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Abstract

Recently Aaronson proposed a certified randomness protocol based on random circuit sam-
pling (RCS), which is the leading proposal for achieving quantum advantage. This protocol relies
on a non-standard complexity-theoretic conjecture. In this paper, we unconditionally prove two
versions of this conjecture in the black-box setting.
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1 Introduction

Certified randomness refers to randomness expansion protocols, where a small (secret) truly random
binary seed s can be extended to x where |x| ≫ |s| and it is also statistically close to uniformly
random, by interacting with an untrusted device. Originally device-independent (private) certified
randomness protocols were proposed by using non-signalling quantum devices that violate the Bell
inequality. Informally, assuming we are given two non-signalling devices, [PAM+10] lower bounds
the min-entropy of their output distribution by a function of their CHSH correlation function:

I =
∑
x,y

(−1)xy [Pr(a = b|xy)−Pr(a ̸= b|xy)]

∗Department of Computer Science, University of Chicago. Email:roozbeh@uchicago.edu

1



And one can use the CHSH violation score to certify the min-entropy of the output distribution,
even while conditioned on a quantum adversary that holds a system correlated with these devices.
Lastly, we can use randomness extractors [GUV09], to extend a small random seed using this high
min-entropy source.

Aaronson’s certified randomness proposal uses random circuit sampling (RCS) to construct the
high min-entropy distribution. In RCS, given a random quantum circuit, we are asked to sample
from the output distribution of the circuit. Informally, since the output distribution of a random
quantum circuit has high min-entropy, if we truly get samples from the output distribution, it
is clear that we can use extractors to expand our random seed. However, verifying that one has
done RCS faithfully is difficult and requires exponential samples from the device [VV17, HKEG19].
To reduce the sample complexity, current experiments only use polynomial number of samples in
their statistical tests to verify RCS, i.e. Heavy Output Generation (HOG), Linear Cross Entropy
(LXEB) [AC17]. Intuitively, these statistical tests check whether slightly heavier outcomes happen
more often than light outcomes. Even if we assume that passing these statistical tests are classically
intractable, it is not clear what passing HOG-like 1 tests imply about min-entropy of the output
distribution. Even though doing RCS faithfully passes these tests, a quantum algorithm might pass
these tests without performing RCS.

To get past this issue, Aaronson uses a custom complexity-theoretic conjecture called the “long
list quantum supremacy verification” assumption (LLQSV). In this work we prove two versions of
LLQSV in the black-box setting to give further evidence for his certified randomness protocol.

1.1 Motivation and Background

As mentioned in [PAM+10], one disadvantage of Bell inequality protocols is the experimental as-
sumption. Not only it is not easy to construct these systems in labs, we need to control the devices
to monitor any unwanted communication in the adversarial scenario, in which we do not trust the
manufacturer of the device. This make these devices hard to use for “public” certified random
number generation. This is not the case for Aaronson’s protocol as long as we assume the device
is implementing a quantum process.

Furthermore, the computational tasks performed in these quantum advantage tests are toy
problems designed to cater to the strengths of the experimental device, and the next natural step
after achieving “quantum advantage” is for NISQ devices to perform a useful computational task.
Aaronson’s protocol is based on quantum random circuit sampling (RCS), the same computational
task which was implemented in the Google [AAB+19] and second USTC [ZCC+21] experiments.

We first start by restating the definition of quantum random circuits in RCS. The distribution
over random circuits is defined over a fixed circuit architecture. Informally, an architecture A is
an outline of a quantum circuit on n qubit. One can sample a random circuit by specifying each
gate and drawing each gate Haar randomly (or from a finite set of local gates). Now consider the
following problem:

Problem 1. Given a random quantum circuit C on n qubits, output a sample s such that:

E
C

[
PC(s)

]
≥ b

N

where PC(s) = | ⟨s|C |0n⟩ |2 and b = 1 + ε and ε = poly(1/n).

1We note other statistical tests such as cross-entropy [BIS+18] and linear-cross-entropy [AAB+19, AG19] are very
similar, and we refer to these collectively as “HOG-like tests”.
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The first step to get the protocol proposed by [Aar20] is to prove that any quantum algorithm
that solves Problem 1 has linear min-entropy. Informally, this implies that the trivial quantum
algorithm that samples from the output distribution of C is almost optimal. We already know
that the trivial quantum algorithm that samples from the output distribution of C is a solution for
this problem [PT56, BIS+18], and in fact we have strong evidence that current NISQ devices are
capable of solving this problem [AAB+19]. It is easy to see that one can feed the output distribution
of an algorithm solving Problem 1 to randomness extractors such as [GUV09] and extract O(n)
number of random bits. However, at this stage we, we require even more random bits to generate
the starting random circuit.

Now suppose we have access to a machine that solves Problem 1. Then consider the following
protocol:

1. Generate pseudorandom n qubit quantum circuits C1, C2, . . . , Ck, where k = poly(n).

2. Get samples s1, . . . , sT , and verify that the samples have the promised property (in exponen-
tial time).

3. Use a classical randomness extractor to extract random bits from (s1, . . . , sk).

Notice that we can choose the random circuit from a sub-exponentially secure pseudorandom
distribution (or even secure against QSZK [Aar18a]) and tweak the security parameter to boost
the number of random bits we start from in a single round. For completeness, we summarize how
certified random number generation is possible from “long list” conjectures. We already know that
the trivial quantum algorithm that samples from the output distribution of C is a solution for
this problem [PT56, BIS+18], and in fact we have strong evidence that current NISQ devices are
capable of solving this problem [AAB+19]. If we can prove that any algorithm in BQP for Problem
1 has min-entropy larger than the random seed required by our pseudorandom generator, we can
connect cryptographic assumptions to certified random bit generation. Our main tool for proving
such a claim is the hardness of LLQSV. Suppose we are given access to oracle O which is a long
(exponentially large) list of n qubit random quantum circuits C1, C2, . . . , CT paired with strings
s1, s2, . . . , sT . We can informally define the Long List Hardness Assumption (LLHA):

Conjecture 2. Given oracle access to O it is QCAM-Hard to distinguish the following two cases:

1. Each si is sampled uniformly at random.

2. Each si is sampled from the output distribution of Ci.

To summarize the overall proof strategy, we focus on refuting the existence of a deterministic BQP
algorithm for Problem 1. The key idea is that if we have access to a deterministic function solving
Problem 1, we can use this function in an approximate counting argument to count the number of
collisions between the output of that function and the output of the quantum circuit. Furthermore,
if the list in the conjecture is long enough, we can use Chernoff bound to separate the two cases
which gives a QCAM protocol for LLQSV. Suppose we are given an instance of LLQSV, where
T = N3 = 23n. Let S =

∑T
i PCi(si). Then by Hoeffding’s inequality we have:

Pr
[
S ≤ bN2 − ε

2
N2

]
≥ exp(−ε2N4

N3
) ≥ exp(−O(n))

Let V = |{i|si ∈ Q(Ci)}|. Next we can use Chernoff bound to separate the two cases:

1. Pr
[
V ≥ (1 + δ)N2

]
≤ exp(− δ2

2+δN
2) ≤ exp(−N)
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2. Pr
[
V ≤ (1− δ)((1 + ε

2)N
2)
]
≤ exp(− δ

2(1 +
ε
2)N

2) ≤ exp(−N)

By setting δ = ε2, with high probability:

1. In the uniform case V < (1 + ε2)N2.

2. Otherwise V > (1 + ε
4)N

2

Lastly, we can use approximate counting to estimate this value up to a multiplicative factor of (1+
ε2) to decide between these two cases with high probability. In [Aar20], Aaronson provides further
evidence that this argument can be extended to constant min-entropy algorithms and provide
methods to accumulate entropy.

