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ABSTRACT

Convex relaxations are a central tool in modern algorithm design, but mathematically

analyzing the performance of a convex relaxation has remained difficult. We develop

Fourier analytic methods for the study of convex relaxations, with special focus on semidef-

inite programming and the sum-of-squares hierarchy.

The sum-of-squares hierarchy is a meta-algorithm for polynomial optimization that

has led to recent breakthroughs in combinatorial optimization and robust statistics. We

are mostly concerned with lower bounds against sum-of-squares: when does it fail to

solve a problem? Barak et al [BHK+16] pioneered the use of Fourier analysis to prove

lower bounds against sum-of-squares on average-case problems. We significantly extend

their methods, namely pseudocalibration and graph matrix analysis, helping us to under-

stand when and how the sum-of-squares algorithm succeeds or fails.

We prove concrete lower bounds against sum-of-squares for two problems. First, we

prove that sum-of-squares cannot distinguish between: (1) m = n1.5−ε independently

sampled Gaussian vectors in Rn, (2) there is a hidden vector h such that the m vectors

are additionally constrained to satisfy ⟨vi, h⟩2 = 1. Via a reduction, this implies a lower

bound for certifying ground states of the Sherrington-Kirkpatrick model, which is a cen-

tral model in statistical physics. On a technical level, the main challenge is to handle

“hard constraints” in the problem; we introduce several new techniques for studying

sum-of-squares in the presence of polynomial equality constraints.

Second, we prove that sum-of-squares cannot certify the size of the maximum inde-

pendent set in a sparse random graph. The main challenge here is sparsity; our work

is the first to prove sum-of-squares lower bounds in the sparse regime. We additionally

show how to overcome the failure of pseudocalibration in this setting by making a con-

nected truncation that gets rid of “global tests”.

Moving beyond the setting of the sum-of-squares hierarchy, we introduce a new basis

xii



of inner product polynomials. For a collection of random vectors d1, . . . , dm ∈ Rn, these

are an orthogonal basis for functions that are orthogonally invariant, meaning that the

function only depends on the angles (inner products) between the di. These polynomials

have many beautiful combinatorial properties related to the topology of an underlying

graph.

Finally, we investigate convex programming relaxations for a fundamental problem in

the theory of error-correcting codes, the largest possible rate of a code with linear distance.

The best upper bound on this quantity was obtained by constructing dual solutions to

Delsarte’s linear program. We generalize Delsarte’s linear program to a hierarchy of linear

programs (related to but simpler than the sum-of-squares hierarchy). The hierarchy is

similar in structure to Delsarte’s linear program, thus offering hope that its value can be

theoretically analyzed to prove new upper bounds, although this remains ongoing work.

xiii



CHAPTER 1

INTRODUCTION

We are interested in understanding the complexity of algorithmic tasks for given instances.

For example:

• Given a collection of objects with different sizes and values, and given a fixed-size

backpack, what is the highest total value you can fit in the pack? (The knapsack

problem)

• Given a graph, what is the largest set of vertices such that no two are adjacent to

each other? (The independent set problem, Fig. 1.1)

• Given either a random graph, or a random graph with two communities, can you

tell which case you are in? (The stochastic block model, Fig. 1.2)

However, an abundance of questions arises. What algorithm should you use? What is

the time/resource complexity of the chosen algorithm? Is it easier to approximately solve

your task instead of exactly? What about if your input data is corrupted, distributed, sen-

sitive, or partially hidden? These questions are what keep computer scientists employed.

An important idea that has emerged is the use of black box, or metaprogramming, al-

gorithms. To use a metaprogramming algorithm, we plug our problem into an algorith-

Figure 1.1: A 10-vertex graph. The red vertices are a maximum-size set of vertices such
that no two are adjacent.

1



Figure 1.2: Left: a 10-vertex graph. Right: By rearranging the vertices, we can see that the
graph has two hidden communities. There are many more edges inside the communities
than between the communities.

mic black box without much thinking, then the black box spits out a candidate output

(although usually in practice there is still some thinking needed). Despite the lack of

ingenuity required, we have formal and informal evidence that a metaprogramming al-

gorithm is the best possible choice of algorithm for certain types of algorithmic tasks! If any

algorithm works, then this particular algorithm must work. (It is possible that the task is

computationally intractable and all efficient algorithms, including the metaprogramming

algorithm, will fail.)

In this thesis we focus on convex programming algorithms, with special emphasis on the

sum-of-squares metaprogramming algorithm. The importance of convex programming as

a general technique cannot be overstated. Convex programs are important both in theory

and practice, on the one hand underlying many if not most of our best approximation

algorithms, and on the other hand being the algorithm of choice for large-scale industrial

logistics problems such as airline scheduling and package delivery.

The sum-of-squares algorithm is a generic and powerful convex programming meta-

algorithm. Sum-of-squares can be run as a black box for polynomial optimization (al-

though, again, some algorithmic design choices may be necessary or helpful). We have

evidence that sum-of-squares is optimal among a large class of convex programming al-

gorithms for certain combinatorial optimization problems [LRS15], and in fact further evi-
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dence that convex programming is itself the optimal algorithm for these problems [Rag08].

In the last decade, the sum-of-squares algorithm has led to numerous breakthroughs

in combinatorial optimization and computational statistics. Examples and more back-

ground on sum-of-squares are given in Chapter 3.

Despite the fact that we can set up and run the sum-of-squares algorithm as a black

box, we cannot determine whether or not the algorithm solves our problem! From an em-

pirical standpoint, the sum-of-squares algorithm is largely a theoretical algorithm because

its runtime is too slow on nontrivial inputs. By running the code, we can assess whether

the algorithm solves a particular instance, though we cannot extrapolate the behavior to

all inputs, because (1) the inputs that can be feasibly computed are relatively small, on

the order of kilobytes; (2) there may be nefarious inputs that “thwart” our algorithm that

we have failed to consider.

From a theoretical standpoint, even our mathematical understanding of convex relax-

ations such as sum-of-squares remains quite limited. We don’t know how to theoretically

“run” a convex relaxation on a large instance and predict the output. We would like

a mathematical analysis of exactly how well the algorithm performs, so that we can be

100% convinced one way or the other of the quality of the output. However, mathemat-

ical proofs remain few, and the cases in which we have a theoretical analysis of a con-

vex relaxation are vastly outnumbered by the cases in which we only have predictions.

Because of the state-of-the-art applications of sum-of-squares and other convex program-

ming relaxations, a better understanding of these algorithms is undoubtedly important

for future algorithmic research.

The primary task of this thesis is to theoretically analyze convex programming relax-

ations such as sum-of-squares. We prove lower bounds against the algorithm in situations

where it fails, i.e. we prove that the algorithm’s output is significantly worse than op-

timal. Based on the strength of the sum-of-squares metaprogramming algorithm, such
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lower bounds provide strong, concrete evidence that there is no efficient algorithm for the

problem. Another important aspect of our work is that it yields structural insights into

sum-of-squares, helping us to understand when and how the algorithm succeeds or fails.

For performing the algorithm analysis, we develop and employ new mathematical

technology. A portion of the thesis is devoted to explaining and building out these tools.

The tools we need belong to the fields of Fourier analysis, random matrix theory, and

combinatorics. The methods are likely to be of wider interest in the theoretical computer

science and mathematics communities.

1.1 Summary of contributions

We present the specific contributions of the thesis in more detail.

New Fourier analytic methods. An overarching mathematical tool that we utilize is

Fourier analysis, especially in the presence of symmetry. The general idea of Fourier anal-

ysis is to decompose a function in a special way (with respect to harmonic functions in

the Fourier basis) and use the decomposition to reason about the function. This idea has

been incredibly fruitful, and the basic tool of Fourier analysis is one of the most important

mathematical developments ever. In our settings, the functions under consideration will

have additional symmetry properties, and therefore we will use a basis that has the same

symmetry.

First, we develop Fourier analysis of functions whose output is a matrix. A basis for

decomposing these functions is the space of graph matrices. Graph matrices were intro-

duced by Barak et al [BHK+16], and our work significantly extends the scope of graph

matrix analysis. For example, we show a combinatorial approach to analyzing the null

space of the matrix, and how to use graph matrices in the sparse setting, including new

norm bounds for graph matrices over sparse inputs.
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Second, we define and study the space of inner product functions. A function in this

space takes as input a collection of vectors, and the output is orthogonally invariant: it

only depends on the angles, or inner products, between the vectors. We define an explicit

basis for this space. We derive many beautiful formulas that relate properties of the basis

to combinatorial and topological properties of the graphs that define the basis.

Sum-of-squares lower bounds. Our Fourier analytic techniques were invented to at-

tack the main challenge of the thesis, proving lower bounds against the sum-of-squares

algorithm. We prove lower bounds for two specific problems. First, we prove that sum-of-

squares cannot certify ground states of the Sherrington-Kirkpatrick model, which is a central

model in statistical physics that exhibits deep mathematical behavior. Second, we prove

that sum-of-squares cannot certify the maximum independent set in a sparse random graph,

which is a fundamental problem in combinatorial optimization.

To analyze the sum-of-squares algorithm on these problems, we need many new sum-

of-squares specific ideas, in addition to the Fourier analytic techniques. For the Sherrington-

Kirkpatrick model, we show new techniques for handling polynomial equality constraints

in the input, such as handling the null space of the moment matrix and rounding the

pseudoexpectation operator. For the maximum independent set problem, we extend the

pseudocalibration technique to decouple the local and global properties of the input graph,

and we overcome a host of new challenges related to the sparse setting.

Prior to the last decade, very few sum-of-squares lower bounds were known; it is only

in the past ten years that we have started to gain a foothold into the analysis of sum-of-

squares. For example, prior to our work, sum-of-squares lower bounds were obtained

for problems in the “dense” input regime, while the sparse regime remained out of reach.

Our work on independent set is the first progress in this direction.
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Applications of convex relaxations in coding theory. In the last part of the thesis, we

investigate convex programming techniques for a fundamental problem in the theory of

error-correcting codes. We propose a new convex relaxation for the size of the largest error-

correcting code with given distance. This is a problem that has not seen improvement

since the 1970s, and our technique suggests a promising new direction of attack. Our

relaxation is similar to but simpler than the sum-of-squares relaxation for this problem,

and as we explain, the simplicity is likely to help with analyzing the program. We prove

that the relaxation is complete, meaning that a sufficiently high “level” of the program

exactly solves the problem (and there is an implicit hope that analyzing “low levels” of

the algorithm can lead to improved bounds).

A conceptual difference between this research and the other parts of the thesis is that

the input is a specific, deterministic instance whereas the input is random in all other

settings. Analyzing convex programs on specific instances can be very difficult, and ana-

lyzing the value of our program remains ongoing work, some of which we describe.

1.2 Outline of the thesis

Chapter 2 introduces the theory of matrix-valued Fourier analysis, known as graph matri-

ces. This chapter is expository and most proofs are elided.

Chapter 3 provides an overview of the sum-of-squares algorithm and describes at a

high level our technique for proving lower bounds. This chapter is also expository.

Chapter 4 and Chapter 6 prove the lower bounds against the sum-of-squares algo-

rithm. Chapter 4 deals with the Sherrington-Kirkpatrick model and Chapter 6 deals with

independent set on sparse random graphs. These chapters use the graph matrix technol-

ogy from Chapter 2 and the proof strategy in Chapter 3.

Chapter 5 introduces inner product polynomials, a basis for a particular space of sym-

metric functions. It was developed (though ultimately not used) as a tool for studying the
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Sherrington-Kirkpatrick model in Chapter 4. This chapter can be read independently of

the other chapters.

Chapter 7 gives the applications of convex relaxations in coding theory. This chapter

can be read independently of the other chapters.

Most of this thesis is based on joint works with coauthors. Some proofs are original,

the exposition has been synthesized, and specific contributions of the author have been

emphasized. Some important parts of joint papers are included, even if the author was

not the main author of those parts. In the introductory section of each chapter there is

a bibliographic attribution for that chapter. Each chapter also ends with related open

problems.

The remainder of this introduction will provide a quick overview of Fourier analysis

in the presence of symmetry.

1.3 Basics of Fourier Analysis

Fourier analysis expresses a function f with respect to a Fourier basis of “harmonic func-

tions”, known as Fourier characters. There are many types of Fourier analysis, depending

on the domain of f and the exact generalization of “harmonic” that one is working with.1

The situation that underlies all the work in this thesis is that we will have some distribu-

tion D on RN and we will think of “functions of a random variable” f (X) where X ∼ D.

