
THE UNIVERSITY OF CHICAGO

HIERARCHICAL RESIDUAL ENCODING FOR MULTIRESOLUTION

SPATIAL-TEMPORAL DATA COMPRESSION

A DISSERTATION PROPOSAL SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCE

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

BRUNO BARBARIOLI

CHICAGO, ILLINOIS

OCTOBER 2022

Copyright © 2022 by Bruno Barbarioli

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vi

ABSTRACT . vii

1 INTRODUCTION . 1

2 BACKGROUND . 5
2.1 Time Series Compression Basics . 5
2.2 Compression with Bounded L∞ Error . 7

2.2.1 Quantization . 7
2.2.2 Temporal Decorrelation . 8
2.2.3 Byte-Encoding . 10

2.3 The Multiresolution Problem . 10

3 MATHEMATICAL INTUITION . 13
3.1 Residualization . 13
3.2 Relevance to Time Series Compression . 14
3.3 Novelty . 15

4 HIRE: HIERARCHICAL RESIDUAL ENCODING 17
4.1 Algorithm Basics . 17

4.1.1 Quantized Pooling . 17
4.1.2 Spline interpolation . 18
4.1.3 Residual Vectors . 19

4.2 Algorithm Description . 19
4.3 Decompression . 21

5 OPTIMIZATIONS . 23
5.1 Algorithmic Optimizations . 23

5.1.1 Compression . 23
5.1.2 Decompression . 25

5.2 Implementation Optimizations . 26
5.2.1 Compression . 27
5.2.2 Decompression . 27

5.3 Extensions . 28

6 RELATED WORK . 31

iii

7 EXPERIMENTS . 33
7.1 Datasets . 33
7.2 Baselines . 34
7.3 Performance Overview . 37
7.4 Compression Ratio . 37
7.5 Compression and Decompression Throughputs 38
7.6 Micro-benchmarks . 41

7.6.1 Block Size . 41
7.6.2 Starting level . 44
7.6.3 Pooling function . 45

8 CONCLUSION . 46

9 SPATIAL-TEMPORAL EXTENSION . 47
9.1 Research Plan . 47

REFERENCES . 48

iv

LIST OF FIGURES

3.1 (A) Illustrates an example time series, (B) illustrates a coarse approximation of
the time series, (C) illustrates the residual series, (D) illustrates a finer approxi-
mation of the residual series, and (E) shows how the summations of the residuals
lead to progressively better approximations . 14

4.1 The main algorithmic workflow. Compression flows from left to right and top
to bottom just like reading text. Decompression flows from bottom to top and
inverts residualization with a summation. 21

5.1 L∞, normalized L1, and normalized L2 error values at the final 6 levels of T on
1024 samples from a IHEPC time series. The root level is blue, and we traverse
upwards to the purple leaves. Note that the L1 and L2 bars are multiplied by
constants c1, c2 for scale, with actual values shown in black. 29

7.1 Phone Gyroscope . 36
7.2 Compression ratio . 39
7.3 Compression throughput . 39
7.4 Decompression throughput . 39
7.5 Breakdown of performance at different block sizes 39
7.6 Compression ratio . 42
7.7 Compression throughput . 42
7.8 Decompression throughput . 42
7.9 Breakdown of performance for three different pooling functions 42
7.10 Compression ratio for different starting levels 44

v

LIST OF TABLES

7.1 Dataset descriptions . 34
7.2 Compression ratio: sum of all resolutions . 38
7.3 Compression throughput in MB/s: sum of all resolutions 40
7.4 Decompression throughput in MB/s: average of all resolutions 41

vi

ABSTRACT

Data compression is a key technique for reducing the cost of data transfer from storage to

compute nodes. Increasingly, modern data scales necessitate lossy compression techniques,

where exactness is sacrificed for a smaller compressed representation. One challenge in lossy

compression is that different applications may have different accuracy demands. Today’s

compression techniques struggle in this setting either forcing the user to compress to the

strictest accuracy demand, or to re-encode the data at multiple resolutions. This work

proposes a simple, but effective multi-resolution compression algorithm for time series data,

where a single encoding can be effectively decompressed at multiple output resolutions.

There are a number of benefits over current state-of-the-art techniques. (1) The storage

footprint of this encoding is smaller than re-encoding the data at multiple resolutions. (2)

Similarly, the compression time is generally smaller than re-encoding at multiple resolutions.

(3) Finally, the decompression latency with our encoding is significantly faster than single

encodings at the strictest accuracy demand.

We further propose an extension to the time series case, where we also take into account

the spatial dependence of certain data sets. We generalize our model to a high dimensional

setting with applications ranging from image segmentation to overlapping satellite images.

vii

CHAPTER 1

INTRODUCTION

In today’s data analytics infrastructure, it is common for data storage to be separated from

computational resources Angel et al. [2020]. For example, very large datasets can be stored in

a block storage system like Amazon S3, and only transferred to compute nodes for analysis.

Similarly, in edge computing, data might reside on edge nodes for privacy and cost reasons,

and only be transferred to a central location when needed Paparrizos et al. [2021], Zeuch

et al. [2020]. In such on-demand retrieval architectures, the time needed to transfer data

between storage and computation nodes is an important bottleneck, and data compression

is one of the main techniques for controlling the cost of data movement.

Traditionally, data compression approaches are divided into two categories: lossless and

lossy. In lossless compression, the data are compressed and decompressed without loss of

any information. Examples of such approaches include dictionary coding for string compres-

sion Färber et al. [2012], Antoshenkov [1997], GZip/BZip for byte-sequence compression Se-

ward [1996], and turbo-coding for integer compression Hanzo et al. [2002]. In contrast, lossy

compression allows for minor errors in the reconstruction that would not affect a downstream

application. By nature, lossy compression is mostly aimed at high-dimensional quantitative

data. Examples include JPEG for images Wallace [1992], H.264 for video Wiegand et al.

[2003], and a variety of techniques for scientific data Cappello et al. [2019], Krasowska et al.

[2021], Son et al. [2014]. Lossy compression techniques sacrifice accuracy (the degree of errors

in the reconstruction) for storage size (the size of the compressed data).

To cope with ever growing datasets, lossy compression has been increasingly adopted in

edge-computing and sensing systems Paparrizos et al. [2021], Zeuch et al. [2020], Pelkonen

et al. [2015b], Shahid [2019], Paparrizos et al. [2020]. Data compression can be pushed

towards the point of data collection to save on downstream data transfer, storage, and

computation. For example, a visual dashboard monitoring a sensor only needs the data to

1

be accurate up to the screen pixel resolutions. On the other hand, machine learning models

that consume the data are often robust to small amounts of imprecision in the input features.

While such “compression pushdown” can be extremely effective, it is most useful when there

is only a single downstream application consuming the data.

Multiple downstream applications can have differing accuracy demands (e.g., a visual

dashboard requires a 1e-3 maximum error in all values, but the anomaly detection framework

only requires 1e-1 precision). In such cases, the available pushdown strategies essentially

are: (Strict Encoding) encode the data once at the strictest accuracy demand and (Multiple

Encoding) re-encode the data at all of the different accuracy demands. The strict encoding

strategy has the obvious drawback that it forces every application to pay the same data

transfer cost as the one with the strictest accuracy requirement. On the other hand, the

multiple encoding strategy allows different applications to selectively retrieve data encoded

at their particular accuracy demands. However, the multiple encoding strategy has a steep

cost in terms of compression throughput (i.e., linear in the number of applications), and

local storage (i.e., stores one encoding per application).

This paper navigates this impasse and studies efficient methods for supporting multiple

downstream consumers of lossy data. Ideally, it should be possible to store a single encoding

that can be selectively decompressed at all the different resolutions and thus mitigate the

downsides of both strategies described above. We call this problem the multiresolution com-

pression problem, where the objective is to construct a single encoding of a dataset that can

be decompressed at different cell-level error tolerances (hereafter called L∞ errors). While

related problems have been proposed in a number of adjacent areas such as in reduced-

precision ML Wang et al. [2019] and approximate query processing Lazaridis and Mehrotra

[2001], Buccafurri et al. [2011]; to the best of our knowledge, multiresolution compression

has not been extensively evaluated in the data compression literature. This problem setting

subtly changes the typical metrics of interest for data compression. An effective multireso-

2

lution compression algorithm: (Compression ratio) should require significantly less storage

than a separate encoding at each error tolerance; (Compression latency) should be signif-

icantly faster to construct the encoding than a separate encoding at each error tolerance;

(Decompression latency) should be faster to decompress data for higher error tolerances.

This means that a multiresolution compression algorithm might not be the most effective

at any single error tolerance, but in aggregate across multiple tolerances, it outperforms the

strict and multiple encoding strategies.

This paper proposes an effective multiresolution compression algorithm, called Hierar-

chical Residual Encoding (HIRE), for uni-variate and multivariate time series data. HIRE

assumes a mini-batch data acquisition model where data are streamed to the system in small

blocks, and these blocks represent contiguous time-segments of collected data. HIRE con-

structs a synopsis data structure through a recursion of partitioning and residualizing steps.

The partitioning step approximates a time series with a piecewise approximation, and the

residualizing step calculates a signal that represents the approximation error. This error

signal can further be approximated at increasingly finer granularities. We find that these

residual signals are often highly compressible, since many values may lie under the error

threshold of the strictest application. To retrieve data at a particular error threshold, there

is a simple summation of the preceding layers. This result is not surprising as such residu-

alizing operations are effective in time series forecasting Chatfield [1978], and in differential

equation solvers Hutchinson and Raithby [1986].

We evaluate HIRE against a key set of baseline compression algorithms that: (1) can

run efficiently in the online setting, (2) provide L∞ error guarantees for point queries like

HIRE, and (3) do not require dataset-specific modeling for compression. Compared to these

baselines, we find that HIRE has the following desirable properties:

• Compression ratio (or similarly storage size) is much smaller than independently com-

pressing at each resolution using the other compression methods.