1.2 Our Results

In his initial certified randomness proposal [Aar18a, Aar20], Aaronson gave a reduction from the
problem of certifying min-entropy to a certain decision problem called the Long List Quantum
Supremacy Verification (LLQSV) problem. The LLQSV problem essentially asks how hard it is to
distinguish exponentially many samples from RCS from uniformly random numbers. Aaronson
showed that if this problem lies outside of QCAM then no efficient quantum algorithm can pass the
HOG test with low min-entropy. Analogously to [AC17], Aaronson explored potential algorithms
for this problem and found they did not solve it, and subsequently conjectured such a QCAM
algorithm does not exist. This is a custom assumption, and therefore deserves scrutiny – it is
simultaneously conjecturing this problem lies outside of BQP, outside of AM, and beyond. In our
second result, we give evidence towards its validity in the black-box setting. Namely, we show that
the black-box LLQSV problem lies outside of BQP and even outside of PH (and hence outside of
AM).

Theorem 3. (informal) No BQP or PH algorithm can solve black-box LLQSV. Furthermore, our
lower-bound extends even to the case in which the quantum algorithm is allowed to make O(2n/10)
queries, and the relation in the PH algorithm can be computed in time O(2n/c) for some constant
c that depends on the level of polynomial hierarchy.

We give two independent proofs of the PH lower bound and one of the BQP lower-bound. The
first PH bound and the BQP bound are based on extending lower bounds for the MAJORITY
function. The second PH bound is based on introducing a black-box variant of LLQSV that we call
SquaredForrelation, which is also closely related to the Forrelation problem. In this problem we are
given black-box access to two functions f, g : {0, 1}n → {±1}, and are asked to distinguish whether
f, g are chosen uniformly at random or whether g is correlated with the heavy Fourier coefficients of
f . It is simple to show that the SquaredForrelation problem is strictly easier than LLQSV, because it
reduces to LLQSV and it also admits a BQP algorithm. Intuitively this allows one to sample heavy
elements of the Fourier spectrum and therefore recreate a long list of samples. Nevertheless, we
prove that even the SquaredForrelation problem is not in PH. This simultaneously proves a lower
bound on black-box LLQSV and gives another oracle separation of BQP vs PH [RT19].

1.3 Proof Outline

. First we formally define the Black-Box LLQSV problem:

Problem 4 (black-box LLQSV). Given oracle access to O, distinguish the following two cases:
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• U : For each i, fi and si are chosen uniformly at random.

• D : For each i, fi is a random Boolean function, and si is sampled according to f̂2
i .

We observe there is a close connection between black-box LLQSV and the MAJORITY problem.
To see this we notice that in either case the probability of sampling a pair (f, s) only depends on
the magnitude of the Fourier coefficient of f at s, or equivalently |h(f · χs)−N/2|, where h is the
hamming weight and χs is the s-Fourier character (i.e., χs(x) = (−1)x·s)). This allows us to write
both distributions as a linear combination of simpler distributions UN

d – the uniform distribution
over all strings of hamming weight N/2 + d or N/2− d.

An averaging argument then implies that any algorithm for black-box LLQSV should also dis-
tinguish a pair of distributions in the linear combinations. To prove the hardness of this task, a
hybrid argument allows us to focus on distinguishability of UN

0 and UN
d , and since we are working

with random Boolean functions, d is bounded by poly(n)/
√
N . Lastly, we use known lower bounds

for MAJORITY to prove that these two distributions are indistinguishable for both BQP and PH
algorithms. We discuss this in more details in Section 2.

Perhaps more interestingly, we can show a reduction from a similar problem to Forrelation, that
we call SquaredForrelation, to black-box LLQSV. This enables us to get an alternative lower bound
for black-box LLQSV, by proving a PH lower bound for SquaredForrelation. Crucially, it is not hard
to see that SquaredForrelation is in BQP, which makes it a strictly easier problem than black-box
LLQSV, and hence our lower bound stronger. SquaredForrelation also gives an alternative oracle
separation of BQP and PH, that has distinct advantages from previous similar results.

One advantage is that the quantum algorithm for SquaredForrelation only makes classical queries
to g. On one hand, this property plays a critical role in the reduction between SquaredForrelation
and black-box LLQSV. Moreover, this property allows us to consider a more realistic instantiation
of these oracles (compared to [RT19]), as explained next.

Recall that in [RT19], an oracle separation BQPO ̸⊆ PHO was obtained with respect to the
Forrelation problem. The problem asks to distinguish whether two functions f and g (given as
oracles) are either completely random and independent or whether the Fourier transform of f
correlates with g. The Forrelation problem can be solved via a simple efficient quantum algorithm
that queries both f and g in superposition, but cannot be solved by a PH machine. One drawback
of this problem is that there’s seemingly no efficient implementation of the oracles under which the
problem remains non-trivial. In particular, if f is a random small circuit, then it seems any small
circuit g doesn’t correlate with f ’s Fourier transform. If one settles for having small circuits only
for f but not g (or vice versa), then the problem remains non-trivial, but even in this scenario the
problem seems far from practical as a quantum algorithm would need to query an exponentially
large oracle g in superposition.

Our new problem SquaredForrelation, which is a variant on Forrelation, has the feature that the
quantum algorithm solving it works as follows: (i) query f in superposition once, then (ii) measure
the entire state, and finally (3) query g classically. The problem is defined as follows:

Problem 5 (simplified SquaredForrelation). Given oracle access to Boolean functions f, g : {0, 1}n →
{±1}, distinguish the following two cases:

1. f and g are both chosen uniformly at random.

2. f is chosen uniformly at random and g is the indicator of the heavy Fourier coefficients of f .

where by a heavy Fourier coefficient, we mean that the squared coefficient is larger than its
expected value 1

N . The main difference between SquaredForrelation and Forrelation is that g is
correlated with squared Fourier coefficients rather than the sign of Fourier coefficients.
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Indeed the quantum algorithm that queries f in superposition, measures in the Hadamard basis,
and then queries g classically solves the problem. Notice that this algorithm is a combination of
a quantum and classical algorithm. This means that in principle, if f has a small circuit, then
the quantum part of the algorithm can implemented efficiently, followed by a much longer classical
“post-mortem” part that queries g.

In particular, following [AC17, Section 7.4], this suggests choosing the oracle f , the only function
that is queried in superposition, from a pseudorandom family of functions. We have not yet explored
these directions in this manuscript, but we point out that one difference between our problem and
the problems from [AC17, Section 7.4] (called Fourier Fishing and Fourier Sampling) is that ours
is a decision problem whereas theirs are sampling problems.

Lower Bound for black-box LLQSV via SquaredForrelation We summarize the second PH lower
bound for black-box LLQSV in two steps. First we prove a PH lower bound for SquaredForrelation,
and then we show a reduction from SquaredForrelation to black-box LLQSV.

The first step of the proof proceeds by carefully incorporating the squared Fourier coefficients
in the analysis of Raz and Tal [RT19]. Recall that the analysis of [RT19] proceeds by looking at
a multivariate Gaussian as a stopped Brownian motion. This allows them to write the expected
value of a multilinear function over the multivariate Gaussian as a telescopic sum, and bound each
term in the sum independently. Finally, they show that it is possible to convert this continuous
distribution to a discrete distribution D while preserving the expected value by truncating each
coordinate to the interval [−1, 1] followed by randomized rounding.

