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ABSTRACT

The Internet of Things for homes (home IoT) creates unique security challenges. Home
[oT devices often interact with multiple people under the same roof and are equipped with
various modalities. They do not only react to commands from the user, but also from the
environment, which increases the attack surface and changes the threat model. The highly
fragmented ecosystem of home IoT devices only makes things worse, making it harder to
find a solution that fits all devices.

Traditional security approaches fail in these challenges because they are designed for con-
ventional computing devices like computers or smartphones, which are mostly used by one
user with proper screens and keyboards. These characteristics make mechanisms like access
control and authentication much more manageable. On the other hand, traditional comput-
ing devices are general-purpose, making enforcing allowlists of network traffic impossible.
This is no longer the case for home IoT devices, and new strategies must be employed.

Responding to these emerging challenges in the home [oT, we create a road map about
how to make a home IoT system secure and usable on different levels. We are mainly
interested in devices’ interactions with the external world, such as users, the physical envi-
ronment, sensors, and remote servers. With such emphasis, we divide a home [oT system
into three parts: user & software, environment & hardware, and network. For the user &
software part, this thesis elicits requirements for access control systems that handle users
with complex relationships and constantly changing contexts. For environments & hardware,
this thesis creates a framework for context sensing, systematizing contexts and their required
sensors, along with their security, privacy, and usability characteristics. In the network part,

this thesis maps the design space of creating network allowlists that successfully generalize.
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CHAPTER 1
INTRODUCTION

The proliferation of home IoT devices in recent years has raised significant security and pri-
vacy concerns [1]. Unlike traditional computing devices, such as computers or smartphones,
home IoT devices often need to support multiple users with complex social relationships, as
well as to react to multiple modalities [2, 3]. Both requirements create a larger attack surface
than before. Moreover, many IoT devices are not designed for general-purpose computing.
Devices intended for specific, narrow purposes inherently have different properties. Even
for different home IoT devices made for the same purpose (e.g., different IoT thermostats),
different manufacturers create different network architectures, causing more fragmentation
in the home IoT ecosystem [4]. The widely existing variations in home IoT devices make
protecting the security of all home IoT devices in the wild a challenge [5, 6, 7].

Unfortunately, many security practices and mindsets fail to recognize differences between
home [oT devices and traditional general-purpose computing devices. Therefore, they fail
to account for these differences. Access control in smart homes, for example, retains the
admin-guests model that is typical on general-purpose computers even though the social
relationships between IoT users are much more complicated [8, 9, 10, 11, 12, 13, 14]. ToT
systems are also sensitive to environmental changes. Attackers can alter the system’s be-
haviors by changing the environment [15, 16, 17, 18, 19, 20]. Security and privacy research
for home IoT devices is often dedicated only to one type of devices [21, 22| or one particular
home IoT platform [23, 24].

This thesis revisits and inspects various aspects of home IoT systems from
a security and privacy perspective. The thesis rethinks old security mindsets
transferred naively from general-purpose computing devices, pinpointing how
they fail in the face of the unique challenges brought by home IoT. The thesis

subsequently propose more adaptive, secure, and privacy-respectful designs. The
1



thesis emphasizes the interactions a home IoT device may have with the external world,
such as humans, environments, and remote servers. However, security and privacy concerns
caused by vulnerabilities from the system itself (e.g., exploitable firmware, insecure API
implementation) are out of the scope of this thesis because such threats are usually not
unique to home IoT systems and have been studied extensively [7].

As with any other system, home IoT systems consist of various connected components,
namely the following: software, hardware, and network. Different components enable distinct
interactions with various audiences. For instance, software enables interactions between
users and the system. Through software, a user can control devices, set up routines, or
grant/revoke others’ access to certain capabilities. Hardware, on the other hand, is the
communication channel between the environment and the system. Sensors, the devices that
detect changes in the environment, provide information to the system. Actuators, the devices
that execute commands, perform actions that may change the environment. Similarly, a
network connects the home IoT devices with each other and with remote servers, facilitating
all functionalities the devices can provide. A more detailed system model is defined and
illustrated in Chapter 3.

Each component in the home [oT system has its own goals. The audiences they are facing
also may impact the system in various ways. These differences eventually create unique sets
of challenges for each respective component, requiring diverse techniques to understand the
obstacles and varied perspectives.

For these components, this thesis makes the following contributions:

Users & Software:  This thesis focuses on security and privacy. As such, access control is
a primary concern. The access control system is meant to manage the relationship between
human users and the devices that are under the system’s control. However, the complex
social relationships among the users in the same household necessitate highly contextual

access control policies, challenging the system to better understand the situation before

2



making any decisions. Traditional access control systems for general-purpose computing
devices rarely face such challenges. Adopting traditional access control approaches without
thoughtful adaption leaves users with limited ways to express their intent to the system.
The lack of tangible interfaces on many home IoT devices makes things worse.

Therefore, we need to understand what access control system is desired or expected
by home IoT users. To achieve this, we studied the pitfalls of these fundamental security
mechanisms in the age of [oT, exploring their necessary characteristics and features through
a 425-participant online survey. We discovered the delicacy of different social relationship
among users, helping us understand how these relationships altered users’ default attitudes
toward access control policies regarding various capabilities that a home [oT system can offer.
We also curated a list of contexts that can affect users’ access control decisions, shedding
light on what an adaptive system should know to respect the constantly changing contexts

in a home [8].

Environment & Hardware: As mentioned previously, hardware in home IoT can be
categorized into sensors and actuators. To support the rich contexts we identified in the
previous study, sensors are indispensable. We thus next explore various desired contexts,
identifying assorted sensors that can actually sense them. The list of potentially suitable
sensors is long; the challenge becomes which one to adopt. There are many dimensions that
can affect this decision. For security, ensuring the correctness of sensor readings is crucial,
which by itself is a challenging problem. People also care about their privacy. Sensors that
are invasive (e.g., cameras) are less ideal for privacy. Some sensor implementations require
considerable efforts from users, making them less likely to be adopted. Moreover, these
dimensions may even conflict with each other, creating complex trade-offs. To tackle the
challenge, we developed a decision framework for sensor adoption in the context of access
control. We proposed a novel threat model that involves internal attackers and established

detailed criteria for security, privacy, and usability. We then consider each sensor’s charac-
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teristics in an adversarial setting and rate them based on the criteria we developed. The

framework thus helps future users navigate trade-offs based on their own needs [25].

Remote Servers & Network: Network threats have existed almost as long as the inter-
net itself. Corresponding network defenses like firewalls are well-established. However, the
distributed nature of the home IoT makes the deployment of such defenses more challenging.
Devices in the same home [oT system can be made by various vendors, who adopt different
infrastructures that can affect the way these devices communicate with remote servers. The
complexity of today’s Internet also makes various devices (instances) of the same product
behave differently, either due to load balancing adopted by the servers or the geo-location of
the local device. A set of rules that permits network activities thus can vary from device to
device, even if the devices are viewed as the same product in users’ eyes. Therefore, creating
generalizable allowlists is both desired and challenging.

Our work explores the design space of automatically creating generalizable allowlists for
various home IoT products. We automatically create allowlists that can work for all devices
of a product, instead of just one device, by using the IoT Inspector dataset, a large-scale
IoT traffic dataset collected from real homes [26]. Leveraging this large-scale dataset, we
discover that the network activities of different devices (of the same product) can greatly
vary due to load balancing, under-represented regional services, user-specific settings, and
more. These discoveries guide us to explore and map the design space needed to support
generalizable allowlists. For instance, we consider various host representations (e.g., IP,
hostname, domain), samples from different regions, sample sizes, and minimum bars for
admitting a new host into the allowlist. We then measure how different allowlists can affect
device functionality. Our discoveries on the general trends provide guidance on the desirable
design for allowlists, such as the usage of hostname patterns, region-specific allowlists, and
more. We also learned that certain infrastructures and careless host naming can lead to

the failure of allowlists. We also deployed these allowlist on real-world devices in our lab
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to understand their impact on functionality. Given the prevalence of load balancing in
today’s networks, we found that hostname-pattern-based allowlists help to maintain devices’
functionality, but still can fall short for video and music streaming devices. We also found

allowlists to be relatively stable over time, in contrast to many people’s belief.

Throughout this thesis, we create a road map that can secure home IoT devices from
various attackers in different parts of home IoT systems. A smart home owner could use our
context sensing framework to select a combination of home IoT sensors that not only fit their
needs, but also are robust against local attackers while preserving user privacy. Once the
selected home IoT devices and sensors are deployed, the owner can use allowlists to prevent
attacks launched by a remote attacker or a compromised device. Finally, for legitimate
users, a good access control system will assign default access based on their social roles in

the household, as suggested by our work.



CHAPTER 2
RELATED WORK

2.1 Access Control in the Home 10T

Current research focuses on analyzing and fixing the security of platforms [27, 28, 29|, pro-
tocols [30], and devices [31]. Fernandes et al. discuss how smart-home apps can be over-
privileged in terms of their access to devices and present attacks exploiting deficiencies in
apps’ access-control mechanisms [27]. Mitigations have involved rethinking permission grant-
ing [32, 33, 27].

Comparatively little work has focused on authorizing and authenticating humans to home
IoT devices.

Prior work has focused on the difficulties of access control in the home [34, 35, 36, 37|,
rather than solutions. Furthermore, the consumer device landscape has changed rapidly in
the years since these initial studies.

Some older work has examined authentication [38] and access-control [39] for deployed
home ToT devices, finding such affordances highly ineffective. Recent studies [2, 40] have
sought to elicit users’ broad security and privacy concerns with [oT environments, par-
ticularly noting multi-user complexity as a key security challenge. This complexity stems
from the social ties in a home [oT setting. For instance, researchers have noted that room-
mates [12], guests [41], neighbors [13], and children [9, 42] are all important considerations
in multi-user environments. In Chapter 4, we build on this work, identifying desired access-
control rules for home IoT devices and bringing both relationships between home occupants
and devices’ individual capabilities to the forefront.

To take contextual factors into consideration, Schuster et al. proposed protocols for en-
forcing contextual (a.k.a. “situational”) access control [43]. They introduced Environmental

Situation Oracles (ESO) that answer queries about context. They did not, however, investi-
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gate physical sensing, which inspired our work in Chapter 5. In Chapter 5, we investigate the
trustworthiness and usability of the physical sensing that necessarily underpins their oracles.

To improve the robustness of sensing, Birnbach et al. proposed ensemble methods that
combine sensors to verify physical events in homes [44]. While they focused on techniques
for sensor fusion, we provide a framework to help designers choose a set of sensors with
complementary usability /privacy properties and abilities to resist attacks.

User-centered work focuses on the expression of policies, not enforcement. He et al.
mapped potentially desirable policies [8] and Zeng et al. studied the user interface for ex-
pressing policies in multi-user homes [11], but gaps remain. Current designs rely on the
integrity and availability of sensor data, which we show are not guaranteed. Privacy con-
cerns can also make people unwilling to deploy certain sensors in homes [45].

Prior research on IoT authentication has focused on protocols (e.g., Kerberos-like frame-
works [46, 47]) without considering the constraints of users. Feng et al. introduced VAuth,
voice-based authentication for voice assistants [48]. VAuth requires the use of wearable
hardware to establish an authentication channel, however.

Smartphones can be considered a predecessor to the IoT, yet the large literature [49,
50, 51, 52] on specifying which apps can access which resources translates only partially to
home 0T devices. Enck et al. discuss how apps could gain access to resources by requesting
permission from the user [51], while Felt et al. discuss how users may not always pay attention
to such prompts [49]. A common theme is that apps access phone resources, and a phone is a
single-user device not typically shared with others. On current versions of Android, one can
configure secondary accounts with restrictions on what apps may be used [53], yet having

separate accounts does not solve the multi-user challenges of home IoT devices.



2.2 Privacy in the Home IoT

Prior research demonstrates gaps between users’ perceptions of their privacy in smart homes
and reality. Users have a limited understanding of privacy risks, and these opinions vary
by context [2, 54, 55, 40, 56]. Researchers have explored the design space of usable privacy
protection for the ToT [57], designed mechanisms for data transparency in homes [58, 59, 60],
and made personalized privacy mechanisms that predict an individual’s preference in a given
situation [61, 40]. Building on the usable privacy literature, we capture privacy concerns
about implementations of contextual access control, including sensing, data storage, and
retention.

There is a growing body of research on developing privacy-preserving measures in ubiqui-
tous sensing systems, such as obfuscation in audio sensing [62], cross-device tracking through
ultrasound [63], bystander privacy in wearable cameras [64, 65], and so on. However, the
public has no guarantee that the manufacturers of smart home devices will implement any
of these counter-measures. Non-technical users are also unlikely to deploy such measures by
themselves. Therefore, smart home designers should select a sensing method that minimizes
overprivileged and inadvertent data collection before deployment, which is the focus of this

thesis.

2.3 Systematization of Knowledge (SoK) in IoT

A few prior papers survey specific aspects of the IoT. Fernandes et al. highlighted that access
control and authentication are among the IoT’s new intellectual challenges [66]. Considering
software and networks, Alrawi et al. proposed methods for security evaluations of home
IoT devices [7]. While they comprehensively explore digital attacks, we instead focus on
physical attacks on sensors. Yan et al. examined analog sensor security, formalizing sensor

circuits’ security properties [67]. Their attackers are highly technical, whereas we focus on



the non-technical adversaries that are common inside homes. On the network level, Yu et al.
argued that context-aware enforcement is essential in the IoT [6]. Zhang et al. [5] compared
academic and industry perspectives on IoT security. Their “environment mistrust” category
can include physical attacks on sensing. They focus on technical attacks, such as signal
jamming and voice synthesis. We expand their threat model to explore physical attacks on

sensors by non-experts.

2.4 Generating IoT Network Policies

Chapter 6 aims in part to understand how allowlists generalize across devices for various
home IoT products. Creating an allowlist is merely a step in the exploration, which is
different from all the prior work that set out for IoT network policy generation. There
are two types of network policies: blocklists and allowlists. Blocklists have received more
attention and are more widely used. In a different domain, many ad blockers use a blocklist
strategy, gathering policies through community effort [68]. Prior research on IoT network
blocklists takes a more advanced approach, creating broadly applicable blocklists by blocking
observed hostnames one at a time on a real IoT device [69]. Because blocklists do not have
to be complete to maintain device functionality, blocklists can be deployed immediately.
Creating generalizable allowlists is a different story. Although several studies proposed
creating allowlists based on observing a single device [70, 71, 72, 73], our analysis shows that
due to load balancing and other network-specific settings, these allowlists will not generalize.
Rather than focusing on a single device, we used the IoT Inspector dataset, the largest home
[oT traffic dataset, to understand whether an allowlist can transfer to other devices. Our
work also contrasts with proposals like Cisco’s Manufacturer Usage Descriptions (MUD) [74],
which asks IoT manufacturers to specify Internet hosts with which their IoT device should
communicate. Specifically, our method requires no additional work from IoT vendors.

Thomasset et al. proposed SERENIoT, which uses blockchains to create and maintain
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allowlists from multiple devices [75]. While SERENIoT also creates allowlists through a
data-driven approach, storing the data on a blockchain, it does not study the process of
generalizing this traffic data, nor evaluate how policies generalize across devices. It is also
unclear how the tool performs outside the lab, where variations like load balancing make con-
sensus hard to reach. In contrast, we evaluate allowlist designs through both a retrospective
simulation on thousands of devices and a lab study.

Prior work has also created network policies based on application behaviors like heart-
beats and firmware checks [76]. However, doing so requires knowledge about application
data features, which are not always collected for privacy reasons. Our method also contrasts
with systems like Bro [77] that focus on analyzing network flows at high speeds, forcing the

user to decide what policies to implement.

2.5 Data-Driven Approaches for Anomaly Detection

To evaluate allowlist generalization in Chapter 6, we use the IoT Inspector dataset [26]. Our
use of a large-scale, real-world dataset also differs from prior work. Many existing approaches
use supervised machine learning techniques to detect anomalous flows [78, 79, 80, 81, 82, 83,
84, 6, 85, but they typically rely on training and evaluation data from dozens of devices in
a lab environment. For example, Dong et al. [86] trained neural networks to fingerprint IoT
traffic based on 10 IoT devices in the lab. Similarly, Mandalari et al. [69] identified blockable
IoT-contacted hostnames based on an in-lab study of 31 devices. It is unclear whether these
techniques would apply to a larger [oT traffic dataset. Some commercial products [87, 8§]
claim to generate rules using proprietary methods and data, but do not detail their approach.

In addition to the scale, our novelty also lies in the realism of the dataset. The dataset
was collected from 5,439 volunteers from around the world [26], reflecting devices deployed
under real-world conditions. Much existing work, such as from DeMarinis et al. [89] and even

the MUD specification [74], assumes that IoT devices have predictable patterns in network
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traffic. Also, prior work, including from Dong et al. [86] and Mandalari et al. [69], is based
on static snapshots of loT device behaviors in the lab, missing dynamic changes from new
interactions and firmware updates.

IoT devices’ potentially variable and complex behaviors call for techniques that dynam-
ically build firewall-style rules. Other dynamic techniques include HANZO, which identifies
devices and classifies network traffic from the home gateway [90]. Like much existing work,
HANZO was evaluated in a lab setting, and its capability to generalize to the complex be-
haviors of real-world devices was not studied. HanGuard instead constructs network policies
based on the traffic between IoT devices and mobile apps [91]. Our method does not require

analysis of companion mobile apps.

2.6 Alternate Approaches to Network Security

Other work tries to protect compromised IoT devices using very different approaches to
network security. For example, Martin et al. protect IoT devices on private networks from
external attacks by scrambling port forwarding on the gateway [92]. Acar et al. propose
securing HTTP servers on IoT devices to prevent the lateral movement of malware [93]. To
reduce the attack surface, Goutam et al. divide IoT devices into controllable (e.g., lights)
and non-controllable (e.g., hubs) devices, forcing the former to communicate only with the
latter [94]. We instead examine communication between home IoT devices and Internet

hosts.
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CHAPTER 3
MODELING HOME IOT INTERACTIONS AND THREAT'S

In this chapter, we introduce our system model for a home IoT environment, with a focus
on the interactions that may occur. Based on the defined model, we further illustrate the
potential threats that can be introduced to the model.

Home IoT systems are inherently complex. The variety of control the system provides
to its users is unseen before. To turn on a light in a home IoT system, for example, one
can flip a physical switch, tap a button on their smartphone, ask the voice assistant to do
it for them, or program the system so that the light turns on whenever the system detects
someone is in the room.

Although the goal of adding more modalities to home IoT is to make people’s lives
easier, integrating everything without careful design can cause more problems than benefits,
introducing security, privacy, and usability issues. By adding sensors to the system and allow
them to provoke actions, attackers can now take advantage of the system via both network
and sensing channels, compromising or deceiving the system for their own benefits [95, 19, 96,
97, 25]. Users also struggle to configure the system in a way that matches their expectations,
either due to a misunderstanding about the system design or the system’s inability.

Comprehensively understanding the potential security, privacy, and usability pitfalls in
the interactions thus requires defining a home [oT system model. With a home IoT system
model, we can identify the possible interactions that can be a point of access.

The home 10T system model we use in this thesis includes three main parts: software,
hardware, and network, as showcasing in Figure 3.1. Each interacts with different stakehold-
ers in a home IoT environment, triggering various security, privacy, and usability concerns
and requiring distinct analysis and defense.

In the following parts, we detail the definition of our system model and its interactions

with possible stakeholders, specifying the problems the system faces for each part.
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Figure 3.1: The home IoT stack model used in this thesis. It emphasize the interactions a
home IoT may have with the external world, namely users, surroundings, and remote servers.

3.1 General System Setting

Although our system model includes three major parts, all parts share the same system
model. In this section, we present the home IoT system model that we use throughout
the thesis, specifying fundamental definitions of various stakeholders and the interactions

methods they leverage.

Users Anyone with legitimate access to the system would be considered as a valid user,
regardless of their residence in the house hold. Family members, visitors, and domestic

workers can all be valid users in our system model.

Home IoT Devices Home [oT devices are Internet-connected devices. Our system model
consists of two types of home IoT devices: actuators that execute commands (e.g., lights),
and sensors that measure their surroundings (e.g., motion sensors). Once connected to
the Internet, actuators can be controlled either locally (e.g., through physical buttons, or
smartphones under the same network) or remotely (e.g., through commands sent from the

Internet). Sensors usually cannot be explicitly controlled, but they can collect data from
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the environment and report the data either to a local hub or a remote server, informing the

system about the changes of the physical attributes in the surroundings.

Interaction Modalities Interactions modalities describe how the user interacts with home
[oT devices. We assume a domestic setting where occupants control home IoT devices
through six different modalities, which includes smartphones apps, manual interaction, phys-
ical tokens, voice assistants, gestures, and automations. For example, a maintenance worker
may unlock the front door using a smartphone app, while a child might turn off their lights
by speaking to a voice assistant.

1. Smartphone Apps: Smartphone apps are by far the most common controlling method for

home [oT. The smartphone app can be a home IoT device’s companion app. It can also be
some general management app that controls all the devices in one’s home.

2. Manual Interaction: A user can interact with devices manually, often by flipping switches

or pressing buttons. Additional sensing is required to identify the user in such scenarios. A
contextual access-control framework can inform a smart device whether to permit access.

3. Physical tokens: Similar to using keys to unlock traditional doors, some home IoT device

may also use some physical object as one way to recognize the user. It can be a token
specifically made for authentication purpose. It can also be some daily used object with
communication methods built in, such as smartphones. One example could be Apple Home-
pod’s handoff feature [98]. Users can let a Homepod play songs from their phones by simply
putting the smartphone nearby. Because users already authenticate to their phone, current
[oT systems can rely on the possession of a phone as a proxy for identity.

4. Voice: Voice assistants let users control devices by speaking. Currently, they perform no
authentication [17] or use speaker recognition that is easy to fool [99, 100].

5. Gestures: Currently uncommon in homes, gestures could be detected using ultrasonic or
radio waves to recognize and authenticate movements as a source of input.

6. Automation: Smart home automation can link changes in context or other triggers to
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actions. They can be set with apps [32] or end-user programming [101]. Absent access
control, automations may create loopholes [102, 23]. Imagine the automation: “If the lights
turn off then play a movie.” If a child may not play movies, yet may turn off lights, a
crafty child could start a movie by turning off a light. While focused on contextual access
control, our framework can also apply to automations triggered by a sensed context [101],
such as when a room is warm [103, 23]. An attacker who tricks a sensor can cause chained

automations toward a malicious goal [102, 29].

Network Settings We assume that all the home IoT devices connected to a router to
access the Internet. The router has the ability to interfere with the network behaviors of
connected devices and is completely under users’ control. There may be local communi-
cations between devices through WiFi, Bluetooth, Zigbee, etc. However, this thesis focus
more on the interactions that happens between the system with external parties (e.g., remote

servers) rather than the internal interactions.

3.2 User & Software

In Chapter 4, we discuss about how software (access control specifically) should be designed
for home IoT users in depth.

Using software (e.g., smartphone apps) is still the primary way users interact with the
home IoT system. Aligning the software design and users’ expectations is crucial but of-
ten ignored. Neglecting users’ expectations can lead to frustrations and misunderstandings,
causing usability and security issues. In Chapter 4, we study users’ expectations and per-
ceptions about access control in a home IoT environment, identifying factors not covered by
today’s home [oT system and the design we should apply in the future.

In this thesis, software includes any software that controls the home IoT devices’ behav-

iors, such as access control, authentication, home automation apps, etc. However, since the
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focus of this thesis is about security and privacy and authentication is naturally covered by
access control, we will focus on access control in the following parts.

We assume a central access control system that can grant or revoke anyone’s access to
any home IoT devices. Devices are managed through a hub that facilitates communication
between devices, enforces policies, and often allows for the creation of end-user programs or
the use of apps.