In this case the Fourier basis for f consists of the orthogonal polynomials for the distribution

D.

For example, the most common distribution encountered in computer science is the

uniform distribution on the Boolean hypercube {−1,+1}n (this is essentially equivalent

to the uniform distribution on {0, 1}n).

1. In the typical set-up, f : G → C where G is a group, and the basis of harmonic functions is group
characters.
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Definition 1.1. For a finite set Ω, x ∈R Ω denotes a sample from the uniform distribution on Ω.

For input x ∈R {−1,+1}n, the Fourier basis for f : {−1,+1}n → R consists of the set

of multilinear monomials.

Definition 1.2. Let v ∈ Rn. For I ⊆ [n] or α ∈ Nn, let vI := ∏i∈I vi or vα := ∏n
i=1 vαi

i . The

notation also extends to the case when v = (v1, . . . , vn) is a vector of variables.

Definition 1.3 (Boolean Fourier character). For S ⊆ [n] and x ∈ {−1,+1}n, χS(x) = xS.

The functions χS are orthonormal under the uniform distribution on the hypercube.

We use the notation 1S=T as the 0/1 indicator of whether S = T.

Definition 1.4. Let f , g : {−1,+1}n → R. We denote by ⟨ f , g⟩ = E
x∈R{−1,+1}n

[ f (x)g(x)] the

inner product of f and g.

Fact 1.5. The functions χS are orthonormal: ⟨χS, χT⟩ = 1S=T. Furthermore, they form a basis

for all functions f : {−1,+1}n → R.

The Fourier transform gives the coefficients of f when expressed in the Fourier basis.

Definition 1.6 (Fourier transform). The Fourier transform f̂ of f : {−1,+1}n → R is defined

on S ⊆ [n] by:

f̂ (S) = ⟨ f , χS⟩ = E
x∈R{−1,+1}n

[ f (x) · χS(x)].

Fact 1.7 (Fourier inversion). Let f : {−1,+1}n → R. Then f (x) = ∑
S⊆[n]

f̂ (α)χS(x).

Fact 1.8 (Plancherel identity). Let f , g : {−1,+1}n → R. Then ⟨ f , g⟩ = ∑
S⊆[n]

f̂ (S) · ĝ(S).

In the settings that we consider, the function f will additionally satisfy some symmetry

under a group action. It may be more natural to express f with respect to a basis of

functions which also have the symmetry. To give an example, suppose that the output of

a function f : {−1,+1}n → R only depends on the Hamming weight of the input.

Definition 1.9 (Hamming weight). For x ∈ {−1,+1}n, the Hamming weight |x| is the num-
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ber of −1’s in x.

Equivalently, f satisfies the symmetry f (x) = f (π(x)) for all permutations π ∈ Sn,

where the group action permutes the bits of x. When f is written in the Fourier basis, the

Fourier coefficient f̂ (S) also only depends on |S|.

Lemma 1.10. If f (x) = f (π(x)) for all permutations π ∈ Sn, then f̂ (S) = f̂ (π(S)) for all S.

Proof.

f̂ (S) = E
x∈R{−1,+1}n

[ f (x)χS(x)]

= E
x∈R{−1,+1}n

[ f (π(x))χS(x)]

= E
x∈R{−1,+1}n

[ f (x)χS(π
−1(x))]

= E
x∈R{−1,+1}n

[ f (x)χπ(S)(x)]

= f̂ (π(S)) .

Therefore, a basis for f consists of the following functions ψi and the following de-

composition:

ψi(x) = ∑
S⊆[n],
|S|=i

χS(x) (i = 0, 1, . . . , n)

f (x) =
n
∑
i=0

f̂ (i)ψi(x)

where f̂ (i) is the Fourier coefficient for sets of size i.

The function f can also be expressed purely in terms of the Hamming weight |x|, i.e.

as a function on the set {0, 1, 2, . . . , n}. The functions ψi(x) = Ki(|x|) are equal to the

Kravchuk polynomials Ki evaluated on the Hamming weight of x. The Kravchuk polyno-
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mials are the orthogonal polynomials for the binomial distribution. It makes sense that

they would appear here, since the distribution of |x| for x ∈R {−1,+1}n is a binomial

random variable Bin(n, 1/2).

Usually, a symmetrized basis can be easily obtained by just grouping together the non-

symmetrized Fourier characters, like we did here to get the Kravchuk polynomials from

the Boolean Fourier characters. However, that isn’t the case in Chapter 5.
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CHAPTER 2

GRAPH MATRICES

In this chapter we study Fourier analysis of matrix-valued functions. When the matrix-

valued function is permutation-symmetric, a Fourier basis is the set of graph matrices. Just

as in Fourier analysis of scalar-valued functions, we can prove many things about our

function by expressing it with respect to the graph matrix basis. Here we will survey

without proofs some of the useful properties of the graph matrix basis.

The most useful property for our purposes are norm bounds for graph matrices that

hold with high probability when the input is chosen randomly. Understanding the spec-

tral norms of random matrices is crucial for controlling error terms in both algorithms

and lower bounds.

The graph matrix toolbox described in this chapter is the key mathematical technology

underlying the proofs in Chapter 4 and Chapter 6. In those chapters, we apply graph

matrices to study the sum-of-squares algorithm.

An overview of graph matrix analysis is given in Section 2.1. The norm bounds are de-

scribed in Section 2.2. Section 2.3 discusses some technicalities in the definition of graph

matrices and offers some helpful tips for using them. Section 2.4 explains the calculus of

multiplying and factoring graph matrices.

Unfortunately a one-size-fits-all definition of graph matrices is fairly unwieldy, for

some of the reasons listed in Section 2.3. Other chapters that use graph matrices will give

the particular definition of graph matrices used in the context of the chapter.

Bibliography. Graph matrices are not an original contribution of this thesis, having

been invented in the context of the Planted Clique problem. This includes works by Desh-

pande and Montanari [DM15] (introduction of ribbons), Meka-Potechin-Wigderson [MPW15]

(similar-looking matrices, with norm bounds proved via trace method), Barak et al [BHK+16]
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(factoring and multiplying graph matrices), and Potechin and Rajendran [PR20] (gener-

alizing the technology beyond Planted Clique). Further background and norm bounds

in the “dense case” are given by Ahn-Medaramehtla-Potechin [AMP20]. Works of the

author utilizing and expanding the theory are [GJJ+20, JPR+21]; the latter work intro-

duced the “sparse case” described in Section 2.2.1. The exposition here is for the most

part original.

Graph matrices have also been called “graphical matrices” [BHK+16] and “random

association schemes” [DM15]. Other reasonable names may be “symmetrized matrix

Fourier characters” or “functional association schemes”. The graph matrix technology

is still being developed, and it is likely that future work will improve their usage beyond

what is written here.

2.1 Overview of graph matrices

Given a matrix-valued function f (X) ∈ RI×I of a random variable X ∼ D, if f is

permutation-symmetric (to be defined below) we can express it in a symmetrized Fourier

basis, known as graph matrices Mα(X).

f (X) = ∑
shapes α

f̂ (α)Mα(X) .

The high-level strategy for using graph matrices is:

• Each graph matrix can be specified by a succinct graph α, the shape.

• Properties of the graph matrix, notably the spectral norm, are determined by com-

binatorial properties of the shape.

• Therefore, to analyze a function expressed in the basis of graph matrices, it suffices

to reason combinatorially about the shapes.
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The running example that we use in this chapter is when X is the Erdős-Rényi random

graph Gn,1/2, with vertex set [n] and each edge included independently with probability

1/2. The matrix indices in I are all ordered subsets of [n].

Since the Erdős-Rényi random graph consists of (n
2) independent bits, the Fourier basis

is given by the Boolean Fourier characters. There is a character χE for each E ⊆ ([n]2 ).

Therefore, the Fourier characters are in correspondence with undirected graphs on [n].

The natural way to extend this to a basis for matrix-valued functions is to express each

entry of the matrix as a scalar function in the Fourier basis. A ribbon specifies a particular

Fourier character in a particular entry of the matrix. It consists of the matrix entry as well

as which Fourier character it is.

Definition 2.1 (Ribbon). A ribbon is a tuple R = (AR, BR, E(R)) where AR, BR ∈ I and E(R)

specifies the Fourier character. The corresponding matrix MR(X) ∈ RI×I is:

MR(X)[I, J] =


χE(R)(X) I = AR, J = BR

0 otherwise .

A ribbon is a combinatorial object. We call AR and BR the “left” and “right” sides of

R. In the case of Gn,1/2, E(R) defines a small graph; we let V(R) := AR ∪ BR ∪ V(E(R)).

We also define the set of “middle vertices” CR := V(R) \ (AR ∪ BR). An example ribbon

is in Fig. 2.1.

The ribbon basis is too fine to aptly summarize the matrix properties of f (X). For-

tunately, if f (X) is permutation-symmetric, we can group ribbons into shapes, which are

more effective. In the context of Gn,1/2, a shape can be thought of as a ribbon where we

have erased the vertex labels, as in Fig. 2.2.

Definition 2.2 (Shape for Gn,1/2). A shape is an equivalence class of ribbons under relabeling

of [n]. Each shape has a representative α = (Uα, Vα, E(α)).
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Figure 2.1: The ribbon AR = (1, 3), BR = (2, 4), E(R) = {{1, 2}, {2, 3}, {3, 5}, {4, 5}}.
The “left side” is in red, the “right side” is in blue (ordered from top to bottom), and
the remaining “middle vertex” is 4. This ribbon corresponds to the Fourier character
χ1,2(X)χ2,3(X)χ3,4(X)χ4,5(X) in the ((1, 3), (2, 5)) entry of the matrix.

Figure 2.2: Left and middle: Two ribbons with the same shape. Right: The “shape” as an
unlabeled ribbon.
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We also define the “middle vertices” Wα = V(α) \ (Uα ∪ Vα), corresponding to CR.

Greek letters are generally used for shapes whereas Latin letters are used for ribbons.

Definition 2.3 (Graph matrix). For a shape α, Mα(X) = ∑
ribbon R of shape α

MR(X) .

When f (X) is a permutation-symmetric matrix-valued function, by grouping together

ribbons with the same coefficient, it can be expressed as a linear combination of graph

matrices Mα(X). It is easier to see the definition of permutation-symmetric through ex-

amples first and the definition second. In the context of Gn,1/2, permutation-symmetric

functions f (X) of X ∼ Gn,1/2 do the “same thing” for each entry f (X)[I, J], just “local-

ized” to the vertex sets I, J. The adjacency matrix of X is permutation-symmetric. Other

permutation-symmetric functions are f (X)[i, j] = number of triangles containing edge

i, j, and f (X)[{i, j}, {k, l}] = 0/1 if {i, j, k, l} are a 4-clique.

In the general setting (not necessarily Gn,1/2), we have a group acting on both the

index set I and the input X (technically speaking, an action on the underlying probability

space). For Gn,1/2 this is the induced action of the symmetric group Sn on ordered subsets

of [n] or graphs on [n].

Definition 2.4 (Permutation-symmetric). Given a group acting on both I and X, a matrix-

valued function f (X) ∈ RI×I is permutation-symmetric if f (X)[I, J] = f (π(X))[π(I), π(J)]

for all π in the group.

Definition 2.5 (Shape). A shape is an orbit of ribbons under the group actions.1 Each shape has

a representative α = (Uα, Vα, E(α)).

Definitionally, we have the following proposition:

Proposition 2.6. Graph matrices form a basis for permutation-symmetric matrix-valued func-

tions f (X) ∈ RI×I .

1. We require that the group action on X preserves Fourier characters, meaning for all E and π there is
F such that χE(π(X)) = χF(X).
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Definition 2.7 (Trivial shape). A shape α is trivial if Uα = Vα and E(α) = ∅ is the trivial

Fourier character.

Mα(X) for a trivial α is the identity matrix restricted to the block Uα × Uα ⊆ I × I .

Definition 2.8 (Transpose). Given a ribbon R or shape α, we define its transpose R⊺ or α⊺

by swapping AR and BR (resp. Uα and Vα). Observe that this transposes the matrix for the

ribbon/shape.

Some remarks on graph matrices:

1. To simplify the notation, the input is usually dropped from the notation. A graph

matrix is written Mα instead of Mα(X).

2. In the context of Gn,1/2, the ribbons of shape α are exactly those that result from

embedding the shape graph α into the overall vertex set [n].

Lemma 2.9. In the context of Gn,1/2, a ribbon R has shape α if and only if there is an

injective map ϕ : V(α) → [n] such that ϕ(Uα) = AR and ϕ(Vα) = BR as ordered tuples,

and ϕ(E(α)) = E(R).