A nice feature about Gaussians that was heavily exploited in the analysis of [RT19] is that the
sum of t independent Gaussians is again a Gaussian. When dealing with squares of Gaussians this
is no longer true. Nevertheless, if Z ∼ N (0, σ2) then one can still write Z2 −E[Z2] as the result of
a martingale composed of many small steps. To present Z2 − E[Z2] as a martingale, first observe
that if X (the “past”) and ∆ (the “next step”) are two independent zero-mean Gaussians, then

(X +∆)2 −E[(X +∆)2] = (X2 −E[X2]) + ∆2 + 2∆ ·X −E[∆2]

and thus E[∆2 +2∆ ·X −E[∆2] | X] = 0. Since a Gaussian Z ∼ N (0, σ2) can be written as a sum
of t independent Gaussians Z1, . . . , Zt ∼ N (0, σ2/t), we see that Z2−E[Z2] may be written as sum
of t small steps, each of the form Z2

i + 2Zi · Z<i − E[Z2
i ], with expected value 0 even conditioned

on the past Z<i = Z1 + . . . + Zi−1. The rest follows from the analysis of [RT19] that crucially
relies on presenting the final distribution as a sum of many small steps with expected value 0. As
a consequence, we obtain a new oracle O so that BQPO ̸⊆ PHO.

In our next step, the reduction from SquaredForrelation to black-box LLQSV, we make use of
the fact that g is not queried in superposition by the quantum algorithm. This observation follows
by rejection sampling according to g; intuitively this allows one to sample heavy elements of the
Fourier spectrum and therefore recreate a long list of samples. So far we have worked with one
instance of the SquaredForrelation problem, however, we prove that our lower bound easily extend
to the case that we have oracle access to a (exponentially) long list of samples in SquaredForrelation.
Consequently, this shows that the black-box LLQSV problem is not in PH.

In our previous discussion we have two oversimplifications which hide technical difficulties that
we face in our argument. First, unlike in our simplified SquaredForrelation problem, the actual
SquaredForrelation problem concerns a distribution over functions f and g that are obtained by
taking multivariate Gaussians and randomized rounding them to have support over the Boolean
cube. Second, rejection sampling according to g samples a uniformly random heavy squared Fourier
coefficient of f , which is not the same as the Fourier transform distribution itself. We address these

6



differences in detail in Section 3.4. Intuitively, to fix this issue recall that the goal of these long
list hardness results is to generate certified random numbers. We show we can do that even
when the quantum algorithm can sample heavy outcomes according to the distribution generated
by rejection sampling (i.e., we can think of this as a new benchmark test much like HOG, but
with respect to a new distribution). Accordingly, we show that the same quantum algorithm
that samples according to the Fourier transform distribution also outputs heavy outcomes from
the rejection sampling distribution on average. Proving this requires combining the analysis of the
success probability of the quantum algorithm for SquaredForrelation with tail bounds on the number
of “heavy” coefficients.

2 Black Box LLQSV

In the next two sections, we consider black-box variants of LLQSV. Here, we focus on black-
box LLQSV, where instead of random circuits we have oracle access to random Boolean functions
f1, . . . , fm and the samples s1, . . . , sm are taken either uniformly at random or according to the
squared Fourier coefficients of the functions. In this setting, to provide evidence for QCAM hardness,
we unconditionally prove lower bounds against BQP and PH (And hence, against AM [BHZ87]).
Recall that black-box LLQSV asks to distinguish samples from distributions D (samples according
to the Fourier coefficients) and U (uniformly random samples). First we notice an alternative way to
sample from distribution D that makes our analysis easier. Since ∀z ∈ {0, 1}n : PrD[si = z] = 1

N ,
we can sample from the joint distribution of a random function and a sample according to the
Fourier distribution by first sampling a uniformly random outcome si, and then picking a random
function fi weighted according to f̂i(si)

2. Both of our results in this section follow two observations.
Let UN

d be the uniform distribution over the following set:

{S ∈ {0, 1}N |h(S) = N/2− d ∨ h(S) = N/2 + d}

Where, h(S) is the hamming weight of string S. First, for both distributions U and D the dis-
tribution over fi · χsi is a linear combination of UN

0 ,UN
1 , . . . ,UN

N/2. In the uniform case, this is
clear since fi · χsi is a uniformly random string. For D, hamming weight of fi · χsi specifies the

Fourier coefficient f̂i(si), so all strings with hamming weight N/2 + d or N/2− d occur with equal
probability. So, we can write both probability distributions as:∑

D:=(d1,...,dm)∈[N/2+1]m

pDUd1 × . . .× Udm

For some set of coefficients where
∑

D pD = 1. Let us call these distributions χD and χU respectively.
Next, we use the fact that in both distributions U and D the marginal distribution over the

functions is uniform. Thus, with high probability the Fourier coefficients are bounded:

Theorem 6. Given a random Boolean function f : {±1} → {0, 1}, the probability that a squared

Fourier coefficient of f is larger than p(n)2

N is at most 2 exp(−p(n)2

6 lnN ).

Proof. This follows from a Chernoff bound. Let X = h(f · Xs). For every s, this is a uniformly
random string, so we can write:

Pr

[
X ≤

(
1− p(n)√

N

)
N/2

]
≤ exp(−p(n)2/4)

Pr

[
X ≥

(
1 +

p(n)√
N

)
N/2

]
≤ exp(−p(n)2/6)

Combining these two and a union bound gives us the claim.
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Note that in both D and U , fi is a random Boolean function. So in either case by a union

bound we can prove that with probability at least 1− 2 exp( −p(n)2

6 lnN ·lnm) none of these functions have

a squared Fourier coefficient larger than p(n)2

N . So as long as lnm is polynomial in n we can choose
p(n) in a way that this event happens with an exponentially small probability.

It is clear that distinguishing D and U is harder than distinguishing χU and χD since given
fi, si we can compute fi · χsi . The other direction is not as clear since given a long list of strings
S1, . . . , Sm, we need s1, . . . , sm to recover f1, . . . , fm. However, given a sample from χD or χU , we
can easily get a sample from D or U respectively, by simply choosing uniformly random s1, . . . , sm.
So, assuming we have access to a long list of random bits, any distinguisher for χU and χD also
distinguishes D and U . As we will see in analysis having access to an extra random oracle does not
give any extra computation power to the BQP or PH algorithm. Combining Theorem 6 with this
fact implies that any distinguisher for U and D must also distinguish the following two distributions
with high probability:

• χ′
U =

∑
d1...dm∈[p(n)2

√
N ] pDU

N
d1

× . . .× UN
dm

• χ′
D =

∑
d1...dm∈[p(n)2

√
N ] qDU

N
d1

× . . .× UN
dm

Since χU and χD are statistically close to χ′
U and χ′

D respectively. Furthermore, since
∑

D pD ≤ 1
and

∑
D qD ≤ 1, by an averaging argument this distinguisher can also distinguish two distributions

in the sum with a 1/poly(n) advantage. This reduces the problem to indistinguishability of UD and
UD′ , where di and d′i are at most p(n)

√
N . Thus, to complete the proof we need to show BQP and

PH lower bounds for the following problem:

Problem 7 (BalanceChecking). Let 0 ≤ di ≤ p(n) ·
√
N . Given oracle access to a list of strings

S = S1, . . . , Sm distinguish the following two cases:

1. UD: Si is drawn from UN
di
.

2. U0: Si is drawn from UN
0 .

Note that indistinguishability of UD and U0 implies indistinguishability of UD and UD′ . We say
algorithm A solves BalanceChecking with advantage δ, if:∣∣∣ Pr

S∼UD

[A accepts S]− Pr
S∼U0

[A accepts S]
∣∣∣ ≥ δ

In our proofs, we use a hybrid argument to get the BQP lower bound. Furthermore, this
reduction enables us to use an argument similar to what is given in [FSUV13, Aar10] to prove a
bound against AC0. Informally, since this simplified problem is random self reducible, combined
with a circuit lower bound due to H̊astad we can beat the hybrid argument, and extend the
lower bound to an exponentially long list. Notice that black-box LLQSV is slightly different than
BalanceChecking, since it also has access to a random string for each Si (which is the outcome si).
To complete our proof, we need to show that having access to these extra random strings do not
give us any extra computation power. This is straightforward from the hybrid argument for the
BQP lower bound, and we can again use random self-reducibility of BalanceChecking to show the
same claim for the PH argument.
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2.1 BQP Lower Bound for black-box LLQSV

Theorem 8. Any T query quantum algorithm for BalanceChecking has advantage at most p(n) ·
TN−1/8.