Users are the primary audience of the software, as defined in Section 3.1. To better
understand the unique challenges presented in a home setting, we categorize different users
based on their relationships with the owner (i.e., the user that sets access control policies),

such as spouse, children at different age, visiting family members, domestic workers, etc.

3.3 Environment & Hardware

Chapter 5 focuses on creating a framework for a contextual access control system. It heavily
relies on the interactions between the environmental changes and the hardware used to detect
these changes and act upon them.

A contextual systems means that the system can take different actions based on various
contexts. For a contextual access control system, it means distinct access control policies
can be activated based on the detected contexts, even for the same user.

Contexts describe a particular state of the physical world. In a smart home, contexts
describe situations, states of actuators, presence of specific people, and more. Examples
include a security camera being activated, the temperature staying within some range, or a
specific person sitting in the kitchen. Contextual access control relies on sensors to recon-
struct these situations, which we call context sensing. Once the context is sensed, contextual
access control can then enforces policies through actuators by responding or not responding

to a users’ access request to a particular capability.
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3.4 Remote Servers & Network

In Chapter 6, we detail the possible threats from the network and discuss how much security
guarantee that a security mechanism like an allowlist can provide without hurting the devices’
functionality. The chapter heavily relies on our assumptions of a home [oT user’s network
settings.

As defined in Section 3.1, the network part of our system model only includes one single
local network, to which every device connects. The users have complete control over what
these devices can send to or receive from the Internet. However, we do not assume the
users would perform any deep package inspection on the traffic, given that most traffic is
encrypted.

The remote servers include any servers that a device may contact during usage, including

both first-party and third-party servers, regardless of whether they are essential or not.
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CHAPTER 4
RETHINKING ACCESS CONTROL FOR THE HOME IOT

Recent years have seen a proliferation of Internet of Things (IoT) devices intended for
consumers’ homes, including Samsung SmartThings [104], the Amazon Echo voice assis-
tant [105], the Nest Thermostat [106], Belkin’s Wemo devices [107], and Philips Hue lights [108].
To date, [oT security and privacy research has focused on such devices’ insecure software-
engineering practices [31, 109, 27], improper information flows [109, 23, 29], and the inherent
difficulties of patching networked devices [5, 6].

Surprisingly little attention has been paid to access-control-policy specification (express-
ing which particular users, in which contexts, are permitted to access a resource) or authen-
tication (verifying that users are who they claim to be) in the home IoT. This state of affairs
is troubling because the characteristics that make the IoT distinct from prior computing do-
mains necessitate a rethinking of access control and authentication. Traditional devices like
computers, phones, tablets, and smart watches are generally used by only a single person.
Therefore, once a user authenticates to their own device, minimal further access control is
needed. These devices have screens and keyboards, so the process of authentication often
involves passwords, PINs, fingerprint biometrics, or similar approaches [110].

Home IoT devices are fundamentally different. First, numerous users interact with a
single home [oT device, such as a household’s shared voice assistant or Internet-connected
door lock. Widely deployed techniques for specifying access-control policies and authenti-
cating users fall short when multiple users share a device [2]. Complicating matters, users
in a household often have complex social relationships with each other, changing the threat
model. For example, mischievous children [9], parents curious about what their teenagers are
doing [10], and abusive romantic partners [111] are all localized threats amplified in home
[oT environments.

Furthermore, few IoT devices have screens or keyboards [3], so users cannot just type a
18



password. While users could possibly use their phone as a central authentication mechanism,
this would lose IoT devices’ hands-free convenience, while naive solutions like speaking a
password to a voice assistant are often insecure.

Real-world examples of the shortcomings of current access-control-policy specification and
authentication for home IoT devices have begun to appear. A Burger King TV commercial
triggered Google Home voice assistants to read Wikipedia pages about the Whopper [17],
while the cartoon South Park mischievously triggered Amazon Echo voice assistants to fill
viewers’ Amazon shopping carts with risqué items [16]. While these examples were relatively
harmless, one could imagine a rogue child remotely controlling the devices in a sibling’s room
to annoy them, a curious babysitter with temporary access to a home perusing a device’s
history of interactions, or an enterprising burglar asking a voice assistant through a cracked
window to unlock the front door [15].

In this chapter, we take a first step toward rethinking the specification of access-control
policies and authentication for the home [oT. We structure our investigation around four re-
search questions, which we examine in a 425-participant user study. These research questions
are motivated by our observation that many home [oT devices combine varied functionality
in a single device. For example, a home hub or a voice assistant can perform tasks ranging
from turning on the lights to controlling the door locks. Current access control and authenti-
cation is often based on a device-centric model where access is granted or denied per device.
We move to a capability-centric model, where we define a capability as a particular action
(e.g., ordering an item online) that can be performed on a particular device (e.g., a voice
assistant). Intuition suggests that different capabilities have different sensitivities, leading
to our first research question:

RQ1: Do desired access-control policies differ among capabilities of single home IoT
devices? (Section 4.4.2 and 4.4.3).

We investigated this question by having each study participant specify their desired access-
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control policy for one of 22 home IoT capabilities we identified. For household members of six
different relationships (e.g., spouse, child, babysitter), the participant specified when that
person should be allowed to use that capability. Our findings validated our intuition that
policies about capabilities, rather than devices, better capture users’ preferences. Different
capabilities for voice assistants and doors particularly elicited strikingly different policies.

While the ability to specify granularly who should be able to use which capabilities is
necessary to capture users’ policies, it incurs a steep usability cost. To minimize this burden
through default policies, we asked:

RQ2: For which pairs of relationships (e. g., child) and capabilities (e. g., turn on lights)

are desired access-control policies consistent across participants? These can be default set-
tings (Section 4.4.4).
In our study, nearly all participants always wanted their spouses to be able to use capabilities
other than log deletion at all times. Participants also wanted others to be able to control
the lights and thermostat while at home. As intimated by the prior policy, the context in
which a particular individual would use a capability may also matter. Children might be
permitted to control lights, but perhaps not to turn the lights on and off hundreds of times
in succession as children are wont to do. Nor should children be permitted to operate most
household devices when they are away from home, particularly devices in siblings’ rooms. A
babysitter unlocking the door from inside the house has far fewer security implications than
the babysitter setting a persistent rule to unlock the front door whenever anyone rings the
doorbell.

RQ3: On what conteztual factors (e.g., location) do access-control policies depend?
(Section 4.4.5).

In addition to a user’s location, we found that participants wanted to specify access-control
policies based on a user’s age, the location of a device, and other factors. Almost none of

these contextual factors are supported by current devices. Finally, to identify promising
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directions for designing authentication mechanisms in the home IoT, we asked:

RQ4: What types of authentication methods balance convenience and security, holding
the potential to successfully balance the consequences of falsely allowing and denying access?
(Section 4.4.6).

Analyzing consequences participants noted for falsely allowing or denying access to capa-
bilities, we identify a spectrum of methods that seem promising for authenticating users
(Section 4.5), thereby enabling enforcement of users’ desired access-control policies for the

home IoT.

4.1 Background

In this section, we scope our threat model and review current devices’ support for access

control and authentication.

4.1.1 Threat Model

The two major classes of adversaries in the smart home are external third parties and those
who have legitimate physical access to the home. The former class includes those who exploit
software vulnerabilities in platforms [27], devices [31] (e.g., with Mirai), or protocols [30]
intending to cause physical, financial, or privacy-related damage. The latter class includes
household members with legitimate digital or physical access to the home, such as temporary
workers or children [9]. These insider threats have received far less research attention, but
are the focus of this chapter. Insiders might be motivated to subvert a smart-home system’s
access controls for reasons ranging from curiosity to willful disobedience (e.g., a child at-
tempting to take actions forbidden by their parents), or to attempt to correct imbalances
created by the introduction of devices whose surveillance implications grant asymmetric

power to certain members of a household (e. g., a parent tracking a teenager [10]).
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4.1.2  Affordances of Current Devices

Current home IoT devices have relatively limited affordances for access control and authen-
tication. Taking a five-year-old survey of the home IoT landscape as a starting point [39], we
surveyed current devices’ affordances; Figure 4.1 shows representative samples. To control
many current devices, people use smartphone apps that must be paired with devices. These
apps offer various access-control settings. For example, the Nest Thermostat supports a
binary model where additional users either have full or no access to all of the thermostat’s
capabilities. The August Smart Lock offers a similar model with guest and owner levels.
Withings wireless scales let users create separate accounts and thus isolate their weight mea-
surements from other users. On Apple HomeKit, one can invite additional users, restricting
them to: (a) full control, (b) view-only control, (¢) local or remote control.

Some devices offer slightly richer access-control-policy specification. The Kwikset Kevo
Smart Lock allows access-control rules to be time-based; an owner can grant access to a sec-
ondary user for a limited amount of time. We find in our user study that time is a desirable
contextual factor, but one of only many. We focus on capabilities, rather than devices. While
most current devices do not allow for access-control policies that distinguish by capability,
Samsung SmartThings lets users restrict third-party apps from accessing certain capabili-
ties [112]. We find that restricting users, not just apps, access to a particular capability is
necessary.

From this analysis, we found current mechanisms to be rudimentary and lack the neces-
sary vocabulary for specifying access-control rules in complex, multi-user environments. We
aim to establish a richer vocabulary.

Current authentication methods for the home IoT appear transplanted from smartphone
and desktop paradigms. Passwords are widely used in conjunction with smartphones. For
example, SmartThings has an app through which a user can control devices. A user first

authenticates to this app using a password. Voice-based authentication is currently very
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Figure 4.1: Current access-control-specification interfaces: The Nest Thermostat (a) only
allows “all-or-nothing” specification, while the August Smart Lock (b) only offers coarse-
grained access control via predefined Guest and Owner groups. In contrast, Apple’s Home-
Kit (c) differentiates between view and edit access level, as well as local and remote access.
The Kwikset Kevo Smart Lock (d) provides time-based access control, but not other factors.
rudimentary and is not used for security, but for personalization. For instance, Google Home

uses speaker recognition for customizing reminders, but not for security-related tasks [113].

4.2 Pre-Study

As a first step in exploring access control based on capabilities and relationships in the
home IoT, we conducted a pre-study to identify capabilities and relationships that elicit
representative or important user concerns. To ground our investigation of capabilities of the
home IoT in devices consumers would likely encounter, we created a list of home IoT devices
from consumer recommendations in CNET, PCMag, and Tom’s Guide [114]. We grouped
devices by their core functionality into categories including smart-home hubs, door locks, and
voice assistants.

For each category of device, we collected the capabilities offered by currently marketed

devices in that category. We added likely future capabilities, as well as the ability to write
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end-user programs [23, 29]. We showed each pre-study participant all capabilities identified
for a single given class of device. The participant answered questions about the positive and
negative consequences of using that capability, and they also identified additional capabilities
they expected the device to have. We used this process to identify a comprehensive, yet
diverse, set of capabilities that range from those that elicit substantial concerns to those
that elicit none.

To identify a small set of relationships to investigate in the main study, we also showed
participants a table of 24 relationships (e. g., teenage child, home health aide) and asked them
to group these relationships into five ordered levels of desired access to smart-home devices.
We chose this list of 24 relationships based on existing users and groups in discretionary
access control (DAC) systems and common social relationships in households.

We conducted the pre-study with 31 participants on Amazon’s Mechanical Turk. Par-
ticipants identified potential concerns for a number of capabilities, in addition to identifying
capabilities (e. g., turning on lights) that aroused few concerns. We used these results to gen-
erate a list of capabilities, grouping similar functionalities across devices into categories like
viewing the current state of a device. We selected the 22 capabilities whose pre-study results
showed a spectrum of opinions and concerns while maintaining a feature-set representative
of smart homes.

To narrow our initial list of 24 relationships to a tractable number, we examined how
pre-study participants assigned each relationship to one of the five ordered categories of
desired access to household devices. We chose the six relationships that span the full range
of desired access and for which participants were most consistent in their assignments to a

category.
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4.3 Main Study

To elicit desired access-control policies for the home IoT, our main study was an online
survey-based user study. We recruited participants on Mechanical Turk, limiting the study
to workers age 18+ who live in the United States and have an approval rating of at least

95 %.

4.3.1 Protocol

Each participant was presented with a single capability (e.g., “see which lights in the home
are on or off”) randomly chosen from among the 22 identified in the pre-study.

We then presented the participant with one of six relationships: spouse; teenage child;
child in elementary school; visiting family member; babysitter; neighbor. We first asked

bRENN14

whether such a person should be permitted to control that capability “always,” “never,” or
“sometimes, depending on specific factors.” These answers were the first step in identifying
participants’ desired access-control policies. For the first two options, we required a short
free-text justification. To better understand the importance of an authentication method
correctly identifying the person in question and the system correctly enforcing the access-
control policy, we asked participants who answered “always” or “never” to state how much of

an inconvenience it would be if the system incorrectly denied or allowed (respectively) that

particular user access to that capability. Participants chose from “not an inconvenience,”

) )

“minor inconvenience,” or “major inconvenience,” with a brief free-text justification.

If the participant chose “sometimes,” we required additional explanations to further
delineate their desired access-control policy. They first explained in free-text when that
person should be allowed to use that capability, followed by when they should not be allowed
to do so. On a five-point scale from “not important” to “extremely important,” we asked
how important it was for them to have (or not have) access to that capability.

We repeated these questions for the other five relationships in random order. Thus, each
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participant responded for all six relationships about a single capability.

Afterwards, we asked more general questions about specifying access-control policies for
that capability. In particular, we presented eight contextual factors in randomized order,
asking whether that factor should influence whether or not anyone should be permitted to
use that capability. The possible responses were “yes,” “no,” and “not applicable,” followed
by a free-response justification. We asked about the following factors: the time of day; the
location of the person relative to the device (e.g., in the same room); the age of the person;
who else is currently at home; the cost of performing that action (e.g., cost of electricity or
other monetary costs); the current state of the device; the location of the device in the home;
the person’s recent usage of the device. Further, we asked participants to list any additional
factors that might affect their decision for that capability.

We concluded with questions about demographics, as well as the characteristics of the
participant’s physical house and members of their household. We also asked about their

ownership and prior use of Internet-connected devices. We compensated participants $3.50

for the study, which took approximately 20 minutes and was IRB-approved.

4.3.2  Analysis

Participants’ responses about their access-control preferences included both qualitative free-
text responses and multiple-choice responses. Two independent researchers coded the quali-
tative data. The first researcher performed open coding to develop a code book capturing the
main themes, while the second coder independently used that same code book. To quantita-
tively compare multiple-choice responses across groups, we used the chi-squared test when all
cell values were at least 5, and Fisher’s Exact Test (FET) otherwise. For all tests, a = .05,

and we adjusted for multiple testing within each family of tests using Holm correction.
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4.8.83  Limitations

The ecological validity and generalizability of our study are limited due to our convenience
sample on Mechanical Turk. Most of our questions are based on hypothetical situations
in which participants imagine the relationships and capabilities we proposed to them and
self-report how they expect to react. Furthermore, while some participants were active users
of home IoT devices, others were not, making the scenarios fully hypothetical for some
participants. We chose to accept this limitation and include recruits regardless of prior
experience with home IoT devices to avoid biasing the sample toward early adopters, who

tend to be more affluent and tech-savvy.

4.4 Results

In the following sections we present our findings. We begin by providing an overview of
our participants (Section 4.4.1). Next, we present how desired access-control policies differ
across capabilities (RQ1, Section 4.4.2) and the degree to which desired policies differ across
relationships (RQ1, Section 4.4.3). After that, we show for which pairs of relationships
and capabilities the desired access-control policies are consistent across participants. We use
these pairs to derive default policies (RQ2, Section 4.4.4). Next, we evaluate which contextual
factors (e. g., age, location, usage) influence the “sometimes” cases the most, thus explaining
users’ reasoning for not always allowing access to a capability (RQ3, Section 4.4.5). Finally,
we analyze the consequences of false authorization and show the impact of falsely allowing

/ denying access to a certain capability on a per-relationship level (RQ4, Section 4.4.6).

4.4.1 Participants

A total of 426 individuals participated in the study, and 425 of them were qualified as effec-

tive responses. One response was excluded from our data because their free-text responses
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Access Control Preference for Different Relationships/Capabilities
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Figure 4.2: Participants’ desired access-control policies. We introduced participants to a
list of relationships (e.g., neighbor) and asked them to choose whether someone of that
relationship should be permitted to “always,” “sometimes,” or “never” control a capability
(e.g., adjust the camera angle) in their smart home.

were unrelated to our questions. Our sample was nearly gender-balanced; 46 % of partic-
ipants identified as female, and 54 % as male. The median age range was 25-34 years old
(47%). Most participants (85 %) were between 25 and 54 years old. Some participants
(19 %) reported majoring, earning a degree, or holding a job in computer science or a related
field.

The majority of our participants (67 %) live in a single-family home, while 25 % live in
an apartment. Nearly half of the participants own (49 %) the place where they live, while
47 % rent. Furthermore, we asked how many people (including the participant) live in the
same household. Around 20 % of participants reported living in a single-person household,

27 % in a two-person, 23 % in a three-person, and 17 % in a four-person household.
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4.4.2  Capabilities (RQ1)

Current access-control implementation in a smart home system is largely device-based. How-
ever, our data motivates a more fine-grained, flexible access-control mechanism. In the
following parts, we discuss our main findings, which are visualized in Figure 4.2.

A) Capability Differences Within a Single Device
We observed that participants’ attitudes toward various capabilities differ within a single
device. For example, voice assistants can be used to play music and order things online.
However, participants were much more willing to let others play music (32.5 % of participants
choose never averaged across the six relationships, ¢ = 0.33, median = 23.7 %) than order
things online (59.7 % choose never on average, o = 0.40, median = 71.1%) (FET, p < .05
for the teenager, child, and visiting family member relationships).
Another example of differing opinions across capabilities within a single device include delet-
ing an IoT lock’s activity logs and answering the door, viewing the current state of the lock,
and setting rules for the lock. Across relationships, participants were permissive about ca-
pabilities like answering the door (25.6 % chose “never” averaged across all relationships
other than children, o = 0.33, median = 16,7 %). Because children would likely not have
a smartphone, we did not ask about them performing this action and we exclude them
from this analysis. In contrast, 76.8 % of participants said they would never allow others to
delete activity logs (o = 0.28, median = 92.1%). These differences are significant (FET,
all p < 0.05 comparing within teenagers, visiting family, and babysitters). Even for a very
trust-based relationship like a spouse, some participants still chose never. When asked why;,
one participant wrote: “No one should be able to delete the security logs.”
Even if individuals with relationships like neighbor or babysitter do not live in the same
house, permissions are sometimes given when the owner of the house is not around. One
typical response for when a capability should be accessible to neighbors is “Perhaps when

I'm on vacation and I ask them to watch my home.”
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B) Context-Dependent Capabilities

We identified “Answering the Doorbell” to be a highly context-dependent capability. 40 %
of participants across relationships (o = 0.33, median = 38.9 %) selected sometimes for this
capability. At the same time, an average of 25.6 % of participants across relationships chose
never (o = 0.33, median = 16.7%).

Whether the homeowner is present is a key factor impacting responses. Many participants
(66.7 %) chose sometimes when it came to the babysitter, because the job itself indicates
the parents are not around. If a delivery person rings the doorbell while the babysitter is
home, the babysitter should be allowed to handle the event. The majority of participants
(77.8%) also sometimes trust a visiting family member with the same level of access. Some
participants (16.7 %) will even consider giving this access to their neighbors, so that if there
is an emergency when the family is on vacation, their neighbor can see who is at the door

from their smartphone.

4.4.8 Relationships (RQ1)

Relationships play an important role in participants’ preferred access-control policies.
A) Babysitter vs. Visiting Family

In the pre-study, we identified the babysitter and a visiting family member to be members of
a guest-like group. In the main study, participants’ overall attitudes toward babysitters and
visiting family members were quite consistent with each other. No significant differences
are observed between these two relationships in our pairwise chi-squared tests. This is
understandable because both relationships share some trust with the homeowner, while
neither lives in the same household.

In general, policies toward a visiting family member are slightly more permissive than policies
toward a babysitter. However, analyzing the qualitative data, we found the situation to be

more complex. There are some specific capabilities, such as “Live Video,” where babysitters
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would be granted permissions at a higher rate than a visiting family member. 57.1% of
participants decided that a visiting family member would never have access to this feature,
while only 33.3% of participants decided the same for a babysitter. The reason is that a
babysitter’s job is to take care of a child while a parental figure is away. Therefore, the
capability itself might help a babysitter take better care of the child, leading to a high rate
of granting this permission sometimes.
Meanwhile, some features show strong subjective variations, including granting babysitters
and visiting family members permission for “Answering the Doorbell.” Some participants
found it useful to always allow access, while other participants felt uncomfortable letting
someone that is not part of their family have access to this particular capability.
From these observations, we conclude that it is important to have both a relationship-based
and capability-based access-control model in a smart home. Such a model should be flexible
enough to address the complex needs and use cases that might occur.

B) Child vs. Teenager
Though both children and teenagers are under a parent or guardian’s watch, a teenager
(presented as 16 years old) and a child (presented as 8 years old) were given very different
access scopes. After removing the five capabilities that are not applicable to a child (whom we
assume lacks a smartphone), for twelve of the seventeen remaining capabilities teenagers were
given greater access (FET, all p < .05). A 16-year-old teenager was regarded as a young adult
by many participants and was more widely trusted to use capabilities responsibly. Therefore,
the always permission was chosen often, and no need for supervision was mentioned in their
free-text responses.
Meanwhile, granting an 8-year-old child unencumbered access worried participants much
more. Some participants mentioned that they were concerned that a young child would
misuse these capabilities, either intentionally or unintentionally, and thus ruin all the settings.

Several participants even expressed their worries that a young child could get themselves in
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danger with the access. For instance, one participant, who selected never for the capability of
seeing which door is currently locked or unlocked, wrote: “An elementary school child should
not be leaving the house on his own accord.” An 8-year-old child’s level of understanding of
a smart home system is also questionable. As a result, children rarely were granted access
always for capabilities other than those related to lights.

Even for capabilities for which participants chose relatively restrictive settings for both
teenagers and young children (e.g., “Order Online”), attitudes differed. Though only 5.3 %
of participants agreed to give full access to “Order Online” to a teenager, 73.7% chose
sometimes over never, giving limited access to their teenager to buy things they needed on
Amazon. For young children, 94.7 % participants believed that a child at that age should
never have access to it, frequently justifying that there is no need for younger children to
order things online themselves. Many participants mentioned supervision or limitations on
what a teenager can buy on Amazon, but they did admit they would let a teenager buy
things from Amazon themselves if they had a reason.

C) Overall Preference for Restrictive Polices

We found that, except for spouses and teenagers, most participants preferred a more restric-
tive access-control policy over a more permissive one. For nine of the twenty-two capabilities
averaged over all relationships, more than half of participants chose never more frequently
than sometimes, and sometimes more frequently than always. Averaged across all capabili-
ties, only 18.1 % of participants (o = 0.12, median = 13.2 %) chose always for visiting family
members, 10.3 % for babysitters (o = 0.09, median = 7.9 %), 8.3 % for children (¢ = 0.10,
median = 5.6 %) and 0.7 % for neighbors (o = 0.03, median = 0%). There was only a small
group of capabilities for which participants were widely permissive: controlling lights and

music, which do not have much potential to cause harm or damage.
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Table 4.1: Potential default access-control policies that reflected the vast majority of partic-
ipants’ preferences.