In fact, it is usually simpler to take the definition of a graph matrix to be the sum

over embeddings of α. This definition differs from the one we have given by a scalar

factor (the size of an automorphism group). See Section 2.3.2 for this and Section 2.3

for further remarks on the definition of a graph matrix.

3. Occasionally, a simpler basis can be used without using the “full strength” of the

graph matrix basis. For the example case of G ∼ Gn,1/2, if the index set is I =

V(G) = [n], and the entry of a permutation-symmetric matrix f (X)[u, v] depends

only on the graph distance between u and v, then a basis for f (X) is powers Ar of

the centered adjacency matrix A. For analyzing the spectrum of f (X), it therefore
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suffices to analyze the spectrum of A, which is significantly more well-studied than

graph matrices in general [Tao12, Bor15].

4. When the input X has several dimensions (for example, X is a random m × n ma-

trix), a Fourier character may be viewed as a graph in which vertices have differ-

ent “types” (either “row” or “column”). Usually the function f (X) is permutation-

symmetric under independent permutation of each type. This situation is the case

in Chapter 4.

5. Even if X is not a random graph, the underlying graph or hypergraph structure

of the Fourier character is still relevant to the norm bound. This provides some

justification for the general term “graph matrix”.

6. To elaborate on the previous point, the settings that we consider will all have X =

(X1, . . . , XN) ∈ RN . A single Fourier character is indexed by α ∈ NN which can

be thought of as a hyperedge on [N] in which vertices are allowed to appear more

than once. The matrices will always be indexed by I being sets, multisets, or tuples

from [N] (this is the typical setting for the sum-of-squares algorithm, Chapter 3).

Therefore, a ribbon is a hypergraph structure on [N] with specialized left and right

subsets (or multisets or tuples) of vertices from [N]. Passing to shapes, the action on

I and X will be by a permutation group G ≤ SN .

7. Graph matrices can be seen as “functional association schemes”. We briefly review

the definitions. Matrices that are symmetric under a group action (without being

functions of X) exactly lie in a corresponding association scheme.

Definition 2.10 (Schurian association scheme). Given a transitive permutation group

G ≤ Sym(I), the association scheme for G acting on I is the set of orbits of the induced

action of G on I × I . In the matrix view, for each orbit in I × I , we take a 0/1 matrix

indicating the orbit.
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Fact 2.11. Given a transitive permutation group G ≤ Sym(I), a matrix M ∈ RI×I is

G-symmetric if and only if M lies in the linear span of the association scheme for G acting

on I .

Remark 2.12. Association schemes arising from permutation groups in this way are called

“Schurian”, whereas the full definition of association scheme is a combinatorial generaliza-

tion, which just requires combinatorial properties of the underlying 0/1 matrices without the

presence of the permutation group.

In our setting where the matrix is random (a function of X) and G also acts on X,

there is one basis matrix per orbit of the action on I × I and X together. Note that

this not the same as saying that each instantiation of X gives an association scheme.

It should be noted that, because we are doing Fourier analysis, graph matrices use

Fourier characters instead of matrix entries that are 0/1.

2.2 Norm Bounds

Now that we have expressed a matrix-valued function in terms of ribbons and collected

the ribbons into graph matrices, we would like to study the individual graph matrices

Mα. A common goal in this thesis is to understand the spectrum of a matrix-valued

function, with high probability over a random input. It turns out that for different α, the

spectra of Mα lie on different scales in terms of n (for a random input), and a first step is

to determine the magnitudes.

Definition 2.13 (Spectral norm). The spectral norm of M ∈ RI×I is ∥M∥ = max
x∈RI ,

x ̸=0

∥Mx∥2
∥x∥2

.

When M is symmetric, ∥M∥ is the maximum absolute value of the eigenvalues. In general,

∥M∥ is the square root of the maximum absolute value of the singular values.
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Example 2.14 (Wigner matrix). A random symmetric matrix with independent entries is known

as a Wigner matrix. Consider a n × n Wigner matrix with independent Rademacher entries

(i.e., uniform from {−1,+1}). It is well known that the spectrum lies in [(−2 − o(1))
√

n, (2 +

o(1))
√

n] with high probability, and furthermore that the spectrum converges to the Wigner semi-

circle law on this interval (in a sense we don’t define here). This matrix is described by the one-edge

shape in Fig. 2.3 (except for the diagonal entries2), and hence the spectral norm of this simple shape

is Θ(
√

n).

(a) Shape corresponding to a Wigner matrix

(b) Histogram of the eigenvalues of a random
2000×2000 Wigner matrix. The largest eigen-
value magnitude is near 2

√
n ≈ 89.44.

Figure 2.3

Unlike the Wigner matrix in the previous example, for general α the entries of Mα are

not independent. They are degree-|E(α)| polynomial functions of the underlying object

(however, the underlying object usually does have iid entries).

The magnitude in n of the spectral norm of Mα can be expressed in terms of combina-

torial properties of the shape α, namely vertex separators. The theorems in this section will

be stated for the case where the underlying randomness is Gn,1/2, and then for the case

of Gn,p. The general case of a set of independent variables with all moments finite and

2. Since the diagonal entries are at most 1 in absolute value, adding or subtracting the diagonal entries
changes the spectral norm by at most 1, which is comparatively small since most eigenvalues are on the
scale Θ(

√
n).
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independent of n can be found in [AMP20]. Note that their work generalizes Gn,1/2 but

not Gn,p.

Definition 2.15 (Minimum vertex separator). For a shape α, a set S ⊆ V(α) is a vertex

separator if there is no path from Uα to Vα in α \ S. A minimum vertex separator Smin minimizes

|Smin| over all such separating sets.

For Gn,1/2 with high probability the following norm bound holds for all shapes:

∥Mα∥ ≤ Õ
(

n
|V(α)|−|Smin|

2

)
.

This achieves the correct polynomial magnitude in n (a matching lower bound up to

log factors is proven in [AMP20, Appendix A]), but unfortunately, we lack a finer under-

standing of the behavior of ∥Mα∥. In Lemma 2.16 below, the log factor of (log n)
1
2 Cα is not

optimal (for example, it is extraneous for the single-edge shape). The bulk distribution

of the spectrum of singular values has been determined for the “Z-matrix” by Cai and

Potechin [CP20].

Two formal statements of the norm bound for Gn,1/2 are as follows. The first is

stronger, and the second is easier to apply.

Lemma 2.16 ([AMP20, Theorem 6.1]). For all (proper) shapes α and ε > 0, let

Cα = |Wα|+ |Smin| − |Uα ∩ Vα| ,

Dα = |V(α) \ (Uα ∩ Vα)| ,

then provided that Cα > 0:

Pr

∥Mα∥ ≥
(

6e
⌈

1
3Cα

log(n|Smin|/ε)

⌉) 1
2 Cα

· (2Dα)
Dα · n

|V(α)|−|Smin|
2

 ≤ ε .
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Lemma 2.17 ([GJJ+20, Appendix A]). There is a universal constant C such that whp the fol-

lowing norm bound holds for all (proper) shapes α:

∥Mα∥ ≤ 2 · (|V(α)| · log(n))C·|V(α)\(Uα∩Vα)| · n
|V(α)|−|Smin|

2

The cited proofs use the “trace method”, which we briefly review. Rajendran and

Tulsiani [RT20] derive similar bounds using the matrix Efron-Stein inequality.

The trace method consists of the following steps to bound the spectral norm of a matrix

M.

(i) Use ∥M∥ ≤ tr((MM⊺)q)1/2q for any choice of q ∈ N

(ii) Pr[tr((MM⊺)q)1/2q ≥ a] = Pr[tr((MM⊺)q) ≥ a2q]

(iii) Apply Markov’s inequality: Pr[tr((MM⊺)q) ≥ a2q] ≤ E[tr((MM⊺)q)]
a2q

(iv) If the desired tail bound probability is ε, the tail is a =
E[tr((MM⊺)q)]1/2q

ε1/2q .

(v) Choose q.

The expected q-th trace can be expressed in a combinatorial way, reducing to (often chal-

lenging) combinatorial calculations. This is a combinatorial version of the “moment gen-

erating function” technique for tail bounds, which consists of the following steps to tail

bound a random variable X.

(i) Pr[X ≥ a] = Pr[etX ≥ eta] for any choice of t.

(ii) Apply Markov’s inequality: Pr[etX ≥ eta] ≤ E[etX ]
eta . (The expression E[etX] is the

moment generating function of X evaluated at t.)

(iii) If the desired tail bound probability is ε, the tail is a =
ln E[etX ]+ln(1/ε)

t .

(iv) Choose t.

Picking t = q is a smooth way to approximate the q-th moment of X.
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2.2.1 Sparse norm bounds

We will also work in the sparse setting. In the sparse regime, we work with matrices that

are functions of an underlying random object X ∈ RN , but now the individual coordi-

nates of X may have a distribution that depends on n.

The canonical setting is that X is an Erdős-Rényi random graph Gn,p for p = o(1).

Each edge takes the p-biased distribution, and hence we use p-biased Fourier analysis.

The definitions of ribbons, shapes, and graph matrices are essentially the same as in the

case of Gn,1/2, with the sole change that the Fourier character χe(X) is replaced by the

p-biased Fourier character (defined in Section 6.2.1 or [O’D14, Section 8.4]). The shapes

and ribbons still correspond to graphs on [n].

The norm bound of a graph matrix Mα is qualitatively different in Gn,p vs Gn,1/2. It

depends on a slightly modified definition of the minimum vertex separator. Let E(S) be

the edges induced by vertex set S. For Gn,p, the following norm bound holds for a shape

α with high probability:

∥Mα∥ ≤ Õ

 max
vertex separator S

of α

n
|V(α)|−|S|

2 ·
(

1 − p
p

) |E(S)|
2


 .

A maximizer of the above is called a sparse minimum vertex separator.

Two formal statements are as follows.

Lemma 2.18 ([JPR+21, set q = |V(α)| log n in Theorem 6.60]). For a (proper) shape α, let:

LS = vertices in S that are reachable from Uα without passing through any other vertices in S

RS = vertices in S that are reachable from Vα without passing through any other vertices in S

c(S) = number of connected components of α \ S that are not reachable from Uα or Vα
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For all ε > 0, with probability at least 1 − ε the following holds:

∥Mα∥ ≤
(

1
ε

) 1
2|V(α)| log n

· 4|V(α)|− |Uα |+|Vα |
2 ·

√
|V(α)|

|V(α)\(Uα∩Vα)|

max
vertex separator S

of α

n
|V(α)|−|S|

2

(
3

√
1 − p

p

)|E(S)|√
|V(α)|

|S\(Uα∩Vα)|
(2|V(α)| log n)|S|−

|LS |+|RS |
2 +|c(S)|/2


where Aut(α) is defined in Section 2.3.2.

Remark 2.19. Unfortunately, this norm bound is not the “dream bound” for Gn,p for at least two

reasons.

First, the bound is not tight up to poly(n) factors in cases where the shape has too many edges.

This is because the presence of a dense subgraph such as K5 in the input can dramatically increase

the norm of some graph matrices with many edges, and the norm bound must accommodate these

rare events. With high probability K5 is not present in the input, but K5 is present with inverse

poly(n) probability. Said in a different way, the stated bound holds (with log n factor loss) with

very high probability (all but probability n−Ω(log n)), whereas we are normally interested in what

happens with high probability. To improve the norm bound for dense shapes in Chapter 6, we use

an improved bound on the Frobenius norm.

In fact, this is a fundamental difference between the sparse and dense settings. In the sparse

setting, ∥Mα∥ is not exponentially concentrated around its mean. However, we believe that shapes

without too many edges still exhibit exponential concentration.

The second defect with this bound is that the dependence on |V(α)| and log n is sub-optimal.

Removing all unnecessary factors is important for handling the regime when the random graph

has average degree o(log n).

Lemma 2.20. There is a constant C such that with high probability, the following norm bound
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holds for all (proper) shapes α:

∥Mα∥ ≤ C|Uα∩Vα| · (|V(α)| log n)C|V(α)\(Uα∩Vα)| · max
vertex separator S

of α

n
|V(α)|−|S|

2

(
3

√
1 − p

p

)|E(S)|

.

Proof. Let Nk be the number of shapes with k total vertices. Apply the formal norm bound

Lemma 2.18 on shape α with parameter 1/ε = 1/ε(α) = n · N|V(α)| · 2|V(α)|, then use the

union bound.