3

• Compression time is smaller than independently compressing at each resolution using

the other compression methods

• In most cases, decompression time for an error threshold is lower than decompression

time of any other method for the same error threshold.

4

CHAPTER 2

BACKGROUND

First, we will motivate the general problem statement, describe current compression ap-

proaches, and give context to our contributions in multiresolution compression. Through

this paper, we will consider the following running example.

[Edge Data Storage and Retrieval] Data transfer over a network is one of the most

expensive (in terms of cost and energy) tasks in any distributed sensing application. Many

recent sensing architectures argue for lazy data retrieval Paparrizos et al. [2021], where data

are persisted on the edge for some period of time and only centralized if/when needed. Let’s

consider a simplified two server version of this architecture. Consider a sensor deployed at

a climate research observatory that collects a time series of numerical data. The data are

compressed online at an “edge server” during data collection (located at the observatory),

and stored locally for a maximum of 10 days. The compressed versions can be retrieved

from the edge server, transferred to a remote server (e.g., at a research university), and

decompressed at the remote server.

2.1 Time Series Compression Basics

Let us consider a time series with observations:

X = [x0, x1, . . . , xT−1].

For now, let us assume that each xi is a single floating point number (i.e., a univariate time

series). We will relax this assumption later, but it will be easier to understand the baselines

in the univariate case. A compression algorithm consists of an encoder and decoder pair

CX = enc(X) X ′ = dec(CX)

5

that produces a compressed representation of X called CX and reconstructs an estimate of

the original time series X ′ from CX . Without loss of generality, we can consider CX to be a

vector as well. There are several important metrics of interest that describe the performance

of such a compression algorithm:

• Compression Ratio. Let H(·) denote the size in bits of a vector. The compression

ratio is defined as H(CX)
H(X)

. A lower compression ratio indicates better performance in

terms of storage. In our running example, the compression ratio directly affects how

much data are transferred from the edge to the remote server.

• Compression Latency. The compression latency of an algorithm is the time needed

to produce CX from X. In our running example, the compression latency affects the

data collection throughput of the edge server.

• Decompression Latency. The decompression latency of an algorithm is the time

needed to produce X ′ from CX . In our running example, the decompression latency

affects how much extra time beyond data transfer is spent on the remote server.

• Reconstruction Error. The difference between X and X ′ is called the reconstruc-

tion error, for some measure of dissimilarity. In our running example, the reconstruction

error measures how different the data processed on the remote server is compared to

the edge server.

While there are many such compression algorithms, we primarily focus ones with deter-

ministic L∞ reconstruction error guarantees. That is, we bound the maximum allowable

error of the reconstructed time series X ′ = dec(enc(X)) with respect to the original time se-

ries X by specifying an error threshold parameter ε. The L∞ reconstruction error ||X−X ′||∞

is defined as the maximum absolute disagreement between X and X ′ at any time-step i:

||X −X ′||∞ = max
i
|xi − x′i|

6

We then enforce an error guarantee by ensuring that the L∞ error is within the pre-specified

threshold ε, which means ||X−X ′||∞ ≤ ε. For example, ε may represent the maximum error

that the observatory is willing to tolerate in the reconstructed time series to avoid a negative

impact on subsequent weather forecasting tasks. We choose such guarantees because they

are the strictest and most compatible with a wide variety of applications. The main trade-off

in most techniques is when ε is increased (i.e., more error), the compression ratio decreases.

2.2 Compression with Bounded L∞ Error

There is an extensive body of literature on time series compression techniques (refer to

survey Keogh et al. [2004]). However, not all compression algorithms can provide L∞ error

guarantees. For example, a spectral approach like PCA, or an FFT, can only control the

average error but not the worst-case error for any given observation. For techniques that do

provide L∞ error guarantees, they generally follow the same design pattern composing three

main components: (1) Temporal Decorrelation, (2) Quantization, and (3) Byte Encoding.

2.2.1 Quantization

The most basic technique for compressing numerical data with an error guarantee is quan-

tization. Quantization is the process of rounding a floating point number to nearest valid

value of fixed precision. Even simple data quantization can be very effective and is employed

in Amazon Redshift Gupta et al. [2015]. Proceeding to the technical formulation of quanti-

zation, let us suppose that x−, x+ are the minimum and maximum of X respectively. Define

Rϵ to be the relative L∞ error, i.e., a desired error tolerance relative to the range of X:

Rϵ =
ε

x+ − x−

7

A uniform quantization scheme cuts the range [x−, x+] into 1
Rϵ

equal-sized buckets 1. To

encode a dataset using this scheme, one sets each numerical value to its resident integer

bucket (note that the floor function discretizes the formerly continuous input):

enc(xi) =
⌊
(xi − x−)
(x+ − x−)

· 1

Rϵ

⌋
(2.1)

We examine the quantization formula, we notice that the main term ⌊ (xi−x
−)

(x+−x−) ·
1
Rϵ
⌋ is

integer-valued and ranges from 0 to ⌈ 1
Rϵ
⌉. In its most basic implementation, we can assign

a fixed-length binary code to each of the integer values. This would result in storage size of

log2⌈ 1
Rϵ
⌉ per values.

To decode, one simply reverses the transformation:

x′i = dec(enc(xi)) = enc(xi) ·Rϵ · (x+ − x−) + x− (2.2)

As long as we also store x+, x−, Rϵ, we can translate the stored integer into its corresponding

floating point quantum. Unfortunately, regardless of whether quantization is applied to a

column sampled from a normal distribution or to a time series with high autocorrelation, it

yields the same mapping.

2.2.2 Temporal Decorrelation

For this reason, either before or after quantization most time series compression algorithms

attempt to factor out all of the “predictable” terms, thereby only leaving uncorrelated er-

rors to be compressed. The simplest approach to accomplish this is delta-encoding, which

transforms a time series so that every value is represented as a successive difference from the

previous value:

xδi = xi − xi−1

1. In the degenerate case of ϵ = 0 one just keeps each element of X in its own bucket

8

This transformation is completely reversible with a left-to-right cumulative sum, so no in-

formation is lost. Since time series often have highly similar values along the time axis, the

range of delta values is smaller in magnitude and variation than the original values. Thus,

the deltas can often be effectively stored with reduced precision.

We can think of delta-encoding as a simple form of “predictive” compression. The previous

value xi−1 can be interpreted as a simple model that predicts the value of its neighboring

element Blalock et al. [2018]. The same trick would work for any function f of the previous

j lagged elements where 0 < j < i:

xδi = xi − f(xi−1, xi−2, . . . , xi−j)

Given the dependence of the current value on the previous (lagged) values, the structure of

delta encoding is suitable for autoregressive models of any flavor. It is worth noting that

the better the predictive model, the more skewed the Xδ values will be towards zero. If

the effective domain of the numbers can be greatly reduced, then fewer bits can be used to

represent Xδ.

In general, any time series modeling technique can be used to decorrelate the data.

For example, there are a number of piecewise approximations for time series that exploit

trend structure in a typical time series. Piecewise approaches decompose a time series into

segments and use the segments to approximate the time series such as the: Piecewise Aggre-

gate Approximation (PAA) Keogh and Pazzani [2000] and Piecewise Linear Approximation

(PLA) Keogh et al. [2001]. Like delta encoding, we can think of piecewise approximation

as a simple model that predicts the next value. One only needs to store the model and the

compressed residual. If this model is accurate, the residual error is likely very sparse and

highly compressible.

9

2.2.3 Byte-Encoding

Finally, after quantization and decorrelation, general-purpose compression algorithms can

be used to simply translate the remaining data into a series of bytes and reduce redundancy.

Most of these approaches are based on run-length encoding or the LZ77 algorithm that look

for byte-level repetitions within sliding windows of data Seward [1996]. Generally speaking,

byte-oriented techniques are lossless—meaning that the L∞ error is always 0—so they can

provide a trivial error guarantee. On numerical data the obvious limitation is that while two

floating point numbers are close to each other numerically, there might not be a very strong

similarity between their binary representations leading to poor compression with an LZ77

technique. This is why quantization and decorrelation are generally applied first to exploit

the numerical structure.

2.3 The Multiresolution Problem

For any combination of quantization and decorrelation described above, the encoded rep-

resentation CX is tied to a specific target error. Let us consider how this can cause an

unnecessary performance bottleneck in our running example.

[Two Applications With Different Error Tolerances] Consider two remote applications

consuming the climate data collected at the observatory. The first application is a nightly

report that is generated over all of the collected data. This report requires that every value

processed is no more than ε = 1e− 4 of the true value. The second application is a minute-

by-minute anomaly detector to detect whether the observatory has abnormal readings. This

application is far more tolerant to error and requires that each value processed is only within

ε = 1e− 1 of the true value.

If we use the state of the art, there are three clear solutions—all of which have significant

drawbacks.

10

• Compress at the Strictest Tolerance. The most obvious approach would be to

compress the data at the strictest error tolerance. Unfortunately, this would mean that

every retrieval would pay a data transfer cost of the strictest threshold. In our running

example, the frequent anomaly detection tests would have to repeatedly transfer data

encoded with a target of ε = 1e− 4 due to the relatively infrequent nightly reporting.

• Compress at All Tolerances. Another approach would be to encode the data at all

relevant error tolerances. While this approach allows each application to only transfer

data encoded at an appropriate error tolerance, it shifts the burden towards encoding.

Each additional error target would reduce the effective throughput available for data

collection since we are compressing the data twice. In our running example, we would

cut our ingestion capacity by roughly a factor of two.

• Lazy Re-Encoding. A hybrid approach would be to first encode the data at the

strictest error tolerance, then at retrieval time decode the data, and re-encode it at the

error target of each retrieving application. The core challenge is that decompression

is often significantly slower than compression in many popular algorithms, and this

hybrid approach incurs these costs at the edge. In our running example, the frequent

anomaly detection tests would trigger expensive re-encoding processes that would burden

the edge server.