All
e Anyone who is currently at home should always be allowed to adjust lighting
e No one should be allowed to delete log files

Spouse

o Spouses should always have access to all capabilities, except for deleting log files

e No one except a spouse should unconditionally be allowed to access administrative features
e No one except a spouse should unconditionally be allowed to make online purchases

Children in elementary school
e Elementary-school-age children should never be able to use capabilities without supervision

Visitors (babysitters, neighbors, and visiting family)

e  Visitors should only be able to use any capabilities while in the house

e  Visitors should never be allowed to use capabilities of locks, doors, and cameras
e  Babysitters should only be able to adjust the lighting and temperature

4.4.4  Default Policies (RQ2)

In this section, we give an overview of the default deny/allow access policies we observed
that capture most participants’ responses. We categorize the policies by relationships and

give an in-depth analysis of our findings.

Default Allow

A) Spouses are Highly Trusted
Averaged across all capabilities, 93.5 % of participants (o = 0.09, median = 95.3 %) agreed
to always give access to their spouse, while only 4.15% (o = 0.05, median = 0 %) answered
sometimes, and 2.35% (o = 0.06, median = 0%) said never. For participants who selected
always, their most frequent reason was that they fully trust their spouse and that equality
should be guaranteed in a marriage. Half of the non-permissive responses came from the
capability to delete the smart lock’s log file.

B) Controlling Lights

Access-control policies relating to lights were the most permissive. Looking at the responses
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for the capability to turn lights on and off, most responses align with a proposed default
policy of people only being able to control the lights if they are physically present within
the home. Relatedly, some participants chose sometimes for visiting family members and

babysitters, depending on whether they are physically present within the home.

Default Deny

A) Lock Log Sensitivity
As mentioned in Section 4.4.2, “Delete Lock Log” is the capability least frequently permitted,
and access should therefore be denied by default. Even for a spouse, this capability should
not be accessed by default (only 68.4 % chose always for their spouse). More than 75 % of
participants chose never for all other relationships. As the main method of retrospecting
usage history, the log is not meant to be deleted.

B) Supervising Children
The elementary-school-age child (presented as 8 years old) was one of the most restricted
relationships. On average across all capabilities, 69.4 % of participants chose never for the
child (o = 0.19, median = 70.6 %). Only neighbors received fewer permissions. In our chi-
squared tests, we did not observe significant differences in desired access-control settings for
children between participants who are currently living with a child, who have lived with a
child before, and who have never lived with a child. None of our capabilities were considered
child-friendly enough for even the majority of participants to always grant their elementary-
school-age child access to that capability always. For only the “Light State” and “Play
Music” capabilities was never chosen by fewer than half of participants. Despite being an
immediate family member and living together, plenty of participants expressed fears that a
child at that age might toy with these features and unintentionally mess up their settings
or even cause danger to themselves. With supervision, though, many participants would

consider giving temporary access to their children to gradually teach them how to use such
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a new technology.

C) Ordering Online
The capability to make an online purchase was generally limited to spouses only; 78.9 % of
participants said that only their spouse should always be allowed to make online purchases,
but 84.2% also said that it was acceptable for non-spouse users to do the same if given
explicit permission by the homeowner.

D) Administrative Capabilities
By default, only spouses should be able to access administrative capabilities, such as adding
users, connecting new devices, and installing software updates. 89.7 % of participants gave
their spouse access to these administrative capabilities always, while only 39.7 % of partic-
ipants always gave comparable access to their teenage child. Unsurprisingly, under twenty

percent of participants would give full access to other relationships.

4.4.5 The Impact of Context (RQS3)

Since there are many factors at play in the access-control-policy specification process, it is
important to identify which contextual factors are most influential in this process and how
they contribute to the final decision. The full results are visualized in Figure 4.3. We also
ran chi-squared tests to see if each contextual factor had a relatively greater influence on
some capabilities rather than others. While we did not observe significant differences for the
“People Nearby”, “Cost” and “Usage History” contextual factors across capabilities, we did
observe significant differences for the other five contextual factors.
A) Age

The age of the user was the most influential factor on average across the twenty-one capabil-
ities, except changing camera’s angle (78.1 % on average, o = 0.13, median = 78.3%). The
proportion of participants for whom age mattered varied across capabilities (p = 0.040). The

main capability for which age played less of a role was for changing the camera angle (only
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Impact of Contextual Factors on Capabilities
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Figure 4.3: Contextual factors: Sometimes access must depend on the context. In the study
we asked participants for such factors and identified multiple that are very influential (such
as the age of the user) and learned how they contribute to the decision make process.

50 %). Many participants were concerned with letting a young person have access to certain
capabilities. “They need to be mature enough to use it responsibly” was one typical response.
However, another participant instead explained, “It will be the person themselves and how
capable they are with technology. I do not care about age.”. Thus, while age was frequently
mentioned, in reality the decision process is more likely to be driven by how capable and
responsible a user is, which sometimes correlates with the user’s age. Our results indicate
that a child at a young age (around 8 years old) is generally not perceived to be tech-savvy
and responsible enough to be allowed unsupervised access.

B) Location of Device

The proportion of participants for whom the device’s location impacted the access-control
policy varied across capabilities (p < 0.001). Capabilities relating to cameras were unsur-
prisingly very location-sensitive. “Camera Angle” is the only capability for which a device’s

location was more frequently influential (70 % of participants) than the user’s age. Device
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location was the second most frequently invoked factor for turning a camera on or off (60 %)
and watching live video (81%). If a smart camera is installed indoors, especially in a bed-
room or bathroom, it will be much more privacy-sensitive. Participants reflected this by
saying, for example, “I can see where a quest/house-sitter/baby-sitter might need to access
a view of outside or the garage but not inside.” Therefore, when designing a smart camera,
whether the camera will be used indoors or outdoors should be considered and reflected in
default access-control policies.
C) Recent Usage History

The proportion of participants for whom a device’s recent usage history impacted their
access-control policy did not differ significantly across capabilities. On average across capa-
bilities, 51.7 % of participants (o = 0.12, median = 52.6 %) agreed that this factor impacted
their decision about the access-control policy. For participants who felt the device’s recent
usage history would change their decision, two main rationales arose. On the one hand, if
the history states that a user is abusing a capability, then the owner may revoke access. One
participant wrote, “If someone were to misuse the device, you best bet they aren’t getting a
second chance. Alright maybe I'll give them a second chance, but definitely not a third!”. On
the other hand, if a user turns out to be trustworthy, then the owner may consider letting
them keep the access, or even extending it. “If my kid had been using the device responsibly,

)

I would feel more comfortable giving them more access.” However, some participants felt

the recent usage history was not particularly relevant for two main reasons. First, if the

9

involved capability itself cannot cause much trouble, such as “Light Scheme,” a common line
of reasoning is that “It would be hard to abuse this capability, so it doesn’t matter to me.”
Second, if the capability itself is so concerning that participants are reluctant to give others
access (e.g., “Delete Video”), usage history did not play a role.

D) Time of Day

The importance of the time of day contextual factor varied across capabilities (p = 0.001).
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“Play music” (68.4 %) and lawnmower-related capabilities (64.7 % for creating rules for the
mower, 68.2% for turning lawn mower on/off remotely) were particularly sensitive to the
time of the day. In order to not interrupt other people’s rest, participants tended to limit
lawnmower usage usage to the daytime and playing music to the early evening.

E) Location of User
Capabilities that change devices’ behaviors tended to be more sensitive to where the user is
physically located when trying to control the device (p < 0.001) since many functionalities
cannot be enjoyed without proximity. For example, creating rules that control the lights
(68.4 % of participants felt the user’s location mattered) and “Facial Recognition” (66.7 %)
were prime examples. Many participants wrote that they would not want anyone who is not
currently present in the house to use these capabilities unless it is the owner or their spouse.

F) Costs
The influence of the cost of exercising a capability did not vary across capabilities (p =
0.162). We believe this is in part due to our study design that did not include high-wattage
appliances. Nevertheless, we observed some evidence of concerns with the cost of leaving
lower-wattage devices, like lights, on during the day. Some participants mentioned that
while lights do not consume a lot of electricity, cost can quickly become a concern if heavy
appliances were to be involved. In addition, the influence of cost on online shopping differed
due to different interpretations of cost. For cases where participants did indicate that cost
is a concern, their interpretation was based on the cost of the good purchased, rather than
the electricity used in placing an order.

G) People Nearby
43.6% of participants (o = 0.09, median = 43.6 %) indicated that who else is nearby might
impact their access-control decision. The role of people nearby did not differ significantly
across capabilities (p = 0.400). For participants who believe this factor matters, there are two

contrasting conclusions. Some people might feel more permissive when they themselves are
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around since that means they can supervise everything. However, others felt less permissive
because if they are around, there is no need for others to have access since the others simply
would need to ask the owner. Therefore, it is important for the system configuration to take
these divergent mental models into consideration, letting users decide which direction they
might choose to go in.

H) State of Device
The current state of device was overall the least important factor in participants’ access-
control decisions on average (mean = 23.7%, o = 0.11, median = 22.3%), though this
importance did differ across capabilities (p = 0.044). Notably, 46.7% of participants who
answered about the “Facial Recognition” the capability marked the state of the device as an
influential factor. This is because if the camera is currently off, then there is no reason for
anyone to enable of disable the facial recognition.

I) Other Factors
We included a free-text question with which participants could list other factors they thought
played a role in their access-control-policy specification process. In their responses, we
observed a long tail of additional contextual factors, including weather, people’s familiarity
with technology, how close they are to the owners, and the frequency of one’s access to a

certain capability.

4.4.6  Wrong Decisions’ Consequences (RQ4)

Analyzing consequences of incorrect authorization decisions, we can learn how much toler-
ance a user has for a policy to fail given a specific capability and relationship pair. It is
crucial to understand how strongly users would feel if the system were to malfunction. We

analyze false allow and false deny decisions separately.
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Figure 4.4: Perceived consequences of incorrectly allowing someone to use a capability when
they should never be permitted to do so (top) or incorrectly denying someone when they
should always be permitted to do so (bottom).

False Allow

Note that responses about falsely allowing access belong to those participants who intended

never to grant access to a certain capability to a certain relationship. These participants
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therefore might be more concerned than other participants in certain aspects, which leads
to some narrow tensions with the broader trends seen in previous sections. Figure 4.4 (top)
summarizes these results.

A) Neighbor false allows a major inconvenience
Across all capabilities, 64.1 % of the participants stated that it is a major inconvenience if the
authorization system gives access to their neighbor by accident. Turning the security camera
on or off (100 % a major inconvenience) and creating rules for a smart lock (92.9 % a major
inconvenience and 7.1 % a minor inconvenience) are the most concerning capabilities. Note
that in the study, we described the people representing the relationship neighbor as “good
people, which includes friendly small talk, and occasional dinner invitations.” Nevertheless,
privacy and security were major concerns.

B) Spousal false allows have severe consequences
Though the number of false-allow responses for the spouse relationship is quite small (n =
10), it still gives some interesting insights. 50 % of the answers are based on deleting log files
from a smart lock. Four out of five respondents rate falsely allowing a spouse to delete the
log file not to be an inconvenience. “I wouldn’t really care about my spouse deleting it, but
it would bother me that the system is not secure,” was a typical response.
There were five more responses from other capabilities. From those, four out of five indicated
that a false allow decision was a major inconvenience. It is surprising to see that a few
participants believed it a major issue if the mechanism allows their spouse to access certain
capabilities by mistake.

C) Visiting family false allows a minor issue
Though we presented earlier that participants’ permissiveness toward a visiting family mem-
ber and a babysitter was very similar (and tended toward not being permissive), we observed
a distinction when it comes to false allows. Participants were much less concerned with incor-

rectly giving access to a visiting family member (70 % chose minor or not an inconvenience)
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than to a babysitter (58 %). Responses like “He is my family member so I trust him a bit”
were common. While participants believed the visiting family member would not do much
harm, false allows would still upset them a bit.
D) Shopping / lawn mowers forbidden for children

Among all capabilities, incorrectly allowing a young child to order online (79% a major
inconvenience) and create rules for the lawn mower (70.6 %) were the two capabilities where
false allows for a child raised great concern. A child at such a young age is generally not
trusted with ordering things online. “The child could spend a ton of money on products we
don’t need,” wrote one participant. A lawn mower is considered dangerous. One participant

simply wrote, “(A lawn mower) could cause harm to the child.”.

False Deny

Responses in this section, falsely denying access, come from participants who intended to
give access to a certain relationship. Figure 4.4 (bottom) visualizes the full results.

A) Participants Did Not Want to be Locked Out
Lock-related capabilities raised the most concern (63.9 % of responses for “Lock State” and
58.8 % for “Lock Rule” found falsely denying access major inconveniences). Participants
tended to be very cautious about smart locks. Even though viewing a lock state does
not directly concern locking or unlocking the door, participants still worried whether a
malfunctioning access-control system would lock people out, thus marking these false denies
as major inconveniences.

B) Spouses and Trust Issues
One common reason why participants gave full access to their spouse is because they believe
two people in a marriage should be equal, which means two parties should have the same
access to a system. Therefore, if their spouse is accidentally rejected by the system, it could

raise trust issues and spur arguments within the marriage. We found a number of responses
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similar to “I would not want my spouse to think I did not trust them.” It is interesting to
see that not only do relationships impact access-control policies, but relationships are also

influenced by authorization results. Thus, extra care is required for such relationships.

4.5 Conclusion

Capabilities, Relationships, and Context. While access control in smart homes is cur-
rently often device-centric, our user study demonstrated that a capability- and relationship-
centric model more closely fits user expectations. Home IoT technologies allow for multiple
ways of achieving the same end result, whereas devices often bring together vastly different
capabilities. For example, to increase a room’s brightness, one could remotely turn on a light
using a smartphone app, remotely open the shades, or ask a voice assistant to do either. This
model reveals nuances that are missed in the device-centric model. From the data for RQ1,
we see that the desired policies can vary widely within a single device based on the relation-
ship and the context of access. Although some of these distinctions are intuitive (e.g., child
vs. teenager), others are more nuanced and surprising (e.g., babysitter vs. visiting family
member). They also provide a concrete access-control vocabulary for developers of future
smart-home devices.

A difficult decision in access-control systems involves default policies. In multi-user social
environments, intuition suggests a default policy would be complex. Surprisingly, our data
for RQ2 suggests that potential default policies are actually simple and reminiscent of non-
[oT policies. For example, our default policy says that a person can actuate a light if
they are physically close to it. Though IoT lights can be remotely actuated, the relation
between proximity and using a light is not broken. Although conceptually simple, this rule’s
enforcement is non-trivial, requiring creating and deploying authentication methods beyond
the possession of a smartphone.

Data from RQ3 suggests that the factors affecting access-control decisions are heavily
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context-dependent. Current home IoT devices only support rudimentary forms of context
(Section 4.1). Some contextual factors, such as age, are currently present in smartphones
and cloud services (e.g., Apple’s iCloud Family Sharing supports adding a child Apple 1D
that requires parental approval for purchases, while Netflix has kids option). We recommend
that for home IoT settings, these contextual factors should be a first-order primitive.
Based on these findings (RQ1-3), we envision several changes to smart-home setup. This
process currently involves installing hubs and devices with a set of coarse-grained accounts.
Our work suggests that future smart homes could instead set access-control policies by
walking users through a questionnaire whose vocabulary derives from our user study. This is
closer to the experience of setting up software, where a package comes with secure defaults
that are customized to the specific installation. Using default policies derived from our results
would minimize user burden since it would reflect common opinions by default. Physical
control (e.g., switches) already enables certain default policies, so software authorization
might seem unnecessary in certain situations. However, switches are often add-ons to IoT
starter kits, making software authorization a prerequisite to a satisfying user experience.
Authorization Vocabulary. Based on our study results, we discuss a potential autho-
rization vocabulary that is helpful in building future authorization and authentication for
home IoT platforms. The basic unit of the vocabulary is a triplet containing <Capability,
UserType, Context>. As discussed, capabilities better capture the nuances of access control
in the home than devices. UserType captures the relationship of the user to the home, and to
the owners. From our study, these types should nonexhaustively include: Spouse, Teenager,
Child, Babysitter, and Neighbor. Spouses tend to be users with the highest levels of access,
generally equivalent to administrators in traditional computing systems. Context refers to
the environmental factors that might affect an access-control decision. For example, certain
parents might be more permissive in allowing a child to watch TV without supervision. Based

on our study, at the minimum context should include: Time, User Location, Age, People
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Nearby, Cost of Resource, Device State, Device Location, and Usage History. Depending on
the Capability and the UserType components of the triplet, the importance of the context
can change. For example, for a UserType of Child, the ‘People Nearby’ contextual factor
plays a prominent role in the access-control decision. However, for spouses, it generally has
no bearing. The same goes for the Capability. The ‘Device Location’ contextual factor is
crucial for camera-related capabilities, but not so important for the capability of adding a
new user.

Mapping Authorization and Authentication. Although we focused on analyzing access
control, we briefly discuss how our findings affect the design of authentication mechanisms.
Below, we discuss a set of authentication mechanisms and comment on their ability to
identify users, relationships, and contextual factors. We also discuss privacy limitations and
the effect of false positive and negatives.

Smartphones are the most widely used devices to access 0T devices in the home. Users
may present their identity to a device using a password, PIN, or (more recently) fingerprints.
These identities can be used by home IoT devices to determine the identity, and hence rela-
tionship, of the person attempting access. From the perspective of false positives/negatives,
smartphones can closely match user expectations. They are inconvenient, however, for tem-
porary visitors because they require the visitor to install an app and the owner to authorize
them.

Wearable devices like watches, glasses, and even clothing [115] might serve as proxy
devices with more natural interactions than a smartphone. For example, a user can gesture
at a nearby device to control it (e.g., wave at a light to turn it on or off). As each user will
perform a gesture differently, it can also serve as a form of authentication and thus be used
to identify a person and their relationship. Furthermore, the proximity of a wearable device
is helpful in identifying several contextual factors, including user location and nearby people.

From a false positive/negative perspective, biometrics require quite a bit of tuning that can
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affect an owner’s choice of using this method, especially when authenticating high-access
spouses or for operating dangerous equipment like lawn mowers.

Voice assistants are increasingly ubiquitous in homes. Although such assistants can
perform speaker identification (e.g., Google Home Voice Match), they are currently used as
a personalization hint rather than a security boundary. However, future versions that use
additional hardware might be useful in determining a speaker’s identity and relationship for
access-control purposes [48]. Such assistants could help identify contextual factors like the
location of a user or the presence of nearby people (e.g., a supervising adult near children).
From the perspective of false positives/negatives, any voice-based method will require tuning.
Audio is especially sensitive to background noise. Audio authentication also introduces
privacy issues, as well as the potential for eavesdropping and replay attacks. Advances in
computer vision can also be leveraged to identify users, their relationship, and their location
within a home with cameras. However, it is possible for computer vision systems to falsely
identify individuals or confuse identities. Thus, some level of false positive/negative tuning
will be required, especially when a household is expected to have many temporary occupants.
A big downside of this mechanism is the privacy risk—cameras can track home activity at a
high level of granularity. However, some of the privacy issues could potentially be alleviated
using local processing or privacy-preserving vision algorithms [116].

Bilateral or continuous authentication mechanisms embody the idea that a user has to be:
(a) physically present, and (b) currently using the device [117, 118]. Such mechanisms are
readily able to identify users and relationships, and to support contextual factors involving
user presence. False positive/negative tuning varies based on the specific instantiation. If
a wearable device with a continuous authentication algorithm is used, then the false posi-
tive /negative rates must be considered. Privacy concerns can be alleviated if this mechanism
is implemented in a decentralized manner—only the user’s proxy device and the target device

are involved in establishing an authenticated channel. It can also provide a simple solution to
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the de-authentication problem (revoking access if a temporary visitor is no longer welcome).

In sum, we have taken initial steps toward reenvisioning access-control specification and
authentication in the home IoT. Much work remains in continuing to translate these ob-
servations to fully usable prototypes, as well as in supporting ever richer capabilities and

interactions.
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CHAPTER 5
CONTEXT SENSING FOR ACCESS CONTROL IN THE
ADVERSARIAL HOME 10T

As discussed in the previous chapter, in home [oT, the set of users who ought to have access
to a resource varies over time and may include guests, in-home workers, and others [2, 41, 42].
Desired access control in smart homes is frequently contertual (situational). Rather than
granting unconditional access to a given user or a given role, authorization decisions may
depend on the context. A context can be the user’s location relative to the device, the
history of the user’s interactions with the device, or the state of the home [8]. An example
policy is that a child can only use the smart TV when a parent is nearby [8]. Here, the
system must verify two contexts: (i) a child is trying to use the TV and (ii) a parent is
around. FEnforcing contextual access control requires privacy-preserving and trustworthy
context sensing. That is, a sensor (e.g., a motion sensor) must reliably detect some context
(e.g., a room is unoccupied) while respecting users’ privacy.

Prior work in the security and privacy community has already proposed ways to utilize
contexts in access control [43, 119], but has not focused on how to detect contexts in the
physical world in ways that are both trustworthy and privacy-preserving. A large amount
of existing work on sensing and ubiquitous computing could be applied here, but it mostly
ignores attacks, adversaries, and privacy. For example, work done on robust sensing often
sacrifices privacy by adopting more invasive sensing methods [120] or denser sensor deploy-
ment [44, 121]. This is not realistic for an intimate setting like one’s home. Some bodies
of work also discover that errors are bound to occur in particular circumstances, but they
regard these errors as rare or unintentional occurrences [122, 123, 124]. Adversaries can
exploit this assumption.

In this chapter, we critically reevaluate the literature on context sensing in

homes with a security and privacy mindset. Furthermore, we translate this literature
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to the problem of context sensing for access control, identifying sensor types that best match
specific contexts within practical constraints. To do so, we first identified home contexts
that are critical to access control from the small literature on contextual access control in
smart homes. We then systematically searched the proceedings of the last decade of top
conferences in sensing systems (SenSys, MobiSys, and MobiCom), ubiquitous computing
(UbiComp/IMWUT), and human-computer interaction (CHI and UIST), identifying dozens
of recent papers about sensors that can detect those contexts in smart homes. To capture
well-known mature sensors, we also searched for commercially available sensors for smart
homes and added classic papers on relevant sensors. This process left us with 94 pairs of
contexts and sensors. Analyzing these papers while also revisiting key IoT papers from
the security, HCI, and usable security literatures, we constructed a decision framework that
highlights each sensor’s pros and cons for security, privacy, and usability when used to
detect an access-control-relevant context in a smart home. Our work thus lays a foundation
for secure, practical, and privacy-preserving context sensing in smart homes.

We first create a novel threat model broadening the adversaries that prior
literature has considered for smart home sensing. Prior work has focused on how
experts can exploit IoT systems through software vulnerabilities [7, 5], default passwords [31],
replication of physical traits [125], and adversarial examples [95, 18, 20, 19]. While our model
encompasses these threats, we focus on non-technical adversaries with legitimate access to a
home, such as kids, roommates, guests, and workers, who usually have stronger motivations
than remote strangers. Notably, most papers on context awareness and home sensing do not
consider the adversarial mindset typical in the security community.

From our threat model, we make several observations. First, physical denial-of-service
attacks are trivial against many sensors. Thus, in contextual access control, policies that
allow access by default or rely on the absence (rather than presence) of a characteristic

are easy to bypass. Second, non-technical users are highly capable of replay, imitation,
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and shoulder-surfing attacks. They can also impersonate someone by simply taking that
person’s phone. Identity cannot be reliably authenticated through possession of a phone or
naive recognition of voices/faces.

Contextual access control in homes thus requires deploying sensors with key properties.
The sensors, alone or in ensemble [44], must resist attacks from both technically literate
outsiders and non-technical insiders. They must also minimize inadvertent data collection
because sensors may be deployed in private areas of the home. Finally, household members
must find the sensors acceptable.