Proof. This follows from a BBBV style argument. Suppose that S is drawn from UN
d1

× . . .× UN
dm

.

We can modify each Si in at most p(n) ·
√
N entries to make each Si balanced. Let this new string

be S′. Let Pi be the set of possible entries for each string Si, and P =
⋃

i Pi. Then given a quantum
algorithm A, we can write the query magnitude of each Pi as:

T∑
t=1

∑
w

x∈Pi

|αt,x,w|2 ≤ Ti

and
∑

i Ti = T . So if we choose a random subset ∆ =
⋃

i∆i for the modified entries of each Si, we
can write the expected value of the query magnitude as:

E
∆

[ T∑
t=1

m∑
i

∑
w

x∈∆i

|αt,x,w|2
]
=

m∑
i

E
∆i

[ T∑
t=1

∑
w

x∈∆i

|αt,x,w|2
]
≤

m∑
i

Tip(n)
√
N

2|Pi|
≤ p(n)T√

N

And by a Markov’s inequality and Cauchy-Schwartz we get that for 1−N−1/4 fraction of S′:

δ(A(S), A(S′)) ≤ 4 · p(n) · TN−1/8

However, this random modification also preserves the distribution in this case. To sample according
to U0, we can first sample from Ud and then randomly flip the excess bits to make the string balanced.
So the advantage of A is at most:

N−1/4 + 4 · p(n) · TN−1/8 ≤ 8 · p(n) · TN−1/8

Now we can formally define the BQP bound of Theorem 3:

Theorem 3 (BQP Bound). Any quantum algorithm for black-box LLQSV with advantage δ =
1/poly(n) must make at least Ω(N1/10) queries to the oracle.

Proof. Suppose there exists a O(N1/10) quantum query algorithm for black-box LLQSV. First we
notice that the same hybrid argument works without any modification if in BalanceChecking we
have access to (Si, si), where si is a uniformly random string. Now we can use si to recover f
by computing Si · χsi . From Theorem 6, any distinguisher for black-box LLQSV must also solve

BalanceChecking (with the additional access to si) with advantage at least δ′ = δ−2 exp( −p(n)2

6 lnN ·lnm).

We can choose an appropriate polynomial p so that p(n)2

6 lnN ·lnm ≥ n. Then for large enough n, this
implies δ′ ≥ δ/2 = 1/poly(n). However, we know that:

δ′ ≤ 8 · p(n) · cN1/10 ·N−1/8 = O(N−1/40)

Which gives us a contradiction.
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2.2 PH Lower Bound for black-box LLQSV

We start from a well known AC0 lower bound [H̊as87]:

Lemma 9. Given an N bit string S, any depth d circuit that accepts all S such that h(S) = N/2+1
and rejects them if h(S) = N/2 has size:

exp
(
Ω(N1/(d−1)

)
First we notice that the same bound holds for distinguishing h(S) = N/2 from |h(S)−N/2| = 1.

The next step is to prove analog of Theorem 8 against PH.

Theorem 10. Any depth d circuit that solves BalanceChecking with 1/poly(n) advantage has size:

exp
(
Ω(N1/(2d+4))

)
Proof. Suppose there exists a circuit C of size s and depth d that solves BalanceChecking with
advantage δ = 1/poly(n). Using C we can construct a circuit C ′ of size s′ = poly(s,N) and depth
d+ 3 that solves the problem in Lemma 9 for length

√
N/p(n). Given a

√
N/p(n) bit string t, for

each i, we copy the string di times and then pad it with equal number of zeros and ones to have
length N . We then take a random permutation of this string and flip all bits with probability 1/2
to get Si. Note that if the original string is balanced Si ∼ UN

0 , and otherwise Si ∼ UN
D . Then we

know: ∣∣∣Pr
[
A accepts S|t balanced

]
−Pr

[
A accepts S|t not balanced]

∣∣∣ ≥ δ

We can repeat this r = poly(1/δ,N) times. By a Chernoff bound, we get a 1/δ gap with arbitrary
large probability exp

(
− poly(N)

)
, which is detectable by an approximate majority circuit (see

[Aar10, Vio07] for more detail). Let us call this new circuit C ′. We can then fix the randomness in
a way that the new circuit C ′ succeeds on every input simultaneously. This new circuit has depth
d+ 3 and size poly(s,N). So s must be at least:

exp
(
Ω(

√
N

−1/(d+2))
= exp

(
Ω(N1/(2d+4)

)

Corollary 11. Any depth d circuit that solves black-box LLQSV with 1/poly(n) advantage has size:

exp
(
Ω(N1/(2d+4))

)
Proof. Similar to the BQP bound, the first step is to prove the same AC0 bound for BalanceChecking
even when the algorithm has additional access to a long list of random outcomes s1, . . . , sm. This
immediately follows from the proof idea of Theorem 10, since we can choose uniformly random
si in the circuit for each instance separately (without accessing the oracle, while preserving the
distribution), and later fix them in the circuit. Furthermore, from Theorem 6, any 1/poly(n)
distinguisher for LLFS would also work for BalanceChecking with the additional outcome oracle by
choosing the polynomial p to be large enough.

Corollary 11 and the standard conversion between PH and AC0 result in the PH lower bound of
Theorem 3 for LLFS.
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3 The SquaredForrelation Problem and black-box LLQSV

In this section we first prove an alternative oracle separation between BQP, and then show a re-
duction from SquaredForrelation to black-box LLQSV. To do this we build on the previous work
of Raz and Tal [RT19] to define a distribution D over pairs of Boolean functions (f, g) that is
indistinguishable from uniform in the polynomial hierarchy, and yet a simple quantum algorithm
is able to distinguish them. This hardness result does not immediately follow from previous oracle
separations and requires careful modifications of Raz and Tal analysis to make them work with
squared Fourier coefficients for both the PH lower bound and the quantum algorithm. Further-
more, we extend these results to the “long list” setting, and prove that having oracle access to an
exponentially long list of samples does not make the problem any easier.

Before getting into the formal results, let us start with the simplified version of SquaredForrelation
from Section 1.3. One can choose the threshold parameter to be the median of squared Fourier
coefficients of a random Boolean function, so that almost half of the coefficients are indicated as
heavy on average, i.e Prx,f [g(x) = 1] ≈ 1/2. Then we can easily find random heavy Fourier
coefficients by finding a random x such that g(x) = 1. This allows us to reduce the long list variant
of this problem to a problem similar to black-box LLQSV, since we can use “rejection sampling” on
g to pass HOG. The distribution D that we define next is similar to simplified SquaredForrelation in
the sense that we use randomized rounding on squared Fourier coefficients and we can prove that
on average, heavy Fourier coefficients have a slightly higher chance of having g(x) = 1. We leverage
this to reduce SquaredForrelation to a black-box variant of LLQSV.