These drawbacks suggest the need for a new type of time series compression algorithm

aimed at supporting multiple downstream applications. Ideally, there should be a single

encoding that can be selectively decompressed at different target resolutions.

[Multiresolution Compression] A multiresolution compression algorithm produces a sin-

gle encoding CX that can be selectively decomposed into sub-encodings C ϵ1
X , . . . , C

ϵl
X with

corresponding error thresholds ϵ1, . . . , ϵl:

CX = C ϵ1
X

⊕
C ϵ2
X

⊕
. . .

⊕
C

ϵl
X

11

where
⊕

denotes some combination operation of the sub-encodings.

Decomposable encodings allow one to selectively transfer data for any target resolution.

The multiple encoding strategy described above can be thought of as a trivial case where⊕
is simply the concatenation operation over independent encodings of the data. The key

issue with this strategy is that no work is shared between any of the encodings, and effec-

tively sharing work will be the main premise of this paper. We will show that an additive

decomposition where
⊕

is a linear combination operation is a simple but effective solution.

Consequently, the goal of this paper is to investigate such algorithms, understand how to

evaluate them, and how to optimize for different performance objectives in the multiresolu-

tion setting.

12

CHAPTER 3

MATHEMATICAL INTUITION

Now that we have motivated multiresolution compression, we will provide some basic tech-

nical intuition how such an algorithm can be constructed.

3.1 Residualization

From the previous section, let X be a time series and X ′ be an approximation of it (e.g., a

decompression of a lossy encoding). The residual series is also a time series and is defined

as:

R = X −X ′

which is the difference between the original series and its reconstruction. It clearly also

follows from this definition that if one knows the approximation and the residual, one can

fully reconstruct the original series X ′+R = X. Such a decomposition of terms is called an

additive decomposition and is well-studied in modeling time-dependent phenomena outside

of data compression Chatfield [1978]. For example, it is common to decompose time series

into a trend component (which represents the general trend of the series) and noise (which

represents variation along the trend). The trend component would be our X ′ and the noise

would be our R.

Additive decompositions are recursive in nature since the residual R is itself another time

series and can be further decomposed. Now, let us suppose that we have an approximation

to R denoted R′. We can similarly define a residual series S = R−R′. Through substitution,

we can see that our additive decomposition now looks like this:

X = X ′ +R′ + S

13

Figure 3.1: (A) Illustrates an example time series, (B) illustrates a coarse approximation of
the time series, (C) illustrates the residual series, (D) illustrates a finer approximation of
the residual series, and (E) shows how the summations of the residuals lead to progressively
better approximations

This process can be repeated, further and further decomposing the residual, which yields a

natural recurrence equation:

R0 = X (3.1)

Ai = approx(Ri)

Ri = Ri−1 − Ai−1

where approx(·) is some approximation function. We can clearly see from this equation that

for k such recursions:

X =
k−1∑
i=0

Ai + Rk

We leverage this basic intuition to construct an effective multiresolution compression al-

gorithm. Written another way the equation above is simply
∑k−1

i=0 Ai ≈ X. We need to

construct a sequence of successive approximations that reduces the size of the residual signal

until the residual is less than our desired error threshold.

3.2 Relevance to Time Series Compression

The next section will show how to leverage a series of successive refinements of the residual

series to represent the original series. At each step, we compress the residual vector from

the previous step, progressively increasing the fidelity of the compression. As more of the

variation in the data is explained by each subsequent step, the residual vector becomes

14

smaller in magnitude and sparser.

Let us consider a concrete example. In Figure 4.1(A), we have plotted an example time

series. One can coarsely approximate this time series with a piecewise constant approxima-

tion of 3 segments (Figure 4.1(B)). Between this approximation and the original series, there

is a residual (Figure 4.1(C)). This residual can be captured by another piecewise constant

approximation with 6 segments (Figure 4.1(D)). As long as each subsequent approxima-

tion includes additional information (i.e., increasing the number of segments), the remaining

residual series reduces in magnitude. A summation of these approximations gets closer to

the original value (Figure 4.1(E)). While the intuition is simple, realizing this idea turns out

to be more difficult. The next section describes how we can enforce an error guarantee in

this process of successive refinement and how to implement such an approach efficiently.

3.3 Novelty

Our new compression method for recursively approximating a time series has some similari-

ties with other classical mathematical methods for approximating functions such as Fourier

and Taylor methods. For instance, a Taylor series can in fact provide an L∞ (upper bound)

error for each distinct partial sum, and the error decreases as the size of the partial sum

grows. However, there are key differences in our formulation because of how we refine our

approximation and measure the resulting errors/bounds. In particular, in Taylor and Fourier

series approximation error is only used to decide when to terminate the series (i.e., a stop-

ping condition), which is entirely different from how we recursively approximate the error

values themselves. We leverage the intuition that residuals often contain a lower entropy

signal than the function values and by recursively applying approximation to the residuals

at increasing granularity, the entropy of each successive level may decrease, leading to better

compressibility. By setting the midrank function as the pool function, we show that the L∞

error is strictly non-increasing with respect to the level of the hierarchy, a similar theoreti-

15

cal guarantee to the Taylor series; but unlike the Taylor series, HIRE operates on residual

vectors and does not require that the function is analytic.

The novelty of our submission is therefore: i) a new problem definition highlighting

the emerging need for multiresolution (de) compression systems, ii) hierarchical recursive

approximation of residual vectors in the domain of time series compression with L∞ guaran-

tees—which has not been proposed before, iii) the use of pool function properties along with

vector theory to propose linear time compression and decompression algorithms computing

the errors on the fly, and iv) practical implementation of the theoretical algorithms making

use of vectorization and parallel computing.

16

CHAPTER 4

HIRE: HIERARCHICAL RESIDUAL ENCODING

Based on our intuition from the previous section, we design an algorithm that constructs a

progressively refined set of residual signals. This algorithm is called Hierarchical Residual

Encoding (HIRE). HIRE can be thought of as a special temporal decorrelation operation

much like delta coding or piecewise aggregate approximation. However, its special hierar-

chical structure allows for selective decoding at multiple error thresholds. We describe our

method considering a univariate time series. We can also handle multivariate time series by

running independent encodings.

4.1 Algorithm Basics

Before we introduce the algorithm, it would be informative to define a few general building

blocks. As before, let X = [x0, x1, . . . , xT−1] be a univariate time series represented as a

vector of data, where xi ∈ ℜ and X ∈ ℜT . We further assume that the user provides us

with a ε∗ or the strictest error threshold that the encoding must guarantee.

4.1.1 Quantized Pooling

HIRE relies on a piecewise approximation to approximate each residual series: over disjoint

windows, the value of the window is approximated by a single scalar aggregate. To use

machine learning terminology, this operation is called (temporal) pooling. Pooling reduces

the dimensionality of a data series along the time axis over a series of fixed-size windows. The

pooling operation is defined by two parameters, an aggregation function f and a time series

X. In particular let pf (X) : ℜn → ℜ, pf (X) = f(x0, . . . , xn−1), for any positive integer n.

In other words, a pool function provides a concise estimate of a given time window with a

single value.

17

The choice of pooling function is a hyper-parameter and different pooling functions have

unique properties. We can think of them as different ways of approximating the values in a

time window. For a window X = [x0, . . . , xn−1], we define:

• Mean: f(X) = 1
n

∑
i xi. The mean value is a natural pooling function that minimizes

the squared error with respect to the window.

• Midrank: f(X) = 1
2 (maxi{xi} −mini{xi}). We can show that midrank is actually

the optimum pool function to minimize the L∞ error of the residual vector in each

node of the hierarchy, as described in the next subsection.

• Median: f(X) returns the median value of vector X.

• Random: f(X) = xi with probability 1/n. We can show that a random pooling

function is robust to seasonal variation within windows of a time series.

To efficiently store the results of a pooling operation, we further quantize the aggregate

value to a particular error threshold (using the process described in Section 2). In this

way all pool values are integers, so more efficient compression methods can be used to

compress/decompress them. During the decompression we derive the pool values P and

round them to the corresponding real values before we take their sum.

4.1.2 Spline interpolation

Without quantization, pooling is a lossy operation for n > 1 and is only lossless for n = 1

(i.e., window size of 1). Thus, inverting this operation will only give us an approximation

of the original series. To do so, we require some function that estimates the original time

series from the pooled values. We define a spline function sw(pf (X)) ≈ X, where w = |X|.

The user can choose the spline function that they prefer. Our default option is a simple

interpolation function that duplicates the value pf (X), w times. In particular, sw(pf (X)) =

18

[pf (X), . . . × w]. This duplication-oriented spline can be thought of as constructing a step

function interval with length w and value pf (X). Specifically, the default spline computes a

step function where each interval captures a pooled value that covers w time steps. In doing

so, we map from a lower dimensional summary to an approximation of the input series of a

certain coarseness. With an increasingly smaller w, the step approximation of X improves

proportionally to w itself.

4.1.3 Residual Vectors

The spline function returns an approximation of the original time series. Let RX = X −

sw(pf (X)) be the residual vector representing the error of the spline function with respect

to the original vector. The key insight of our work is that residual vectors are generally more

compressible than the original time series. It is clearly true that X = RX + sw(pf (X)),

and we can plug in this approximation into our recurrence equation of the previous section

(Equation 3.1), where approx(Ri) = sw(pf (Ri)).