Then, we develop a decision framework for evaluating the degree to which
a particular sensor possesses these key security, privacy, and usability proper-
ties. We further distinguish between attacks of different complexities, privacy considerations
from various actors, and specific usability criteria. The latter includes ease of deployment,
reusability of a sensor across contexts, and inclusiveness. This framework will be useful for
individuals who design or deploy sensors in homes, including DIY users [126], manufactur-
ers, and researchers in security and in sensing. We will refer to these individuals as smart
home designers. This framework can help smart home designers navigate the vast array
of sensing mechanisms described in the literature or available commercially. We envision
the framework helping smart home owners to decide which sensor to use, manufacturers to
design their products for facilitating contextual access control, and researchers to develop
sensors that are more sensitive to security and privacy issues. The framework also outlines
criteria to consider when designing a new sensor. In particular, our framework elucidates key
trade-offs among the variety of sensors (e.g., motion sensors, microphones, thermal imaging)
that can detect a given context (e.g., whether anyone is in a room).

Eventually, we apply our framework to highlight trade-offs in deploying sen-
sors for access control in homes. Through a systematic review of the sensing literature,

we identify indicators (e.g., characteristics, such as gait) and associated sensors (e.g., a
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pressure sensor mat for detecting gait) for sensing either identity (e.g., this is Jane) or con-
text (e.g., this is an adult). Using our decision framework, we evaluate each sensor’s key
properties. We used our literature review to gauge sensors’ robustness to attack, privacy
properties (e.g., requirements for data storage), and deployability. With our framework,
smart home designers can identify the sensors that support desired contexts for access con-
trol and recognize trade-offs in security, privacy, and usability. To keep our framework
and evaluations up-to-date, we have released them in a public GitHub reposi-
tory.l Researchers may publicly modify, expand, or dispute the table through pull requests
and issues, facilitating open discussion between the sensing and security communities.
Applying our framework yields the following insights. First, we find that many current
sensors, when used alone, do not adequately address potential threats from non-technical
adversaries. They are especially vulnerable against rarely studied physical DoS attacks.
Second, many sensors collect more data than needed. Contrary to currently deployed archi-
tectures, many sensors do not require cloud storage for data. Lastly, we found that many
sensors are not inclusive based on age or disability, and some can be ineffective under certain

environmental factors.

5.1 Owur Threat Model

Sensor-based access control in homes requires robust sensing that protects user privacy.
Prior IoT research has primarily focused on defending against remote attacks against IoT
software [7, 6]. However, local attackers—regardless of technical background—can also pose
a significant threat to the system by tricking physical sensors into detecting incorrect con-
texts or violating others’ privacy. In fact, potential local attackers like family members,
roommates, guests, and workers could have stronger motivations to bypass access control

than unacquainted remote attackers. Our work examines local threats broadly and focuses

1. https://github.com/UChicagoSUPERgroup/eurosp21
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on those posed by non-technical users with legitimate or illegitimate access to a home. Be-
low, we taxonomize goals, attacks, and attackers. In light of the larger literature on context

sensing, we revisit these attacks within our decision framework (Section 5.2).

5.1.1 The Attacker’s Goals

One of our key insights is that non-technical attackers with modest and localized goals are a
threat to contextual access control. Whereas remote attackers disrupt at scale, non-technical
local attackers might only want to gain illegitimate access to some resource or spy on another
individual. For example, a child may wish to watch TV without approval, a burglar may
want to erase security camera footage after committing theft, or (as can be the case with
intimate partner violence [127, 111]) an abusive member of the household may try to spy
on members of their household by evading policies stopping security cameras from recording

when people are home.

Local attackers might aim to bypass access control or compromise the privacy of others

in the home.

Strategies for attacking sensors depend on the policy. A default-deny policy, which auto-
matically denies access to unknown users, is not always advisable. For instance, prior work
found users prefer default-deny policies for locks, but would rather permit unauthorized users
to control smart lights than leave users in the dark [8].

Impersonation: Under a default-deny policy, a system only accepts authorized and au-
thenticated users. An attacker must impersonate an authorized user or fabricate a valid
token through imitation or replay attacks.

We find that these attacks often do not require technical knowledge (Section 5.4), espe-
cially in an intimate setting like a home where boundaries to privacy are reduced and private
resources are easy to acquire. For example, many widely deployed facial-recognition systems

lack depth or liveness detection. One can trick them by presenting a photo or video of an
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authorized user [128]. Photos of authorized users (e.g., a child’s parents) are easy to find in
a home, and videos can be taken in secret.

Similar issues arise for audio. People with access to a home can record authorized in-
dividuals speaking to voice interfaces. While authenticated speaker recognition is an active
area of research [129], many widely deployed voice interfaces are vulnerable to simple replay
attacks [99, 100] or even lack authentication entirely [17].2 Off-the-shelf voice morphing

compounds this problem [130].

Local attackers have extensive access to photos and audio, making basic face or speaker

recognition systems vulnerable to replay and imitation attacks.

Current home IoT systems tend to rely on smartphones as a proxy for identity, capital-
izing on their ubiquity. However, smartphones often run out of battery, and they do not
offer the convenience of other interaction modalities (Chapter 3). This practice also falsely
assumes that the user is always near their phone. For example, if the smart TV will turn
on only if an adult’s phone is in the room, a mischievous child can take their parent’s phone
while the parent is sleeping. Furthermore, smartphone authentication is still not fool-proof
as it is often knowledge-based (e.g., PINs). It is often easy for others in the home to bypass

this authentication through shoulder-surfing.

Existing practices of using phones (potentially with authentication) as a proxy for identity

in shared spaces can be risky in terms of both security and usability.

Invisibility:  Contextual access-control policies can also allow access by default. One
example would be using the smart stove. Whereas visitors or babysitters may be allowed to
use the stove, a child should not use it for safety reasons. A natural policy that follows is

“anyone except a child can turn on the stove.” When these default-allow policies depend on

2. In our informal testing, Google Home’s speaker recognition only seemed to verify the person who said
“OK, Google.” It accepted further commands spoken by someone else, making replay attacks trivial.
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Dimension Type Capabilities Examples

Physical access to indoor & outdoor devices/sensors
Rich observation opportunities

Full knowledge of sensor models & locations
Knowledge of access-control policies & automations

Indoors Family member, babysitter

Access

Physical access only to outdoor devices/sensors
Outdoors Limited observation opportunities Neighbor, prospective burglar
Opportunistic attacks that reach more victims

Sophisticated network and imitation attacks
Expert Ability to craft black-box adversarial examples IT professional, hacker

Expertise Unsophisticated replay/imitation attacks, block sensor

Non-expert ~ Unsophisticated replay/imitation attacks, block sensor ~ Child, domestic worker

Spoofing (through imitation)

Resemblance  Similar Higher possibility of inadvertent false positives

Sibling, one who looks similar

Table 5.1: Local attackers can be characterized along the dimensions above, impacting attack
capabilities.

not sensing a characteristic or situation, e.g. “record security video of the bedroom when no
one is home), an attacker needs nothing more than to make the characteristic or situation
“invisible.” They can do this by changing or blocking the sensor’s field of view.

We will refer to such attacks, where the local attacker prevents the sensor from physically
detecting a context, as physical denial of service (DoS). This can entail blocking a motion
sensor with paper or overloading a microphone with loud noise (including outside the human
hearing range [131, 19]). Sensors must detect whether they are receiving accurate and fresh

input.

Default-allow policies, which rely on not detecting a given situation, can be defeated by

blocking sensors.

5.1.2 Attacks

Based on these attacker goals, we surveyed top security and sensing conferences to identify
likely attacks. We clustered prior work based on attack method, resulting in three major
types of attacks: 1) replay and spoofing attacks; 2) adversarial examples; 3) sensor hardware

attacks. Note that replay and spoofing attacks differ in practicality despite often appearing
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together in the literature. We did not find mentions of physical DoS attacks in our literature
survey, but include them because they are a clear threat to access control. Below, we define
these attacks.

Replay Attack: The attacker collects a credential and feeds it back to a sensor. For
example, the attacker can play a voice recording, show a photo of a face, or make a gummy
mold of a specific fingerprint [125]. Our focus in this SoK is on replaying the physical signal
itself, although network traffic can sometimes also be replayed.

Spoofing: The attacker forges an approximate credential or situation they have not nec-
essarily captured. Smoke can spoof a fire, and energetic pet cats can spoof occupancy.
Physical Denial of Service (DoS): Jamming, blocking, or moving a sensor can prevent
accurate sensing. It is important to note that the sensor detecting the absence of a char-
acteristic or situation is different from not detecting it. For instance, when trying to sense
whether a room is empty, a camera blocked by a piece of paper will not detect any people.
This differs from a camera affirmatively seeing a room without people. These attacks are
often easy to deploy, but have not yet received much attention.

Adversarial Examples: Against ML-based sensing methods, the attacker can poison the
training data or add carefully crafted noise to inputs [95, 132].

Sensor Hardware Attacks: The attacker leverages the physical principle behind the
hardware to deceive the sensor, such as with signal injection attacks [19, 133].
Inadvertent False Positives:  This is not quite an attack, but a sensor incorrectly

detecting an identity or situation can still compromise access control.

5.1.8 Physical Sensors’ Potential Attackers

To understand each attack’s feasibility, we characterize the attacker’s capabilities. Table 5.1
provides a summary. Our threat model concerns attackers who wiolate access-control poli-

cies. We thus ignore adversaries who create unreasonable policies, such as domestic abusers
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attempting to spy on their family. Defending against those adversaries requires countermea-
sures beyond access control.

Access: An attacker with access to the home would be well-positioned for physical at-
tacks against sensors. They can observe authentication processes in the home, potentially
repeatedly, to record information for replay or imitation attacks. For example, a roommate
might encounter multiple instances of the user speaking to a voice assistant. They thus have
multiple opportunities to record the user’s voice for tricking speaker-recognition algorithms.
By having access to the home, attackers can also infer access-control policies, automations,
and sensor locations or types from their observations. Legitimate access can be permanent,
such as for residents, or temporary, such as for visitors and domestic workers. Illegitimate
access occurs when people enter the home without permission.

It is also possible for attackers to access sensors outside the home [134, 13] or make
inferences using partial information (e.g., from sensors visible through windows). Some
individuals who might rely on these methods include neighbors and prospective burglars.
We note that modeling the attack surface cannot rely on a simple indoor versus outdoor
dichotomy. For example, one can control a voice assistant through an open window.
Expertise: Attackers with technical expertise, such as infosec professionals, are capable
of sophisticated attacks. Some attacks against ML-based sensor systems are of this na-
ture. They can involve carefully crafted eyeglasses [95], stickers [18], or audio [131, 19].
Experts can also target sensors’ physical principles, such as applying acoustic interference
to accelerometers [135]. Finally, network- and software-based attacks are also possible.

On the other hand, nontechnical attackers can carry out replay or imitation attacks that
only require observations (e.g., spoken passwords) or commodity recording equipment (e.g., a
smartphone). They can also disable sensors by blocking, repositioning, or unplugging them.
Resemblance: Biometric sensors may confuse individuals of similar physical traits. Bi-

ological family members often share physical resemblances and have easy access to sensors
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because they often live together or visit each other. Real-world examples include one man
who tricked a voice-recognition system by imitating his twin’s voice [99]. Identical twins can
also fool facial recognition [136]. It may also be possible for unrelated people with physical
resemblances to trick the sensors.

Our threat model highlights two key ideas missing from prior work. First, most work
focuses on threats from attackers with extensive resources and expertise. We show that non-
experts with access to the home are capable of replay and spoofing attacks against sensors
that support contextual access control. Second, blocking sensors can allow attackers to evade

some access-control policies. This method of attack has not yet been studied extensively.

Contextual access control must consider that non-experts with access to a home can

attack sensors.

5.2 Decision Framework for Context Sensing

Individuals designing or deploying home sensors need a framework that helps them navigate
the trade-offs between sensors’ security, privacy, and usability properties in conjunction with
the users’ needs and the space itself [45]. These individuals, whom we term smart home

designers, will benefit from the framework in different ways:

e Do-it-yourself smart home owners can learn security and privacy implications of select-

ing certain sensors.

e Sensor manufacturers can holistically evaluate their current sensors’ trade-offs and

identify additional contexts that need new sensors to be developed.

e Security and sensing researchers can identify security and privacy gaps that guide their

future research.

For example, a smart home owner might wish to know when anyone is at home. Consulting

our framework reveals that cameras are suitable for this, but are not privacy-preserving.
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Figure 5.1: Different issues emerge in difference stages of using sensors in home.

Meanwhile, pressure sensors on the floor would be privacy-preserving, but are impractical
and expensive to install. The user can now determine whether to prioritize occupancy
detection at the cost of privacy.

Here, we first explore the life cycles of adopting a sensing technique. Then, for each
stage of the life cycle, we further define the main security, privacy, and usability criteria that
smart home designers must consider in choosing sensors, which we collectively consider our
framework. We constructed this framework by critically analyzing the 94 pairs of sensors
and contexts we identified through our systematic review of the sensing literature (see Sec-
tion 5.3.2) relative to the security and usable security literatures concerning the home IoT.

We also considered broader security principles to fill in potential gaps in this framework.?

5.2.1 Life cycles

Adopting a new sensing technology in one’s home is a long-term and ongoing process. To
avoid missing crucial challenges during the process, we first define different stages of the
adoption process, as depicted in Figure 5.1.

Acquiring the required hardware: A user might need to buy new sensors, which is a
financial and time investment.

Deploying the hardware: After acquiring the hardware, users need to install it in their

3. The team that constructed the framework included multiple students and three faculty members. Two
of the faculty members focus on security and privacy research, but also have experience with machine learning
research. The other faculty member conducts sensing research.
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homes. When needed, users might also re-deploy hardware, such as to reposition it.
Registration (optional): Sometimes the hardware may require the user to register them-
selves first, which is especially common for sensors pertaining to an identity.

(Re)training / Maintenance (optional): Before usage, machine learning-based sensing
methods commonly require the user to train the model about the context in its unique
environment. Retraining may also be required in the future to adapt to users and a sensor’s
environment changing over time. Maintenance, such as battery replacement and routine
check-ups, may also be required.

Usage: After training, the sensor is ready for use. We expect the sensing technique to
operate until the user stops using the sensor. To identify possible issues in this stage, we
must abstract how the sensing technique works.

Sensing detects environmental events, such as temperature changes, movement in the
background, and sound. We term these indicators, which could be mapped to a context. For
example, if a sensor detects movement of a heat source, it is likely to be someone moving
nearby.

To detect the indicator, the sensor needs a signal sent or radiated from the source. De-
pending on how far the signal can be transmitted, the sensor may require direct contact,
near-field communication, or far-field communication. We term this process signal transmis-
S10M.

Once the sensing hardware receives the signal, it first needs to process the analog signal,
such as using amplification and noise filtering. The analog signal can then be converted
into a digital signal for further processing. The sensing hardware stage represents the above
process.

Finally, the digital signal, or the raw sensor data, is sent to a processor or the cloud for
further computation. Depending on what the sensing method is designed for, different data

analysis methods may apply here. For example, facial recognition and gait recognition may
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both rely on cameras, but the data analysis would differ. Once the sensed data analysis is
complete, the algorithm outputs whether the context it aims to detect is active.

End of Life: The user may eventually decide to uninstall the home sensor. In this stage,
the sensor may be directly thrown away, given to others, or sent back to the manufacturer
for upgrading or replacing. The hardware is not guaranteed to be properly destroyed. Thus,
information leakage after disposal is possible. We treat the uninstallation process as two
parts: removing all data (e.g., factory reset) and physically removing the sensor from the

home.

5.2.2  Security

We consider two ways in which a sensor may be attacked. One is through inadvertent failures.
An attacker may bypass an error-prone sensor through brute force. The other is through
intentional attacks. These attacks are described in detail in Section 5.1. Figure 5.1 also
indicates at which stage these attacks might occur.

We do not consider attacks before the usage stage. The set-up stage occurs only once and
the victim is often present, increasing the difficulty of attacking the sensor itself. Therefore,
during the set-up stage, it is more likely for the attacker to perform network attacks (e.g.,
sniffing, person-in-the-middle), which are out of this thesis’s scope.

In Tables 5.2-5.4, a red “!” signifies that a sensor is easily susceptible to a given attack.
A yellow “?” signifies that it is not very susceptible to the attack. If no symbol is shown
in the table, the attack is implausible against the sensor (e.g., replay attacks against smoke

detectors).

5.2.3  Privacy

Sensors collect data to operate, but excessive collection of sensitive data causes privacy con-

cerns. Furthermore, certain contexts require intensive computation on data that is collected
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over long periods of time. To identify potential privacy threats during the usage stage, we
review each stage carefully to identify general threats. We assume that the sensing soft-
ware is secure and do not consider privacy threats before the usage stage. Our framework
considers the following aspects:

Required Data: Data that must be collected for the sensor to function. Depending on
which indicator the sensor detects, different types of data are collected, with various privacy
implications.

Overprivileged Data: Depending on which sensor the designer decides to use, superfluous
data might be collected inadvertently. For example, a microphone for occupancy detection
also records conversations. In the “overprivileged data” column of Tables 5.2-5.4, poor
means the sensor collects unnecessary and sensitive information, acceptable means it collects
unnecessary data that is not sensitive, and good means it does not collect superfluous data.
Data Storage: Data must be analyzed and stored in the cloud if the device lacks the
computational power or storage space for local processing. For other sensors, however,
data can be stored on the device containing the sensor or on an in-home hub. Nonetheless,
companies often upload data to the cloud even when unnecessary [137]. There is no guarantee
that the uploaded data will be used ethically [138], which can deter users from deploying
some sensors in homes [45]. We consider whether each sensor’s data must be stored on the
cloud, or whether local storage supports the needed functionality. We leave out of scope the
question of whether a company will choose to upload data to the cloud even when it could
be retained locally.

Retention Time: Some sensors require longitudinal data (e.g., for training a model). Com-
panies may again decide to store all data indefinitely even when not strictly necessary. Tran-
sient storage means sensed data can be immediately discarded, while persistent means it
must be retained until the user factory resets the device. Similar to data storage, companies

may retain users’ data for as long as they want, even if the user factory resets their device
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and deletes their account. To focus on the requirement for enabling the sensing technology,

we only consider how long the data must be available for the functionality.

5.2.4  Usability

To assess a sensor’s usability for a non-technical end user, we consider the following criteria,
which we compiled based on the stages identified in Figure 5.1.

Wide Availability: Users are more likely to adopt sensors that they can easily acquire.
For example, one can sense occupancy with motion sensors or ultrasonic sensors, but users
and designers may prefer the former because of their cheap cost and ubiquity. Nonetheless,
more expensive sensors (e.g., cameras) may also be widely available if they fulfill multiple
use cases. This may benefit users because sensors that fulfill multiple use cases may obviate
the purchase of additional sensors.

Initial Set-up: How difficult is it for a non-technical user to set up the hardware during
the deployment stage? Good means little to no effort is required, such as plug-and-play
installation. Poor requires substantial effort from the user, such as renovating their current
home for installation (e.g., painting the wall, changing the floor). Anything between good
and poor was deemed acceptable.

Registration: How much effort does it take to register a user, or how long does it take to
collect enough data to train the model? Good means no registration or training is needed.
Acceptable encompasses two situations. In the first situation, the sensing method requires
straightforward registration or data collection, meaning registration should not take over 10
minutes. This includes most commercial products, such as Touch ID or Face ID. In the second
situation, data collection needs more time to finish, but does not require user attention. For
example, a system from Hsu et al. [123] required the user to wear an accelerometer for days
as ground truth for identifying the user from their RF reflection. While this process takes

days, no attention is required, earning it an acceptable rating. Poor takes significant effort
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from users, usually exceeding 10 minutes in duration while requiring constant attention the
entire time. For example, Qian et al.’s system [139] requires the user to walk for four minutes
each at three different paces.

Retraining / Maintenance: How often is model retraining or hardware maintenance
required? Good requires none. Acceptable requires occasional retraining or maintenance less
than once a month (e.g., changing batteries every few months). Poor requires retraining or
maintenance at least once a month. When evaluating biometric sensors, we assume an adult
user with stable features.

Reusability: Some sensors can detect multiple contexts. For example, cameras can detect
age, room occupancy, or an identity. Good means many contexts can be sensed, as with
cameras. Acceptable means a few contexts can be sensed, as with radar sensors. Poor means
the sensor detects only one context, as with fingerprint sensors.

Device Dependency: Some methods require users to carry a device (e.g., a phone) during
usage. Good means no such device is required. Poor means that it is required.
Limitations: We consider whether the sensor is effective for all groups of users and under all
situations. We focus on age, potential disabilities, and environmental factors (e.g., lighting
conditions, GPS reception underground).

Removal: When a user decides to stop using a sensor, the sensor will be removed from the
home. As removal is the inverse of the initial setup, we decide to combine them with the

initial setup in Tables 5.2-5.4.

5.2.5 FExample

We illustrate the use of this framework by describing two examples. Both examples are
sensors that one might use to detect robbery, which is relevant to when access is granted
based on whether there is an emergency in the home. They are also listed in Table 5.2.

Some commercial products, such as the Netatmo Camera [140], alert the user when un-
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recognized individuals enter the house. As one would expect, cameras and facial recognition
algorithms have poor security and privacy qualities, but great usability. They are easily
susceptible to replay attacks and adversarial examples. They are also susceptible to physical
DosS if the attacker simply blocks the field of vision with an object. Sensor hardware attacks
and spoofing are likely impossible for the adversaries we consider. The video stream will cap-
ture more information than needed to determine the occurrence of a robbery. Processing the
video stream requires long-term cloud storage. Lastly, cameras are ubiquitous and easy to
use, although registering users and retraining the facial recognition algorithm to accurately
recognize users require some effort.

Glassbreak sensors, like Honeywell’s [141], can also detect robbery by monitoring for au-
dio frequencies of glass breaking. These sensors are susceptible to replay attacks, physical
DoS, sensor hardware attacks, and spoofing. Machine learning is not necessary, so adver-
sarial examples are not a concern. They capture basic audio frequencies that encode more
information than necessary, but this information is simple enough to be stored locally for
a short amount of time. They are easy to acquire and use, but they only fulfill the unique
purpose of detecting glass breaking. A user looking to sense multiple contexts cannot rely

on glassbreak sensors for other contexts.

5.3 Methodology

Both to understand the potential of applying our decision framework in realistic situations
and to illustrate how to use it, we applied the framework to sensors that would support
commonly desired contextual access control policies in smart homes. Applying the framework
requires: (1) a set of desirable contexts for access control policies; (2) sets of sensors that
can detect those contexts; and (3) evaluations of the security, privacy, and usability of
detecting those contexts with those sensors. This section details our method for applying

the framework and analyzing each aspect to create Tables 5.2-5.4.
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5.3.1 Desirable contexts

Existing work on context sensing does not fully list the desirable contexts for contextual
access control in homes. For example, some work focuses on non-security domains, such as
sensing contexts for healthcare [142], activity recognition [143, 144], or indoor tracking [145,
146, 147, 148]. Other work focuses on device-level contexts (i.e., device states) [32, 24, 33, 6],
but does not consider contextual access control.

To overcome these challenges, we first identified a list of contexts mentioned in the most
closely related work on contextual access control in homes [8, 43, 11]. We then analyzed the
user study data from He et al. [8]. We manually clustered participant responses through
open coding. We added to our list contexts mentioned at least five times or that are related
to identity (thus naturally relating to access control). Tables 5.2-5.4 list the final set of
desirable contexts in the leftmost column. The “user” in the leftmost column refers to the

initiator of the action who uses a device that is owned by the “owner.”