Summing over the shapes, the probability of failure is at most:

∑
shape α

ε(α) =
n
∑
k=1

Nk ·
1

nNk2k

≤ 1
n

.

Lemma 2.21. Nk ≤ 4k(k!)22k2
.

Proof. The following process forms all such shapes: starting from k vertices, decide whether

each vertex is in Uα and/or Vα, then order Uα, Vα, then among the k2 vertex pairs put any

number of edges.

It remains to simplify the bound, which is written below.

∥Mα∥ ≤
(

1
ε

) 1
2|V(α)| log n

· 4|V(α)|− |Uα |+|Vα |
2 ·

√
|V(α)|

|V(α)\(Uα∩Vα)|

max
vertex separator S

of α

n
|V(α)|−|S|

2

(
3

√
1 − p

p

)|E(S)|√
|V(α)|

|S\(Uα∩Vα)|
(2|V(α)| log n)|S|−

|LS |+|RS |
2 +|c(S)|/2


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The first line is (using Lemma 2.21)

(
nN|V(α)|2

|V(α)|
) 1

2|V(α)| log n

≤
(

n4|V(α)||V(α)|2|V(α)|2|V(α)|22|V(α)|
) 1

2|V(α)| log n

≤4 · 2|V(α)|

=4 · 2|Uα∩Vα| · 2|V(α)\(Uα∩Vα)| .

The second line is

4|V(α)|− |Uα |+|Vα |
2 ·

√
|V(α)|

|V(α)\(Uα∩Vα)|
≤ (4

√
|V(α)|)|V(α)\(Uα∩Vα)| .

For the third line, we bound

√
|V(α)|

|S\(Uα∩Vα)|
· (2|V(α)| log n)|S|−

|LS |+|RS |
2 +|c(S)|/2

≤
√
|V(α)|

|V(α)\(Uα∩Vα)|
· (2|V(α)| log n)|V(α)\(Uα∩Vα)| .

Multiplying the three bounds together yields the desired claim.

2.3 Some technicalities and advice

The reality is that formally using graph matrices in proofs can be technically painful.

Several concepts that we have encountered are described here, as well as what we found

were the most effective ways of mitigating technical details.

In this section, we work with G ∼ Gn,1/2 although the ideas apply more generally to

other settings.

Contents of the section:

1. General tips
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2. Automorphisms

3. Improper shapes

4. Ordered tuples vs sets for matrix indices

2.3.1 General tips

View Mα as a block matrix The index set I is all subsets of [n]. It is useful to partition

the subsets by size and view matrices in RI×I as block matrices. A graph matrix Mα

lives in the (|Uα|, |Vα|) block, and is zero on the other blocks. For example, this implies

that the product MαMβ is only nonzero if Vα and Uβ “match up”, |Vα| = |Uβ|.

First do combinatorial arguments using norm bounds Say we have a matrix written in

the Fourier basis that we would like to prove something about, over a random input. For

example, we may wish to prove a concentration inequality by bounding ∥Λ − E Λ∥ whp.

Λ = ∑
ribbons R

λRMR = ∑
shapes α

λαMα .

The most important thing is to control norms of error terms at the coarse granularity of

poly(n). To do this, one should think in the shape basis, using the norm bounds to obtain

the magnitude in n of each shape (ignoring the subpolynomial factors in the norm bounds

for the moment), and check that each individual term |λα|∥Mα∥ is small. Since ∥Mα∥ is

determined by separators of α, this will require combinatorial arguments on the shapes

to argue that the polynomial factors are under control.

Once the polynomial factors of n are managed, then we can check that the remaining

no(1) factors do not blow up (coming from subpolynomial factors in the norm bounds,

λα, and counting arguments). We follow this approach in later chapters by first giving
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informal arguments that the powers of n are under control, and then moving on to the

formal proofs.

Formally manipulate ribbons When it is time to formally manipulate an expression in

the Fourier basis, it is usually easier to use ribbons. Each ribbon corresponds exactly with

a combinatorial object on [n] which can be manipulated while maintaining uniqueness

of representation of the matrix. (Contrast this with embeddings in the next subsection,

in which each ribbon is represented multiple times.) At the end of the argument, the

ribbons are grouped into shapes, and we apply norm bounds. This strategy is used later

in Section 6.4.1.

Here is an example of manipulating ribbons. When we have a matrix Λ written in

the ribbon basis, often we can separate out Λ[I, J] into a part that depends on the input

restricted to I ∪ J, and a part that depends on the rest of the input. Let R be a ribbon with

no edges in AR ∪ BR. We may group together the ribbons in Λ with R outside of AR ∪ BR

into the following summation:

∑
E⊆(

AR∪BR
2 )

λR∪E · χE(R)∪E =

 ∑
E⊆(

AR∪BR
2 )

λR∪EχE

 · χE(R)

Assuming that the coefficients λR∪E factor into a part depending on E and a part depend-

ing on R, we may entirely factor out the dependence on R, so that the summation is now

just a function of the input restricted to AR ∪ BR. Doing this for example in Chapter 6, we

will have:

Λ[I, J] = 1I∪J is an independent set · (function independent of edges inside I ∪ J) .

Ignore Uα ∩ Vα Vertices inside Uα ∩ Vα can essentially be ignored. These vertices make

Mα a block diagonal matrix. The “interesting” part of Mα is occurring on each of the

27



Figure 2.4: The purple vertex lies in Uα ∩ Vα. For each choice of a label k for the purple
vertex, for i, j ∈ [n], the ((i, k), (j, k)) entries of the graph matrix are essentially a copy of
the one-edge shape with Uα ∩ Vα deleted. The ((i, k), (j, k)) entry is χ{i,j}(X) if i, j, k are
distinct and 0 otherwise.

blocks, and these blocks are close to being equal. For example, if α is the shape depicted

in Fig. 2.4, then each block is essentially a copy of the adjacency matrix. Analysis of each

block should be similar to the analysis when Uα ∩ Vα is deleted from the shape. It is

prudent to first assume Uα ∩ Vα = ∅, then handle the case Uα ∩ Vα ̸= ∅.3

2.3.2 Automorphisms

In order to simplify certain graph matrix calculations, it can be helpful to modify the def-

inition of graph matrices given above. However, there is a tradeoff between simplifying

the calculations and making the basic definitions more complex.

A graph matrix essentially sums over all embeddings of the shape α into the ambient

graph G. Depending on the context, it is usually simpler to use this as the definition of a

graph matrix.

3. Warning: since the norm of the overall matrix is the maximum norm of the blocks, edges inside
Uα ∩ Vα may contribute extra factors to the norm bound in the non-Boolean case. For example, if each edge
of the input is a standard Gaussian random variable (Gi,j ∼ N (0, 1) instead of Gi,j ∈R {1,−1}) then a shape
that consists of a single edge inside Uα ∩ Vα has Gs,t in the diagonal entry {s, t}. The maximum of Gs,t is of
order Θ(

√
log n) whp, thus the norm of the matrix increases by a factor of order Θ(

√
log n).
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Definition 2.22 (Alternate definition of graph matrix). For a shape α,

Mα = ∑
injective ϕ:V(α)→[n]

Mϕ(α) .

This is not exactly equal to the sum over ribbons with shape α, since each ribbon arises

from |Aut(α)| different embeddings.

Definition 2.23 (Embedding). Given a shape α and an injective function ϕ : V(α) → [n], let

ϕ(α) be the ribbon obtained by labeling α in the natural way.

Definition 2.24 (Automorphism). For a shape α, Aut(α) is the stabilizer subgroup of any rib-

bon of shape α. Equivalently for Gn,1/2, Aut(α) is the group of bijections from V(α) to itself such

that Uα and Vα are fixed as sets and the map is a graph automorphism on E(α).

Fact 2.25.

∑
injective ϕ:V(α)→[n]

Mϕ(α) = |Aut(α)| ∑
R ribbon of shape α

MR .

The sum over embeddings generally simplifies expressions. For example, the number

of embeddings is just n(n− 1) · · · (n− |V(α)|+ 1), whereas the number of distinct ribbons

of shape α is n(n−1)···(n−|V(α)|+1)
|Aut(α)| . Notice that the automorphism terms are present but

“hiding” in the original definition. Automorphism terms |Aut(α)| that appear in proofs

need to be tracked and bounded, using propositions such as the following.

Proposition 2.26. For a shape α, let α ± e denote the shape with edge e added or deleted. Then

|Aut(α ± e)|
|Aut(α)| ≤ |V(α)|2.

Proof. We show that the two groups have a large subgroup which are equal. Consider

Aut(α ± e) and Aut(α) as group actions on the set (V(α)
2 ). Letting Ge denote the stabilizer

of edge e, observe that Aut(α ± e)e = Aut(α)e. By the orbit-stabilizer lemma, the index
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|G : Ge| is equal to the size of the orbit of e, which is at least 1 and at most |V(α)|2. So,

|Aut(α ± e)|
|Aut(α)| =

|Aut(α ± e) : Aut(α ± e)e|
|Aut(α) : Aut(α)e| ≤ |V(α)|2.

2.3.3 Improper shapes and linearization

This trick is generally applicable when performing Fourier analysis. Assume we have a

function f expressed in the Fourier basis, and one step of the proof is to multiply f with

another function g also expressed in the Fourier basis,

f · g = ∑
α,β

f̂ (α)ĝ(α)χαχβ .

To re-express this in the Fourier basis, we would need to linearize

χαχβ = ∑
γ

cα,β
γ χγ .

For example, using the Hermite polynomials hi(x) (the orthogonal polynomials for the

standard Gaussian distribution N (0, 1)), an example linearization is:

h1(x)2 = x2 = (x2 − 1) + 1 = h2(x) + h0(x).

Due to orthogonality of the Fourier basis, the coefficients are cα,β
γ =

E[χαχβχγ]

E[χ2
γ]

. However,

if we still have more multiplications to do, we can delay the linearization until the end

of the proof. We allow f to be expressed as a linear combination of “improper” Fourier

basis functions χα1χα2 · · · χαk during intermediate calculations.

In the context of Gn,1/2, improper Fourier characters are multigraphs instead of graphs.

Parallel multiedges equal the product of Fourier characters. We also allow ribbons or

shapes to be improper in a second way, by having isolated vertices.
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Definition 2.27 (Improper ribbon for Gn,1/2). A ribbon is a tuple R = (AR, BR, V(R), E(R))

where AR, BR ⊆ V(R) ⊆ [n] and E(R) is a multigraph on V(R). The corresponding matrix

MR ∈ RI×I is:

MR[I, J] =


∏

e∈E(R)
χe I = AR, J = BR

0 otherwise .

A shape is defined as before to be an equivalence class of ribbons under relabeling.

Definition 2.28 (Isolated vertex). For a shape α, an isolated vertex is a degree-0 vertex in Wα =

V(α) \ (Uα ∪ Vα). Let Iα denote the set of isolated vertices in α. Similarly, for a ribbon R, the

isolated vertices are denoted IR.

We stress that an isolated vertex never refers to degree-0 vertices inside Uα ∪ Vα.

Definition 2.29 (Proper). A ribbon or shape is proper if it has no multi-edges and no isolated

vertices. Otherwise, it is improper.

An improper ribbon or shape can be decomposed in a unique way into a linear com-

bination of proper ones, which we call linearizations.

Definition 2.30 (Linearization). Given an improper ribbon or shape α, a linearization β is a

proper ribbon or shape such that Mβ has nonzero coefficient in the Fourier expansion of Mα.

For ribbons or graph matrices defined as a sum over embeddings, Definition 2.22,

the coefficient is obtained by linearizing each edge separately (when using Definition 2.3

there is additionally an automorphism term). Linearization is particularly easy in the case

of Gn,1/2. Since χ2
e = 1, shape α is linearized by taking the multiplicity of each edge mod

2.

Improper shapes with isolated vertices are scalar multiples of the shape with the iso-

lated vertices removed. Adding an isolated vertex to a shape α for Gn,1/2 multiplies the
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number of embeddings by n − |V(α)|.

To get norm bounds for improper shapes, we linearize the shape and take the largest

norm bound among the resulting proper shapes. The usual norm bound states that each

non-isolated vertex outside the minimum vertex separator gives a factor of
√

n; now ad-

ditionally, each isolated vertex contributes a factor of n.

In the dense setting, removing edges from a shape can only increase the norm. The

size of the minimum vertex separator may decrease (increasing the norm) or the number

of isolated vertices may increase (increasing the norm). In the sparse setting, removing

edges inside a sparse minimum vertex separator may decrease the norm.