4.2 Algorithm Description

The main idea is to run the procedure described above recursively following a hierarchical

manner following the recurrence described in Equation 3.1. For simplicity we consider that

size of the time series is a power of 2, so T = 2k. First, we check if the L∞ norm of

vector X is at most ∗. If yes, then we can stop the recursion setting the pool value to

0. Otherwise, we compute the pool function pf (X) over the entire vector X. Then we

set RX = X − sw(pf (X)) as described above. In the next level of the recursion we set

X ← RX [0, . . . , T/2− 1] and X ← RX [T/2, . . . , T − 1], and we continue with the same way

in both branches. Let Pi = [p(i,0), . . . , p(i,2i−1)], for i = 0, . . . , k, be the vector of the pool

values in the i-th level of the hierarchy sorted from left to right. Let P =
⋃
i=0,...,k Pi. We

stop the recursion when the error is at most ∗ or after having |X| = 1. In other words, as

19

we traverse down the hierarchy, there is a successively more accurate approximation of the

residual at each level. After running this algorithm, the quantized pool values can be stored

with any byte-encoding format.

We describe the pseudocode in Algorithm 1 (for simplicity, we describe the pseudocode

considering that P is a global set of variables over the recursion) and provide a visual in

Figure 4.1.

Algorithm 1: Hierarchical
Input : X, i, j,∗

Output: P
1if ||X||∞ ≤∗ then
2p(i,j) = 0;
3return;
4T = |X|;
5p(i,j) = pf (X);
6RX = X − sT

(
pf (X)

)
;

7if T > 1 then
8Hierarchical(RX [0, . . . , T/2− 1], i+ 1, 2 · j,∗);
9Hierarchical(RX [T/2, . . . , T − 1], i+ 1, 2 · j + 1,∗);

Intuitively, we can think of a binary tree structure where the original time series lies

in the root and its residual vector is split into two equal length sub-vectors creating two

children in the tree structure. In each node of the tree, we store the corresponding singular

pool value. Let T be the tree structure representing the hierarchical compression. For a

node u in T , let pu be the pool value in this node. For example, if u is the j-th node in the

i-th level, we have pu = p(i,j). Let also Ru be the residual vector that is found from our

algorithm at node u.

We note that it is not necessary to start the hierarchical compression from the zero

level—considering the entire time series X. Instead, we can start the hierarchical compres-

sion from any level L, splitting the original time series into 2L parts, X[0, , T/2L −

1], X[T/2L, . . . , 2 · T/2L − 1], . . . , X[(2L − 1) · T/2L, . . . , T − 1] and run the Hierarchical al-

20

Figure 4.1: The main algorithmic workflow. Compression flows from left to right and top
to bottom just like reading text. Decompression flows from bottom to top and inverts
residualization with a summation.

gorithm for each of them independently. In the experiments, we mostly run the hierarchical

compression for the last 10 or 20 levels, i.e., we set L = k − 10 or L = k − 20.

Finally, we note that it is not necessary to keep the pool values in different variables

p(i,j) or pu storing the indexes (i, j) or u. We only use this notation to make the description

of the algorithm easier. Algorithm 1 can put all pool values in a single table P following

the ordering: P [h1] = p(i1,j1), P [h2] = p(i2,j2) for h1 < h2 iff i1 <2 or i1 = i2 and j1 < j2.

When the decompression algorithm needs to access p(i,j), it corresponds to the element

P [2i + j − 1], so we have direct access in O(1) time. Furthermore, as we will see in the

next subsection, sometimes we might need to have access to the pool value of the parent

or a the left (right) child of a node u. If u corresponds to the j-th node in the i-th level

then p(i−1,j mod 2), p(i+1,2·j), p(i+1,2·j+1) is the pool value of the parent, left child, and right

child, respectively.

4.3 Decompression

Before we describe how we can decompress P to derive an approximation with L∞ recon-

struction of X (lossy) or the exact X (lossless) we show an interesting property of the residual

21

vectors over the nodes of T .

Let um be the j-th node of the i-th level in the hierarchy. Let X̄ = X[j ·w, . . . , (j+1)·w−

1], where w = T/2i, be the corresponding part of the original time-series. Let u0 → . . .→ um

be the path from the root of T to um. From their definitions, Rum = X̄ −
∑

ℓ≤m sw(puℓ).

Hence, it follows that maxh{|Rum [h]|} = ||X̄ −
∑

ℓ≤m sw(puℓ)||∞, i.e., the L∞ error of the

sum of the spline vectors from the root node to the current node with respect to the original

X̄ vector, is the L∞ error of the residual vector Rum .

We extend the previous observation to each level of T . For each level i ≤ k let Ei

be the maximum L∞ error of all residual vectors found in level i. Let E =
⋃

i≤k Ei.

Our system compresses both P,E using any known compression method. If M1,M2 are the

compression methods used for P,E, respectively, the overall compression ratio of our method

is H(M1(P))+H(M2(E))
H(X)

, where again H(·) denotes the size in bits.

Multiresolution Decompression Let us see how our algorithm works with our running

example. Recall that we have two different applications that require error thresholds of

ε = 1e − 4 and ε = 1e − 1 after retrieving data from an edge server. Firstly, using HIRE,

we construct a compressed residual encoding with ε∗ = 1e − 4. Along with every retrieval

request, a desired error threshold is sent . The edge server first finds the maximum error Em

such that Em ≤. Then we transfer all compressed pool values Pi for i ≤ m, from the edge

server to the remote machine that made the request. Finally, the decompression procedure

runs on the remote machine, finding X ′ =
∑

i≤m sT/2i(Pi). Using the observations above,

we have the guarantee that ||X −X ′||∞ ≤.

22

CHAPTER 5

OPTIMIZATIONS

In this chapter we describe multiple algorithmic and implementation optimizations that

improve the running time of our algorithms.

5.1 Algorithmic Optimizations

5.1.1 Compression

We first note that Algorithm 1 runs in O(kT) time. There are at most k levels of recursion

and in each level we construct the residual vectors of all nodes. Hence, in each level we spend

O(T) time. We show how we can run Algorithm 1 in only linear, O(T) time.

The main observation is that we do not need to construct the residual vectors explicitly.

These vectors are helping to run the recursion algorithm and at the same time show what

is the maximum L∞ error in each node. We claim that we can still run the same algorithm

without constructing the residual vectors. Let u be the j-th node in the i-th level and

let v0 → . . . → vi−1 = vi = u be the path of the nodes from the root to node u. Let also

X̄ = X[j ·w, . . . , (j+1)·w−1], for w = T/2i, be the subset of time-series X that corresponds

to the part of node u. It is straightforward to see that: p(i,j) = pu = f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
.

This is a very important observation because it shows that using only the original time series

along with the previously computed pool values we can get the new pool value we need to

store and compress.

Next, we show an efficient way to compute f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
. Of course, the actual

algorithm depends on the function f . Hence we check all of the main functions we used. This

method can be extended to a large family of functions. For all functions we are using, we have

the next observation: f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
= f(X̄) −

∑i−1
ℓ=0 pvℓ . It is easy to maintain

the second term
∑i−1

ℓ=0 pvℓ during the execution of the compression algorithm. Let Sv be the
23

sum of all pool values from the root to the node v. We can update Schild(v) = Sv + pchild(v)

in constant time. Hence, we only focus on how to compute f(X̄) efficiently. In particular,

we aim for constructing a data structure D in O(T) time such that given a query range [a, b],

compute f(X[a, . . . , b]) in O(1) time.

We start considering the midrank function f . We pre-process X and we build a range

MAX/MIN data structure D using the LCA technique Fischer and Heun [2007]. It is known

that D can be computed in O(T) time, it has O(T) space, and can answer a range MAX or

MIN query in O(1) time. Hence we can run Algorithm 1 in O(T) time.

Next, we consider the mean function f . Again, we need a data structure to find the mean

of X in a query range. We compute and store the prefix sums of X: D[h] =
∑h

z=0X[z].

Overall, we construct a data structure D in O(T) time such that given a range [a, b] we return

f(X[a, b]) =
D[b]−D[a−1]

b−a+1 in O(1) time. Again, we run Algorithm 1 for the mean function in

O(T) time.

It is straightforward how to get a random item in X[a, . . . , b] efficiently for the random

function f . We just get a random number t ∈ [a, b] and we return X[t]. So we can also

run Algorithm 1 in O(T) time for the random function. Next, we note that it is also

straightforward to run the compression algorithm for the pool functions with quantization.

The only difference is that when we find f(X[a, b]) we compute in O(1) time the integer

bucket it belongs to. Unfortunately, to the best of our knowledge, there is not any known

data structure to compute the median function in a query range in O(1) time, using at most

linear pre-processsing time.

Finally, the data structure we used for the midrank pool function is actually needed in

all pool functions to measure the L∞ error in each node/level in the hierarchy. Previously,

having a residual vector we could find the L∞ error by checking the absolute values of its

elements. In the optimum algorithm we do not construct explicitly the residual vectors,

so we cannot do the same procedure. Instead, we argue as before. From the definitions

24

it follows that Ru = X̄ −
∑i

ℓ=0 sw(pvℓ). Hence, eu = ||Ru||∞ = maxh{|X̄[h] − Su|} =

max{|maxh{X̄[h]} − Su|, |minh{X̄[h]} − Su|}. As we explained above, we can calculate

Su (from the parent node) in O(1) time. Using the same data structure D we used for the

midrank function Fischer and Heun [2007], we can find the MAX and the MIN value of

the original time series X in a query range, in O(1) time. Hence, we can compute the L∞

error in a node u of T in O(1) time. The overall running time of Algorithm 1 for every pool

function f we use (except the median), including the error calculation, is O(T).

5.1.2 Decompression

The decompression algorithm we described in the previous section runs in O(kT) time since

we take the sum of the residual vectors to retrieve the original time-series or an approximation

of it. We show how we can execute the decompression algorithm in only linear O(T) time.

More specifically, the algorithm can be executed in time linear to the number of nodes in the

hierarchy that we need to retrieve to run the decompression procedure. While the algorithm

is more tedious to describe than the compression algorithm, it is independent of the pool

function f we used in the compression phase.