5.3.2 Sensing Mechanisms

Extensive prior work proposes technologies to sense identity or contexts in physical spaces.
It is hard for a smart home designer to navigate this work and determine the appropriate
sensor based on its security, privacy, and usability trade-offs. For example, to track a person’s
location in the home, researchers have used cameras [146], CSI (Channel State Information)
from WiFi signals [148], visible light channels [149], and more. Direct mappings between
contexts and precise sensors are not straightforward. Generally, a physical sensor is used
to sense some characteristic (which we term an indicator) that relates to that context.
For example, if age is the relevant context, one might use a person’s gait, voice, or facial
characteristics as physical indicators of age. These indicators can be sensed with cameras,
microphones, and more.

For each context, we identified potential indicators and associated sensors by surveying
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the sensing literature, searching for relevant industry products, and asking experts from the
sensing community for methods they had encountered in their field. Our final set of sensors
(see Tables 5.2-5.4) includes both research prototypes and mature products. The ezample
column of Tables 5.2-5.4 lists the examples of research prototypes or commercial products
we consider for each type of sensor.

To find and evaluate research prototypes, we systematically reviewed the last ten years of
proceedings of top conferences in sensing systems (SenSys, MobiSys, and MobiCom), ubiqui-
tous computing (UbiComp/IMWUT), and human-computer interaction (CHI and UIST) in
the ACM Digital Library. We first filtered the search results based on keywords (“sensing”
in the abstract and “home” in the paper), which yielded 716 papers. We then manually
inspected each paper to determine its relevance. We used the paper’s title to determine
potential relevance, which led to 127 papers remaining. We then read each of these papers
to determine its actual relevance. We further excluded papers if (i) they were not related to
sensing in homes, but rather applications like VR/AR, smart cities, or health; (ii) they did
not focus on sensing a specific context, but rather on refining sensing techniques through
improved processing algorithms or machine learning techniques; or (iii) we could not directly
map the paper to any of the desirable contexts we identified. The final 36 papers are listed
in Table 5.2- 5.4, and we extracted the indicators of the contexts from the corresponding
papers. If we did not find prototypes in this body of literature for an indicator, we looked
to related top-tier conferences, such as CVPR.

To augment this initial list with more mature and commercially viable methods, we first
consulted experts in the sensing community to identify classic papers for types of sensors that
are now commonly used. To cover methods used in commercial products, we then searched
for sensors of each indicator (as collected from research papers above) on Amazon. If we
had not found any indicators at that point for a context, we searched for sensors related to

that context and then included the indicators they used. This process led to our final set of
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94 pairs of a context that is desirable to sense for access control in the home and a type of
sensor (research prototype or commercial product) that identifies that context.

The steps described above survey, but do not systematize, this work. For systematization,
we applied our framework to analyze the security, privacy, and usability of using that sensor
to detect that context. To understand how the sensing method worked, we read the relevant
research papers for prototypes and any user manuals, technical specifications, and white
papers we could find for commercial products. We list the detailed criteria we use for this

systematization below and in Section 5.2.

5.8.8  Security

Attacks, listed in Section 5.1, target particular types of sensors. To perform replay attacks,
one must be able to record and then play back the relevant data, a situation that mostly
applies to microphones and cameras. Attacks on sensor hardware target sensors’ physical
properties and are thus relevant to microphones, MEMS sensors, and more. We used past
literature to decide whether the type of sensor used by the sensing method is vulnerable or
not.

Some attacks (e.g., physical DoS attacks) are less studied and some sensors (e.g., motion
sensors) are less often targeted. In these cases, we studied the sensor’s basic principles from
papers, product manuals, and white papers, and we discussed among our team whether it
might be susceptible to each attack. For example, passive infrared (PIR) motion sensors
detect motion based on changes in their view in infrared. Infrared radiation struggles to
travel through paper, glass, and thermal blankets, which makes occlusion possible. We
acknowledge that some products may adopt anti-tampering techniques not specified in the
manual or technical specifications. Our judgments reflect contemplation, rather than lab

testing. Tables 5.2-5.4 thus outline expected and potential attacks.
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5.3.4 Priwacy

We evaluated sensors’ privacy implications as follows. We identified the data required by
each sensor based on its description in its paper or manual. Examples include audio for
microphones, air for smoke detectors, and phone packets for CUPID [150], a WiFi-based
indoor localization system. We then identified overprivileged data collection by subtracting
the information needed to determine the context from what could reasonably be inferred
from the required data. We used the guideline in Section 5.2 to label overprivileged data
in Tables 5.2-5.4. For example, Touch ID [151] requires fingerprints. This might suggest
overprivilege because a fingerprint is personally identifiable. However, since it is used to
detect the user’s identity, we do not consider its data collection overprivileged.

Next, we determined the data storage location and retention time required for reasonable
performance. For storage location, we examined the algorithms needed to process the data
for the sensor. If the sensor required a large amount of longitudinal data or algorithms that
could not be computed locally (such as Gaussian models), we labeled the sensor as requiring
cloud storage. Otherwise, we labeled it as local. For example, we consider local storage
sufficient for sensors that use SVM classifiers and require only highly limited longitudinal
data.

If data did not have to be stored for more than one access, we labeled it transient. If any
data did, then we labeled it persistent. For example, smoke detectors have transient data
retention because they do not need to store historical air data to detect future smoke. In
contrast, fingerprint readers that verify identity do need to store representations (templates)

of the fingerprint to perform future matching algorithms.

5.3.5 Limitations

Due to a lack of access to many of the products and prototypes in our evaluation, the ratings
we give are based on team discussion and contemplation. To the best of our ability, we tried
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to make the criteria as concrete as possible and to review papers and specifications with care.
However, some cells in Tables 5.2-5.4 could be subjective and debated by researchers with
different assumptions and access to different information. As such, we intend Tables 5.2-5.4
to reflect an initial attempt of applying our framework and distilling the pros and cons of
each sensor in each context. We intend these tables as a living document that evolves with

community effort and robust online debate.

5.4 Insights From Applying the Framework

We present key findings from applying our framework (Section 5.2) to sensors that support
commonly desired contextual access-control policies in smart homes. Tables 5.2-5.4 sum-
marize each sensor’s pros and cons in security, privacy, and usability regarding detecting a

given context.

5.4.1 Robustness to Attacks

Most sensors are vulnerable to physical DoS. Of the 94 context-sensor pairs evaluated,
64 (68.1%) are vulnerable to physical DoS attacks. Vision-, audio-, heat-, and EM-wave-
based sensors (radar, WiFi, radio) can easily be blocked or jammed even by those with no
technical background. Vision and heat-based sensors’ line of sight can be blocked. Playing
loud music floods audio sensors. Energy-absorbent materials can be placed near transmitters
(e.g., black material near light-based sensors). Through these means of hindering sensor
operation, attackers can become invisible to systems with default-allow policies.

Physical DoS is hard to detect because the symptoms can be similar to normal activities.
This is very different from network DoS attacks. Monitoring may alleviate the issue, but
home occupants are unlikely to perform constant monitoring. A blocked sensor may not be
noticed until the attacker has already achieved their goal.

Sensor redundancy can mitigate physical DoS attacks. For example, a room could have
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Note: In the “Example” column, { denotes commercial sensors or systems.

Table 5.2: An example application of our framework to sensors and contexts identified in
our review of the literature and current sensing products. 36 of these sensors come from
the academic literature, while the rest are commercial products, denoted with a t in the
“Example” column. We mapped the sensors to contexts they are able to detect for the
purpose of an access-control policy allowing or denying usage. The “Error” column contains
reported values from the cited example sensors. Other columns reflect our best judgment,
which was informed by the cited works when related information was reported. !/7/(blank)
= Easy/Hard/Impossible, ifs/2/®" = Good/Adequate/Poor, @ /@ = Local/Cloud, O/@® =
Transient/Persistent data retention, — = Not found. For Required Data, A = Audio, B =
Body shape, Bm = Body movement, C = CSI, E = Environment, El = Electrical properties
of body, F = Fingerprint, G = Gait, L/L’ = Geo/Indoor location, M = Movement, P /P’ =
Photo/Infrared photo, D = Device info, V/V’ = Video/Infrared video, T = Temperature,
O = Orientation, Fp = Floor plan. The rows of this table continue in Table 5.3.

70



Security Privacy Usability
E g - g
S kS Q o | B )
2 = S =0\ ~
£ & o 3 g 0% o 5|2 o g
S ~ S T S S RIS S e L
= 2 Q s Q L = S 2 8 = 2 & £
SIS 3 T Sglfsspfass
= 5 5 & 3 = TR ST 2 £ §E & ¢ =
Contexts Indicators  Sensor Example § < S g § % g, o5 Sl £ 2 £ 2 £ E
RS ] = = £
S E IR dF = Sac= &2 xq 3
Smoke detect 172]1 Variable ! ! E i A O & & & 9 & &
Fire 1noke detector 173]f Variable ! ! E 0 & O|ih 0 0 16 & & 16
. IR Camera 174 Variable ! Vv’ 5 & O|% & & & = 6 &
IR/UV detector 175]1 Variable ! E @ A O 9 & & b & & &
Emergency in Toxi Combustible gas de-  [176]1 Variable E i A O|ife 0 0 0 & & &
the home oxic gas tector
Carbon  monoxide [177]f Variable E e A O & & 6 9 6 &
detector
Robber Camera [140]+ Low | I A% 5 & 0 6 & B 3 6 b
Y Glassbreak sensor [141]1 Variable ! oyt A 9 A O% b 0 & b & &
Bluetooth Low En- B ' . , - A - - - &
crgy (BLE) signal [178]+ ! ! L 2 A 2 % 2 6 2§ 4
sensor
Tag presence  RF/Ultrasonic sen- [179] — ! ! 1% 4 A 09 6 2 6 2y
User in same Sors
house as the RFID 180 - ! L’ i A O | i & & & 9 6 &
q 15¢ as the WiFi TX & RX 152 10% ! TIACGM @ & |9 % & % 6 & 6
evee 124 0.5m - ! C #0248 6 — % 6 &
Movement WiFi TX & RX 181 ! CFp # & O|2 & & _ 6 & &
182 1% ! C B A el 6 22 6 6
Trajectory Inertial sensors in [183 ! ! GM & a e | # & & & & &
phones
BLE signal sensor 178]1 - ! ! L’ 2 A O® e 2 6 2§ 6
BLE, IMU sensors 184 2.4-14.7% [ M,T,O &6 & @ |6 & 9 & 3 6
RF Techni 179 - ! ! L’ S A O & 2 6 2§ 6
eehmques i85 0.06% ! D i & 0|9 ® % & 2 &
T § IR tags 186 Variable ! ! ! L’ 8 A4 O 8 & 0 9 8 &
A8 PIeSeNC® Oiprasound TX & [187 0.1m ! L & & o/t & & — 6 9 &
RX 188 3cm ! L’ S A O = 6 0V ¥ e
Capacitive NFC 189 — L’ B A O 6 6 Y 6 &
Visible Light Chan- [190 5.9cm ! L’ S A O = 6 0 0 Y e
nel
124 0.5 - ! C i A O|® & & — & & W
WiFi TX & RX 181 ! CFp # & o|® & & _ 6 & &
User in same  Movement 182 4% ! C . A el # 22 6 6N
room as the Motion sensor 180 0.5 - ! M i A o|if & & & 9 & &
device Otion. senso 01T 1 M i & O ® i 0 6 2 & 1
EMI Voltage sampling 192 L B A0 2 6 0 Y9 e
Passive  magneto- [193 -17.4% L’ S A O & ¥ &9 ¥ 6
inductive sensors
RF reflection  RF sensor [123] 81% ! L 9 a 0% & & &2 3 4 8
Electric  po- Electrical potential [194] 0.16m ! El 9 A O & 2 6 9 & &
tential sensors
Location WiFi, microphone, ! L’ B A Ol 0 0 & e Y e
S IMU sensors, [185] 0.63-0.78
semantic
Barometer
Hand ges- IMU sensor [163] 10 - 15% ! L A ek & ¥y - 2 8 4
tures
Water pres- Pressure sensor [195] 17.3 - 29.9% L 2 a0y & Ny _ 8§ 6 s
sure
Owner away Location GPS [196]+ Variable ! ! L 9 a 0 0 & & b & Y
or not
Adult nearby  Age Similar to “Age” above Similar to “Age” above

Note: In the “Example” column,  denotes commercial sensors or systems.

Table 5.3: A continuation of the rows of Table 5.2, which is an example application of our
framework to the sensors and their associated target contexts. The abbreviations used are
the same as defined in Table 5.2’s caption.
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Note: In the “Example” column,  denotes commercial sensors or systems.

Table 5.4: A continuation of the rows of Table 5.3, which is an example application of our
framework to the sensors and their associated target contexts. The abbreviations used are
the same as defined in Table 5.3’s caption.
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a motion sensor, a pressure sensor in the floor, and a microphone to detect whether the
room is occupied or not. If access is granted when the room is unoccupied, an attacker
wanting access would need to accomplish the difficult task of occluding all three sensors
around the same time. By cross-checking the sensors’ data streams with each other [44], the
system could verify whether the room is unoccupied and determine whether a sensor has
been compromised.

Careful policy design is another defense against physical DoS attacks. A system’s default
policy—whether to allow or deny access when a condition is met—can impact attack success.
For example, a user might specify “my child should not have access to the TV.” With a
default-allow policy, TV access will be granted unless a child is detected, yet the child can
block a sensor to avoid detection. With a default-deny policy, the child cannot rely on
physical DoS.

The optimal default policy may vary based on the device or operation. Users may prefer
default-allow rules for controlling lights because falsely allowing operation is typically of
little consequence, but falsely denying operation causes inconvenience [8]. A sensor’s false
positive /negative rates also play a role. Smart home designers should help users navigate

these nuances through sensible default policies and templates.

Many sensors are susceptible to physical DoS attacks. Mitigations against physical DoS
of sensors include redundant sensors of different types and carefully constructed default

policies.

Audio- and vision-based sensing is vulnerable to many attacks. Basic audio-based
sensing is susceptible to all types of attacks in Tables 5.2-5.4 [19, 131, 132, 20]. Visible-light
camera sensing is also susceptible to all of these attacks, except for hardware attacks. For
cameras, spoofing can be difficult, but replay attacks with photo or video input are feasible.

Existing defenses for sensing methods are insufficient for access control because they

were designed for authentication instead. Most prior work on audio- and camera-based
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sensing lacks security analyses. The few that analyzed security focused on replay and spoof-
ing attacks. Authentication assumes that unrecognized users are unauthorized. Thus, a
large body of research has focused on preventing replay and spoofing attacks against audio-
and camera-based sensing to avoid attackers from becoming recognized in this regard. A
commonly proposed defense is to rely on secondary channels of information on the same de-
vice [211] or other devices [100, 44]. For example, 3D cameras (like Face ID on iPhones [154])
analyze depth information to deter simple, photo-based replay attacks. However, in access
control, default-allow policies authorize unrecognized users, resulting in the possibility of
physical DoS attacks. Therefore, for such policies, an attacker can gain access by targeting
one information channel (e.g., targeting an image’s visual features by presenting a photo)

and becoming unrecognizable to the system.

Existing defenses for audio- and camera-based sensing focus on attacks that compromise
authentication, not access control. Attackers can exploit the default semantics of access-

control policies to gain access, and physical DoS attacks become easier.

Physical adversarial examples can be effective for skilled, external attackers. For
sensing methods that rely on machine learning, we noted whether they were susceptible to
adversarial examples. Specifically, within the scope of context sensing and our threat model,
we consider only physical adversarial examples. The attacker misleads the algorithms by
adding physical perturbations to the environment or to themselves, instead of feeding data
to the algorithms directly. Recent work has demonstrated the feasibility of such attacks for
images [18, 95, 212] and audio [132, 131, 20]. Although some attacks require whitebox access
to models, which is unrealistic for commodity smart home devices, blackbox attacks are also
possible [212; 213, 214, 215, 216].

Internal attackers are less likely to use physical adversarial examples because they require
substantial technical skills and resources to generate and test. Instead, they would use

familiarity with the system to launch replay, spoofing, or physical DoS attacks to a similar
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end. However, if we consider external opportunistic attackers (e.g., a group of burglars)
who do not have information about the victim, physical adversarial examples can be very
effective. In fact, untargeted adversarial examples are strictly easier than targeted attacks.
For example, attackers might want to attack face recognition on all security cameras in a

neighborhood. In doing so, they can reuse and refine their adversarial examples.

Internal attackers may prefer replay, spoofing, and physical DoS attacks. Opportunistic

external attackers may prefer adversarial examples.

5.4.2  Privacy

Except for cameras, cloud storage is not usually required when sensing contexts.
We found that 79.8% (n = 75) of the examined sensing techniques do not require data
storage on the cloud. Unfortunately, 10 of the 14 methods that use cameras do require cloud
processing. Oftentimes, cloud storage is necessary for computationally intensive algorithms
or large training datasets required to process video or image data online (e.g., neural networks
for facial recognition). Privacy-preserving machine learning may alleviate this need. One
approach is to protect the privacy of the training data. In federated learning [217], sensitive
data stays local and only gradient updates are sent to the server. Another approach targets
the inference stage by running the models locally or on the edge [218, 219]. Companies may
prefer cloud storage because they can collect user data. Despite the risk of data exposure,

some users may prefer cloud storage if it costs less.

Few sensing methods, often camera-based ones, require cloud processing. Federated learn-

ing or performing ML on the edge could obviate cloud processing.

Cameras/microphones are invasive but currently indispensable, thus necessitat-
ing privacy countermeasures. Users perceive age to be an important context for access

control [8]. Unfortunately, most existing age-estimation methods rely on cameras or micro-
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phones, raising privacy concerns. Until privacy-preserving methods for age detection become
possible, users may instead wish to record age while registering their identity during system
setup.

Suppose cameras and microphones have to be used. To enhance bystanders’ privacy,
countermeasures against these sensing methods have been proposed, such as strategically
blurring an image or jamming microphones with ultrasonic noise [64, 21, 22]. These pro-
posals improve privacy, but also imperil the access control system, making it more likely to
ignore attackers or confuse attackers with benign users. Therefore, detecting contexts with
obfuscated sensor data may be another research direction. Raval et al. [220] proposed a
utility-aware obfuscation mechanism for smartphone apps, which shows a promising road to

privacy-preserving sensing in homes.

Privacy-invasive sensors may be essential. Privacy protections may weaken the access-

control system.

Mismatch between required and collected data. Only 25 of 94 context-sensor pairs
(26.6%) do not collect more data than needed to deduce the context. In contrast, 33.0%
were acceptable and 40.4% were poor in our analysis. Most sensing methods marked as poor
record unnecessary video or audio. Manufacturers typically rely on high-fidelity sensors,
such as cameras or microphones, to sense contexts. This also happens when researchers use
microphones on voice assistants or smartphones for ultrasonic-based sensing for their wide
availability. While federated learning or edge computing may mitigate privacy concerns,
they may also appear cryptic to the average user. These methods may therefore fail to
alleviate user concerns about sensors inadvertently collecting invasive data. Future work
should investigate effective means of communicating to users privacy considerations, such as
using privacy labels [221] or visual indicators [222].

Competing interests between multiple stakeholders—manufacturers, researchers, design-

ers, users—also contribute to this mismatch between the data required and the data collected.
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The designer might only want to know which room the user is occupying, but manufacturers
and UbiComp researchers likely would want to collect information about the activity of the
user in that room. Obtaining this extra knowledge enables the latter two parties to design
and provide technology benefiting users in other aspects of their daily life. For the benefit
of smart home owners and users, smart home systems and sensors should offer the ability to

prioritize utility or privacy.

Most sensors collect more data than needed. User awareness and control of data collection

is critical.

5.4.8 Access, Deployment, and Acceptability

Many sensing methods for authentication are not inclusive. Research in sensing and
access control is generally not inclusive to the elderly and groups with various disabilities. For
example, the gait-sensing literature mostly does not consider people with walking disabilities.
For inclusivity, contextual access-control systems must offer an array of sensors that allow

every individual to authenticate an identity or person-specific context.

5.5 Conclusion

Contextual access control in homes is desirable, yet mostly unsupported. To bridge this
gap, sensors can be used to detect contexts. However, they must defend against both expert
and non-expert adversaries while respecting user privacy and usability. We proposed both a
new adversarial model for context sensing in homes and a decision framework for evaluating
potential sensors in terms of security, privacy, and usability. We applied this framework to
common sensors through literature systematization, finding important trade-offs. We have
made our framework and evaluations accessible in a public GitHub repository to facilitate

updates and public discussion.
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CHAPTER 6
AUTOMATICALLY GENERATING GENERALIZABLE
NETWORK ALLOWLISTS FOR HOME 10T DEVICES

In addition to software and hardware, home IoT devices also have suffered from numerous
network attacks [7]. Attackers have exploited vulnerabilities in home IoT devices’ software,
protocols, and default settings to compromise devices [223] for purposes including creat-
ing botnets like Mirai [224] and Hajime [225]. Contributing to security issues is the array
of (often inexperienced) manufacturers creating loT devices, the difficulties of deploying
software patches to devices without screens or traditional user interfaces, and the lack of
standardization [5].

Rather than relying only on potentially unresponsive vendors to patch devices, house-
holds could control the network traffic of their own IoT devices, applying security policies
designed to minimize problematic network behaviors like distributed denial of service (DDoS)
attacks or the exfiltration of data about the home to illegitimate endpoints. Specifically, the
household could use firewall-style rules to limit which hosts a particular device may contact.
Recent papers [69, 226, 227] have employed blocklists, which specify (problematic) hosts that
cannot be contacted and permit traffic to all other hosts. From a security perspective, an even
more attractive approach would be to employ allowlists, which instead enumerate the hosts
that can be contacted and block traffic to all other hosts. While allowlist-based approaches
have a much smaller attack surface, they are rarely used in practice because enumerating the
destinations that general-purpose computing devices should be able to contact is typically
intractable. In contrast, many home [oT devices” actions are highly limited. Intuition thus
suggests that allowlists may be practical for securing home IoT devices at the network level.
A key challenge, however, is that allowlists (unlike blocklists) must be complete for devices
to function correctly.

Some prior papers have, like us, proposed allowlists for IoT devices in one form or an-
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other [71, 72, 70, 73]. These prior papers, however, created allowlists and then subsequently
evaluated those allowlists on individual devices in homogeneous settings (e.g., generating an
allowlist from a single Nest Thermostat in a lab and then evaluating that allowlist on that
same device in the same lab).

In this chapter, we instead explore how to create allowlists for home IoT
devices that generalize and transfer across settings and instances of devices.
Studying a single device in a controlled environment, as in past work, misses key sources
of variability across devices, regions, network architectures, and time. Alternatively, requir-
ing each user to create a personalized allowlist can require an onerous time investment for
users who would need to exercise all of a device’s functionalities. Furthermore, creating an
allowlist from a single device that has already been compromised would nullify any security
guarantees. To study the design space for generalizable allowlists, we conduct a number of
experiments using data shared with us by the IoT Inspector project [26], which collected
network traffic data from thousands of [oT devices deployed in real homes. This approach
lets us analyze how the network behaviors of a single product (e.g., the Philips Hue light-
bulb) varies across devices (e.g., a single household’s physical instance of a Philips Hue) in
different homes across the world.

As our first contribution, we characterize variability in the network behaviors
of distinct devices of the same product (e.g., Philips Hue lightbulbs from different
households), the first step in mapping the design space for allowlists. We used the
IoT Inspector dataset to compare and contrast the network behaviors of 20 popular IoT prod-
ucts across households (Section 6.3). We focused on the hostnames (i.e., fully qualified do-
main names) and ports with which each device communicates. We expected to see variations
based on network-specific configurations (e.g., DNS and NTP), which we indeed observed.
To our surprise, we also observed more substantial variation in the hostnames contacted by

different devices of the same product beyond configuration-specific facets. On average, to
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observe 95% of the hostnames contacted by all devices in our dataset of a given product re-
quired a sample of over 60% of the devices of that product. Nonetheless, many hostnames in
this “long tail” were related to each other. Some hostnames contained what appeared to be
randomized substrings (e.g., oculus2975-usl.dropcan. com vs. oculus1802-usl.dropcam.
com) presumably to support load balancing. Others contained apparent regional identifiers
(e.g., avs-alexa-6-na.amazon.com vs. avs-alexa-7-eu.amazon.com). As a result, an
allowlist of hostnames created by analyzing the network traffic of one specific device is sur-
prisingly unlikely to generalize to other devices of that same product.