2.3.4 Unordered sets for matrix indices

In later chapters, it will almost always suffice to use matrices with left/right sides indexed

by unordered sets (this aligns more closely with the sum-of-squares algorithm). The defi-

nitions for Gn,1/2 are that I is taken to be the collection of all subsets of [n], and ribbons

and shapes are defined as before.

We view this definition as slightly less canonical for the reason that some matrix en-

tries are the sum of more than one Fourier character. For example, consider the shape for

Gn,1/2 depicted in Fig. 2.5.

Figure 2.5

If unordered sets are used, then in entry ({i, j}, {k, ℓ}) there are the four Fourier char-

acters

χ{i,k} + χ{j,k} + χ{i,ℓ} + χ{j,ℓ} .
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If ordered sets are used (say that the upper vertex in Uα and Vα comes first in the order),

then in entry ((i, j), (k, ℓ)) there is only the Fourier character χ{j,ℓ}. When using ordered

sets, if Wα = ∅, then each nonzero entry of Mα contains exactly one Fourier character.

When using ordered sets, there is exactly one way to factor a graph matrix across a

vertex separator, and exactly one “dominant” shape when two graph matrices are mul-

tiplied. This is helpful when using the trace method or in other places where graph ma-

trices are multiplied or factored. See the next section for more details. From a practical

point of view, sometimes this extra level of control is not needed.

2.4 Multiplying and factoring graph matrices

One of the key facts about graph matrices is that multiplication of graph matrices approx-

imately equals a new graph matrix, Mα · Mβ ≈ Mγ, where γ is the result of “gluing” Vα

with Uβ (and if Vα, Uβ cannot be glued because they do not have the same number of ver-

tices, the product is zero). The unaccounted terms in the approximation are intersection

terms between α and β.

Example 2.31 (Squared Wigner matrix). Let A be the symmetric n × n Wigner matrix with

±1 entries and 0 on the diagonal from Example 2.14. The spectrum of the matrix AA = A⊺A

is the square of the Wigner semicircle distribution, and hence it is supported on [0, (4 + o(1))n]

with high probability. The entries of AA are given by:

(AA)i,j =
n
∑
k=1

Ai,k Aj,k , (AA)i,i =
n
∑
k=1

Ai,k Ai,k = n − 1 .

This calculation may also be done diagrammatically. A is represented by the graph matrix for the

one-edge shape, and AA is computed in Fig. 2.6, using improper shapes (Section 2.3.3) on the

way.

The 2-path is the “main” term created by gluing two copies of the one-edge shape, while the
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Figure 2.6: (First equality) The left side sums over all i, j, k. The first term on the right
side has terms where i ̸= j, and the second term has terms where i = j (purple denotes
Uα ∩ Vα). The second term is an improper shape, since when i = j, both edges become
{i, k}. (Second equality) Since A has Boolean entries, linearize A2

i,k = 1. (Third equality)
The isolated vertex scales the matrix by n − 1.

singleton purple vertex is an intersection term (a multiple of the identity matrix). By subtracting

(n − 1) · Id from both sides, we see that the spectrum of the 2-path is [−n, (3 + o(1))n] whp.

In this example, the norm of the intersection term (n− 1) · Id is of the same order as the “main”

term, namely Θ(n). In other cases where α and β are “left” and “right” shapes, the intersection

terms between MαMβ will have smaller norm than the “main” term.

Remark 2.32. Recall the tip from the previous section to formally manipulate ribbons instead of

graph matrices. When following this advice, formally we will not multiply or factor graph matrices

themselves, only ribbons. However, the ribbon analysis is performed with the intuition of graph

matrices in mind.

Definition 2.33 (Composable). Ribbons R, S are composable if BR = AS. Shapes α, β are

composable if Vα and Uβ specify the same subset of I .

Multiplication of ribbons exactly equals a new ribbon, although it may be improper.

Definition 2.34 (Composing ribbons). The composition R ◦ S of composable ribbons R, S is the

(possibly improper) ribbon T = (AR, BS, E(R) ⊔ E(S)).

Fact 2.35. If R, S are composable ribbons, then MR◦S = MRMS.
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Definition 2.36 (Composing shapes). The composition α ◦ β of composable shapes α, β is the

(possibly improper) shape ζ whose multigraph is the result of gluing together the graphs for α, β

along Vα and Uβ. Set Uζ = Uα and Vζ = Vβ.

If we write α ◦ β then we will implicitly assume that α and β are composable. We

would like to say that the graph matrix Mα◦β also factors as MαMβ. This is approximately

but not exactly true; there are intersection terms.

Definition 2.37 (Intersection pattern). For composable shapes α1, α2, . . . , αk, let α = α1 ◦ α2 ◦

· · · ◦ αk. An intersection pattern P is a partition of V(α) such that for all i and v, w ∈ V(αi), v

and w are not in the same block of the partition. We say that a vertex “intersects” if its block has

size at least 2 and let Int(P) denote the set of intersecting vertices.

Let Pα1,α2,...,αk be the set of intersection patterns between α1, α2, . . . , αk.

Definition 2.38 (Intersection shape). For composable shapes α1, α2, . . . , αk and an intersection

pattern P ∈ Pα1,α2,...,αk , let αP = α1 ◦ α2 ◦ · · · ◦ αk then identify all vertices in blocks of P, i.e.

contract them into a single super vertex. Keep all edges (and hence αP may be improper).

Composable ribbons R1, . . . , Rk with shapes α1, . . . , αk induce an intersection pattern

P ∈ Pα1,...,αk based on which vertices are equal. When multiplying graph matrices de-

fined using the embedding definition (Definition 2.22), by casing on which vertices are

equal we have:

Proposition 2.39. For composable shapes α1, α2, . . . , αk,

Mα1 · · · Mαk = ∑
P∈Pα1,...,αk

MαP .

Note that different P may give the same αP, and hence the total coefficient on MαP for a

given shape αP may be complicated. In practice the best way to determine the coefficient

of αP is to fix any ribbon of shape αP on the right-hand side and sum (or upper bound)
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the possible ribbons on the left-hand side that contribute to it.

We think of the “main terms” as being those where no vertices intersect, i.e. the rib-

bons have no vertices in common except on the boundaries between consecutive ribbons.

“Main” intersection patterns glue together α1 ◦ · · · ◦ αk but do not contract any vertices.

The terms in which at least one vertex intersects are the intersection terms. In general,

the norm of an intersection term could be larger than the main terms. However, the norms

are smaller if the factorization has a special type, based on vertex separators.4

Definition 2.40 (Leftmost/rightmost minimum vertex separators). For a ribbon or shape α,

a vertex separator S is the leftmost minimum vertex separator (LMVS) if α \ S has no path from

Uα to any other minimum vertex separator. The rightmost minimum vertex separator (RMVS)

likewise cuts paths from Vα.

The LMVS and RMVS can be shown to be uniquely defined (the same proof works for

either the dense MVS or the sparse MVS).

Proposition 2.41. The LMVS is uniquely defined.

Proof. Let S1, S2 be two minimum vertex separators. Then we can construct a minimum

vertex separator to the left of both of them as follows (see Fig. 2.7 for a picture). Since this

process cannot continue indefinitely, it must terminate in the LMVS.

Let L1 ⊆ S1 be vertices of S1 reachable from Uα without passing through S2, and

likewise for L2 ⊆ S2. Then we take SL := L1 ∪ L2 ∪ (S1 ∩ S2).

To show that SL is a vertex separator, take a path P from Uα. Without loss of generality,

P passes through S1 before S2 (or at the same time). Then L1 (or S1 ∩ S2) blocks P.

To show that SL is minimum, observe that if we perform the analogous construction

of SR, then SL ⊔ SR = S1 ⊔ S2. If one of SL, SR is larger, then the other must be smaller.

Since S1, S2 are both minimum, neither SL nor SR can be smaller, and we conclude that

4. For dense inputs, this is the intersection tradeoff lemma, Lemma 6.25. For sparse inputs, this remains
conjectural.
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both SL, SR are in fact minimum vertex separators.

Figure 2.7

Definition 2.42 (Left shape). A shape σ is a left shape if it is proper, the unique minimum vertex

separator is Vσ, there are no edges with both endpoints in Vσ, and every vertex is connected to Uσ.

Definition 2.43 (Middle shape). A shape τ is a middle shape if Uτ is the leftmost minimum

vertex separator of τ, and Vτ is the rightmost minimum vertex separator of τ. If τ is proper, we

say it is a proper middle shape.

Definition 2.44 (Right shape). σ′ is a right shape if σ′⊺ is a left shape.

We also extend the definition of (L/R)MVS, left, middle, and right to ribbons. Every

proper ribbon or shape admits a canonical decomposition into left, right, and middle

parts.

Proposition 2.45. Every proper ribbon or shape α has a unique decomposition α = σ ◦ τ ◦ σ′⊺,

where σ is a left shape, τ is a middle shape, and σ′⊺ is a right shape.

Proof. The decomposition takes σ to be the set of vertices reachable from Uα via paths

that do not pass through the LMVS, similarly for σ′ vis-à-vis the RMVS, and then τ is the

remainder.

37



2.5 Open Problems

The first open problem is to improve our understanding of the spectrum of graph matri-

ces, for a random input.

(1) What is the correct norm of Mα, up to logarithmic or constant factors, in either the

sparse or dense case?

(2) What is the distribution of the spectral edge, i.e. the fluctuation of the top eigenvalue?

(3) What is the shape of the spectral bulk?

In the case of a Wigner matrix, these three things are respectively 2
√

n, the Tracy-Widom

law, and the Wigner semicircle law.

The norm bounds on graph matrices that we cite are proven by combinatorially an-

alyzing the moments E[tr(MαM⊺
α)

q] for q ≈ log n. On the one hand, strengthening the

combinatorial analysis of the q-th moment would let us improve (1) and (3). On the other

hand, if we just want (1) norm bounds on ∥Mα∥ up to constants, then an exponential tail

bound would be good enough, and this may be easier to prove. To illustrate, suppose we

could prove that, for some number B > 0, there exists a constant t > 0 such that for all

unit vectors x:

E
G∼Gn,1/2

[
ex⊺M⊺

α Mαxt
]
≤ eB .

Then the probability of exceeding O(B) exhibits exponential decay:

Pr[x⊺M⊺
α Mαx ≥ 10B/t] = Pr[ex⊺M⊺

α Mαxt ≥ e10B]

≤
EG∼Gn,1/2

[ex⊺M⊺
α Mαxt]

e2B (Markov’s inequality)

≤ 1
e9B .

Because of the exponential decay, we may union bound over an epsilon net of unit vectors
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x, which has exponential size but with a smaller base. Passing from the epsilon net to the

unit sphere, the same qualitative norm bound O(B) holds for all x with all exponentially

small error probability.

The theory of graph matrices uses an orthogonal Fourier basis on the random input.

We don’t know of a good way to generalize this to certain inputs that are of interest,

and have non-independent entries, such as a random d-regular graph or a random unit

vector. The proofs in Chapter 4 and Chapter 6 will boil down to graph matrix analysis. If

the theory could be generalized to these other distributions, it is likely that those proofs

would also apply.

Unlike the dense minimum vertex separator (which can be computed via min cut/max

flow), we don’t know an efficient algorithm for computing the sparse minimum vertex

separator of a shape. We conjecture that this task is NP-hard.

Conjecture 2.46. For all C ∈ (0, 1) the following problem is NP-hard: given an undirected graph

G with two specialized vertex sets A, B ⊆ V(G), compute

min
S: vertex separator of A,B

|V(S)| − C · |E(S)| .
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CHAPTER 3

OVERVIEW OF SUM-OF-SQUARES LOWER BOUNDS

The sum-of-squares (SoS) hierarchy (also known as the Lasserre hierarchy) is a semidefinite

programming hierarchy which provides a meta-algorithm for polynomial optimization.

Due to the versatility of polynomials in modeling computational problems, the SoS hier-

archy can be applied to a vast range of optimization and recovery problems. We study

combinatorial optimization problems, in which we are looking for the best object among

some finite collection (such as the best partition of a set into groups, in comparison to

e.g. “which pair of points on the land surface of the Earth are as far apart as possible by

land travel only?”).

SoS has been shown to be quite successful at combinatorial optimization. It cap-

tures the best known approximation algorithms for several classical combinatorial op-

timization problems. Additional successes of SoS include Tensor PCA [HSS15, MSS16],

Constraint Satisfaction Problems with additional structure [AJT19], recent breakthroughs

in robust statistics [HL18, RSS18, KKM18, BP21], and our best algorithms for Unique

Games [BRS11, GS11, BBK+21a, BHKL22].