For simplicity, assume that the decompression method needs to take the sum over all the

pool values (using spline interpolation) up to level L ≤ k. The algorithm can be extended in

case that we need to take the sum of vectors from different levels. We describe an algorithm

doing it without computing the spline interpolation vectors explicitly. The main idea is the

following: We run a sweep-line algorithm starting from left to right maintaining the total

sum of all the corresponding pool values in the hierarchy. For example, imagine that we are

currently considering index h ≤ T in the leaf node u. Let Sh be the total sum of the pool

values from the root to u. We observe that the decompressed value is X ′[h] = Sh. Hence,

the goal is to maintain the correct values Sh over all indexes h from left to right. In order

to derive the value Sh from Sh−1, we subtract the pool values that correspond to the nodes

25

that the index h− 1 belongs to and add the pool values that correspond to the nodes that

the index h belongs to. The pseudocode can be seen in Algorithm 2.

Algorithm 2: FastDecompression
Input : P
Output: X ′

1S−1 = 0;
2for h = 0 to T − 1 do
3i = L;
4Sh = Sh−1;
5while h mod T

2i
== 0 AND i ≥ 0 do

6j = h
T/2i

;

7Sh = Sh + p(i,j) − p(i,j−1);
8i = i− 1;
9X ′[h] = Sh

10return X ′;

The while condition in line 5 checks if there is a change in the pool values from index

h− 1 to h at level i. Then variable j stores the node at level i that the index h belongs to.

We update the value Sh subtracting the pool value p(i,j−1) (i.e., pool value in (j−1)-th node

at level i) and adding the pool value p(i,j) (i.e., pool value in j-th node at level i). We recall

that the notation p(i,j) is only used to simplify the description of the algorithm. We can

always access the pool value in the j-th node in the i-th level taking the value P [2i + j − 1]

in constant time. Algorithm 2 visits each compressed value in P two times, one to add it to

the sum and one to subtract it from the sum. Hence the running time is O(T).

5.2 Implementation Optimizations

Moving now from theory to practice, here we highlight a few systems best practices geared

towards implementing a scalable encoder-decoder pair—that is, a pair with a low latency

and runtime memory footprint.

26

5.2.1 Compression

The first step in optimizing the encoder (Algorithm 1) on a CPU is to convert the recursive

formulation to an iterative formulation—thereby avoiding the allocation of unnecessary stack

space. At each level, we apply the pool and spline operations in succession. A naive imple-

mentation of pooling might map the function of choice to each individual window. However,

there is a large amount of extra work in that we might perform an unnecessary memory allo-

cation operation to rearrange the array into windows of size n and then redundantly compute

w small sums—only to eventually divide each sum by the exact same value. Instead, we can

compute a prefix sum over the entire input with a single optimized function call and then in

constant time deposit each pooled value into a pre-allocated array. This technique exploits

the vectorization and the instruction-level parallelism present in conventional superscalar

processors.

Now suppose that we have a multivariate time series Y ∈ ℜT×p that consists of p uni-

variate columns. We can apply the encoding algorithm to each column in parallel and thus

achieve a latency speed up. Further suppose that we have b blocks in each univariate column.

We can also apply the encoding algorithm to individual blocks—or groups of blocks, for that

matter—which introduces a more granular form of parallelism.

5.2.2 Decompression

As an alternative approach to the linear time technique expressed in Algorithm 2, we can also

in principle exploit threaded parallelism within the decoder. The HIRE decoding algorithm

must calculate a linear combination over a large number of recomputed spline arrays. This

summation need not be done in a sequential order due to the fact that the pooled values

are already in memory. Visually, we can partition the hierarchy along the depth axis of the

tree such that each individual spline reconstruction and summation operation (Figure 4.1)

is assigned to a single thread. As a concrete example, if ten residual subtraction operations

27

are performed during encoding, ten addition operations must be performed during decoding.

If we have two cores available, then we can assign five operation pairs (reconstruction and

summation) to one thread and the remaining five to the other thread. We then perform

a meta summation over the vectors returned by each thread which therefore yields the

reconstructed time series X ′.

5.3 Extensions

We briefly discuss some extensions of our main method. In particular, we extend our method

to work with other error functions, and we show how we can split a time series to optimize

the hierarchical compression algorithm.

We extend our algorithms to alternative error guarantees. In particular, we show how our

compression method can bound the error of any Lp norm, extending the previous results for

the L∞ norm. For simplicity we focus on L1, and L2 norms. The main observation is that

the residual vector RX explicitly computed by Algorithm 1, or implicitly computed by the

optimized algorithm, contains the absolute differences from the original vector. Hence, we

argue that the Lp error of a node u is the Lp norm of vector RX in node u. More specifically,

in line 1 of Algorithm 1, we check whether ||X||∞ ≤∗. For any Lp norm we can use the

condition ||X||p ≤∗ to check the Lp error in the current node of the hierarchical compression.

If we want to measure the overall Lp error of the compressed time series we take the sum

of the errors over the nodes within the same level. We can show that the optimum pool

function to minimize the L1 error is the median function, while the optimum pool function

for the L2 error is the mean function. For all Lp error functions, the compression algorithm

runs in O(kT) time, as we had with the L∞ error (recall that k is the number of levels in the

hierarchical compression). Furthermore, the linear time optimized algorithm can be applied

for the L2 error. The L2 norm can be computed without constructing the residual vector

explicitly by constructing prefix sums for both the values of the original time series and their

28

squared values. The mean function can be computed also in constant time in each node as

we described in Section 5.1.1. On the other hand, the median function and the L1 norm

cannot be computed in O(1) time (doing linear preprocessing) so the optimized algorithm

cannot be used for the L1 error. Finally, notice that the linear time optimized decompression

algorithm is independent of the error function.

Figure 5.1: L∞, normalized L1, and normalized L2 error values at the final 6 levels of T on
1024 samples from a IHEPC time series. The root level is blue, and we traverse upwards to
the purple leaves. Note that the L1 and L2 bars are multiplied by constants c1, c2 for scale,
with actual values shown in black.

So far, the compression algorithm always splits the time-series at the middle. While

this method has many advantages, it might be possible that a different split may decrease

the overall error in a higher rate. Hence, we explore different ways to split a time series

during the compression algorithm. For example, using the optimum midrank function for

bounding the L∞ error, the best option is to split the time series such that the maxi-

29

mum difference of elements in each sub-time series is minimized. For example, given a time

series X with N elements we want to find the element j such that max{|maxi≤j X[i] −

minℓ≤j X[ℓ]|, |maxi>j X[i] −minℓ>j X[ℓ]|} is minimized. In order not to define a different

optimization problem for each error function and each pool function, we consider the fol-

lowing splitting function to split a time series in any scenario: We split at the element j

such that the sum of squared errors of the two sub-time series is minimized. In particular,

the sum of squared errors splitting a time series X on j is defined as max{
∑

i≤j(X[i] −

X̄≤j)2,
∑

ℓ>j(X[ℓ] − X̄>j)
2}, or

∑
i≤j(X[i] − X̄≤j)2 +

∑
ℓ>j(X[ℓ] − X̄>j)

2, where X̄≤j is

the mean of {X[1], . . . , X[j]} and X̄>j is the mean of {X[j + 1], . . . , X[N]}. Overall, the

sum of squared errors is defined as the sum of variances of the two sub-time series multiplied

by their cardinalities. Intuitively, it captures how homogeneous each sub-time series is. Ide-

ally, we would like to create homogeneous time series so that by applying a pool function

we minimize its error. We show that both functions, maximum difference and the sum of

squared errors, are increasing with respect to the number of elements in a time series. Hence,

we run a binary search on the elements of X and for each element j we check, we evaluate

the splitting function in both ranges [1, .., j] and [j + 1, .., N]. Based on their comparison

we continue the binary search either for larger or lower values of j. By constructing a data

structure in linear time in the pre-processing phase, we can evaluate both splitting functions

in a query range in O(1) time, as described above. The binary search takes O(log T) steps,

so the overall compression algorithm takes O(T + k log T) = O(T) time.

While, non-trivial splitting functions can help reducing the error faster, we notice that

we should explicitly store the splitting index j (in contrast to splitting always at the middle

where we do not store additional information). Storing the splitting indexes, the optimized

decompression algorithm can still work in linear time. On the other hand, by splitting always

at the middle, we do not have to store additional information.

30

CHAPTER 6

RELATED WORK

Of course, there has been substantial work in lossy numerical compression. Beyond the earlier

discussion and the baselines used in our evaluation, there has been substantial work in lossy

compression for scientific data Cappello et al. [2019], Krasowska et al. [2021], Son et al.

[2014]. Like our study, most of these techniques focus on spatio-temporal data, where the

data are organized on some continuous axis (such as space, time, or both). Example of such

techniques include SZ family of compression algorithms Di and Cappello [2016], Liang et al.

[2018], Zhao et al. [2021b] and the ZFP algorithm Diffenderfer et al. [2019]. These algorithms

follow a familiar structure to those described in our work, and offer L∞ error guarantees.

They generally pre-process/transform the data, quantize it, and then, apply a byte-level

encoding algorithm. We omit an extensive comparison because the problem settings are quite

different. Scientific data compression algorithms generally focus on maximizing compression

for data at rest, and the applicability of these techniques in an online or mini-batch setting

is more limited. Furthermore, to the best our our knowledge, multiresolution extensions to

these algorithms have not been developed.

There has also been significant interest in multiresolution problems in adjacent areas. In

approximate query processing, the DAQ project Potti and Patel [2015] uses a vertical layout

of floating point bits to construct incrementally more accurate query results with error guar-

antees. This approach does no compression (i.e., it does not save on storage), but it does

reduce the query latency for aggregate queries. The MLWeaving project has a similar ap-

proach to achieve machine learning training at different levels of precision Wang et al. [2019].

Similarly, multiresolution trees have been widely applied in approximate query processing

where data are aggregated at hierarchy predicates Lazaridis and Mehrotra [2001], Liang et al.