To enable more nuanced allowlists, our second contribution is thus an evaluation
of the design space for allowlists, showcasing how different designs impact both
the fraction of observed traffic allowed and the attack surface (Section 6.4). First,
we compare different representations of hosts. Compared to an allowlist of hostnames, an
allowlist of second-level domains is far more likely to capture legitimate variability and thus
generalize. Unfortunately, many IoT devices rely on cloud services (e.g., AWS), meaning
that domain-based allowlists open a large attack surface. As a compromise, we propose and
evaluate a pattern-based representation of hostnames, which appears to enable transferring
allowlists across devices while limiting the attack surface. Similarly, to make allowlists more
robust in the presence of a small number of mislabeled or compromised devices, we explore
requiring that a host be contacted by n different devices (termed the threshold) for it to
be added to the allowlist. We also investigate the effect of the number of different devices of
a product necessary to create a robust allowlist, finding it to be on the order of one or two
dozen devices, depending on the host representation.

To evaluate whether allowlists generated from the two-year-old IoT Inspector dataset
would generalize, our third contribution entailed enforcing these allowlists on real
devices in our lab, analyzing how they impacted device functionality. The afore-

mentioned experiments were retrospective simulations on the IoT Inspector dataset, raising
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the question of whether the allowlists created would actually work in practice in a different
setting. Thus, Section 6.5 reports on an in-lab experiment in which we tested nine pop-
ular home IoT products’ range of functionality when various types of allowlists generated
from IoT Inspector were enforced. While we found that some actions (e.g., streaming mu-
sic, downloading apps) occasionally failed for some products, most other actions we tested
worked normally under the allowlists tested. While we had hypothesized that rare actions
(e.g., reinitializing the device) might fail because they likely had not been captured in IoT
Inspector, we observed that these rare actions typically functioned normally. In other words,
we found that snapshots of two-year-old network traffic data from other households’ devices
can be sufficient for generating allowlists for home IoT devices if the allowlists themselves

are designed with sufficient care and nuance.

6.1 Problem Setting and Terminology

In this chapter, we create our threat model, where a remote attacker aims to compromise
these IoT devices, forcing them either to contact a server under the attacker’s control (e.g.,
for data exfiltration or botnet command and control) or to direct traffic toward some victim
(e.g., as part of a DDoS attack). The attacker always has the ability to launch attacks from
a new server. However, they do not have the ability to compromise the IoT device vendor’s
backend infrastructure (e.g., meethue. com), nor poison the victim’s DNS. Local attacks (e.g.,
on WiFi or ZigBee) are out of scope.

The user (defender) aims to create an allowlist, or specification of the endpoints with
which a given home IoT device may communicate. For instance, an allowlist might specify
that a given home IoT device can only communicate with meethue.com; all other traffic,
both inbound and outbound, is blocked. In a given home, different products will likely have
different allowlists, but multiple devices in the home of the same product (e.g., all six of the

user’s Wyze Cameras) will share an allowlist. We assume the contents of the allowlists are
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known to both the defender and the attacker.

We create allowlists based on a large dataset of [oT network traffic from many devices
(see Section 6.2). We test the allowlists generated on both held-out data from the same
dataset (Section 6.4) and on real devices in our lab (Section 6.5).

In describing the allowlist creation process, we use the following terms. Vendor refers to
a company that makes home IoT products (e.g., Amazon). Product refers to the collection
of devices sold under a specific name (e.g., Amazon Ring), potentially encompassing multiple
releases and versions. Device refers to a single physical object that is an instance of a home
[oT product (e.g., a single Amazon Ring in a home is a single device). Type refers to the
category of multiple home IoT products with similar purposes (e.g., both the Amazon Ring
and Wyze Camera are of type “home IoT camera”).

We analyze three main design dimensions for allowlists. First, we compare host rep-
resentations, or abstractions for characterizing endpoints. These representations include
lists of hostnames, domains, IP addresses, and more (Section 6.4.3). Second, we compare
thresholds; for a threshold of n, we only add a particular host (per the host representation
being tested) to an allowlist if it appears in the traffic of at least n devices in the sample.
Thresholds aim to make allowlists more robust to noise, mislabeled data, and potentially
a small number (< n) of compromised devices. Third, we compare sample sizes, or the
number of unique devices of a single product (from different households) used to generate

an allowlist.

6.2 Dataset

The dataset we use to analyze the variability of devices’ network traffic (Section 6.3), generate
allowlists (Sections 6.4-6.5), and retrospectively analyze the impact of different allowlist
design decisions through simulations (Section 6.4) is the IoT Inspector dataset [26], which

the authors of that work shared with us with the approval of their IRB. Specifically, we
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analyze the subset of IoT Inspector containing only devices with validated product names
and network traffic recorded. This subset consists of 5,439 unique devices, representing
424 unique products from 80 different vendors among 43 device types. These 5,439 unique
devices came from 1,468 households in total. Original data collection occurred between April
8 and July 24, 2019, documenting 38,164,870 network flows in total. The authors of that
work define a network flow as the combination of the device ID, local port, and remote IP
address and port [26]. To improve clarity, in the body of this chapter we report on the 20
products (3,456 devices total) that appeared most frequently in the dataset. The appendix
presents analogous graphs with the 52 products for which there was enough data to perform
our analyses.

The dataset contains the following information, some of which involved post-processing
by the original IoT Inspector authors. Each flow in the dataset contains the product
and vendor of the home IoT device whose traffic was being monitored; this information
was entered manually by participants on the IoT Inspector user interface. Each flow also
contains the remote IP address and remote port contacted by the device. The original
authors attempted to compute additional information about the remote destination via a
best-effort process detailed in the original paper [26] that included examining DNS traffic.
They attempted to associate the remote IP address with a hostname (fully-qualified domain
name) and domain (top-level and second-level domain, such as google.com). Each flow is
also associated with the household’s timezone, as opposed to a more precise geo-location,
to respect participant privacy.

As with any real-world dataset, data cleaning was necessary. While the original authors
performed some data cleaning [26], we further cleaned the data in two ways. First, because
product names were manually entered by participants, they may not be reliable. We regard
a device’s product name as likely mislabeled if the device never contacts any domain that

other devices with the same product name commonly contact. We considered a domain to

83



be common if at least 20% of devices for the product have contacted it, an arbitrary value
we chose to reduce the likelihood of mislabeled devices. In Section 6.4, we use thresholds to
further account for mislabeled devices. We made an exception for devices that only contact
DNS or mDNS resolvers because these may be devices that are simply not used during the
data collection period. We found 16 potentially mislabeled devices across 10 products, and
we excluded them from further analysis. We manually examined other outliers. We found
one device, labeled as a Belkin Wemo switch, that contacted 26,594 unique domains, which
was very unusual relative to other Belkin Wemo switches. We suspected this one device
might be compromised or mislabeled, so we excluded it.

We also aimed to identify hostnames and domains missing from IoT Inspector. Although
many traffic flows on the Internet are preceded by a corresponding DNS lookup, [oT de-
vices are often already installed and operational when the user runs IoT Inspector, so the
dataset may not capture the DNS lookup associated with a flow. Although the original
authors of the dataset guessed missing hostnames (those without associated DNS traffic)
using passive traffic monitoring and reverse DNS lookups, we determined these methods
to be unreliable. For example, a reverse DNS lookup from an IP address often resolves to
particular infrastructure, such as a server, rather than a general hostname. About 62.1%
of the collected flows contained these potentially unreliable hostnames. To further validate
the data, we first compared the IP addresses of any two packets—one known to have the
correct hostname based on associated DNS queries in the dataset and an IP address without
an associated lookup—that shared the same hostname. If the second packet had the same
IP address as the first one, then we concluded that it had the correct hostname. To mitigate
the effects of virtual hosting, whereby different domains can map to the same IP address,
we first performed this process at the product level, then repeated it at vendor level. This
process reduced the fraction of flows with unreliable hostnames to 34.4%. We repeated this

approach using ASNs instead of IP addresses. This step left us with 30.4% of flows with an
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unreliable hostname. We kept these unreliable hostnames to avoid missing data, yet retain

an annotation about their unreliability.

Limitations Because the IoT Inspector dataset was crowdsourced from volunteers, some
data that would have been interesting to analyze was intentionally not collected to pro-
tect participant privacy. For example, unlike traffic collected by researchers in a lab, IoT
Inspector is aggregated on 5H-second intervals and does not contain application layer data.
It is thus impossible to perform some traditional analyses, such as identifying patterns in
inter-packet arrival times. However, these privacy-preserving limitations would likely apply
to any crowdsourced dataset, and we find that we are nonetheless able to generate allowlists

that generalize to our lab.

Availability We have made our code for conducting the analyses reported in this chapter
available in a GitHub repository [228]. We also uploaded the code to hotcrp as “additional
materials.” Unfortunately, the IoT Inspector dataset cannot be shared without explicit
permission from the original authors’ IRB [26]. We instead provide synthetic sample data

in the correct format.

6.3 Variability of Device Behavior

Ideally, a user would have complete knowledge about a product’s behavior when creating
an allowlist. Unfortunately, vendors typically do not provide that information. With the
help of the IoT Inspector dataset, we instead use observed network traffic from one or
more devices of a given product to create potential allowlists. However, this approach of
transferring observations of one device’s network behaviors to another device of the same
product (ostensibly owned by a different person and on a different network) will only work if
the allowlist can capture differences in network traffic. Thus, in this section, we use the 0T

Inspector dataset to analyze how devices of the same product vary in network behavior. We
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Figure 6.1: Flow coverage (averaged across 100 runs) for three ways of characterizing end-
points (domain, hostname, IP address) for the 20 most popular products. Coverage well
below 100% for small samples indicates high variability across devices.

find substantial variation for reasons including load balancing, under-represented regional

services, and user-defined DNS resolvers.

6.3.1 Coverage of Network Behaviors

As a first step, we took the union of the hosts seen across all devices for each of the 20 most
common products in the IoT Inspector dataset, analyzing what fraction of those hosts were
observed in samples of devices for that product. We use the term coverage to refer to the
percentage of flows (remote host and remote port) contacted by any device of that product

that were contacted by a given sample of those devices. If devices behaved similarly to each
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other, coverage would approach 100% for even a small sample.

For a number of products, however, this was not the case. Figure 6.1 shows the coverage of
different sample sizes for three different host representations: domains (e.g., dropcam. com),
hostnames (e.g., oculus1802-us1.dropcam. com) and IPv4 addresses (e.g., 35.186.28.155).
For each sample size, we average the coverage over 100 random samples. For most products,
the coverage of domains approaches 100% even for small samples. However, the coverage
for hostnames and IP addresses was often substantially lower than for domains at a given
sample size. This result suggests that, for many products, a given device may be contacting
different hostnames and IP addresses, even when it is contacting the same domain, creating
challenges for more granular allowlists.

While we expected to observe lower coverage for IP addresses, we were more surprised that
hostnames followed a similar pattern for some products (e.g., Google Nest and Amazon Ring).
Averaged across all 20 products, coverage of 95% of flows was only achieved with a sample of
58% of the devices of that product in the dataset when using hostnames, compared to 67%
when using IP addresses. For 99% coverage, the percentages increase to 81% (hostname) and
88% (IP address). The low coverage observed with small samples supports our assumption
that generating an allowlist from a single device — as done by prior work [71, 72, 70] — is
likely to miss important variability and thus fail to create generalizable allowlists, particularly

for allowlists based on hostnames or IP addresses.

6.3.2 Sources of Variability

Creating generalizable allowlists that transfer across devices requires further understanding

potential root causes of variability.

Load Balancing and Caching One of the main sources of variability appears to be the

use of different, but related, hostnames to support load balancing and caching. For example,
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Apple Push Notification (APN) service sets up multiple servers for better availability, using
hostnames like 27-courier.push.apple.com, where the number (27) varied across devices
in our dataset. When a large number of similar hostnames exhibit small variations, an
allowlist created based on precise hostnames is unlikely to generalize.

The good news is that most of these hostnames follow patterns. In the simple example
above, the number is the only part of the the hostname we observed changing, which suggests
a more abstract hostname representation (see Section 6.4.3) would better generalize. Some
other hostnames varied in more than just numbers. For example, we observed Spotify

hostnames with forms like guc3-accesspoint-a-£002.ap.spotify.com, where £002 varied.

Regionalization Geographic bias in IoT Inspector, collected by US-based researchers us-
ing a tool documented in English, is another consideration. In the subset of IoT Inspector
we analyzed, 70.1% of devices appear to be in North or South America based on timezone.

However, we observed that devices in different geographic regions sometimes contact
different endpoints. For example, in North America (“NA”) Amazon Echo tended to contact
hosts like avs-alexa-6-na.amazon. com, whereas those in Europe (“EU”) tended to contact
hosts like avs-alexa-7-eu.amazon.com. Some variability was more subtle than simply
replacing region codes. For example, Belkin Wemo switches in North and South America
typically contacted navy.mil for network time protocol (NTP) services, while those in other
regions usually contacted tu-berlin.de instead.

The streaming media destinations that users visit also vary across regions, reflecting
local interests and making allowlists less likely to generalize across regions. For example, we
observed endpoints like tf1.fr (a French TV channel contacted by a Google Chromecast),
bell.ca (an ISP in Canada contacted by an Amazon Echo and a Chromecast), and met.no
(a Norwegian weather service contacted by a Synology network storage device to display

weather information), highlighting how geographic biases impact allowlists.
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DNS Because users (or their [SPs) typically assign a local DNS resolver, DNS traffic was an
additional (expected) source of variability. We observed a long tail of DNS traffic, including

102 unique DNS resolvers contacted by only one device.

Variable Remote Ports Although most remote hosts used only a few dedicated ports
(e.g., port 443 for HTTPS), as shown in Figure 6.4, some remote hosts surprisingly used
seemingly random remote ports. For example, the 82 Synology storage devices in the dataset
contacted 45,963 ports on remote hosts. Synology documents that the ports used for data
connections in “Passive Mode” can range from 1025 to 65535 [229]. Similarly, while Amazon
Ring devices in our dataset contacted only 72 unique domains, they contacted the domain
amazonaws.com on 1,617 different remote ports. This was not an artifact from a single
device; 38.3% (N = 23) Amazon Rings contacted 104 remote ports, and 21.7% (N = 13)
contacted 20+ ports. Blocking ports on these devices may break their functionality.

Some ISP-specific hosts also used a range of ports. For example, three Wyze cameras (all
in one household) contacted mycingular.net through 2,399 unique remote ports. Similarly,
two Amazon Echo devices from another household contacted sbcglobal.net through 3,858

remote ports. Both domains belong to AT&T services [230].

Other Causes Some variability may be artifacts of IoT Inspector’s data collection pro-
cess. For example, 26.7% of endpoints are IP addresses without any associated hostname
or domain. Either IoT Inspector missed relevant DNS traffic or these hosts were actually
contacted using hardcoded IP addresses. In fact, we observed the latter in our own experi-
mentation when the Wyze camera in our lab contacted some hosts without sending out DNS
queries. Prior work [231] also found, for instance, that Belkin Wemo plugs transmitted IP
addresses in payloads at the time of their data collection in 2020, though our experiments

found they now transmit hostnames.
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Limitations Some products (e.g., Amazon Echo) have multiple generations. We grouped
these generations into a single product. It is possible that different generations may behave
differently. Even for the same generation, behavior may change depending on the software
or firmware version. As we detail in Section 6.5, a recent update to Belkin Wemo smart
plugs caused them to contact a completely different set of endpoints. Furthermore, product
names were provided manually and some volunteers gave only a general name (e.g., “Sonos

speaker” ), potentially collapsing different models.

6.4 Generalizability of Allowlists

To investigate how the design of allowlists for home IoT devices impacts the network traffic
permitted, we must first devise a method for producing allowlists that can reflect various de-
sign factors. We develop and evaluate a proof-of-concept approach that generates allowlists,
varying the host representation (granularity and abstraction of endpoints), thresholds, train-

ing samples, and more.

6.4.1 Methods

We introduce five variables for allowlist generation. Host representation describes the level
of abstraction for describing hosts. In addition to our focus on domains, hostnames, and 1P
addresses in the body of the chapter, the appendix also compares (less successful) formats,
such as subnet or BGP prefix. Ports can be added on top of any selected selected host
representation. We discuss their impact independently. As previously defined, threshold
is an integer specifying the minimum number of devices on which we need to observe an
endpoint to add it to the allowlist. Training data references the data used to generate the
allowlist; it can be chosen based on criteria like the product or timezone. Testing data
references the dataset used to evaluate the generated allowlist. A single device is never in

both the training and testing data for an experiment.
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As further discussed in Section 6.4.3, one hostname representation we consider, the pat-
tern representation, provides a partial abstraction of the hostname. To generate these pat-
terns, which are effectively regular expressions, we use DBSCAN to group similar hostnames
for each product. We choose DBSCAN because we do not know the number of clusters in
advance and would like to recognize unique hostnames that should not be clustered. We
cluster each hostname based on its lowest-level subdomain (i.e., the leftmost part of the
FQDN) and use the remaining part of the FQDN for grouping so that different domains or
subdomains are not clustered together. We condense any consecutive numbers to “[0-9]4”"
because digits rarely carry any meaning in this context. Once a cluster has been identified,
we generate an ordered list of the longest non-overlapping common substrings for all host-
names in the cluster. If we can further group the remaining parts, we accept these variations
rather than using a wildcard to minimize the attack surface. If the remaining parts appear
random, a wildcard replaces them. For example, hostnames used by Apple Notification Ser-
vices become [0-9]+-courier.push.apple.com. Spotify access-point hostnames become

guc3-accesspoint-a-.*.ap.spotify.com.

6.4.2 Key Metric

We evaluate potential allowlist design choices in part through retrospective simulations based
on the IoT Inspector dataset. For a given product, we calculate a value we term the me-
dian fraction of allowed flows (MFAF). Intuitively, the MFAF captures the fraction
of traffic previously observed (without the allowlist) that would still have been permitted
with the allowlist active. A high MFAF is desirable since it reflects the device’s observed
traffic proceeding as normal. We take the median fraction instead of the mean because the
distribution can be very skewed. Formally, MFAF is defined:

7
|[F]

MFAF(Ap, D") = median({ Vd e DY) (6.1)
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Figure 6.2: MFAF of allowlists generated from, and applied to, the same product in a train-
test split. The products (rows) are grouped by type. The color indicates the proportion of
flows permitted using a threshold of between 1 and 5.

where D is the group of devices used for generating allowlist Ap, D’ is the group of devices
that the allowlist is applied to, d is a device in D', F d is the all the flows transmitted on
d, and FfiD is the fraction of d’s flows allowed when the allowlist Ap is active. We require
DN D" =0 for a fair evaluation. A flow is identified by a combination of the device ID, the

local port, the IP address of the remote endpoint, and the remote port.

92



0.4.3 Host Representation

We tested seven possible host representations. In this section, we contrast representing
endpoints by their domain, pattern, and exact hostname. Appendix 7.9 presents the four
less successful alternatives.

As shown in Figure 6.2, all 20 popular devices had high MFAF (greater than 0.9) when
using domain representations. While this means that the (presumably legitimate) traffic
observed in our test set would be allowed, domain-based allowlists also have the largest
attack surface, as we revisit later in this section.

In contrast, both hostname and pattern representations, particularly the latter, seemed
to better balance generalizability and security. With the threshold set to 1, hostname rep-
resentations achieved an MFAF greater than 0.9 (mean = 0.97) for 18 of 20 products. The
two exceptions were the Belkin Switch and Sonos Play. Using pattern representations, all
20 products again achieved an MFAF greater than 0.9 while maintaining a relatively small
attack surface. Pattern representations also had clear advantages over hostname represen-
tations at higher thresholds for a few products. A higher threshold equates to a stricter
allowlist, which makes the allowlist more robust to noisy or poisoned data. When the
threshold is set to 5, only 10 products have an MFAF of at least 0.9 when using hostname
representations, but 15 products have an MFAF of at least 0.9 when using pattern represen-
tations. Emphasizing these trends, Figure 6.3 shows the six products whose MFAF increases
more than 0.1 by switching from hostnames to patterns. Appendix 7.9 shows similar trends

hold when analyzing a larger dataset of 52 products.

6.4.4 Adding Ports to Host Representations

In most cases, adding ports to the host representation minimally impacts the MFAF despite
further reducing the attack surface. For example, for hostname, pattern, and domain host
representations with threshold = 1, 19 out of 20 products’ MFAF drop less than 2%. For the
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Figure 6.3: MFAF for pattern- and hostname-based allowlists.

remaining product, Amazon Ring, the MFAF still drops less than 5%. When threshold = 1,
the pattern-based allowlist for the Amazon Ring shows a decrease of 4.4% in MFAF after
adding ports. With domain-based and hostname-based allowlist, the drops are 4.2% and
2.2%, respectively. The decrease is consistent with the previous observation (Section 6.3)
that Amazon Rings communicates with amazonaws.com on seemingly random remote ports.
The decrease is smaller for hostname-based allowlists because the number of load balancing

servers is large for amazonaws. com, resulting in fewer ports observed on each server.

6.4.5 Sample Size Required

Using more devices of a given product to generate an allowlist makes it increasingly likely the
allowlist will capture the long tail of endpoints with which a product communicates. Thus,
we calculated the MFAF for various sample sizes. Specifically, we altered the size of the
training sample with a step size of five, observing how the MFAF changed. For stability, we
performed five-fold cross validation per product and repeated this process five times, taking

the mean.
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Figure 6.4: The number of ports used by remote hosts with IP address, hostname, and
domain host representations. Few remote hosts used multiple ports for incoming connections.

Figure 6.5 shows the results. In general, hostname representations necessitate a larger
sample than pattern representations. For hostname-based allowlists, only 15 of the 20 prod-
ucts ever achieved an MFAF of at least 0.95, and it took 28 devices on average to do so. In
contrast, pattern-based allowlists enabled all products to achieve an MFAF of at least 0.95,
requiring only 12 devices on average. These numbers, however, varied significantly across
products, particularly for hostname representations. For example, 5 Ecobee Thermostats
were sufficient to form a hostname-based allowlist, but 185 Sonos Speakers were needed for
the same MFAF.

Pattern representations were critical when the sample size was small due to a lack of data.
For example, the dataset contained only a few HP printers, and HP uses load balancing for
XMPP (e.g., with xmpp001.hpeprint.com and xmpp002.hpeprint.com). With at least two
related hostnames observed, pattern representations can thus potentially compensate for a

smaller sample.
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Figure 6.5: The MFAF increases with the training sample size (threshold = 1). Blank
squares indicate insufficient data.

6.4.6 Setting the Threshold

The threshold, specifying on how many different devices an endpoint must be observed for
it to be added to the allowlist, represents a direct trade-off between security and general-
izability. Increasing the threshold typically admits fewer endpoints, but both shrinks the
attack surface and increases robustness to a few devices being mislabeled or compromised.
Interestingly, we observed that increases in the threshold were not always proportional to
the decrease in the amount of traffic allowed. For some products, it was possible to have a
high threshold without losing much generalizability.