Here we are interested in proving lower bounds against sum-of-squares: when does it

fail to solve a task? An SoS lower bound can serve as strong evidence for computational

hardness of a given problem. This hardness evidence is particularly relevant to average-

case problems, where relatively few techniques exist for establishing NP-hardness re-

sults [BABB21]. Furthermore, an SoS lower bound is unconditional: even if the Unique

Games Conjecture is false, for example, a lower bound still proves that sum-of-squares

techniques fail. Since SoS is a proof system capturing a class of algorithmic reasoning, the

lower bound informs the algorithm designer to avoid methods of proof that are captured

by low-degree SoS reasoning.

In this expository chapter we define the SoS algorithm and introduce our lower bound
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techniques. Section 3.1 defines the Sum-of-Squares algorithm and the related sum-of-

squares proof system. The lower bounds proven in later chapters have two major con-

ceptual steps: pseudocalibration (Section 3.2) and graph matrix analysis (Section 3.3).

Bibliography. The exposition in this chapter is extended from our works [GJJ+20, JPR+21].

The lower bound technique of pseudocalibration plus graph matrices was introduced by

Barak et al in the context of the Planted Clique problem [BHK+16], and laid out in fairly

large generality by Potechin and Rajendran [PR20]. For more introduction to sum-of-

squares, see [BS16, FKP19].

We regretfully omit important design considerations for sum-of-squares upper bounds

(viz. algorithms), as well as other lower bound techniques such as [MRX20, Kun20].

3.1 The Sum-of-Squares Algorithm

Given a system of polynomial equalities and inequalities { fi(XX1, . . . , XXn) = 0,gj(XX1, . . . , XXn) ≥ 0},

the sum-of-squares (SoS) algorithm attempts to refute the existence of a feasible point

XX ∈ Rn satisfying all of the given constraints. The output of the algorithm is either “in-

feasible” or “may be feasible”. This may also be used to approximate max p(XX1, . . . , XXn)

for a polynomial p subject to polynomial constraints by binary searching for the smallest

C ∈ R such that SoS can refute “p(XX1 . . . , XXn) ≥ C”.

The SoS framework specifies a hierarchy of programs, where each program is a con-

vex relaxation of the polynomial optimization problem. This hierarchy is indexed by a

parameter D called the SoS degree. By taking larger D, one gets a stronger algorithm (i.e.,

an algorithm that is able to refute additional infeasible systems) at the expense of a larger

program with a slower runtime. The degree-D SoS algorithm can be implemented in time

nO(D) via semidefinite programming (ignoring some issues of bit complexity [RW17]).

D = O(1) corresponds to polynomial time while D = 2n is able to exactly solve an opti-
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mization problem on n Boolean variables in exponential time. Thus we are interested in

the tradeoff between degree and performance of the algorithm. We informally say that

SoS “fails to solve a problem” if the degree required to refute or optimize the system is

ω(1), as in this case we have ruled out polynomial time SoS.

SoS attempts to refute a polynomial system by constructing a “degree-D sum-of-squares

proof” that the system is infeasible. We will almost entirely use the dual viewpoint of SoS,

through pseudoexpectation operators (the primal viewpoint of “degree-D sum-of-squares

proof” is described briefly in Section 3.1.1).1

The pseudoexpectation operator specifies a “fake distribution of solutions” to the

polynomial system. The SoS algorithm rules out the existence of a feasible point by check-

ing for the existence of a fake distribution of solutions; if no such fake distribution exists,

the system is guaranteed to be infeasible. Notice that this is a relaxation: if a fake distri-

bution exists, it may or may not correspond to a true distribution of feasible points. To

prove a lower bound against SoS, we will construct a fake distribution of solutions (viz.

a valid pseudoexpectation operator) in situations where the system is truly infeasible.

Moving to formal definitions, let R≤D[XX1, . . . , XXn] be the set of polynomials of degree

at most D in variables XX1, . . . , XXn. We denote the degree of a polynomial f by deg( f ).

Definition 3.1 (Pseudoexpectation). Given a set of variables XX1, . . . , XXn, a degree-D pseudoex-

pectation operator is a linear function Ẽ : R≤D[XX1, . . . , XXn] → R such that Ẽ[1] = 1.

The “fake distribution” specified by Ẽ is in an implicit form: we are not given access

to the probability density function, we are only given access to the expectation of the

distribution on low-degree polynomials Ẽ[p(XX)]. Observe that since Ẽ is a linear function,

it can be specified by its value on monomials up to degree D i.e. Ẽ specifies the low-degree

1. The duality may be viewed as convex duality of the convex relaxation. It morally underpins the anal-
ysis of SoS: the performance of the SoS algorithm can be upper and lower bounded by exhibiting a feasible
primal solution or a feasible dual solution, and therefore “all we need to do” to pinpoint the performance
of SoS is construct these concrete mathematical objects.

42



moments of the fake distribution.

The fake distribution needs to look feasible.

Definition 3.2 (Satisfying a constraint). A degree-D pseudoexpectation operator Ẽ satisfies a

polynomial constraint “ f (XX) = 0” if Ẽ[ f (XX)p(XX)] = 0 for all p(XX) such that deg(p) + deg( f ) ≤ D.

Similarly, Ẽ satisfies constraint “g(XX) ≥ 0” if Ẽ[g(XX)p(XX)2] ≥ 0 for all p(XX) such that

2 deg(p) + deg( f ) ≤ D.

Remark 3.3. When the problem has Boolean constraints “XX2
i = 1” or “XX2

i = XXi”, any Ẽ that

satisfies these constraints is defined by its value on just multilinear monomials.

The fake distribution is also required to be nonnegative on square polynomials. This is

the defining property of the SoS algorithm and it is what gives the algorithm its strength,

as it nontrivially restricts the space of pseudoexpectation operators.

Definition 3.4 (SoS-feasible). A degree-D pseudoexpectation operator Ẽ is SoS-feasible if for

every polynomial p ∈ R≤D/2[XX1, . . . , XXn], Ẽ[p(XX)2] ≥ 0.

Remark 3.5. This is equivalent to satisfying the constraint “1 ≥ 0”.

Definition 3.6 (Sum-of-squares algorithm). Given a system of polynomial constraints { fi(XX) =

0, gj(XX) ≥ 0} in n variables XX1, . . . , XXn, the degree-D Sum-of-Squares algorithm checks for the

existence of an SoS-feasible degree-D pseudoexpectation operator Ẽ that satisfies the constraints.

If Ẽ exists, the algorithm outputs “may be feasible”, otherwise it outputs “infeasible”.

In other words, degree-D SoS checks feasibility of the following program:

Variable: Ẽ : R≤D[XX1, . . . , XXn] → R linear

Ẽ[1] = 1 (Normalization)

Ẽ[ fi(XX)p(XX)] = 0 ∀i. ∀deg(p) ≤ D − deg( fi) (Given equalities)

Ẽ[gj(XX)p(XX)2] ≥ 0 ∀j. ∀deg(p) ≤
D − deg(gj)

2
(Given inequalities)

Ẽ[p(XX)2] ≥ 0 ∀deg(p) ≤ D
2

(Sum-of-squares)
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The SoS algorithm can be implemented by a size nO(D) semidefinite program (SDP),

as we now describe. In practice we will work with the SDP formulation of SoS so that

we may use linear algebraic methods. The pseudoexpectation operator is equivalent to a

moment matrix.

Assume D is even.

Definition 3.7 (Moment Matrix of Ẽ). The moment matrix M = M(Ẽ) associated to a degree-

D pseudoexpectation Ẽ is a
((

[n]
≤D/2

))
×
((

[n]
≤D/2

))
matrix with rows and columns indexed by

multisets I, J ⊆ [n] of size at most D/2 and defined as

M[I, J] := Ẽ
[
XXI · XXJ

]
.

The dimension of the moment matrix is
((

n
≤D/2

))
= nO(D). The moment matrix is

naturally a block matrix, with blocks corresponding to the degree of the row and column

monomials.

Definition 3.8 (Block). For k, l ∈ N, the (k, l) block of M is the submatrix with rows from((
[n]
k

))
and columns from

((
[n]
l

))
.

The entries of the moment matrix only depend on the union of the row and column

indices.

Definition 3.9 (SoS-symmetric). A matrix M with rows and columns indexed by multisets

from [n] is SoS-symmetric if M[I, J] = M[I′, J′] whenever I ⊔ J = I′ ⊔ J′.

Remark 3.10. When a problem has Boolean variables, it suffices to use M with rows and columns

indexed by subsets of size at most D/2 instead of multisets, as in Remark 3.3. Furthermore,

M[I, J] = Ẽ[XXIXXJ ] depends only on I△J (in the presence of Boolean constraints “XX2
i = 1”) or

I ∪ J (Boolean constraints “XX2
i = XXi”).

The crucial SoS-feasibility of the pseudoexpectation operator is equivalent to positive
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semidefiniteness (PSD-ness) of the moment matrix.

Fact 3.11. The condition Ẽ[ f 2] ≥ 0 for all deg( f ) ≤ D/2 is equivalent to M(Ẽ) ⪰ 0.

With these constraints in place, moment matrices are equivalent to pseudoexpectation

operators. The SDP formulation of SoS checks for the existence of a moment matrix.

Recall that a semidefinite program is a linear program where the variables form a matrix

that additionally must be PSD. Degree-D SoS is equivalent to feasibility of the following

SDP. (For simplicity we only show the case without inequality constraints. See [FKP19,

Section 3.2.1] for inequality constraints.)

Definition 3.12 (Sum-of-squares SDP). Let ⟨A, B⟩ denote the entrywise (Frobenius) dot prod-

uct of matrices. Let Mp be a matrix that encodes a polynomial p(XX): for each nonzero monomial

cαXXα in p, choose exactly one I, J with I ⊔ J = α and set Mp[I, J] = cα.

Given a system of polynomial constraints { fi(XX) = 0} in n variables XX1, . . . , XXn, the degree-D

sum-of-squares semidefinite program (SDP) is:

Variable: M ∈ R

((
[n]

≤D/2

))
×
((

[n]
≤D/2

))
symmetric

s.t.

M[∅, ∅] = 1 (Normalization)〈
M, MXXα fi

〉
= 0 ∀i. ∀α ∈

((
[n]

≤D − deg( fi)

))
(Given equalities)

M[I, J] = M[I′, J′] ∀I ⊔ J = I′ ⊔ J′ (SoS symmetry)

M ⪰ 0 (PSD-ness)

Proposition 3.13. For all even D, the existence of a degree-D pseudoexpectation operator is equiv-

alent to feasibility of the degree-D sum-of-squares SDP.
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3.1.1 Sum-of-squares proofs

Sum-of-squares algorithmatizes a particular type of reasoning, known as sum-of-squares

reasoning. Given a polynomial system, the degree-D SoS algorithm attempts to prove that

the system is infeasible using only non-negativity of squared polynomials and degree-D/2

local reasoning (local reasoning is implied by non-negativity of squares, but for intuition

we prefer to think of them as separate).

SoS is naturally a certification algorithm, rather than a search algorithm. That is, it

solves the algorithmic task where we ask for an efficient proof that some structure does

not exist in the input (for example, prove to me that the input graph does not have a large

clique). This is arguably a less-natural task than search. For typical search tasks which

are in NP, because we conjecture NP ̸= co-NP, we suspect that in general such efficient

proofs don’t even exist, independent of whether we can algorithmically construct them.

We are usually interested in specific cases of particular inputs, for example whether or

not SoS (or any polynomial time algorithm) can disprove the existence of a large clique

in a random graph. When used for optimization, certification algorithms can be seen as

upper bounding the optimum value OPT, whereas search algorithms lower bound OPT

by exhibiting good solutions.

To convert sum-of-squares into a search algorithm, one needs to design a rounding

algorithm that takes a pseudodistribution and outputs an actual feasible point. This is one

of the important, non-black-box aspects of the sum-of-squares algorithm, but we won’t

study rounding algorithms in this thesis.

A sum-of-squares proof is simply a polynomial identity of a special form.

Definition 3.14 (Sum-of-squares proof). A degree-D sum-of-squares proof of p(XX) ≥ 0 from
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axioms { fi(XX) = 0, gj(XX) ≥ 0} is a polynomial equality

p(XX) = ∑
i

fi(XX)pi(XX) + q0(XX) + ∑
j

gj(XX)qj(XX)

where each qj(XX) = ∑k qj,k(XX)
2 is a sum of square polynomials, and all terms have degree at most

D.

We write A ⊢D C if there is a degree-D proof of inequality C from A, and ⊢D C if A = ∅.