Let us first summarize the separation result that we are going to use to give evidence for LLQSV.
Similar to [RT19], to show an oracle separation of BQP and PH it suffices to find a distribution
D that is pseudorandom for AC0 circuits, but not for efficient quantum algorithms making few
queries. First we start by defining distribution D using truncated multivariate Gaussians. Let
n ∈ N, N = 2n. Let ε = 1/(C lnN) for a constant C ≥ 20 to be chosen later. Define G to be a
multivariate Gaussian distribution over RN × RN with mean 0 and covariance matrix:

ε ·
(
IN HN

HN IN

)
To take samples from G, we can first sample X = x1, . . . , xN ∼ N (0, ε), and let Y = HN ·X. Define
G′ to be the distribution over Z = (X,Y 2− ε). Let trnc(a) = min(1,max(−1, a)). The distribution

D over {±1}2N , first draws Z ∼ G′. Then for each i ∈ [2N ] draws z′i = 1 with probability 1+trnc(zi)
2

and z′i = −1 with probability 1+trnc(zi)
2 . Now we can define the following promise problem:

Problem 12 (SquaredForrelation). Given oracle access to Boolean functions f, g : {0, 1}n → {±1},
distinguish whether they are sampled according to D or uniformly at random.

Recall that we can write the multilinear expansion of a Boolean function F : R2N → R as:

F (z) =
∑

S⊆[2N ]

F̂ (S)
∏
i∈S

zi

Similar to the original proof, it is not hard to see that the randomized rounding step does not
change the expected value of the outcome for multilinear functions:

E
z∼G′

[F (trnc(z))] = E
z′∼D

[F (z′)]

11



Hence we can ignore step 3 in our analysis. More importantly, because of the choice of ε, truncations
happen with negligible probability, and in the event that they happen it is possible to bound the
difference.

E
z∼G′

[F (trnc(z))] ≈ E
z∼G′

[F (z)]

The rest of the analysis is to prove indistinguishability of (X,Y 2−ε) from the uniform distribution.
More specifically, to use the tail bound from [Tal17] for the Fourier coefficients of bounded depth
circuits to bound: ∣∣E[F (X,Y 2 − ε)]−E[F (U2N )]

∣∣ = ∣∣E[F (X,Y 2 − ε)− F (0, 0)]
∣∣

The idea is to use the same telescopic sum as Raz and Tal for analysing the expected value of F
and think of G′ as a Brownian motion, but also considering the squared inputs and the ε difference.
One important step is to also break the ε bias in the telescopic sum. Let t ∈ N, and for i ∈ [t], let

X(i) = X(i−1) +∆
(i)
X and Y (i) = HN ·X(i), where ∆

(i)
X ∼ N (0, ε/t). Now we can write:

F (X(t), (Y (t))2 − ε)− F (0, 0) =

t∑
i=1

{
F
(
X(i), (Y (i))2 − ε·i

t

)
− F

(
X(i−1), (Y (i−1))2 − ε·(i−1)

t

)}

Then we can use known bounds for each term in the sum and the triangle inequality to bound the
sum. In the limit of t → ∞, we are dealing with a stochastic integral so one can also prove this
result using stochastic calculus. However, we decided not to present the proof using the language of
stochastic calculus, and instead picked t to be a large enough polynomial in N (similar to [RT19]).

3.1 Truncated Gaussians

It is not hard to see that any multilinear function F : R2N → R still has similar expectation under
D and G′, where:

F (z) =
∑

S⊆[2N ]

F̂ (S) ·
∏
i∈S

zi

First we need to show that:
E

z′∼D

[
F
(
z′
)]

= E
z∼G′

[F (trnc(z))]

And since we can still prove that the truncations happen with negligible probability, we only need
to adapt the rest of the proof to work with squared Fourier coefficients. The proof of the first part
works without any modifications from the definition of distributions D and G′:

E
[
F
(
z′
)
| z

]
= E

 ∑
S⊆[2N ]

F̂ (S) ·
∏
i∈S

z′i

∣∣∣∣∣∣ z
 =

∑
S⊆[2N ]

F̂ (S) ·
∏
i∈S

E
[
z′i

∣∣ z]
=

∑
S⊆[2N ]

F̂ (S) ·
∏
i∈S

trnc (zi) = F (trnc(z)) (1)

The next fact is stated as Claim 5.1 in [RT19], and is unaffected by our modification.

Fact 13. Let F : R2N → R be a multilinear function that maps {±1}2N to [−1, 1]. Let z =
(z1, . . . , z2N ) ∈ R2N . Then, |F (z)| ≤

∏2N
i=1max (1, |zi|).
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The next two theorems are equivalent to Claim 5.2 and Claim 5.3 of [RT19] respectively, where
they are proven over distribution G. One can verify that they also hold over distribution G′. In
fact, by choosing ε to be small enough, they even hold over G′poly(N), where we are given oracle
access to an exponentially long list of samples from G′. This is crucial for extending this PH bound
to the long list problem. We provide their proofs in Appendix A for completeness.

Theorem 14. For any constant c ≥ 2 there exists a choice of a constant C in the definition of G′

such that: E(x,y)∼G′

[∏N
i=1max (1, |xi|) ·

∏N
i=1max (1, |yi|) · 1(x,y)̸=trnc(x,y)

]
≤ 4 ·N−c.

Theorem 15. For any constant c ≥ 2 there exists a choice of a constant C in the definition of G′

such that the following holds. Let 0 ≤ p, p0 such that p+ p0 ≤ 1. Let F : R2N → R be a multilinear
function that maps {±1}2N to [−1, 1]. Let z0 ∈ [−p0, p0]

2N . Then,

E
z∼G′

[|F (trnc (z0 + p · z))− F (z0 + p · z)|] ≤ 8 ·N−c

3.2 Quantum Algorithm for Distinguishing D and U2N

Here, for completeness, we provide a quantum algorithm for distinguishing U2N and D. Note that
this quantum algorithm does not extend to solve LLFS, and does not contradict LLQSV. As we
will show, a problem similar to LLFS is harder than SquaredForrelation. However, we use these
calculations for our later results. Given to Boolean functions f, g : {±1}N we use the following
algorithm A to distinguish between functions sampled from D and U2N :

1. Apply Fourier transform on f and sample x from the distribution induced by f̂ .

2. Accept if g(x) = 1, and reject otherwise.

We can see that the success probability of this algorithm is given by
∑

x,g(x)=1 f̂(x)
2 = 1+φ(f,g)

2 ,
where φ(f, g) = φ(X,Y ) is defined as follows:

φ(X,Y ) =
1

N

∑
i

(
∑
j

HijXi)
2Yi = Pr[A Accepts]−Pr[A Rejects]

We first analyze this quantity for when the samples are taken from G′. In fact, we can show that
the multilinear part of φ(X,Y ), denoted by φi ̸=j(X,Y ) is large on average. Lastly we can use
Theorem 15 to show that a similar bound holds for samples from D while the quadratic part of
φ(X,Y ) is 0 on average. To summarize, we show that:

E
(X,Y )∼D

[φ(X,Y )] = E
(X,Y )∼D

[φi ̸=j(X,Y )] ≈ E
(X,Y )∼G′

[φi ̸=j(X,Y )] = O(ε2)

Theorem 16. E(X,Y )∼U2N
[φ(X,Y )] = 0.

Proof. For every i, j, k ∈ [N ], E(X,Y )∼U2N
[XjXkYi] = 0 because Yi is independent of X and has

mean 0. By linearity of expectation E(X,Y )∼U2N
[φ(X,Y )] = 0.

Theorem 17. E(X,Y ′)∼G′ [φi ̸=j(X,Y ′)] = ε2 · (2− 2/N).

13



Proof. By the definition of G′ and φi ̸=j(X,Y ′) we can write:

E
(X,Y ′)∼G′

[φi ̸=j(X,Y ′)] =
1

N

∑
i

∑
j ̸=k

HijHik E[XjXkY
′
i ]

=
1

N

∑
i

∑
j ̸=k

HijHik E[XjXkY
2
i ]− εE[XjXk]

=
1

N

∑
i

∑
j ̸=k

HijHik(σ
′
iiσ

′
jk + 2σijσik)

=
1

N

∑
i

∑
j ̸=k

H2
ijH

2
ik2ε

2 =
2(N − 1)

N
ε2

Where the third line follows from the fact that (X,Y ) is a multivariate normal distribution, and
the last inequality holds for N ≥ 2. Furthermore, σ′

ij is the covariance of (Xi, Xj) and (Yi, Yj), and
σij is the covariance of (Yi, Xj).