To understand the relationship between thresholds and the MFAF, we sampled 50 devices
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Figure 6.6: Although the MFAF generally decreases with increasing thresholds, many prod-
ucts experience plateaus where the thresholds increase, but the corresponding MFAF changes
little. Lines end when the allowlist is blank above that threshold.

from each product, calculating the MFAF under thresholds ranging from 1 to 36 with a step
of 5. The process was repeated 20 times, taking the mean. As shown in Figure 6.6, some
products effectively had plateaus in which increasing the threshold minimally impacted the
MFAF. In one of the more extreme examples, the MFAF for the Google Home was similar
between thresholds of 1 and 26. One possible explanation is that, upon increasing the
threshold, only the most fundamental endpoints contacted by nearly all devices of that
product are kept, and most flows are to those endpoints. For Chamberlain Garage, most
endpoints in the long tail were various DNS resolvers contacted by few devices. Only two

endpoints were contacted by the majority of those devices: connectl.myqdevice.com and
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connect.myqdevice.com. In contrast, products like the Amazon Fire and Roku Streamer

that rely on streaming user-specified content rarely exhibit this plateau.

6.4.7 Accounting For Regionalization

As previously mentioned, IoT Inspector primarily consists of devices from North and South
America. To better understand how geography and regionalization impact allowlists” MFAF,
we created a series of regression models that gauge how region impacts MFAF. Because [oT
Inspector does not contain location information, we use timezones as a proxy, creating three
regions: Region A (UTC-02:30 - UTC-10:00), Region B (UTC+01:00 - UTC+04:00), and
Region C (UTC+5:30 - UTC+12:00). We selected the six products in the dataset that have
at least 10 devices per region: Amazon Echo, Belkin Switch, Google Chromecast, Google
Home, Philips Hue, and Sonos Speaker. We created linear regression models in which the
MFAF was the dependent variable and the regions of the training and testing samples, the
product, and the (log of the) sample size were the independent variables.

Table 7.5- 7.7 in Appendix 7.7 contains the regression tables. All coefficients of the train
region, test region, and their interactions were significant. At a high level, applying an
allowlist generated with training data from one region to testing data from a different region
negatively impacts the MFAF. Furthermore, regions differ in the MFAF of the allowlists
generated even when keeping the sample size constant. For example, applying allowlists
generated from devices in Region A to devices in Region C caused a drop of around 0.1 in
MFAF. Therefore, if the data is geographically diverse, care should be paid to matching the

training data and test data; home IoT devices’ network behaviors vary partially by region.

6.4.8 Transferring Allowlists By Vendor

To this point, we created allowlists for a product from the network behaviors of devices of

that same product. While this is the most typical setting, newly introduced or rare devices
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Domain Pattern Hostname
Amazon Echo - - -
Google Home - - -

Ecobee Thermostat - ] J
Google Nest - 4 i

Belkin Switch - - -
Tplink Switch - - -

Google Chromecast - ] i
Roku Streamer - ] i

Hp Printer - - -
Philips Hue - - -

Chamberlain Garage - R 1

Logitech Harmony - ENEENEN NI NI
Sonos Play - 1 .- T ...

Sonos Speaker - -

Wyze Camera -

Nintendo Switch -
Sony Console - | |
Amazon Fire - - -

Synology Storage - - -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12345 12345 12345
Thresholds

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.7: The MFAF of generating an allowlist for a product from only other products
from the same vendor.

may lack sufficient training data, raising the question of whether it is possible to transfer
an allowlist generated for one product to a different product made by the same vendor. For
example, could an allowlist generated for Google Home be successfully applied to Google
Nest devices?

At a high level, we found that domain-based allowlists can sometimes be transferred to
other products from the same vendor. Exceptions include IoT cameras and some vendors who
make a wide range of products. Furthermore, pattern-based and hostname-based allowlists
transferred somewhat less well across products. Figure 6.7 was created by using the product

listed as the testing data and all other products from the same vendor as the training data to
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Table 6.1: How host representations impact the attack surface, specifically the number of
hostnames in IoT Inspector allowed if one adds the given representation to the allowlist.

Example Hostnames, Patterns, and Domains # Hosts
Hostname: arlostatic-z1l.s3.amazonaws.com 1
e Pattern: arlostatic-z[0-9]+\.s3\.amazonaws\.com 3
e Domain: amazonaws.com 3859
Hostname: ring-untranscoded-videos.s3.amazonaws.com 1
e Pattern: ring-(—un)transcoded-videos(-lg—)\.s3\.amazonaws\.com 2
e Domain: amazonaws.com 3859
Hostname: al91avoddashs3ww-a.akamaihd.net 1
e Pattern: a/0-9/+avoddashs[0-9]+(ww—us)-a\.akamaihd\.net 50
e Domain: akamaihd.net 96

compute the MFAF. Comparing Figure 6.2 and Figure 6.7 shows that 15 products’ allowlists
did transfer across products made by the same vendor, typically because those products
share API endpoints.

Cameras were a key exception, as shown in Figure 7.2 in Appendix 7.9. Grouped by
device type, this figure compares how MFAF differs when a product’s allowlist is applied
to the product itself, as well as other products made by the same vendor. We found that
allowlists created for cameras and speakers struggle the most when applied to other products
from the same vendor. One explanation is that the infrastructure and endpoints required by
a camera or speaker are very different from those required by a switch or light.

One example of vendor transferability failing is when a product line is purchased by
another company or when a company relies on a third party for a specific feature. These
cases often result in products with unique-for-that-vendor behaviors. For example, most
of Logitech’s Harmony remote controllers’ requests are sent to pubnub.com, a third-party
company that provides real-time communication and is argued to be critical to Harmony’s
away-from-home capability [232]. Amazon Ring is another example. The Ring line was

purchased by Amazon in 2018 [233], but kept its own endpoints.

100



6.4.9 Attack Surface and Evasion

As mentioned in Section 6.1, we assume attackers know the contents of the allowlist. De-
pending on which host representation and threshold the user chooses, as well as how a vendor
deploys their public cloud services, an attacker may be able to evade the allowlist. While
domains are more generalizable than hostnames or patterns, they can easily fall short in
security, particularly due to home IoT devices’ reliance on cloud providers.

To provide intuition for how the host representation impacts the attack surface, Table 6.1
contrasts hostname, pattern, and domain representations for three example endpoints in
the dataset. For example, arlostatic-z1.s3.amazonaws.com is one hostname used by
Netgear’s Arlo cameras. We observed related hostnames in the dataset with different final
digits in the lowest level subdomain. Whereas the pattern abstracted from these hostnames
matches three different hostnames in the dataset, extending the pattern to the domain
amazonaws.com matches 3,859. It is then important to consider whether an attacker can
register or otherwise obtain an illegitimate endpoint that matches either the pattern (less
likely) or domain (far more likely). In this example, relying on domains, rather than patterns,
widens the attack surface and brings all of amazonaws.com into the attack surface. The
attacker can easily host malicious content somewhere on AWS or direct a DDoS attack
toward victims who themselves use AWS. Using a pattern representation often provides
a far narrower attack surface than using a domain while still supporting generalizability.
That said, hostname patterns can have complex security implications. For arlostatic-z[0-
9]+\ .83\ .amazonaws\.com, an attacker can exploit the fact there is no limitation placed on
the numbers and try to register a hostname like arlostatic-z111.s3.amazonaws.com to match
the regular expression. Without registration restrictions from the cloud service provider or
extra diligence from the vendors, registering such a hostname may be possible for pattern
and domain representations. Unfortunately, as discussed above, hostname-based allowlists

are the most likely to inadvertently block traffic from unseen, but related, endpoints.
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6.5 Enforcing Allowlists in the Lab

To test whether the allowlists generated in various circumstances impaired the functionality
of devices, we deployed allowlists with various thresholds and host representations on nine
devices in our lab. We intentionally exercised as many functionalities as possible per device.
We found that many of these functionalities seemed to work as intended, though we observed
and diagnosed a few different failure modes. While we worried that rare behaviors (e.g.,
factory resets) unlikely to have been captured in IoT Inspector might prove problematic,
this worry did not manifest in practice. Finally, the success of deploying these allowlists in
our lab despite a two-year gap since IoT Inspector was collected highlights the stability of

the allowlists generated.

6.5.1 Implementation

To enforce our generated allowlists on real devices, we implemented our own firewall through
scapy, a Python library that manipulates network packets, and NetfilterQueue, a Python
library that intercepts network packets using iptables. We have open-sourced our firewall
implementation in our Github repository, anonymized for review [228]. The firewall runs on
a Jetson Nano, which served as a NAT gateway. In that way, all traffic generated from the
home IoT devices can be intercepted and manipulated by our firewall. The workflow of our

implementation is as follows.

Device Configuration When a new device is added to the network, the user must create
a configuration file for the device. The firewall can thus recognize the device and intercept
its traffic accordingly. The configuration file needs the following information: (i) a unique
device name; (ii) the device’s MAC address so the firewall can recognize the device as
NetfilterQueue intercept traffics via iptables, which supports MAC addresses; and (iii)

the product name to apply the appropriate allowlist. Optionally, the device’s static IP
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address can be used in place of the MAC address.

Allowlist Configuration As discussed in Section 6.4, several parameters can be used to
customize the allowlist. The threshold parameter adjusts the restrictiveness of an allowlist.
One can also specify which host representation to use. We support hostname, domain,
pattern, and IP address representations. Optionally, one could also specify if they want
their allowlist to be region-specific, though by default all data from all regions will be used.
Appendix 7.8 contains an example allowlist. We generate the relevant allowlists prior to the
deployment in the lab. In practice, we expect the user will download their chosen allowlist

and deploy it on a router.

Allowlist Enforcement NetfilterQueue intercepts traffic using iptables, which means
it only naturally supports IP addresses and ports. However, as described in Section 6.4,
hostnames and patterns are our preferred representations. In some cases, domain-based
filtering is also necessary. Therefore, we take extra steps to enable our firewall to handle
these representations as well.

The firewall uses the router’s default DNS resolver to resolve any hostname-based rules.
All hostname rules will be resolved to IP addresses and added to the IP-based allowlists for
enforcement. If the queried hostname in the DNS query is on the allowlist, then the firewall
will forward the query to the DNS resolver. Otherwise, the firewall will drop the DNS query.
Once a DNS response is received, the firewall will record the included IP addresses before
forwarding it to the device. Domain-based rules are handled similarly. The only difference
is that the DNS queries are checked against domain-based allowlists instead of those based
on hostnames.

Neither iptables nor DNS supports patterns, which means the firewall needs to interpret
patterns by itself. If patterns are used, the queried hostname in DNS traffic will be matched

on the router against the patterns allowed. Since the allowlist can be quite long, the firewall
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will first find candidates most similar to the queried hostname and check whether there is a
match. If there is a match, the DNS query will be forwarded; otherwise, it will be dropped.

There is a cold-start issue for relying on DNS. Because the firewall can be activated at
any time, some devices may have cached hostname-IP mappings. The firewall will not know
about the cached mapping and will incorrectly reject some traffic until the device performs a
DNS query. Once the firewall sees the DNS query and response, it will correct its behaviors

and resume normal operation.

6.5.2 Fxperimental Setup and Protocol

For our in-lab experiment, we selected the nine products that appeared most frequently in
the IoT Inspector dataset. For highly similar products (e.g., Amazon Echo and Amazon
Echo Dot), we tested only one. All devices were connected to the aforementioned Jetson
Nano over WiFi. The Jetson Nano, running Ubuntu 20.04, was used to intercept devices’
network traffic and enforce the allowlist.

Before running the tests, two researchers collaboratively determined each product’s main
functionalities and purposes using the product’s manuals and companion app. See Ap-
pendix 7.6 for a complete list of functionalities. We excluded functionalities that do not
center on the device’s main purpose, such as changing the device name. We also excluded
functionalities that do not require Internet connectivity, such as casting a webpage to a
Google Chromecast.

We first explored the expected behavior of each product without allowlists, including rare
operations (e.g., factory reset). The intention was to establish a baseline by documenting the
behavior of each product’s functionalities without allowlists. We then applied our allowlists
to each product, proceeding from the most permissive to the most restrictive by increasing
the threshold, as defined in Section 6.4. Once an allowlist was deployed, we tried to exercise

each of the product’s documented functionalities. If any functionality failed, we repeated the
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experiment to confirm. The process ended either when all functionalities failed or the most
restrictive allowlist was tested. Whenever possible, we tested each device from an external
network (i.e., interacting with the companion app outside the lab’s network) to maximize the
product’s Internet exposure. Only when devices cannot be controlled remotely (e.g., Google
Chromecast) did we use the local network. We also used voice commands to control products
and record the corresponding network traffic. Amazon Echo was used as the default receiver
for voice commands since most devices we tested are compatible with Alexa.

Our approach differs from that of Mandalari et al. [69], who also tested IoT devices in
a lab. They studied blocklists for improving privacy; we evaluate allowlists for improving
security. Further, Mandalari et al. obtained IoT destinations based on in-lab measurement,

whereas our method used IoT Inspector as training data.

6.5.3 Key Results

Of the 52 functionalities tested from the 9 devices, 50 of them worked with at least one
allowlist generated from IoT Inspector. 32 functionalities worked with a hostname-based
allowlist, and 43 functionalities worked with pattern allowlists. In contrast, 50 of the 52
functionalities worked with domain-based allowlists. Table 6.2 details our results, including
the maximum threshold at which the functionality worked and the size of the allowlist

generated.

Dedicated Hostnames In some cases, compact allowlists were sufficient; 17 function-
alities (33%) still worked when deploying an allowlist with fewer than 10 entries. These
functionalities were typically supported by dedicated hostnames, making it possible to apply
a hostname-based allowlist. For instance, Google Home only needs www.google.com for all
functionalities other than media (e.g., playing music). The actual execution, such as con-

trolling other devices or querying external information (e.g., weather), is handled through
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Device Functionality Hostname Hostname Pattern Domain
# of Allowed Threshold 7 of Allowed Threshold # of Allow.ed Threshold
Hostnames Patterns Domains
Productivity » Load balancing 22 115 2 518
Entertainment % Load balancing » CDNs 4 460
Device control » Load balancing 22 115 2 518
Amazon Echo Dot . a
(N=576) Comm.umcatlon % Load balanC}ng » CDNs 11 57
Shopping » Load balancing 22 115 2 518
Skills » Load balancing 1982 1 91 4
Factory reset » Load balancing 22 115 4 460
Built-in Alexa 7 13 74 13 6 54
Amazon Fire Stick  Streaming 10486 1 5481 1 17 27
(N=136) Download apps 210 5 187 5 33 13
Factory reset » API change » API change % API change
Radio » New services » New services » New services
Streaming » CDNs 119 3 4 52
Change volume » Interaction dependencies 119 3 4 52
Sonos One Paus Interaction dependenci 119 3 4 52
(N=261) ause 4 » Interaction dependencies . 5
Voice control (streaming) » Load balancing » Load balancing 62 3
Voice control (volume) % Load balancing 521 1 62 3
Factory Reset 411 2 223 2 3 78
Media » CDNs 151 3 2 392
Control Chromecast 8 245 7 245 2 392
! Find your phone 8 245 7 245 2 392
g\;:ilgol){ome Manage tasks 8 245 7 245 2 392
Control your home 8 245 7 245 2 392
Plan 8 245 7 245 2 392
Factory reset 26 49 25 49 2 392
Google Chromecast Watch Live TV » CDNs 230 2 47 5
(N=288) Factory reset 13 115 5 201 2 201
Live streaming T 2 68 2 4 100
Event recording 7 2 68 2 4 100
Motion Tagging 7 2 68 2 4 100
% Night vision 7 2 68 2 4 100
zxng?mera 2-way audio 77 2 68 2 4 100
Sharing e 2 68 2 4 100
Rules 7 2 68 2 4 100
On/Off 7 2 68 2 4 100
Factory Reset 18 16 17 16 4 100

Table 6.2: The highest tested thresholds (i.e., the strictest allowlist) and the number of
allowed hostnames/patterns/domains that still keep the devices functioning in our in-lab ex-
periment. x [Failure Reason| means none of our generated allowlists keep the functionality
running; the “failure reason” explains why. To force the tested devices to use the Internet
instead of the local network for functionality, the companion app is used on a smartphone
connected to a different network by default, unless the functionality under test requires
the smartphone to be on the same network (e.g., Google Chromecast). Wyze camera is
marked with a * as the device only works with some additional manually allowed
IP addresses. The IP addresses are the main contributors to the Wyze Camera’s
traffic and can be easily observed, but no associated DNS lookup was observed.
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Device Functionality Hostname Hostname Pattern Domain

# of Allowed -y porg 7 O Allowed gy porg - # OF Allowed oy hold
Hostnames Patterns Domains

On/Off 1 236 1 236 1 236
Brightness 1 236 1 236 1 236
Philips Hue Voice control 1 236 1 236 1 236
(N=295) Timer 1 236 1 236 1 236
Routine 1 236 1 236 1 236
Factory reset 6 59 6 59 3 59
On/Off » API change » API changes 13 5
. Scheduling » API changes »< API changes 13 5
](31\?%;;8;\] emo Auto-off » API changes » APT changes 13 5
o Away mode % API changes % API changes 13 5
Factory Reset 2 110 2 110 1 198
On/Off 3 26 3 26 1 70
. . Scheduling 3 26 3 26 1 70
(Tl\lffégk Switeh  pier 3 2 3 26 1 70
- Away mode 3 26 3 26 1 70
Factory Reset 3 26 3 26 1 70

Table 6.3: (Continued) The highest tested thresholds (i.e., the strictest allowlist) and the
number of allowed hostnames/patterns/domains that still keep the devices functioning in

our in-lab experiment. x [Failure Reason|] means none of our generated allowlists keep the
functionality running; the “failure reason” explains why. To force the tested devices to use
the Internet instead of the local network for functionality, the companion app is used on a
smartphone connected to a different network by default, unless the functionality under test
requires the smartphone to be on the same network (e.g., Google Chromecast).

server-to-server communication.

Streaming Media For streaming audio or video, hostname-based allowlists struggled. Of
the 11 streaming functionalities tested, 7 did not work with any hostname-based allowlists.
Among these 7 functionalities, 4 started working after we switched to a pattern-based al-
lowlist, and two others only worked with a domain-based allowlist. The final functionality,
Sonos Radio, was a newly introduced feature. The endpoint it contacts, sonos.radio, was

not present in the two-year-old IoT Inspector dataset.

Ports An allowlist that includes ports may necessitate a lower threshold for some devices
because the number of devices that contact a specific port on a host is lower than the number

of devices that contact the host overall. We confirm this through a post-hoc analysis. For
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example, according to the IoT Inspector dataset, connectivitycheck.gstatic.com, an
essential endpoint for Google Home to function, operates both on port 80 and port 443.
The dataset shows that more devices use port 443, whereas our Google Home uses port 80
instead. As a result, if ports are included for a Google Home allowlist, a lower-threshold

allowlist or ad-hoc workaround (e.g., always allowing port 80) is required.

Allowlist Stability Despite the aforementioned Sonos example, our results overall suggest
that allowlists can be quite stable, at least for core functionalities. Among the nine products
tested, only three (Amazon Fire Stick, Belkin Wemo switch, and Sonos One) had function-
alities seemingly impacted by the age of the loT Inspector dataset. While the endpoint for
the Belkin Wemo had changed in the intervening two years, severely impacting functionality
when allowlists were deployed, the other two devices were affected in only minor ways. We
also noticed some hosts change their ports (e.g., drift.com, used by Google Home, changed
from port 443 to 9999). However, none of these endpoints appeared to be essential to func-
tionality. Most vendors still used the same endpoints/APIs, making allowlists fairly stable

despite multiple firmware updates.

6.5.4 Reasons For Fuailures

To inform the design of future allowlists, we investigated and attributed the root causes of

particular functionalities failing.

Content Delivery Networks (CDNs) Among the 20 functionalities hostname-based
allowlists break, the use of CDNs was directly responsible for six, with another four being
affected indirectly (e.g., pausing music is not relevant if the music cannot be loaded in the
first place). CDN hostnames commonly included seemingly random numbers or letters. As
a result, allowlists based on exact hostname matches frequently blocked legitimate commu-

nication.
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Our lab experiments verified that pattern-based allowlists often mitigate this failure. For
example, when we attempted to play a playlist, Sonos One contacted guc3-accesspoint-a-vri5.
ap.spotify.com, which was blocked by hostname-based allowlists, but allowed by pattern-
based ones. We also observed cases where hostnames were too random to be clustered by
DBSCAN, such as hostnames from CloudFront (e.g., d924eisv4ltzs.cloudfront.net). If
the hostname is not included in the IoT Inspector dataset, then it is necessary to have a

domain-based rule instead.

Load Balancing Even with a large dataset like IoT Inspector, not all load-balancing
endpoints will be observed. The Amazon Echo Dot in the lab experiments contacted
avs-alexa-14-na.amazon.com for Alexa services, which was not observed in the dataset.
However, as many other Alexa AVS endpoints were observed in the dataset, a successful

pattern was extracted, solving the problem.

Dependencies Some functionalities were impaired due to blocking another functional-
ity. For example, as mentioned previously, hostname-based allowlists often impaired music
streaming, including for Sonos One. All other functionalities, such as changing the volume,
were thus no longer accessible. Connectivity checking was another common, and important,
dependency. Many devices, such as the Google Home and Belkin Wemo Switch, perform
connectivity checking. If it fails, then the device refuses to take any further commands until
it believes it is again online. Google Home uses www.google . com for most functionalities, but
connectivity checking is via connectivitycheck.gstatic.com. Blocking the latter leads to

a Google Home that refuses to accept voice commands.

API Changes Rarely, vendors will change their API and infrastructure, invalidating al-
lowlists generated from past data. This happened with the Belkin Wemo Switch. When

the IoT Inspector dataset was collected in 2019, Belkin Wemo plugs used api.xbcs.net for
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their API, which was confirmed in previous papers [26, 69]. However, Belkin recently added
a new hostname, deviceapis.xwemo.com. Failing to allow this new, previously unseen API
endpoint put the device offline. Ironically, the original API endpoint was still live, and the

switch still contacted it from time to time.

New Services In addition to changes to API endpoints, the vendor may also add new
features. In our case, Sonos Radio was a new feature launched in 2020 [234]. In the lab, Sonos

radio required a new, previously unobserved domain (sonos.radio) for communication.

Third-Party Services We anticipated that integration with third-party services chosen
by users could be another source of failures, though we did not observe this to be the case in
our experiments. Popular integrations with YouTube, Netflix, or Spotify had been observed

in IoT Inspector. However, users who prefer less popular services may encounter problems.

6.5.5 Limitations

Because our firewall implementation is simply a proof-of-concept to evaluate allowlists’ real-
world impact on device functionality, we did not design the implementation for high perfor-
mance nor conduct a performance evaluation. Although we did not experience any human-
noticeable delay during the experiments, we note that our prototype intercepts traffic in user
space instead of kernel space, likely introducing latency. To enable allowlists that support
hostnames, domains, and hostname patterns, it is inevitable to intercept DNS traffic for
matching. However, the IP addresses mapped to these representations can be easily written

as iptables rules, which can speed up the process with proper caching.
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6.6 Discussion

Home IoT devices have a significant attack surface due to the prevalence of unpatched secu-
rity vulnerabilities. Although relying on vendors to secure devices through regular security
updates offers one level of defense, such an approach is incomplete. Not all vendors regularly
apply updates. In some cases, [0T devices remain connected well past when vendors support
them. This state of affairs necessitates network-level defenses. Unfortunately, determining
precisely which traffic flows should be allowed from any particular device is challenging due
to the surprising heterogeneity of behavior across home IoT devices—even devices of exactly
the same product. Because of this heterogeneity, generating generalizable allowlists that
minimize the attack surface is the key challenge.