[2021], Buccafurri et al. [2011]. Similar “multiresolution” results for aggregate queries are

seen in wavelet techniques for AQP Chakrabarti et al. [2001], online aggregation Hellerstein

31

et al. [1997], and sketching Cormode et al. [2011]. This work inspires our approach in HIRE,

but is unfortunately only restricted to answering aggregate queries and not point-lookups.

Wavelet techniques beyond the scope of traditional linear algebra decompositions have also

been explored for multiresolution matrix compression Kondor et al. [2014].

Thus, we focus our study on a key set of baseline compression algorithms that: (1)

can run efficiently in the online setting with rapid incoming data, (2) provide L∞ error

guarantees for point queries, and (3) do not require dataset-specific modeling for compression.

It is worth mentioning recent data compression work that has been excluded from this

study. The DeepSqueeze project Ilkhechi et al. [2020] uses an auto-encoder to learn a low

dimensional set of features that can represent the original dataset. In our experiments, we

found that the “encoder” portion of the auto-encoder was very large in size (often the same

order of magnitude as the data), and since it is dataset-specific, it has to be included in

the compression ratio measurement. The encoder is required to compress any new data

that arrives. Similarly, we build a simplified version of Squish that works assuming column-

independence Gao and Parameswaran [2016a].

32

CHAPTER 7

EXPERIMENTS

We conducted our experiments on a Macbook Air M1 with 8GB RAM and 256GB SSD

running macOS 12.4. All implementations were done in Python 3.9. Our technique, in

addition to each baseline, was applied to 7 different multivariate time series data sets from

the UCI Dua and Graff [2017] repository. We use TRC as our downstream compressor.

7.1 Datasets

We selected 7 datasets that would represent possible real world applications of our technique,

where compressed multivariate time series could require multiple resolutions in order to

fulfill latency requirements. Our datasets are from four different projects within the UCI

repository: Heterogeneity activity recognition data set Stisen et al. [2015], from which we

used four different data sets, phones accelerometer (PA), phones gyroscope (PG), watch

accelerometer (WA), watch gyroscope (WG); Sensors for home activity monitoring (SHAM)

data set Huerta et al. [2016]; Individual household electric power consumption data set

(IHEPC) ; Bitcoin heist ransomware address data set (BC) Akcora et al. [2019]. We removed

all non-numerical columns, since numerical values are the focus of our present research. We

also removed missing data when present. As mentioned earlier, we assume a mini-batch

model for data arrival. Since HIRE assumes mini-batches that are sized as powers of 2, we

simply cut the different datasets to a multiple of our block sizes. This modification does not

change our experiments and is simply done for consistency. The resulting dimensions for

each dataset are displayed in Table 7.1.

33

Data set(s) Columns Rows
PA, PG, WA 3 262,144

SHAM 8 524,288
IHEPC 7 524,288

BC 7 1,048,576

Table 7.1: Dataset descriptions

7.2 Baselines

We compare HIRE with 9 different baselines ranging from state of the art methods for time

series compression to canonical methods for tabular data. Our baselines feature both lossless

and lossy techniques. Below is a brief description of each baseline:

• Identity Gzip (IdG): Lossless compression baseline; we apply Gzip to an array of

numbers represented as floating point values.

• Quantize (Q): We convert each floating point number to an integer according to a

user-defined error threshold, thereby saving exponent and mantissa bits (see 2.2.1 for

more details). The numbers are stored as integers with bitpacking.

• Quantize Gzip (QGZ): This method consists of a quantization step and Gzip as the

downstream compressor.

• Quantize TRC (QTRC): This method consists of a quantization step and the Turbo

Range Coder (TRC) as the downstream compressor. TRC uses a Burrows–Wheeler

transform (BWT) Burrows and Wheeler [1994] to rearrange blocks of values into runs

of the same symbol (i.e. integer), and then applies an arithmetic encoder Witten et al.

[1987] during the entropy encoding step.

• Sprintz (Spz): Firstly, it predicts the current sample based on the previous sample

and encodes its difference (see 2.2.2 for more details). Secondly, it bitpacks the errors

34

and stores metadata to allow for unpacking. Thirdly, it uses run length encoding on

blocks of all zero errors. Lastly, it Huffman encodes the headers and payload Blalock

et al. [2018].

• AdaptivePiecewiseConstant (APC) Piecewise approaches decompose a time series

into segments and use the segments to approximate the time series. Our version of

the algorithm adaptively sizes segments to enforce an error bound Chakrabarti et al.

[2002]. The downstream data are compressed with GZip.

• Gorilla (Grl): This technique employs a scheme that consists of a bitwise XOR be-

tween pairs of consecutive values. It then produces a lossless encoding for each pair

based on the number of leading or trailing zeros and the meaningful bits present Pelko-

nen et al. [2015a]. The downstream data are compressed with GZip.

• LFZip: This method employs the prediction-quantization-entropy lossy framework. It

first uses a model to predict the next value in the sequence based on the previous ones.

Subsequently, the difference between the prediction and the actual value is obtained

and quantized with a user determined Linf error. Finally, a version of BTW is applied

to the quantized data.Chandak et al. [2020]

• Buff : This technique was designed to compress float point numbers. It works at

two levels: eliminating less significant bits by adjusting for a certain precision and

compressing the float and integer parts independently.. 1 Liu et al. [2021]

35

Figure 7.1: Phone Gyroscope

36

7.3 Performance Overview

Figure 7.1 exemplifies the main argument behind the benefits of using HIRE over competing

methods. We display the compression ratio of compressed data at different error thresholds,

corresponding to the four best approaches among those that we analyzed. The breakdown of

compression ratio shows that at very low thresholds, we can always choose an error threshold

using HIRE that will yield a more compressed representation than the competing methods.

Hence, we need to encode the other methods at all possible error thresholds. On the other

hand, because of how our method is constructed, we only need to store the lowest threshold

and are able to retrieve all of the intermediate thresholds by traversing the tree structure

until we reach the desired resolution.

Overall, we perform better than all of the competing methods when it comes to the

combined compression ratio of all resolutions considered. For the experiments that we per-

formed, 10 different resolutions were chosen that are inside the scope of real world usage:

ε∗ ∈ {0.15, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001}. HIRE requires half of

the space to store all of the resolutions when compared to other baselines. Furthermore, the

compression throughput of HIRE is significantly better than methods with low compression

ratios, again due to the fact that we only need to run the encoder once to produce multiple

resolutions.

7.4 Compression Ratio

We evaluated the compression performance of all of the methods on each of the seven

datasets. The resulting compression ratios comprised of all of the resolutions are displayed

in Table 7.2. Gorilla has the worst performance among all the baselines evaluated, as there

1. Buff does not directly allow for compression within a certain L∞ error guarantee. It allows for a lossy
compression by adjusting the float precision. Therefore we are only evaluating its performance as a lossless
compression method.

37

are very few similar adjacent values on the real world data that we used. As we see Figure in

7.1, the best methods for a single error threshold scenario are Sprintz (Spz) and Quantized

Turbo Range Coder (QTRC), but when summing up all of the different resolutions, their

performance is on average two times worse than HIRE. One exceptional case is the SHAM

data set, where the performance was really close to ours. On this specific dataset, the sample

coefficient of variation (CV), the standard deviation over the mean, is extremely low due to

the relative stability of the data. This impacts HIRE’s smoothness throughout the various

levels, which consequently results in a worse performance.

PA PG WG WA SHAM HIEPC BC
IdGZ 5.554 4.023 4.498 4.643 7.698 2.172 2.306
Q 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QGZ 0.526 0.415 0.351 0.431 0.172 0.436 0.175
QTRC 0.258 0.156 0.119 0.170 0.029 0.183 0.116
Spz 0.275 0.157 0.119 0.179 0.023 0.222 0.164
APC 1.844 1.004 0.986 1.093 0.207 0.551 0.296
Grl 8.184 5.920 6.389 8.067 7.657 2.956 8.067
LFZip 1.242 0.484 0.413 0.413 0.185 1.347 3.988
Buff 4.219 3.906 3.906 4.219 4.688 4.531 *
HIRE 0.116 0.085 0.070 0.085 0.021 0.091 0.061

Table 7.2: Compression ratio: sum of all resolutions

7.5 Compression and Decompression Throughputs

The evaluation of compression throughput includes data reading, the compression algorithm,

and writing the compressed data to disk. HIRE outperforms all of the other low compres-

sion ratio baselines on average besides quantization alone (Q) as displayed in Table 7.3.2

However, (Q) has more than a 10 times higher compression ratio than HIRE as we observe

2. We report the throughputs without bitpacking for the relevant baselines that use the routine prior to
the execution of the downstream compressor. We found that in our experiments, bitpacking (implemented
with https://pypi.org/project/bitarray/), seemed to introduce a latency bottleneck that skewed some of the
results in favor of HIRE. As such, we decided to remove that step from the pipeline even though it inflates
the results of those baselines.

38

Figure 7.2: Compression ratio

Figure 7.3: Compression throughput

Figure 7.4: Decompression throughput

Figure 7.5: Breakdown of performance at different block sizes

39

in Table 7.2, making (Q) not practical in edge-computing applications. The main driver of

HIRE’s significant performance advantage is the fact that we require only a single call to

our compression routine in order to produce multiple resolutions. This directly contrasts

with the baseline methods, each of which compresses the data once per error threshold to

produce 10 separable encodings. Gorilla once again performs considerably worse in this sce-

nario due to its complex recursive encoding, where adjacent values are compared and bitwise

operations executed 3.