Theorem 18. E(X,Y )∼D[φ(X,Y )] ≥ ε2.

Proof. Since E[Yi] = 0, by linearity of expectation we can write:

E
(X,Y )∼D

[φ(X,Y )] =
1

N

∑
i

∑
j ̸=k

HijHik E[XjXkYi] +
1

N

∑
i

∑
j

H2
ij E[X2

j Yi]

=
1

N

∑
i

∑
j ̸=k

HijHik E[XjXkYi] +
1

N

∑
i

∑
j

H2
ij E[Yi]

= E
(X,Y )∼D

[φi ̸=j(X,Y )]

Note that φi ̸=j(X,Y ) is a multilinear function that takes {±1}2N to [−2, 2] since the subtracted
quadratic part maps {±}2N to [−1, 1] and φ(X,Y ) ∈ [−1, 1]. So we can use Theorem 15 with
p0 = 0, p = 1 and Equation 1 to write:∣∣∣∣ E

(X,Y )∼D
[φi ̸=j(X,Y )]− E

(X,Y )∼G′
[φi ̸=j(X,Y )]

∣∣∣∣ ≤ 16 ·N−2

Then we can get a lower bound on E(X,Y )∼D[φ(X,Y )]:

E
(X,Y )∼D

[φi ̸=j(X,Y )] ≥ E
(X,Y )∼G′

[φi ̸=j(X,Y )]− 16 ·N−2 ≥ ε2

3.3 Classical Hardness

Let L1,2(F ) =
∑

S⊆[2N ],|S|=2 |F̂ (S)|. The results in this section combined with the tail bound

from [Tal17], suffices to prove a lower bound on the size of any AC0 circuit that distinguishes D
from uniform.

Theorem 19 ([CHLT19, Claim A.5]). Let f be a multi-linear function on RN and x ∈ [−1/2, 1/2]N .
There exists a distribution over random restrictions Rx such that for any y ∈ RN :

f(x+ y)− f(x) = E
ρ∼Rx

[fρ(2 · y)− fρ(0)]

14



Theorem 20. Let t = N c−1 for a sufficiently large universal constant c (e.g., c = 40). Let
(X,Y ) ∈ [−1/2, 1/2]2N , ∆X ∼ N (0, ε/t) and ∆Y = H ·∆X. Let F : R2N → R be a multilinear
function where for all random restrictions L1,2(Fρ) ≤ ℓ:

(∗) =
∣∣∣ E
∆X

[
F
(
X +∆X, (Y +∆Y )2 − i·ε

t

)]
−E

[
F
(
X,Y 2 − (i−1)·ε

t

)]∣∣∣ ≤ O(ε · ℓ)
t
√
N

Proof. Let Y ′ = Y 2 − ε·(i−1)
t . We can rewrite (∗) as follows:

(∗) = E
∆X

[
F (X +∆X,Y ′ + 2Y ·∆Y +∆Y 2 − ε

t )− F (X,Y ′)
]

Note that Y ′ ∈ [−1/2, 1/2]N . Using Theorem 19 we can write this value using random restrictions
of F :

(∗) = E
∆X,ρ

[
Fρ

(
2 ·∆X, 2 ·∆Y ′)− Fρ(0, 0)

]
Where ∆Y ′ = 2Y ·∆Y + ∆Y 2 − ε

t . Let Z = (2∆X, 2∆Y ′). Next we can expand (∗) in terms of
multilinear expansion of Fρ. From the Isserlis’ theorem [Iss18] we can see that monomials of degree

k > 2 in the variables Z scale like O( kk

tk/2
), and there are at most Nk such monomials. Since we can

choose t to be arbitrarily large power of N , their contribution would be negligible, i.e., o(ε/t
√
N).

Furthermore, since for every input variable Xi of Fρ, E[Zi] = 0 (using the fact that E[∆Y 2− ε
t ] = 0)

we can also ignore monomials of degree 1. Note that this is precisely why we also break ε in the
telescopic sum. The remaining step is to bound monomials of degree 2.

To account for monomials of degree 2, we upper bound the covariances of all pairs of variables
from Z = (2∆X, 2∆Y ′) by O( ε

t
√
N
). First, for i ̸= j we have that (∆X)i and (∆X)j are independent

and thus have covariance 0. Second, we bound
∣∣∣Cov

(
2 (∆X)i , 2 (∆Y ′)j

)∣∣∣ for any (i, j) by:

|4 · 2Yj Cov((∆X)i, (∆Y )j) + 4 ·Cov((∆X)i, (∆Y )2j )| ≤
4ε

t
√
N

+O
(

1
t3/2

)
= O

(
ε

t
√
N

)
Similarly, we can bound |Cov (2(∆Y ′)i, 2(∆Y ′)j)| for i ̸= j

4 · 4YiYj Cov ((∆Y )i, (∆Y )j) +O

(
1

t3/2

)
≤ O

(
ε

t
√
N

)
Finally, we can bound (∗):∣∣∣∣ E

∆X,ρ
[Fρ(Z)− Fρ(0

2N )]

∣∣∣∣ ≤ ∑
i,j

∣∣∣∣ E
∆X,ρ

[F̂ρ({i, j}) · ZiZj ]

∣∣∣∣+ o
(

εℓ
t
√
N

)
≤ max

i,j
|Cov(Zi, Zj)| ·max

ρ

∑
S⊆[2N ],
|S|=2

|F̂ρ(S)|+ o
(

εℓ
t
√
N

)

≤ O

(
εℓ

t
√
N

)
.

Theorem 21. Let ℓ ≥ 1. Let F : {±1}2N → {±1} be a multilinear function with bounded spectral
norm L1,2(F ) ≤ ℓ. Then:

(∗) = E
(X,Y ′)∼D

[
F (X,Y ′)− F (0, 0)

]
≤ O

(
ε · ℓ√
N

)
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Proof. From Equation 1, it suffices to show:

E
(X,Y )∼G

[
F
(
trnc(X), trnc(Y 2 − ε)

)
− F (0, 0)

]
≤ O

(
ε · ℓ√
N

)
We start by writing this value as a telescoping sum. Let t = N c−1 for c the constant guaranteed
by Theorem 20. Set C in the definition of ε to guarantee that the error in Theorem 15 is at most
8 ·N−c and that e−1/(8ε) ≤ N−(c+1). Then we can write:

(∗) =
t∑

i=1

E
[
F (trnc(X(i)), trnc(Y (i)2 − ε·i

t ))− F (trnc(X(i−1)), trnc(Y (i−1)2 − ε·(i−1)
t ))

]
where X(i) = X(i−1) +∆X, Y (i) = Y (i−1) +∆Y and ∆X ∼ N (0, ε/t) and ∆Y = H ·∆X. We are
going to use Theorem 8 to bound each term in the sum to get the final result. Let Ei−1 be the

event that (X(i−1), Y (i−1) − ε·(i−1)
t ) ∈ [−1/2, 1/2]2N . We can prove that Ei−1 happens with high

probability:

Pr[(X(i−1), Y (i−1)) ̸∈ [−1/2, 1/2](2N)] ≤ 2N ·Pr[|N (0, ε)| ≥ 1/2] ≤ 2N · 2e−1/(8ε) ≤ 4N−c

It is also clear that if (X(i−1), Y (i−1)) ∈ [−1/2, 1/2]2N then (X(i−1), Y (i−1)2− ε·(i−1)
t ) ∈ [−1/2, 1/2]2N .