This chapter has explored the design space for home IoT network allowlists, evaluating
how factors like the representation of a network endpoint (i.e., hostname, domain, pattern),
geographic location, and amount of observed traffic from the device can contribute to the
construction of an allowlist that generalizes across devices of the same type or vendor. Our
evaluation is promising, suggesting that generalizable allowlists based on hostname patterns
can be constructed for many products based on a training sample of only one or two dozen
devices. We also discovered that localizing the training data by region can be helpful since de-
vices exhibit geographically specific behaviors. Our evaluation of the allowlists we generated
on real devices in a lab study—two years after the training set was collected—demonstrated
that such allowlists generally work, reducing the attack surface without significantly im-
pairing functionality. IoT devices that rely on cloud services often contact hostnames that
include seemingly random numbers or patterns, making generalizability difficult and opening
a security hole as domain-based representations can be quite broad. Vendors employing more
careful strategies for generating and assigning these hostnames in the future could further

manage this tradeoff.
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CHAPTER 7
APPENDIX

7.1 Home IoT Devices Considered in Chapter 4

Anova Culinary Precision Cooker
Char-Broil Digital Electric Smoker

Cooking Devices June Intelligent Oven
Perfect Bake Pro

Samsung Family Refrigerator

Samsung SmartThings
Hubs Wink Hub 2

Belkin Wemo Insight Switch
BeOn
iHome Smartplug
Lights/Power Plugs [ 1FX Color 1000
Lutron Caseta In-Wall Wireless Lighting
Philips Hue Starter Set

August SmartLock

Locks Kwikset Smartcode Touchscreen

Rachio Smart Sprinkler
Outdoor Devices Robomow

Kuna Toucan
LG Smart Security Wireless Camera
Nest Cam
Security Cameras NetGear ArloPro
Skybell Video Doorbell
Tend Secure Lynx Indoor

EcoBee 4
Thermostats Hisense Portable AC
Nest Learning Thermostat

Amazon Echo

Voice Assistants Echo Dot
Google Home

Table 7.1: Home IoT devices evaluated for Chapter 4.
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7.2 Full Descriptions of Capabilities for the Survey in Chapter 4

e Software Update: Install a software update to get the latest features, improvements,
and security updates.

e Play Music: Play music (e. g., from Spotify) in the house.

e Order Online: Make online purchases (e.g., on Amazon) on a shared household
account.

e Temperature Log: View the last 10 temperature adjustments and who made them.

e Mower On/Off: Turn the lawn mower on or off remotely (i.e., on a smartphone,
from anywhere).

e Mower Rule: Create rules that specify what the lawn mower should do, connecting
its actions to other devices, sensors, and services. For example, one could create a rule
specifying that the mower should not mow if it is raining.

e Lock Log: View an activity log for the past week that shows who entered the home
at what times. People will be identified based on whose PIN code or smartphone was
used to unlock the door.

e Lock State: See whether the front door is currently locked or unlocked.

e Lock Rule: Create rules that specify when the lock should be locked or unlocked,
connecting it to other devices, sensors, and services. For example, one could create a
rule specifying that the lock should always be locked when no one is home.

e Answer Door: Answer the doorbell by seeing a live video of who is at the front door
and having the opportunity to unlock the door remotely (e.g., on a smartphone, from
anywhere).

e Delete Lock Log: Delete the activity log that records who has tried to open or close
the door.

e Lights State: See which lights in the home are on or off.

e Lights On/Off: Remotely control whether a light is currently on, as well as how
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bright it is (e.g., on a smartphone, from anywhere).

Lights Rule: Create rules that specify when the lights should turn on/off or change
color based on other sensors, devices, and services. For example, one could create rules
specifying how the lights automatically change brightness or color based on the current
weather or the movie played on the TV.

Light Scheme: Allow a streaming video provider to change the lighting according to
the theme of the movie that is currently being watched.

New Device: Connect a new device to the hub, enabling the hub to control that
device.

New User: Add new users (people) to the smart-home management system, as well
as remove users from the smart-home management system.

Live Video: See live video from each camera in or around the house.

Facial Recognition: Enable or disable facial recognition technology for a person.
This technology is used to identify them automatically in video recordings.

Delete Video: Delete one or more previously recorded videos.

Camera On/Off: Turn the camera on/off remotely (e.g., on a smartphone, from
anywhere).

Camera Angle: Change camera’s view remotely (including turning its lens to view a

different angle, zooming in/out, etc.).

7.3 Full Descriptions of Relationships for the Survey in

Chapter 4

Your spouse: Imagine you have a spouse. You live with them everyday and share all
smart appliances in your home. You make decisions together in most cases, especially
important ones.

Your teenage child: Imagine you have a 16-year-old child. They live with you, go
132



to school in the morning, and come back in the afternoon (on the weekdays). They
are familiar with all of these Smart devices in your home, and enjoy using them. They
know how to use these devices as well as you do, if not better. They spend a lot of time
on their smartphone. They usually are well-behaved, but they are still a teenager.
Your child in elementary school: Imagine you have an 8-year-old child who is still
in elementary school. They live with you and go to school daily, unless it’s the weekend
or a holiday. They have a basic idea of how to use smart devices. However, they don’t
know how to use some more complex features properly, like changing the settings, but
it doesn’t discourage them from trying. They do not have their own smartphone, but
they keep asking you for one.

A visiting family member: Imagine you have a visiting family member. They are
about the same age as you, if not much older. You grew up together, but now you
meet each other once or twice a year, because you live far away from each other. They
visit you on holidays or other big events. They usually stay with you for several days,
maybe even a little bit past the holiday, and they remain at home alone while you are
away for work.

The babysitter: Imagine you have a babysitter in your home for taking care of your
child. They will be at your place while you are at work. They work 4 hours after
school, 3 days per week. You have known them over 6 months and you are satisfied
with their work so far, and have no intention of letting them go anytime soon.

Your neighbor: Imagine you have a neighbor living next to you. You don’t know
them very well, but they seem to be good people. If you meet them on the street, you
greet them and make some friendly small talk. Occasionally you invite them over for

dinner, but they are never in your house when you are away.
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7.4 Survey Instrument in Chapter 4

Introduction

Computing is transitioning from single-user devices, such as laptops and phones, to the
Internet of Things, in which many users will interact with a particular device, such as an
Amazon Echo or Internet-connected door lock. Current measures fail to provide usable au-
thentication, access control, or privacy when multiple users share a device. Even more so,
the users of a given device often have complex social relationships to each other. Our goal is
to develop techniques and interfaces that enable accurate access control and authentication

in multi-user IoT environments, based on user preferences.

Participation should take about 20 minutes.

In recent years, many internet-connected ("smart”) home devices and appliances have en-
tered the market. Imagine that you own many such smart devices that are connected both

to the Internet and to each other.

This includes a smart hub that can control other devices in your home, particularly with
the help of the smart voice assistant. You also have a smart door lock and smart camera
for home security, as well as smart lighting and a smart thermostat to control your environ-
ment. There is also a smart lawn mower maintaining your lawn. All of these devices can be
remotely controlled using a smartphone app by anyone to whom you have given permission.
You, or anyone else you have permitted, can also write rules specifying in what situations

devices should activate automatically.

In this survey, we will ask you questions about who in your household should be allowed to

access one particular feature of a smart device. If you live in multiple places, think of the
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home in which you live the majority of the time. For all questions, assume that the system

has correctly identified the user involved (i.e., there are no cases of mistaken identity).

Because the situations may involve either positive or negative consequences, you should take
some time to think about your response. The next button will not appear until you have

spent at least 30 seconds on each page.

In this survey, we will ask whether you will allow people of the following relationships to
control a particular feature of a smart device: your spouse; your teenage child; your child
in elementary school; a visiting family member; a babysitter; your neighbor. Please imagine
you have these relationships in your life even if you don’t. All of these relationships are

separate people.

If you grant access to any of these people, they will be able to access your devices whether
or not they are in your home, unless you specify otherwise in your responses in the survey.
All questions in this survey will focus on one particular feature, but we will ask about your

opinion on how different people should be able to use it.

The following use the example “Your Spouse”, a “Smart Hub”, and a hub-related

capability.

The questions on this page only focus on the following person: Your spouse: Imagine you
have a spouse. You live with them everyday and share all smart appliances in your home.

You make decisions together in most cases, especially important ones.

Imagine you are the owner of a Smart Hub.
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Should your spouse be able to use the following feature? [capability] O Always (24/7/365)

(O Never () Sometimes, depending on specific factors

Show questions if ”Always” chosen

Why?

Imagine that the device incorrectly denies your spouse the ability to use this feature. How
much of an inconvenience, if any, would this be? () Not an inconvenience () Minor incon-

venience () Major inconvenience

Why? Please be specific.

Show questions if ”"Never” chosen

Why?

Imagine that the device incorrectly allows your spouse the ability to use this feature. How

much of an inconvenience, if any, would this be?

(O Not an inconvenience () Minor inconvenience () Major inconvenience

Why? Please be specific.

Show questions if "Sometimes” chosen

When should they be allowed to use this feature? Please be specific.
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How important is it that they be allowed to use the feature in the cases you specified above?
(O Not important () Slightly important () Moderately important () Very important ()

Extremely important

In contrast, when should they not be allowed to use this feature? Please be specific.

How important is it that they not be allowed to use the feature in the cases you specified
above?
(O Not important () Slightly important () Moderately important () Very important ()

Extremely important

Thanks! We will now be asking you an additional set of questions. Imagine that you have
already chosen settings specifying who can and cannot access a certain feature in your home.
Think broadly about all types of people you might want to allow to control these devices;

do not restrict yourself just to the relationships we have previously asked about.

Scenario: Imagine you are still the owner of a Smart Hub. You specify that certain people

can access the following feature only sometimes: [capability]
Might the location of the person relative to the device (e.g., in the same room, not
in the house, etc.) affect your decision on whether certain people can or cannot use this

particular feature? () Yes () No () Not applicable

Briefly explain your response.
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Might the location of the device in the house (e.g., which room) affect your decision
on whether certain people can or cannot use this particular feature? () Yes () No (O Not
applicable

Briefly explain your response.

Might the current state of the device (e.g., whether it is on or off) affect your decision
on whether certain people can or cannot use this particular feature? () Yes () No (O Not
applicable

Briefly explain your response.

Might the cost of performing that action (e. g., cost of electricity or other monetary costs
of carrying out that action) affect your decision on whether certain people can or cannot use
this particular feature? () Yes () No () Not applicable

Briefly explain your response.

Might the person’s recent usage of the device affect your decision on whether certain

people can or cannot use this particular feature? () Yes () No (O Not applicable

Briefly explain your response.

Might the age of the person affect your decision on whether certain people can or cannot

use this particular feature? () Yes () No (O Not applicable
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Briefly explain your response.

Might who else, if anyone, is currently at home affect your decision on whether certain

people can or cannot use this particular feature? () Yes (O No (O Not applicable

Briefly explain your response.

Might the time of day affect your decision on whether certain people can or cannot use

this particular feature? () Yes (O No (O Not applicable

Briefly explain your response.

Please list any other factors that might affect your decision on whether certain people can

or cannot use the following feature: [capability]

Do you or anyone in your household own the following devices?
Internet-connected lights? () Yes () No

Internet-connected thermostat? () Yes () No
Internet-connected voice assistant? () Yes () No
Internet-connected lawn mower? () Yes () No
Internet-connected security camera? () Yes () No

Internet-connected door lock? () Yes (O No

If answered yes to any of the above: Which specific devices (brand, model, etc.) do you own?

Please choose the answer that best applies:
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Spouse: () I'm currently living with such a person () I'm not currently living with such a

person, but I have previously () I have never lived with such a person () I prefer not to answer

Child in elementary school: () I'm currently living with such a person () I'm not currently
living with such a person, but I have previously () I have never lived with such a person ()

I prefer not to answer

Teenage child: () I'm currently living with such a person () I'm not currently living with
such a person, but I have previously () I have never lived with such a person () I prefer not

to answer

Which of the following best describes your experience with hiring a babysitter (someone
unrelated to you whom you pay to watch your children)? () I have hired a babysitter within
the last year (O I have hired a babysitter but not within the last year () I have never hired

a babysitter () I prefer not to answer

Which of the following best describes your neighbors? () I have neighbors and I know most
of them () I have neighbors and I know some of them () I have neighbors and I know few

or none of them () I do not have neighbors () I prefer not to answer

In a typical year, how many nights total do relatives (who do not live with you) stay at your

home? () 0 O 1-10 O 10-20 O 20-30 O 30+ O I prefer not to answer

Do you live in a: () Single family home () Townhouse () Apartment/condo () Other (please

specify) O I prefer not to answer
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Do you rent or own the place where you live? () Rent () Own () I prefer not to answer

How many people (including you) are there in your household? O 1 (O20O304050

More than 5 (O I prefer not to answer

What is your age range? () 18-24 () 25-34 () 35-44 () 45-54 () 55-64 () 65-74 O 75+ O

Prefer not to say

With what gender do you identify? () Male () Female () Non-binary () Other ()

Prefer not to say

Are you majoring in, hold a degree in, or have held a job in any of the following fields:
computer science; computer engineering; information technology; or a related field? () Yes

(O No (O Prefer not to answer

If you have any further feedback, questions, comments, concerns, or anything else you want

to tell us, please leave a comment below!

7.5 Traffic Throughput by Device Type

Although the paper focuses on the endpoints home [oT devices contact, we also examined the
variability in the amount of traffic they send and receive. In cases like the Mirai botnet [224],
[oT devices were repurposed for DDoS. Thus, characterizing and perhaps throttling the
amount of traffic they could send is an additional network-level defense. However, we
notice that vendors may occasionally request a lot of data from devices and vice

versa. Setting up throttling may interfere with a device’s legitimate functions.
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Figure 7.1: Distributions of the maximum bytes that a given device sends (receives) within
1 minute, grouping by type.

Thus, throttling is not included in the body of the paper, but only discussed
here for completeness.

We expected that, while products of the same type may not share similarities in the
remote hosts they contact, they might require similar throughput, which could imply throt-
tling limits. Figure 7.1 thus shows, for a larger set of products, the maximum amount of
traffic any given device in our dataset in any given one-minute period. The figure only in-
cludes flows with an MTU < 1500.} Figure 7.1 shows that TVs in our dataset received up to
5.5 MB of data per minute, while switches received up to 36.5 KB per minute at most. As
expected, switches and lights receive and send much less data than other types. However, we

observed some surprising outliers. For example, a TP-Link switch and a Belkin Wemo switch

1. We impose a limit on the MTU as some packet sizes collected by IoT Inspector significantly exceed
the MTU, up to millions of bytes per packet. We observe these apparently erroneous MTU values on 2.4%
of devices.
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respectively sent 671.12 KB and 565.55 KB in one minute to n-devs.tplinkcloud.com and
nat.xbcs.net, respectively. We contemplate that these outliers may be caused by some rare
user operations or by the vendors’ own data collection. A higher throttling threshold can be
placed on the device if one would like to ensure full functionality. On the other hand, TVs
and streaming devices generally receive more traffic than others. One interesting observation
is that cameras are the only ones that send much more data than receive. The amount of
data cameras sent in one minute also varies a lot, from tens of bytes to 19.28 MB, making

them harder to throttle.
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7.6 Functionalities Tested in the Lab

Functionality Description

Amazon Echo Dot

Productivity “Alexa, what’s the time?”
Entertainment “Alexa, play music.”

Device control “Alexa, turn on/off all Hue lights.”
Communication “Alexa, Call Alice.”

Shopping “Alexa, search for dog toys.”

Skills “Alexa, play thunderstorm sounds.”
Change volume Change the volume of the Echo Dot.
Factory Reset Reset and initialize the device.

Philips Hue

On/Off Turn lights on/off.

Brightness Change the brightness level of a light.

Voice control Control the device (on/off) using Alexa.

Timer Activate a timer that would turn lights on/off in one minute.
Routine Change time to fit for the experiment

Factory Reset Reset and initialize the device.

Amazon Fire Stick

Built-in Alexa “Alexa, find action movies”

Streaming Streaming a movie that is free (with ads).

Download apps Download Spotify in the App Market on Amazon Fire.
Factory Reset Reset and initialize the device.

Table 7.2: Product functionalities tested in our lab evaluation.
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Functionality

Description

Google Home
Media

Control Chromecast
Find your phone
Manage tasks
Control your home
Plan

Change volume

Factory Reset

Google Chromecast
Watch Live TV

Cast tab to TV

Cast screen to TV
Cast media to TV

Factory Reset

Wyze Camera
Live streaming
Event recording
Motion Tagging
Night vision
2-way audio
Sharing

Rules

On

Off

Factory Reset

“Google, play some music.”

“Hey Google, play Youtube on the Hallway TV.”
“Hey Google, find my phone.”

“Hey Google, set a timer for 1 min.”

“Hey Google, turn on the wemo plug.”

“Hey Google, how’s the weather?”

Reset and initialize the device.

“Hey Google, play Youtube on the Hallway TV.”

Reset and initialize the device.

Watch the live stream from the camera.
Record the live stream.

Tag motions.

Switch the camera to night vision.

Two-way communication through the camera.

Share a video clip to other family members.

Turn on the camera.
Turn off the camera.

Reset and initialize the device.

Table 7.3: (Continued) Product functionalities tested in our lab evaluation.
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Functionality

Description

Belkin Wemo Plug
On

Off

Scheduling

Auto-off

Away mode

Factory Reset

TP-Link Plug
On

Off

Scheduling
Timer

Away mode

Factory Reset

Sonos One

Radio

Streaming

Change volume

Pause

Play songs from phone
Voice control (streaming)
Voice control (volume)
Playlists

Factory Reset

Turn on the plug.

Turn off the plug.

Schedule the plug to turn on/off at a specific time.
Set up a one-minute countdown to turn off the plug.
Activate the away mode.

Reset and initialize the device.

Turn on the plug.

Turn off the plug.

Schedule the plug to turn on/off at a specific time.
Set up a one-minute countdown to turn off the plug.
Activate the away mode.

Reset and initialize the device.

Play Sonos Radio.

Play songs from Spotify.

Change volume.

Pause the music.

Play a song from a phone under the same network.
Using Alexa to play songs.

Using Alexa to change volume.

Edit playlists.

Reset and initialize the device.

Table 7.4: (Continued) Product functionalities tested in our lab evaluation.
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7.7 Regionalization Regressions

Factor B SE t P
(Intercept) 0.828 0.004 194915 < .001
Train Region: B -0.025 0.001  -19.322 < .001
Train Region: C -0.036 0.001 -26.541 < .001
Test Region: B -0.041 0.002 -22.423 < .001
Test Region: C -0.091 0.004 -24.806 < .001
Product: Belkin Switch -0.363 0.002 -170.291 < .001
Product: Google Chromecast 0.086  0.002 51.714 < .001
Product: Google Home 0.089  0.001 65.493 < .001
Product: Philips Hue 0.074  0.002 43.744 < .001
Product: Sonos Speaker -0.321 0.002 -194.669 < .001
log(Train Sample Size) 0.008  .001 18.014 < .001
Train Region: B * Test Region: B 0.060 0.003 23.276 < .001
Train Region: B * Test Region: C 0.063  0.005 12.131 < .001
Train Region: C * Test Region: B 0.054  0.003 21.339 < .001
Train Region: C * Test Region: C 0.128  0.007 19.644 < .001

Table 7.5: Linear regressions modeling the impact on hostname-based allowlists trans-
ferability of the geographic region in which devices were located, whether the train and test
regions were the same (* represents an interaction term), the amount of training data, and

the product. As the baseline for categorical variables, we use the largest category: A for

region and Amazon Echo for product.
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Factor B SE t P

(Intercept) 0.792 0.004 213.467 < .001
Train Region: B -0.031 0.001  -25.069 < .001
Train Region: C -0.032 0.001 -25.500 < .001
Test Region: B -0.036 0.002  -21.423 < .001
Test Region: C -0.100 0.003  -29.007 < .001
Product: Belkin Switch -0.044 0.002  -22.248 < .001
Product: Google Chromecast 0.063  0.002 40.579 < .001
Product: Google Home 0.066  0.001 51.954 < .001
Product: Philips Hue 0.048  0.002 30.074 < .001
Product: Sonos Speaker -0.187 0.002 -121.330 < .001
log(Train Sample Size) 0.008  0.000 18.412 < .001
Train Region: B * Test Region: B 0.074  0.002 30.675 < .001
Train Region: B * Test Region: C 0.055 0.005 11.369 < .001
Train Region: C * Test Region: B 0.064  0.002 27.024 < .001
Train Region: C * Test Region: C 0.121  0.006 19.944 < .001

Table 7.6: Linear regressions modeling the impact on hostname-pattern-based allowlists
transferability of the geographic region in which devices were located, whether the train and
test regions were the same (* represents an interaction term), the amount of training data,
and the product. As the baseline for categorical variables, we use the largest category: A

for region and Amazon Echo for product.
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Factor B SE t P
(Intercept) 0.915 0.004 225965 < .001
Train Region: C -0.034 0.001 -30.047 < .001
Train Region: B -0.013 0.001 -11.484 < .001
Test Region: C -0.053 0.003 -17.047 < .001
Test Region: B -0.021 0.002 -13.376 < .001
Product: Belkin Switch -0.093 0.002 -54.276 < .001
Product: Google Chromecast -0.002 0.001 -1.303 0.193
Product: Google Home 0.014  0.001 12.889 < .001
Product: Philips Hue 0.044  0.001 31.927 < .001
Product: Sonos Speaker -0.097 0.001 -68.704 < .001
log(Train Sample Size) 0.004 j.001  11.531 < .001
Train Region: C * Test Region: C 0.092  0.006 16.720 < .001
Train Region: B * Test Region: C 0.036  0.004 8.231 < .001
Train Region: C * Test Region: B 0.044 0.002  20.333 < .001
Train Region: B * Test Region: B 0.022 0.002 10.072 < .001

Table 7.7: Linear regressions modeling the impact on domain-based allowlists transfer-
ability of the geographic region in which devices were located, whether the train and test
regions were the same (* represents an interaction term), the amount of training data, and

the product. As the baseline for categorical variables, we use the largest category: A for

region and Amazon Echo for product.
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7.8 Example Allowlist

{
"device_name": "Amazon Echo in Study",
"device_mac": "XX-XX-XX-XX-XX",
"device_ip": "", # optional
"product_name": "amazon_echo",
"feature": "hostname",

"allowlist": {
"ip": set ([
"52.94.229.122",
"104.154.127.107",
P
"hostname": set ([
"avs-alexa-3-na.amazon.com",
"prod.insights.comms.alexa.a2z.com"
P
"domain": set ([
"amazon.com",
"amazonaws.com",
S
"patterns": {
"guc3-accesspoint —a-p531.ap.spotify.com":

accesspoint -.*\.ap\.spotify\.com",

"(guc|gael|gew) [0-9]+-

"spectrum.s3.amazonaws.com": "spectrum\.s3\.amazonaws\.com",

Listing 7.1: Example of our allowlist format.
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7.9 Additional Figures

I Transfer within Product [ Transfer within Vendor
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Figure 7.2: A comparison of the transferability of allowlists within a given product and
across products from the same vendor, grouped by type. Each point in a boxplot is the
vendor MFAF of a product of the specified type. The plot uses domain-based allowlists with
threshold < 5.
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Figure 7.3: MFAF of device network behavior using different allowlist formats (columns).
Rows represent the source product for generating the allowlists, and the color indicates the
proportion of flows allowed when creating an allowlist using a threshold of between 1 and 5s
(sub-columns) and applying it to devices of the same product.
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Figure 7.4: MFAF of allowlists using different host representations (columns). Rows repre-
sent the source product for generating the allowlists, and the color indicates the proportion of
flows allowed when creating an allowlist using a threshold of between 1 and 5s (sub-columns)
and applying it to devices of the same vendor.
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Figure 7.5: MFAF of allowlists using different host representations (columns). Rows repre-
sent the source product for generating the allowlists, and the color indicates the proportion of
flows allowed when creating an allowlist using a threshold of between 1 and 5s (sub-columns)
and applying it to devices of the same type.
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