Definition 3.15 (Sum-of-squares refutation). A degree-D sum-of-squares refutation of a poly-

nomial system A is a proof A ⊢D −1 ≥ 0.

We have the following fundamental duality theorem that SoS proofs and pseudoex-

pectation operators are equivalent (assuming Boolean variables XX2
i = 1).

Theorem 3.16. Given a finite system of polynomial constraints A = {XX2
i = 1, fi(XX) = 0, gj(XX) ≥

0}, for all D, exactly one of the following holds:

(i) there exists a degree-D sum-of-squares refutation of A,

(ii) there exists an SoS-feasible degree-D pseudoexpectation operator that satisfies A.

Furthermore, the semidefinite program in Definition 3.12 can be used to find whichever one exists.

Recall that our overall goal is to analyze the sum-of-squares algorithm, i.e. the exis-

tence or non-existence of a pseudoexpectation operator Ẽ. The interaction between SoS

proofs and Ẽ is that valid Ẽ must respect all SoS-provable equalities and inequalities.

Proposition 3.17. If Ẽ is an SoS-feasible degree-D pseudoexpectation that satisfies A = { fi(XX) =

0, gj(XX) ≥ 0} and A ⊢D p(XX) ≥ 0, then Ẽ[p(XX)] ≥ 0.

Proof. The proof of “p(XX) ≥ 0” looks like:

p(XX) = ∑
i

fi(XX)pi(XX) + ∑
k

q0,k(XX)
2 + ∑

j,k
gj(XX)qj,k(XX)

2 .
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Applying Ẽ to both sides (which is linear),

Ẽ[p(XX)] = ∑
i

Ẽ[ fi(XX)pi(XX)]︸ ︷︷ ︸
=0

(Ẽ satisfies “ fi(XX) = 0”)

+∑
k

Ẽ[q0,k(XX)
2]︸ ︷︷ ︸

≥0
(SoS-feasible)

+∑
j,k

Ẽ[gj(XX)qj,k(XX)
2]︸ ︷︷ ︸

≥0
(Ẽ satisfies “gj(XX) ≥ 0”)

≥ 0

We may use this proposition to conclude many useful facts about Ẽ using sum-of-

squares reasoning (we may also use linearity of expectation, since Ẽ is linear). If we

pretend Ẽ is a true distribution E of solutions, and prove an (in)equality about E using

an SoS proof, then Ẽ must also satisfy the (in)equality.2 SoS captures many common

arguments, such as Cauchy-Schwarz and hypercontractive inequalities [KOTZ14]. For

example, E[XX2] ≥ E[XX]2 follows from the non-negativity of variance, E[(XX − E[XX])2] ≥ 0,

which is non-negativity of a square polynomial, and therefore the inequality Ẽ[XX2] ≥

Ẽ[XX]2 is satisfied by any SoS-feasible pseudoexpectation operator. We give a more ex-

tended example in Fact 3.20 after a discussion of dynamic vs. static proof systems.

SoS is a static proof system, meaning that a proof is given all at once in one line. This

can be contrasted with a dynamic proof system, where deduction rules are applied one

line after the next, and which reflects more accurately how proofs are written in the real

world. We write SoS proofs in the dynamic SoS proof system since it’s more natural to

follow. The two are not equivalent (the dynamic proof system is stronger [AH18]), but

usually a proof in the dynamic system can be converted into a static proof in the natural

way, by just compressing all of the derivations into a single line.

2. Formally, in Proposition 3.17 we will frequently use polynomials p(XX) whose coefficients may depend
on Ẽ itself. We write “A ⊢D (an inequality involving E)” to emphasize that the pseudoexpectation operator
emulates this property of a real expectation operator, although formally it should be understood as “any
degree-D pseudoexpectation operator that satisfies A also satisfies (an inequality involving Ẽ)”.
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The dynamic SoS proof system works by deriving new equalities and inequalities from

given ones. However, we are not permitted to apply any type of reasoning (e.g. calculus)

to the known inequalities. We may only use non-negativity of squares along with a couple

of other simple deductions.

Definition 3.18 (Dynamic sum-of-squares proof system). In the dynamic degree-D sum-of-

squares proof system, we start from an initial set of polynomial axioms (augmented with 0 = 0)

and may derive new equalities and inequalities. Given the set of currently-deduced equalities

“ fi(XX) = 0” and inequalities “gj(XX) ≥ 0”, the next line of the proof is permitted to be one of the

following deductions:

(i) p(XX)2 ≥ 0, where 2 deg(p) ≤ D

(ii) fi(XX)p(XX) = 0, where deg( fi) + deg(p) ≤ D

(iii) gj(XX)p(XX)2 ≥ 0, where deg(gj) + 2 deg(p) ≤ D

(iv) fi1(XX) + fi2(XX) = 0

(v) gj1(XX) + gj2(XX) ≥ 0

(vi) fi(XX) + gj(XX) ≥ 0

We have said that the SoS proof system has complete local reasoning, and what this

means is that any true polynomial equality or inequality on a small set (at most D/2) of

variables may be deduced and hence utilized in the proof. Correspondingly, any valid Ẽ

must obey all true (in)equalities on at most D/2 variables.

Proposition 3.19. Given a set of polynomial constraints A on variables XX, if C is a polynomial

(in)equality that involves at most D/2 different variables such that C holds for all feasible points

XX of A, then A ⊢D C.

We can SoS-prove a polynomial version of the monotonicity of moments. In this proof,

XX denotes a single variable.
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Fact 3.20. For k ∈ N, ⊢2k E[XX2k] ≥ E[XX2]k and XX ≥ 0 ⊢k E[XXk] ≥ E[XX]k.

Proof. The first inequality actually follows from the second. SoS proofs are highly com-

positional. Given a degree-D proof of the second inequality, if we plug in a degree-d

polynomial p(XX) for XX, we produce a degree-dD proof of the corresponding claim for

p(XX). Doing this for p(XX) = XX2, since ⊢2 p(XX) ≥ 0, we may remove the assumption

“p(XX) ≥ 0”.

The second inequality follows from a slightly more general inequality of moments

(itself a consequence of Hölder’s inequality).

Fact 3.21. For k, ℓ ∈ N,

XX ≥ 0 ⊢k+ℓ E
[
XXk+ℓ

]
≥ E

[
XXk
]
· E
[
XXℓ
]

.

Proof. We induct on k + ℓ. WLOG, k ≥ ℓ > 0.

In the first case, k + ℓ is even. Consider the following square polynomial,

E[S(XX)2] = E[(XX
k+ℓ

2 − XX
k−ℓ

2 E[XXℓ])2]

= E[XXk+ℓ]− 2 E[XXk]E[XXℓ] + E[XXk−ℓ]E[XXℓ]2

= E[XXk+ℓ]−
(

2 E[XXk]− E[XXk−ℓ]E[XXℓ]
)

E[XXℓ] .

In the second case, k + ℓ is odd. Letting S(XX) be the same polynomial for k + ℓ− 1, we

recover the same expression.

E[XXS(XX)2] = E[XXk+ℓ]−
(

2 E[XXk]− E[XXk−ℓ]E[XXℓ]
)

E[XXℓ] .

By the induction hypothesis, there is an SoS proof that the term inside the parentheses

is at least E[XXk]. Plugging in this proof and multiplying by the (provably non-negative)
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number E[XXℓ],

XX ≥ 0 ⊢k

(
2 E[XXk]− E[XXk−ℓ]E[XXℓ]

)
E[XXℓ] ≥ E[XXk] · E[XXℓ] .

XX ≥ 0 ⊢k+ℓ E[S(XX)2] ≥ 0 XX ≥ 0 ⊢k+ℓ E[XXS(XX)2] ≥ 0 .

Adding these two inequalities, we have the claim.

To use this fact to prove Fact 3.20, apply induction to remove one power of E[XX] at a

time.

3.2 Pseudocalibration

A typical use case of sum-of-squares is for statistical distinguishing problems. In this

setting we are given a sample from either a random distribution or a planted distribution

(also known as a null distribution and alternative distribution) and we are attempting to

determine which case the sample was drawn from.

SoS can be used as a distinguishing algorithm by setting up a polynomial system that

encodes the planted structure. SoS distinguishes the two distributions if it can refute

feasibility of the planted structure when given a random instance. What is surprising is

that, for statistical distinguishing problems, there seem to be canonically optimal choices

for some of the inherent choices of the SoS algorithm. What polynomial system should be

used? Banks et al [BMR21] suggest that the local statistics hierarchy is a canonical choice.

When proving a lower bound, a suggested canonical method for constructing a can-

didate pseudoexpectation operator is pseudocalibration. Recall that the goal of a lower

bound is to construct a fake distribution Ẽ of planted structures when given a sample G

from the random distribution (which usually does not contain the planted structure whp).

The main idea of pseudocalibration is that, we should “pretend” that G comes from the
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planted case, and let Ẽ be the marginal distribution of the planted structure given the

instance G.

Of course, since there is no planted structure in G whp, the marginal distribution is ill-

defined. To get around this, we syntactically restrict Ẽ to be only the “low-degree” part of

the marginal distribution. Intuitively, as long as this “low-degree” is significantly larger

than the SoS degree (usually by a multiplicative constant or log n factor), then the SoS

algorithm should not notice that we are using a truncation of the marginal distribution.3

Now we give the formal definition.

Definition 3.22 (Dra and Dpl). “G ∼ Dra” and “(x, G) ∼ Dpl” denote the random and planted

distributions. In the planted distribution, the input is G and x denotes the planted structure in

that instance. For example, in Planted Clique, x ∈ {0, 1}V(G) would be the indicator vector of

the planted clique.

We will use the shorthand Epl, Era, Prpl, Prra .

In the planted distribution, the marginal distribution of x given G is, by Bayes’ theo-

rem:

Pr
pl
[x | G] =

Prpl[x, G]

Prpl[G]
=

Prpl[x, G]

∑x Prpl[x, G]
,

E
pl
[p(x) | G] =

∑x Prpl[x, G]p(x)

∑x Prpl[x, G]
.

Observe that if G does not have any occurrences of the planted structure, then all terms

are 0 and the distribution is ill-defined. Pseudocalibration suggests truncating each of the

expressions Prpl[x, G] to be a low-degree polynomial in G. Actually, so that the numerator

3. We will need to prove that the density function of the marginal distribution behaves nicely under
truncation. For example, the total level-i Fourier weight should decay in i (but this can only be shown for
small i, since for large i the truncation approaches the true marginal distribution, which is extremely spiky).
Good behavior of the truncation seems to be the case in many applications, aligning with the intuition that
“higher-degree does not help the distinguisher”. See [Hop18, end of Section 3.3 and Chapter 4] for some
further discussion.
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and denominator are normalized better, we truncate the likelihood ratio Prpl[x, G]/ Prra[G]

(a.k.a. the Radon-Nikodym derivative), noting the identity:

E
pl
[p(x) | G] =

∑x Prpl[x, G]p(x)/ Prra[G]

∑x Prpl[x, G]/ Prra[G]
.

Formally the truncation is accomplished by viewing G as a point in RN and, with x fixed,

truncating the function
Prpl[x,G]

Prra[G]
: RN → R to have degree at most τ. Concretely, let χα be

the Fourier basis for G. Expanding the numerator in the Fourier basis,

∑
x

p(x)
Prpl[x, G]

Prra[G]

=∑
x

p(x)∑
α

̂Prpl[x, G]

Prra[G]
(α) · χα(G)

E
G′∼ra

[χα(G′)2]
(Fourier inversion, Fact 1.7)

=∑
x

p(x)∑
α

E
G′∼ra

[
Prpl[x, G′]

Prra[G′]
χα(G′)

]
· χα(G)

E
G′∼ra

[χα(G′)2]

=∑
x

p(x)∑
α

∑
G′

Pr
pl
[x, G′]χα(G′) · χα(G)

E
G′∼ra

[χα(G′)2]

=∑
α

E
(x,G′)∼pl

[p(x)χα(G′)] · χα(G)

E
G′∼ra

[χα(G′)2]
.

Therefore we are led to the following definition. Let |α| be the degree of the Fourier

character χα.

Definition 3.23 (Pseudocalibration). Given an input G ∈ RN and a truncation parameter

τ ∈ N, the pseudocalibrated pseudoexpectation operator Ẽ is:

Ẽ[p(XX)] = ∑
α:|α|≤τ

E
(x,G′)∼Dpl

[p(x)χα(G′)] · χα(G)

EG′∼Dra [χα(G′)2]

and then divide the operator by Ẽ[1].
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The Fourier coefficients E(x,G′)∼Dpl
[p(x)χα(G′)] can usually be explicitly computed,

which therefore gives an explicit pseudoexpectation operator Ẽ.