So Pr[Ei−1] ≥ 1 − 4N−c. Next we just have to use Theorems 15 and 20 combined with triangle
inequality to prove the desired claim. We can bound the i-th term in the sum, Si, by:

Si ≤ E
[
F (X(i), Y (i)2 − ε·i

t )− F (X(i−1), Y (i−1)2 − ε·(i−1)
t )

∣∣∣Ei−1

]
+E

[
F (trnc(X(i)), trnc(Y (i)2 − ε·i

t ))− F (X(i), Y (i)2 − ε·i
t )

∣∣∣Ei−1

]
+ 2Pr[¬Ei−1] ≤ O

(
ε · ℓ
t
√
N

)
+O(N−c)

So we can bound the sum (∗) ≤ O( ε·ℓ√
N
) +O(tN−c) ≤ O( ε·ℓ√

N
).

Remark 22. Note that this proof can easily be extended to the “long list” version of problem, where
we are given oracle access to a list of pairs of functions (fi, gi) rather than a single pair which has
been shown. We have already shown this for Theorem 14 and 15 in Appendix A, which directly
prove Theorem 20. The only remaining step that we need to verify in Theorem 21 is the probability
of the event Ei. Similar to what has been shown in Appendix A, we can choose ε to be small enough
so that p(N) · e−1/(8ε) remains exponentially small, and the rest of the proof follows immediately.
Later we will use this result to give evidence for LLQSV.

3.4 More details on the relation between SquaredForrelation and Long List

As we have mentioned before, our goal is to use samples (f, g) ∼ D, and then use g to get samples
according to the Fourier transform distribution. However, if we choose a uniformly random sample
such that g(x) = 1, we would not get a sample exactly according to the Fourier transform distri-
bution. Intuitively, this is a “flattened version” of the Fourier transform distribution of f , but we
can still prove a PH lower bound for this variant of black-box LLQSV, where the samples are taken
according to this flattened distribution. We show that this distinction does not matter, by first
noting that we can define a modified HOG score – Rejection Sampling HOG (RHOG) – so that RHOG
and the flattened distribution have the same relation as HOG and black-box LLQSV. Furthermore,
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we prove that a quantum algorithm can still solve both HOG and RHOG by sampling according to
the Fourier transform distribution of f . Let D be the distribution defined in the previous section,
and let Df be the marginal distribution over g for a fixed f . Given a random Boolean function f ,
Rf samples s ∈ {0, 1}n as follows:

• Sample g ∼ Df .

• Sample x ∈ {0, 1}n uniformly at random and output x if g(x) = 1.

• Output a random element after 4n2 unsuccessful attempts.

Suppose we are given access to oracle O which is a long (exponentially large) list of random Boolean
functions f1, f2, . . . , fT : {±1}n → {0, 1} paired with strings s1, s2, . . . , sT . Here we define black-box
LLQSV to be the problem of distinguishing samples from Rf from uniform. One can hope that since
g is correlated with squared Fourier coefficients of f , these samples are also close to the “Fourier
distribution”. In fact, we later show that on average (over the random Boolean function and the
samples), Rf generates heavy Fourier coefficients. The same argument also works to prove that
an honest quantum sampler, that samples according the Fourier coefficients, passes the following
score:

Problem 23. (RHOG) Let b = 1 + poly(1/n). Given a random Boolean function f : {0, 1}N →
{±1}, output an outcome s ∈ {0, 1}N such that:

E
f,s

[Pr [Rf samples s]] ≥ b

N

One can easily verify that the existence of a deterministic quantum algorithm for solving RHOG
also gives a QCAM algorithm for (modified) black-box LLQSV. This follows from a collision finding
algorithm similar to the original LLQSV argument. Here we prove that first, the usual quantum
algorithm that samples according to the Fourier distribution passes solves RHOG. Next, we show
that SquaredForrelation can be reduced to black-box LLQSV, which implies that black-box LLQSV
is not in PH.

We prove the first result by using two properties of the distribution G′. The first directly follows
from a tail bound of Chi-square variables:

Lemma 24 ([LM00]). Let (Y1, . . . , YN ) ∼ N (0, 1) and let a1, . . . , aN ≥ 0. Let

Z =
∑
i

ai(Y
2
i − 1)

Then for any ∆ > 0 we have:

• Pr
[
Z ≥ 2|a|2

√
∆+ 2|a|∞∆

]
≤ exp(−∆)

• Pr
[
Z ≤ −2|a|2

√
∆
]
≤ exp(−∆)

Theorem 25. Let (X,Y ) ∼ G′, then Pr
[∣∣∑

i Yi
∣∣ ≥ 3

√
N
]
≤ 2 exp(−1/ε).

Proof. Using Lemma 24 by letting a = (ε, . . . , ε) and ∆ = 1
ε we get:

• Pr
[
Z ≥ 2

√
N + 2

]
≤ exp(−1

ε )

• Pr
[
Z ≤ −2

√
N
]
≤ exp(−1

ε )
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And a union bound gives us the claim.

Recall that for (X,Y ) ∈ G′ with high probability we have trnc(X,Y ) = (X,Y ):

Theorem 26. Let (X,Y ) ∼ G′, then Pr
[
trnc(X,Y ) ̸= (X,Y )

]
≤ 2N−2.

Corollary 27. Let (X,Y ) ∼ D and δ = N−1/3, then with probability at least 1− 5N−2 we have:

(1− δ)
N

2
≤

∣∣{i|Yi = 1}
∣∣ ≤ (1 + δ)

N

2

Proof. This follows from a Chernoff bound applied to Theorem 25 and 26. Given (X ′, Y ′) ∼ G′,
by a union bound we get that the probability that both requirements trnc(X ′, Y ′) = (X ′, Y ′) and
|
∑

Y ′
i | < 3

√
N are satisfied is at least 1− 4N−2. In such a case, recall that Y is attained from Y ′

by randomized rounding (without truncations since Y ′ = trnc(Y ′). Let δ′ = δ/2. Then by Chernoff
bound, with probability 1− exp(Ω(δ2N)) ≥ 1−N−2:

|{i|Yi = 1}| ≤ (1 + δ′)

(
N

2
+ 3

√
N

)
≤ (1 + δ)

N

2

and,

|{i|Yi = 1}| ≥ (1− δ′)

(
N

2
− 3

√
N

)
≥ (1− δ)

N

2

for large enough N . This means that the claim holds over D with probability at least 1−5N−2.

Another direct consequence of this property is that we can bound the success probability of
getting a non-uniform sample after 4n2 steps in rejection sampling. Note that the probability of

the rejection sampling failing is bounded by
(
(1 + δ)/2

)4n2

. For large enough N and δ = 1/N1/3,
we know ((1 + δ)/2)2 ≤ 1/2, and thus

((1 + δ)/2)4n
2 ≤ 2−2n2 ≪ N−2

Now we can prove that given random Boolean function f : {±1}N → {0, 1}, sampling according to
the Fourier coefficients of f solves RHOG. Define Cf to be the Fourier transform distribution over

outcomes according to f , i.e., Cf samples x with probability f̂(x)2.

Claim 28.