PA PG WG WA SHAM HIEPC BC
IdGZ 82 27 29 29 2 2 1.1
Q 1702 3855 2628 3648 454 399 419.2
QGZ 1949 102 111 68 36 3 1.2
QTRC 134 11 11 10 1 1 1.5
Spz 15 6 6 6 0.8 0.8 0.8
APC 27 50 51 46 223 52 138.9
Glz 3.1 3 3.1 3.1 0.3 0.5 3.1
LFZip 7.0 6.0 7.0 31.0 3.0 1.0 1.0
Buff 24.0 24.0 22.0 24.0 22.0 13.0 *
HIRE 1682.0 265.0 214.0 251.0 45.0 15.0 26.0

Table 7.3: Compression throughput in MB/s: sum of all resolutions

When it comes to decompression throughput, we report the average value for all of

the different resolutions in Table 7.4. While HIRE performs better than all of the low

compression ratio methods besides Quantize on the first four data sets, it is significantly

outpaced by the quantization family and APC on the last three. Once again, this is likely due

to the characteristics of the datasets. Applying HIRE to the first four datasets generates very

smooth residuals, which allows for a shorter path of traversal along the tree until the desired

resolution is reached. On data sets with extreme CVs, the traversal may not terminate until

very low levels, which is overall detrimental to decompression throughput. One exceptional

case is Gorilla, which has an extremely low decompression throughput when compared to the

3. We do note the caveat that Python is a high-level language, so the implementation that we used for
Gorilla likely does not perform bitwise operations efficiently. This observation may explain some of the poor
results for throughput, however the conclusion concerning compression ratio still stands fully in its own right.

40

other baselines. Once again, Gorilla’s performance is impacted by both the datasets used in

the analysis and its Python implementation.

PA PG WG WA SHAM HIEPC BC
IdGZ 282.4 1013 971.4 906.0 96.52 136.0 146.6
Q 24811 24235 20942 21598 1118 1381 1566
QGZ 609 25827 15050 14482 963 1282 1320
QTRC 105.2 1451 1656 1514 480.5 197.0 285.4
Spz 64.6 163.0 160.47 160.9 21.5 21.5 21.4
APC 272.87 501.57 510.57 460.53 2234 523.7 1388
Glz 0.02 85.02 0.02 0.02 0.00 0.00 0.02
LFZip 74.10 71.77 73.15 68.34 5.68 7.26 7.18
Buff 272.01 272.01 346.58 297.31 336.28 153.11 *
HIRE 284.5 1927 1923 1925 247.3 72.7 217.1

Table 7.4: Decompression throughput in MB/s: average of all resolutions

7.6 Micro-benchmarks

We ran several different experiments in order to understand our method’s most important hy-

perparameters: block size and start level. Additionally, we tested different pooling functions

and their effects on the relevant metrics. All experiments in this subsection were performed

on the Phones Accelerometer (PA) data set.

7.6.1 Block Size

A block represents a subset of the entire data set meant to be compressed. It allows for

an online/streaming application of the method, since one can wait until a pre-determined

block size is buffered before applying HIRE. However, it also affects the performance of the

algorithm. We evaluate two different scenarios in which we vary the block size: with and

without adjusting the starting level.

We notice in Figure 7.2 that as we increase the block size, the compression ratio decreases.

This behavior can be attributed to two distinct reasons. Firstly, the larger the block size,

the greater the range of values within each block. This phenomenon could possibly impact

41

Figure 7.6: Compression ratio

Figure 7.7: Compression throughput

Figure 7.8: Decompression throughput

Figure 7.9: Breakdown of performance for three different pooling functions

42

the variance of the residuals at each level, leading to less redundancy for the downstream

compressor to exploit. Second, the presence of outliers can be mitigated at smaller block

sizes, since their impact will be contained to a smaller subset of the data. Starting at a

higher level in the tree structure also reduces the amount of data being stored, which leads

to a positive impact on the compression ratio at each block size.

On the other hand, the increase in block size has a positive effect on compression through-

put, especially when going from a very small block (512 time steps) to 8192 as we see in

Figure 7.3. After that, the compression throughput plateaus on the adjusted level scenario

and slightly decreases on the regular one. We attribute this fact to hardware limitations that

impede further scalability due to the fixed number of CPU cores. Finally, when analyzing

the decompression throughput shown on Figure 7.4, we can clearly see that once again it

increases with the block size until it reaches a max value at roughly the same point as in

compression—8192. This observation is also due to hardware constraints. The level-adjusted

scenario performs significantly better than the regular one while being less affected by the

hardware constraints.

43

Figure 7.10: Compression ratio for different starting levels

7.6.2 Starting level

The starting level corresponds to the initial number of segments into which we break the

original time series X and apply the pooling function; or equivalently, the initial number

of nodes at level L of the binary tree T . That is, we do not need to start the recursion

at the first level, or even at the first few levels for that matter. Concretely, there is often

little to no value in pooling large segments, particularly when the block size is purportedly

large. We can therefore adjust the starting level in order to improve both compression ratio

and throughput, albeit we lose the resolutions that correspond to the levels that are skipped.

Such a trade-off is important in certain cases, as we may want to maintain a sufficient number

of levels to allow for a specific number of resolutions.

Figure 7.10 shows that as we increase the starting level, the compression ratio decreases.

Furthermore, the inverse relationship observed here is exponential in nature, since the num-

ber of values stored after pooling increases exponentially—specifically by a factor of 2—until

44

we reach the upper bound of T values at the leaf nodes of the hierarchy.

We observe an identical trend in compression throughput, which we will omit for the sake

of brevity. Starting at a later level means that there are less spline interpolations to execute,

and those which are executed have considerably less cost due—again to the exponential

nature of the segments as we traverse down the tree.

7.6.3 Pooling function

The pooling function plays an important role in how the data are summarized and conse-

quently the resulting residuals. We described its role in detail in Section 4.1.1. In Figure 7.6,

we display the compression ratios at various error thresholds for the three pooling functions:

mean, median, and midrank.

In Figures 7.7 and 7.8 respectively, we compare the compression and decompression

throughputs achieved by the three pooling functions. The compression throughput of the

mean is markedly higher at all of the thresholds we tested, which is consistent with the highly

optimized implementation style that we chose (see 5.2). We note that the decompression

throughput seems to stay somewhat similar for smaller error thresholds but then proceeds

to diverge at larger error thresholds.

45

CHAPTER 8

CONCLUSION

We presented HIRE, a novel system for multiresolution compression that uses hierarchical

residual encoding for time series data. We showed that strict and multiple encoding suffer

from a high transfer cost and compression ratio in edge storage and retrieval applications.

We proposed an efficient technique to handle multiresolution compression that alleviates the

limitations of the previous methods. Our experiments validate that our system performs

better than the baselines at multiresolution compression for edge computing applications.

HIRE can also be extended to the multivariate case. As mentioned, one simple way is to

encode each time series independently. A more involved and efficient way is to extend our

univariate hierarchical method. Instead of splitting the residual vector into two separate time

series, we partition the values into four multivariate time series. Applying the residualizing

step in a recursive manner, our compression and decompression algorithms could expand to

handle the multiresolution problem in the multivariate case.

46

CHAPTER 9

SPATIAL-TEMPORAL EXTENSION

Spatial-temporal datasets are becoming prevalent in a wide range of applications, ranging

from self-driving cars Caesar et al. [2020], security video Oh et al. [2011] to satellite images

Lyons et al. [2022]. Furthermore, advances in hardware, more specifically GPUs, have allowed

for the proliferation of scientific simulations that can generate petabytes of data Habib

et al. [2013], creating the necessity to store significant amounts of data. The usefulness of

compression techniques naturally arises as an effective way to manage such massive storage

requirements.

We propose an extension to HIRE that leverages the spacial dependence of datasets in

order to create an efficient multiresolution compression for high dimensional data. Contrary

to state of the art methods for scientific data compression Zhao et al. [2021a], we allow

for a single compression representation with multiple decompression resolutions, once again

giving the user the flexibility necessary for different applications that could arise while re-

quiring significantly less storage. Moreover, our method offers state of the art multiresolution

compression speeds and competitive decompression throughput.

9.1 Research Plan

• Oct/22−Dec/22 : Framework implementation

• Jan/23 : Experiments

• Feb/23 : Paper write-up

• Mar/01/2023 : VLDB23 Submission

47

REFERENCES

Cuneyt Gurcan Akcora, Yitao Li, Yulia R Gel, and Murat Kantarcioglu. Bitcoinheist: Topo-
logical data analysis for ransomware detection on the bitcoin blockchain. arXiv preprint
[Web Link], 2019.

Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the application.
In 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20), 2020.

Gennady Antoshenkov. Dictionary-based order-preserving string compression. The VLDB
Journal, 6(1):26–39, 1997.

Davis W. Blalock, Samuel Madden, and John V. Guttag. Sprintz: Time series compression
for the internet of things. CoRR, abs/1808.02515, 2018. URL http://arxiv.org/abs/
1808.02515.

Francesco Buccafurri, Filippo Furfaro, Giuseppe M Mazzeo, and Domenico Saccà. A quad-
tree based multiresolution approach for two-dimensional summary data. Information Sys-
tems, 36(7):1082–1103, 2011.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Tech-
nical report, 1994.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020.

Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao, Chun Hong
Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. Use cases of lossy com-
pression for floating-point data in scientific data sets. The International Journal of High
Performance Computing Applications, 33(6):1201–1220, 2019.

Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Approximate
query processing using wavelets. The VLDB Journal, 10(2):199–223, 2001.

Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Pazzani. Locally
adaptive dimensionality reduction for indexing large time series databases. ACM Trans.
Database Syst., 27(2):188–228, jun 2002. ISSN 0362-5915. doi:10.1145/568518.568520.
URL https://doi.org/10.1145/568518.568520.

Shubham Chandak, Kedar Tatwawadi, Chengtao Wen, Lingyun Wang, Juan Aparicio Ojea,
and Tsachy Weissman. Lfzip: Lossy compression of multivariate floating-point time series
data via improved prediction. In 2020 Data Compression Conference (DCC), pages 342–
351, 2020. doi:10.1109/DCC47342.2020.00042.

Chris Chatfield. The holt-winters forecasting procedure. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 27(3):264–279, 1978.

