yang, Jianyi et al. (2020). “Improved protein structure prediction using predicted interresidue

orientations”. In: Proceedings of the National Academy of Sciences 117.3, pp. 1496–1503.

Zhang, Chi, Song Liu, and Yaoqi Zhou (2004). “Accurate and efficient loop selections by the

DFIRE-based all-atom statistical potential”. In: Protein Sci. 13.2, pp. 391–399.

Zhang, Y. and J. Skolnick (2005). “TM-align: a protein structure alignment algorithm based

on the TM-score”. In: Nucleic Acids Res 33.7, pp. 2302–2309.

Zhang, Yi et al. (2019). “ProDCoNN: Protein design using a convolutional neural network”.

In: Proteins: Structure 88, pp. 819–829.

Zhou, Jianfu, Alexandra E. Panaitiu, and Gevorg Grigoryan (2020). “A general-purpose

protein design framework based on mining sequence-structure relationships in known

protein structures”. In: Proceedings of the National Academy of Sciences 117.2, pp. 1059–

1068.

31

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Inverse Folding : Background and Motivation

	2 Related Work
	3 An SE(3)-Equivariant Model for Learning Inverse Folding
	3.1 Methods
	3.1.1 Input Representation
	3.1.2 Masking Strategies

	3.2 Datasets
	3.2.1 Training Data
	3.2.2 Test Datasets for Inverse Folding Comparison
	3.2.3 Deep Mutational Scanning Datasets for Mutation Effect Prediction
	3.2.4 Train and Test Similarity

	3.3 Data Collection
	3.4 Evaluation Metrics
	3.4.1 Inverse Folding
	3.4.2 Zero-shot Protein Mutation Effect Prediction

	3.5 Hyperparameter, Training, and Loss Details
	3.5.1 Training
	3.5.2 Loss
	3.5.3 HyperParameter Overview

	4 Results
	4.1 Inverse Folding Results for CASP Targets
	4.1.1 Recovery and Perplexity
	4.1.2 Precision, Recall, and F1

	4.2 Zero-shot mutation effect prediction
	4.3 Ablation Studies
	4.3.1 Mask Strategy Evaluation

	5 Future Work
	6 Conclusion