E
f,

x∼Cf

[Pr [Rf samples x]] ≥ 1 + poly(ε)

N

Proof. From Theorem 18, we know that ED
[∑

g(x)=1 f̂(x)
2
]
≥ 1

2 + ε2

4 . Let E be the event that :

1. (1− δ)N2 ≤
∣∣{i|Yi = 1}

∣∣ ≤ (1 + δ)N2

2. The rejection sampling algorithm outputs an s such that g(s) = 1.

where δ = N−1/3. We know that Pr[E] ≥ 1− 10/N2 and ED
[∑

g(x)=1 f̂(x)
2|E

]
≥ 1

2 +
ε2

8 . We can
lower bound

E
f,

x∼Cf

[Pr [Rf samples x]] ≥ Pr[E] · Pr
f,

x∼Cf

[Rf samples x|E] .
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Note further that conditioned on E, the rejection sampling algorithm draws a random element from
the set {y : g(y) = 1}. Thus we may rewrite

Pr[E] · Pr
f,

x∼Cf

[Rf samples x|E] = Pr[E] · E
(f,g)∼D

[ ∑
g(x)=1 f̂(x)

2

|{y : g(y) = 1}|

∣∣∣∣ E]

≥ Pr[E] · 1/2 + ε2/8

(1 + δ)N/2

≥ Pr[E] · (1− δ)(1 + ε2/4)

N

which is at least 1+ε2/8
N for N large enough (where we used the fact that ε = Θ(1/ logN) is much

larger than 10/N2 and δ).

The only remaining step is to prove hardness of (modified) black-box LLQSV. First we define
the following problem:

Problem 29. Given oracle access to a length T = 23n list of triplets (fi, gi, si) where fi, gi :
{±1}N → {0, 1} and si ∈ {0, 1}N is sampled according to the rejection sampling algorithm applied
to gi distinguish between the following two cases:

1. For every i, fi, gi are chosen uniformly at random.

2. For every i. fi, gi are sampled according to D.

We can use this to prove our final result:

Theorem 30. No constant depth Boolean circuit of size quasipoly(N) can solve black-box LLQSV
with advantage more than polylog(N)/

√
N .

Proof. First, it is clear that we can reduce Problem 29 to black-box LLQSV since we have access
to the list (fi, si). To prove the same oracle separation result using Problem 29, we first notice
that we can prove the same AC0 lower bound if we only had access to (fi, gi), but not si (Remark
22). Furthermore, by choosing ε in the definition of D small enough, the lower bound even holds
for a list of length 2 · 2n3

. The final step is to prove that si’s do not give us extra computation
power. Suppose there exist a circuit C of size s and depth d for Problem 29, we can convert this
circuit to work without having access to si. First, we can replace si with a small circuit that given
ri ∈ {0, 1}poly(n), the random seed of the rejection sampling, simulate rejection sampling, making
O(n2) queries to gi and outputs si. Such a computation can be described by a decision tree on that
reads ri and at most O(n2) entries of gi, and thus also by a DNF of size 2poly(n) = quasipoly(N).
Making all these replacements everywhere gives a new circuit with size s′ = s ·quasipoly(N) (which
is still quasi-polynomial in N) and depth d+ 2. Furthermore, if we have access to a list of length
2 · 2n3

of pairs of functions, we can use the second half as the random seed, instead of accessing ri
directly. So this new circuit of size s′ and depth d + 2 must also distinguish the two distribution
with the same advantage, having only access to a list of length 2 · 2n3

of (fi, gi). Thus, the same
lower bound applies to the size of the starting circuit s.

Combining Theorem 30 with standard conversion between PH and AC0 proves a second PH
bound of Theorem 3 for black-box LLQSV.
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A Truncated Gaussians - Proofs

Here we prove a long list version of Theorems 14 and 15. The core statements are the same, but the
expectation is over the distribution G′p(N) for some polynomial p. In LLQSV we are interested in the
case where p(N) = N3. We show that for any polynomial p we can always choose ε = 1/(C lnN),
to make expectation values in the next theorems arbitrarily small (N−c for some constant c that
depends on p and C).

Proof of Thm. 14. We can write:

(∗) = E
(x,y)∼G′p(n)

p(N)·N∏
i=1

max (1, |xi|) ·
p(N)·N∏
i=1

max (1, |yi|) · 1(x,y)̸=trnc(x,y)


= E

(x,y)∼G′p(n)

p(N)·N∏
i=1

max (1, |xi|) ·
p(N)·N∏
i=1

max (1, |yi|)


− E

(x,y)∼G′p(n)

p(N)·N∏
i=1

max (1, |xi|) ·
p(N)·N∏
i=1

max (1, |yi|) · 1(x,y)=trnc(x,y)


= E

(x,y)∼G′p(n)

p(N)·N∏
i=1

max (1, |xi|) ·
p(N)·N∏
i=1

max (1, |yi|)

−Pr [(x, y) = trnc(x, y)]

Let z := (x, y) and ε = 1
2k ln(p(N)·N) for some constant k. We first bound the second term:

Pr
[
z = trnc(z)

]
≥ 1−

∑
i

Pr[z ̸= trnc(z)] = 1− 2N · p(N) · e−1/(2ε) ≥ 1−N−k+1

Next we can bound the first term using Cauchy-Schwarz:

≤

√√√√√E
x

p(N)·N∏
i=1

max
(
1, x2i

) ·

√√√√√Ex

p(N)·N∏
i=1

max
(
1, (x2i − ε)2

)
= E

x

[
max

(
1, x2i

)]p(N)·N/2 ·E
x

[
max

(
1, (x2i − ε)2

)]p(N)·N/2
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We can write the first expectation value as:

2

∫ 1

0

1√
2πε

e−x2/2εdx+ 2

∫ ∞

1

x2√
2πε

e−x2/2εdx ≤ 1 + ε · erfc(1/
√
2ε) +

√
2ε/π · e−1/2ε

≤ 1 + εe−1/2ε +
√
2ε/πe−1/2ε

≤ 1 +N−k+1 · p(N)−k

For the second expectation value:

2

∫ √
1+ε

0

1√
2πε

e−x2/2εdx+ 2

∫ ∞

√
1+ε

(x2 − ε)2√
2πε

e−x2/2εdx

≤ 2

∫ √
1+ε

0

1√
2πε

e−x2/2εdx+ 2

∫ ∞

1

x4√
2πε

e−x2/2ε

≤ 1 + 3ε2 erfc(1/
√
2ε) +

ε(1 + 3ε)√
2πε

e−1/2ε

≤ 1 + 3ε2e1/2ε +
ε(1 + 3ε)√

2πε
e−1/2ε ≤ 1 +N−k+1 · p(N)−k

So we can bound the first term by (1 +N−k+1 · p(N)−k)N ·p(N) ≤ 1 +N−k+2. Combining both we
get the claim:

(∗) ≤ 1 +N−k+2 − (1−N−k+1) ≤ 2N−k+2

Proof of Thm. 15. The original proof works without any change with the modified Claim 5.2.

E
z∼G′p(N)

[|F (trnc (z0 + p · z))− F (z0 + p · z)|]

≤ E
z∼G′p(N)

[
(1 + |F (z0 + p · z)|) · 1trnc(z0+p·z)̸=z0+p·z

]
≤ E

z∼G′p(N)

[
(1 + |F (z0 + p · z)|) · 1z ̸=trnc(z)

]
≤ E

z∼G′p(N)

1 +

2N ·p(N)∏
i=1

max (1, |(z0)i + p · zi|)

 · 1z ̸=trnc(z)


≤ E

z∼G′p(N)

2 · 2N ·p(N)∏
i=1

max (1, |(z0)i + p · zi|) · 1z ̸=trnc(z)


And since we know

∏2N ·p(N)
i=1 max (1, |(z0)i + p · zi|) ≤

∏2N ·p(N)
i=1 max (1, p0 + p |zi|) ≤

∏2N ·p(N)
i=1 max (1, |zi|),

we can write:

E
z∼G′p(N)

[|F (trnc (z0 + p · z))− F (z0 + p · z)|]

≤ E
z∼G′p(N)

2 · 2N ·p(N)∏
i=1

max (1, |zi|) · 1z ̸=trnc(z)

 ≤ 4 ·N−k+2.
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