48

http://arxiv.org/abs/1808.02515
http://arxiv.org/abs/1808.02515
https://doi.org/10.1145/568518.568520
https://doi.org/10.1145/568518.568520
https://doi.org/10.1109/DCC47342.2020.00042

Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations and Trends® in
Databases, 4(1–3):1–294, 2011.

Sheng Di and Franck Cappello. Fast error-bounded lossy hpc data compression with sz.
In 2016 ieee international parallel and distributed processing symposium (ipdps), pages
730–739. IEEE, 2016.

James Diffenderfer, Alyson L Fox, Jeffrey A Hittinger, Geoffrey Sanders, and Peter G Lind-
strom. Error analysis of zfp compression for floating-point data. SIAM Journal on Scien-
tific Computing, 41(3):A1867–A1898, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archiv
e.ics.uci.edu/ml.

Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. The sap hana database–an architecture overview. IEEE Data Eng.
Bull., 35(1):28–33, 2012.

Johannes Fischer and Volker Heun. A new succinct representation of rmq-information and
improvements in the enhanced suffix array. In International Symposium on Combinatorics,
Algorithms, Probabilistic and Experimental Methodologies, pages 459–470. Springer, 2007.

Yihan Gao and Aditya Parameswaran. Squish: Near-optimal compression for archival of
relational datasets. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1575–1584, 2016a.

Yihan Gao and Aditya G. Parameswaran. Squish: Near-optimal compression for archival of
relational datasets. CoRR, abs/1602.04256, 2016b. URL http://arxiv.org/abs/1602
.04256.

Dimitrios Giouroukis, Alexander Dadiani, Jonas Traub, Steffen Zeuch, and Volker Markl.
A survey of adaptive sampling and filtering algorithms for the internet of things. In
Proceedings of the 14th ACM International Conference on Distributed and Event-based
Systems, pages 27–38, 2020.

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani,
and Vidhya Srinivasan. Amazon redshift and the case for simpler data warehouses. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 1917–1923, 2015.

Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and Katrin
Heitmann. Hacc: Extreme scaling and performance across diverse architectures. In SC ’13:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–10, 2013. doi:10.1145/2503210.2504566.

Lajos Hanzo, Tong Hooi Liew, and Bee Leong Yeap. Turbo coding, turbo equalisation and
space-time coding. John Wiley & Sons, 2002.

49

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1602.04256
http://arxiv.org/abs/1602.04256
https://doi.org/10.1145/2503210.2504566

Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation. In Proceedings of
the 1997 ACM SIGMOD international conference on Management of data, pages 171–182,
1997.

Ramón Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai Rulkov, and Irene Rodriguez-
Lujan. Online decorrelation of humidity and temperature in chemical sensors for con-
tinuous monitoring. Chemometrics and Intelligent Laboratory Systems, 157, 07 2016.
doi:10.1016/j.chemolab.2016.07.004.

BR Hutchinson and GD Raithby. A multigrid method based on the additive correction
strategy. Numerical Heat Transfer, Part A: Applications, 9(5):511–537, 1986.

Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran Shi, and Ugur
Cetintemel. Deepsqueeze: deep semantic compression for tabular data. In Proceedings of
the 2020 ACM SIGMOD international conference on management of data, pages 1733–
1746, 2020.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for
segmenting time series. In Proceedings 2001 IEEE international conference on data mining,
pages 289–296. IEEE, 2001.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting time series: A
survey and novel approach. In Data mining in time series databases, pages 1–21. World
Scientific, 2004.

Eamonn J Keogh and Michael J Pazzani. Scaling up dynamic time warping for datamin-
ing applications. In Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 285–289, 2000.

Risi Kondor, Nedelina Teneva, and Vikas Garg. Multiresolution matrix factorization. In
International Conference on Machine Learning, pages 1620–1628. PMLR, 2014.

David Krasowska, Julie Bessac, Robert Underwood, Jon C Calhoun, Sheng Di, and Franck
Cappello. Exploring lossy compressibility through statistical correlations of scientific
datasets. In 2021 7th International Workshop on Data Analysis and Reduction for Big
Scientific Data (DRBSD-7), pages 47–53. IEEE, 2021.

Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggregate queries with a
multi-resolution tree structure. Acm sigmod record, 30(2):401–412, 2001.

Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. Combining aggregation and
sampling (nearly) optimally for approximate query processing. In Proceedings of the 2021
International Conference on Management of Data, pages 1129–1141, 2021.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong Chen,
and Franck Cappello. Error-controlled lossy compression optimized for high compression
ratios of scientific datasets. In 2018 IEEE International Conference on Big Data (Big
Data), pages 438–447. IEEE, 2018.

50

https://doi.org/10.1016/j.chemolab.2016.07.004

Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12):2674–2683, 2014.
doi:10.1109/TVCG.2014.2346458.

Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J. Elmore. Decomposed bounded
floats for fast compression and queries. Proc. VLDB Endow., 14(11):2586–2598, jul 2021.
ISSN 2150-8097. doi:10.14778/3476249.3476305. URL https://doi.org/10.14778/347
6249.3476305.

Mitchell Lyons, Kirk Larsen, and Matt Skone. CoralMapping/AllenCoralAtlas: DOI for
paper at v1.3, June 2022. URL https://doi.org/10.5281/zenodo.6622015.

Alistair Moffat. Huffman coding. ACM Computing Surveys (CSUR), 52(4):1–35, 2019.

Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek
Lee, Saurajit Mukherjee, J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears, Xi-
aoyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Vondrick, Hamed Pirsi-
avash, Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit
Roy-Chowdhury, and Mita Desai. Avss 2011 demo session: A large-scale benchmark
dataset for event recognition in surveillance video. In 2011 8th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS), pages 527–528, 2011.
doi:10.1109/AVSS.2011.6027400.

John Paparrizos, Chunwei Liu, Aaron J Elmore, and Michael J Franklin. Debunking four
long-standing misconceptions of time-series distance measures. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 1887–1905, 2020.

John Paparrizos, Chunwei Liu, Bruno Barbarioli, Johnny Hwang, Ikraduya Edian, Aaron J
Elmore, Michael J Franklin, and Sanjay Krishnan. Vergedb: A database for iot analytics
on edge devices. In CIDR, 2021.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time se-
ries database. Proc. VLDB Endow., 8(12):1816–1827, aug 2015a. ISSN 2150-8097.
doi:10.14778/2824032.2824078. URL https://doi.org/10.14778/2824032.2824078.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza,
and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment, 8(12):1816–1827, 2015b.

Navneet Potti and Jignesh M Patel. Daq: a new paradigm for approximate query processing.
Proceedings of the VLDB Endowment, 8(9):898–909, 2015.

Julian Seward. bzip2 and libbzip2. avaliable at http://www. bzip. org, 1996.

John Shahid. Influxdb documentation, 2019.

51

https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.14778/3476249.3476305
https://doi.org/10.14778/3476249.3476305
https://doi.org/10.14778/3476249.3476305
https://doi.org/10.5281/zenodo.6622015
https://doi.org/10.1109/AVSS.2011.6027400
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078

Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng Liao, and
Alok Choudhary. Data compression for the exascale computing era-survey. Supercomputing
frontiers and innovations, 1(2):76–88, 2014.

Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun
Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities for activity recogni-
tion. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Sys-
tems, SenSys ’15, page 127–140, New York, NY, USA, 2015. Association for Comput-
ing Machinery. ISBN 9781450336314. doi:10.1145/2809695.2809718. URL https:
//doi.org/10.1145/2809695.2809718.

Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on
consumer electronics, 38(1):xviii–xxxiv, 1992.

Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo Alonso, Onur Mutlu, and Ce Zhang.
Accelerating generalized linear models with mlweaving: A one-size-fits-all system for any-
precision learning. Proceedings of the VLDB Endowment, 12(7):807–821, 2019.

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the
h. 264/avc video coding standard. IEEE Transactions on circuits and systems for video
technology, 13(7):560–576, 2003.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for
data compression. Commun. ACM, 30(6):520–540, jun 1987. ISSN 0001-0782.
doi:10.1145/214762.214771. URL https://doi.org/10.1145/214762.214771.

Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis, Ankit Chaud-
hary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M Grulich, Ariane Ziehn,
and Volker Mark. Nebulastream: Complex analytics beyond the cloud. Open Journal of
Internet Of Things (OJIOT), 6(1):66–81, 2020.

Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen, and
Franck Cappello. Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation. In 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE), pages 1643–1654, 2021a. doi:10.1109/ICDE51399.2021.00145.

Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D Tonellot, Zizhong Chen, and
Franck Cappello. Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation. In 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE), pages 1643–1654. IEEE, 2021b.

52

https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1109/ICDE51399.2021.00145

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Background
	2.1 Time Series Compression Basics
	2.2 Compression with Bounded L Error
	2.2.1 Quantization
	2.2.2 Temporal Decorrelation
	2.2.3 Byte-Encoding

	2.3 The Multiresolution Problem

	3 Mathematical Intuition
	3.1 Residualization
	3.2 Relevance to Time Series Compression
	3.3 Novelty

	4 HIRE: Hierarchical Residual Encoding
	4.1 Algorithm Basics
	4.1.1 Quantized Pooling
	4.1.2 Spline interpolation
	4.1.3 Residual Vectors

	4.2 Algorithm Description
	4.3 Decompression

	5 Optimizations
	5.1 Algorithmic Optimizations
	5.1.1 Compression
	5.1.2 Decompression

	5.2 Implementation Optimizations
	5.2.1 Compression
	5.2.2 Decompression

	5.3 Extensions

	6 Related Work
	7 Experiments
	7.1 Datasets
	7.2 Baselines
	7.3 Performance Overview
	7.4 Compression Ratio
	7.5 Compression and Decompression Throughputs
	7.6 Micro-benchmarks
	7.6.1 Block Size
	7.6.2 Starting level
	7.6.3 Pooling function

	8 Conclusion
	9 Spatial-Temporal Extension
	9.1 Research Plan

	References