An advantage of pseudocalibration is that this construction automatically satisfies

some nice properties that the pseudoexpectation Ẽ should satisfy. Ẽ[p] is linear in p

by construction. For all polynomial equalities of the form “ f (XX) = 0” that are true with

probability 1 in the planted distribution, we will have that Ẽ[ f (XX)] = 0. For other poly-

nomial equalities of the form “ f (XX, G) = 0” that are satisfied in the planted distribution,

the equality Ẽ[ f (XX, G)] = 0 is approximately satisfied, up to truncation error τ. Further-

more, Ẽ can be tweaked to exactly satisfy these constraints. This is described in the next

subsection, where we establish a quantitative version of the following fact.

Fact 3.24 (Proof in Lemma 3.28). If p(XX) is a polynomial which is uniformly zero on the planted

distribution, then Ẽ[p(XX)] is the zero function. If p(XX, G) is a polynomial which is uniformly

zero on the planted distribution, then the only nonzero Fourier coefficients of Ẽ[p(XX, G)] are those

with degree in the range τ ± degG(p).

As for inequality constraints “g(XX) ≥ 0” that are satisfied in the planted distribution,

showing that Ẽ satisfies these is the main technical PSD-ness argument of the proofs.

When pseudocalibrating, although the truncation to low-degree is uniquely defined,

one can freely choose the “inner” basis of low-degree functions χα. For example, in set-

tings with additional symmetry, it may make sense to use a symmetrized basis. For the

problem solved in Chapter 4, we attempted to use the alternate basis described in Chap-

ter 5 to simplify the analysis, though ultimately we reverted to the standard Fourier basis.

We remark that the normalization factor Ẽ[1] in Definition 3.23 is the low-degree likeli-

hood ratio. In all successful applications of pseudocalibration, Ẽ[1] = 1 ± o(1), and hence

dividing by Ẽ[1] does not significantly change the value of the pseudoexpectation op-

erator. In fact, whether or not Ẽ[1] = 1 ± o(1) has been quite successful in predicting

polynomial time distinguishability of the planted and random distributions. See the open
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problems at the end of the chapter.

3.2.1 Satisfying equality constraints exactly

If we have a pseudoexpectation operator that almost satisfies a polynomial constraint

“ f (XX) = 0”, then we can round the operator slightly so that it exactly satisfies the con-

straint. This is formally accomplished by viewing Ẽ ∈ R

((
[n]
≤D

))
as a vector and expressing

the constraints as a matrix Q such that Ẽ satisfies the constraints if and only if it lies in

the null space of Q. To round the operator, we project Ẽ to Null(Q).

Letting cα be the coefficient of f on XXα, the choice of the matrix Q ∈ R

((
[n]

≤D−deg( f )

))
×
((

[n]
≤D

))
is:

Q[I, J] =


cJ\I J ⊇ I

0 otherwise
.

To satisfy multiple constraints, we may stack the matrices Q. Projection to Null(Q) is

accomplished by the explicit projection matrix

I − Q⊺(QQ⊺)+Q

where (QQ⊺)+ is the pseudo-inverse of matrix QQ⊺, which is not invertible. To prove

that the rounding is not significant, we must bound the norm of the second term. This

amounts to proving a lower bound on the minimum nonzero eigenvalue of the matrix

QQ⊺.

Remark 3.25. When the constraint depends on G, the projection matrix Q is a function of G, in

which case Q can be analyzed in terms of graph matrices. Recall that pseudocalibration guarantees

that constraints that don’t depend on G are already exactly satisfied.

As an example, we can project Ẽ so that it satisfies the Boolean constraints “XX2
i = 1"

(though normally this is enforced definitionally by Remark 3.3, or by pseudocalibra-
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tion). Let Qbool be the “check matrix” for the Boolean constraints “XX2
i = 1”. Qbool has

n ·
((

n
≤D−2

))
rows. The (i, α) row checks Ẽ[XXα · XX2

i ] = Ẽ[XXα]. It has entry 1 in column α

and entry −1 in column α ∪ {i, i}.

Lemma 3.26. Assume that Ẽ approximately satisfies the boolean constraints:

Ẽ[XXα · (XX2
i − 1)] ≤ ε

for any XXα with degree at most D − 2. Then letting Ẽ
′

be the projection to Null(Qbool), we have

∥∥∥Ẽ−Ẽ′
∥∥∥

2
≤ εnO(D).

Proof. The effect of projecting Ẽ to Null(Qbool) is to symmetrize Ẽ[XXα+2β] across all β;

average all entries Ẽ[1], Ẽ[XX2
1], Ẽ[XX2

2], Ẽ[XX6
1XX4

7XX2
10] etc, average Ẽ[XX1], Ẽ[XX1XX2

3], Ẽ[XX1XX4
3XX4

4]

etc, and so on. One can see this because this is a linear map which fixes Null(Qbool) and

takes all vectors into Null(Qbool).

By assumption, there is additive error ε between Ẽ[XXα] and Ẽ[XXα ·XX2
i ]. As the size of β

is at most D, we have Ẽ[XXα+2β] = Ẽ[XXα]± εD for all β. Therefore averaging these entries

changes each of them by at most εD. Overall,

∥∥∥Ẽ−Ẽ′
∥∥∥

2
≤
((

n
≤ D

))
·
∥∥∥Ẽ−Ẽ′

∥∥∥
∞

≤ nO(D) · εD = εnO(D) .

To bound the effect of projection on the moment matrix, we have the following propo-

sition.
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Proposition 3.27. Given two pseudoexpectation operators Ẽ, Ẽ
′ ∈ R

((
[n]
≤D

))
,

∥∥∥M(Ẽ)−M(Ẽ′)
∥∥∥ ≤ nO(D)

∥∥∥Ẽ−Ẽ′
∥∥∥

∞
≤ nO(D)

∥∥∥Ẽ−Ẽ′
∥∥∥

2
.

Proof. The norm of M(Ẽ)−M(Ẽ′) is bounded by the maximum row sum. The entries of

M(Ẽ)−M(Ẽ′) are bounded in magnitude by
∥∥∥Ẽ−Ẽ′

∥∥∥
∞

while the dimension is nO(D),

so the claim follows.

We can use this rounding technique with a pseudocalibrated Ẽ. The low-degree trun-

cation used in the definition of pseudocalibration, Definition 3.23, introduces a tiny error

in constraints which depend on the instance G. By taking the truncation parameter τ to

be larger than the degree D of the SoS solution, the truncation error is small enough so

that the rounding barely affects the spectrum of the moment matrix. To end this section,

we give a quantitative bound on the truncation error.

For this proof, introduce the notation

µI,α := E
(x,G)∼Dpl

[xIχα(G)] .

Lemma 3.28. Let p(XX, G) such that p is uniformly zero on the planted distribution. Let degG(p) =

d. For any I ⊆ [n], the only nonzero Fourier coefficients of Ẽ[XXI p] are those with size between

τ ± d. If d = 0, all Fourier coefficients are zero.

Furthermore, the nonzero coefficients are bounded in absolute value by

M · L · 2deN · max
I

max
|α|∈τ±2d

∣∣µI,α
∣∣

where M is the number of nonzero monomials of p, L is the largest coefficient of p (in absolute

value), and N is the number of independent variables in the input G.
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Remark 3.29. Quantitatively, the rounding technique introduces errors on the order of nO(D),

while the truncation error is approximately
∣∣µI,α

∣∣ for |α| ≈ τ. Typically,
∣∣µI,α

∣∣ has magnitude

n−Ω(τ). The rounding error is under control as long as τ is larger than D by a sufficiently large

constant factor.

Proof. We divide the calculations into boolean and Gaussian cases. For each case we com-

pute that Fourier coefficients below the τ − d threshold neatly cancel and bound the co-

efficients at the threshold.

(Boolean case) Expand p(d, v) = ∑
|J|≤D

dJ pJ(v). By linearity,

Ẽ[vI p] = ∑
|J|≤D

dJ Ẽ[vI pJ(v)].

The α-th Fourier coefficient gets a contribution from the J-th term equal to the (α ⊕ J)-th

Fourier coefficient of Ẽ[vI pJ(v)]. Expand the polynomial pJ in the J-th term,

Ẽ[vI pJ(v)] = ∑
K

cJ,K Ẽ[vIvK]

The (α ⊕ J)-th coefficient of Ẽ[vIvK] is defined by pseudocalibration to be

 µI+K,α⊕J |α ⊕ J| ≤ nτ

0 |α ⊕ J| > nτ
(3.1)

For |α| ≤ nτ − D we are guaranteed to be in the first case. For this case the total α-th
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Fourier coefficient is

∑
|J|≤D

∑
K

cJ,KµI+K,α⊕J = ∑
|J|≤D

∑
K

cJ,K E
pl
[vIvKdJ⊕α]

= ∑
|J|≤D

∑
K

cJ,K E
pl
[vIvKdαdJ ]

= E
pl
[vIdα p(d, v)]

= 0.

For |α| > nτ + D, we are guaranteed to be in the second case of Eq. (3.1), in which case the

total Fourier coefficient will also be zero. For |α| within D of the truncation parameter,

some terms J will not contribute their coefficients towards cancellation. We bound the

Fourier coefficient for these α,

∣∣∣∣∣∣∣∣∣ ∑
J:|J|≤D,
|α⊕J|≤nτ

∑
K

cJ,K · µI+K,α⊕J

∣∣∣∣∣∣∣∣∣ ≤ ∑
|J|≤D

∑
K

∣∣cJ,K · µI+K,α⊕J
∣∣

≤ M · L · max
I

max
|α|∈nτ±2D

∣∣µI,α
∣∣.

(Gaussian case) Expand p(d, v) = ∑
|β|≤D

hβ(d)pβ(v) = ∑
|β|≤D

hβ(d)∑
K

cβ,KvK. The pseu-

doexpectation is

Ẽ[vI p(d, v)] = ∑
|β|≤D

hβ(d) Ẽ[vI pβ(v)]

= ∑
|β|≤D

hβ(d)∑
K

cβ,K Ẽ[vIvK]

= ∑
|β|≤D

hβ(d)∑
K

cβ,K ∑
|α|≤nτ

µI+K,α
hα(d)

α!
.
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Let lα,β,γ be the coefficient of hγ in the Hermite product hα · hβ.

Ẽ[vI p(d, v)] = ∑
|β|≤D

∑
K

cβ,K ∑
|α|≤nτ

µI+K,α ∑
γ

lα,β,γ
hγ(d)

α!

In the case |γ| > nτ + D, the coefficient of hγ(d) is zero because the max degree of a Her-

mite polynomial appearing in hα · hβ is at most |α|+ |β| ≤ nτ + D. We show cancellations

occur when |γ| ≤ nτ − D. Moving the summations around, the coefficient of hγ is,

∑
|β|≤D

∑
K

cβ,K ∑
|α|≤nτ

µI+K,α · lα,β,γ
1
α!

= ∑
|β|≤D

∑
K

cβ,K ∑
|α|≤nτ

E
pl
[vIvKhα(d)] · lα,β,γ

1
α!

=E
pl

vI ∑
|β|≤D

∑
K

cβ,KvK ∑
|α|≤nτ

lα,β,γ
hα(d)

α!
.

We need an explicit formula for lα,β,γ from [Rom05, p. 92],

Proposition 3.30.

lα,β,α+β−2δ = ∏
u,i

(
αui
δui

)(
βui
δui

)
δui!

Proposition 3.31.

∑
α

lα,β,γ
hα(d)

α!
= hβ(d) ·

hγ(d)
γ!

Proof. Compute using Proposition 3.30.

In Proposition 3.31, the summation is actually finite. The largest α with lα,β,γ nonzero

has |α| ≤ |β| + |γ|. Since we have |β| ≤ D (the constraint only has degree D), as long

as |γ| ≤ nτ − D, the above equality applies, in which case continuing the calculation for
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this case,

Ẽ[vI p] = E
pl

vI ∑
|β|≤D

∑
K

cβ,KvK · hβ(d) ·
hγ(d)

γ!

= E
pl

vI ·
hγ(d)

γ!
· ∑
|β|≤D

∑
K

cβ,KvK · hβ(d)

= E
pl

vI ·
hγ(d)

γ!
· p(d, v)

= 0.

We now bound the coefficients that appear in the remaining case when nτ − D < |γ| ≤

nτ + D.∣∣∣∣∣∣ ∑
|β|≤D

∑
K

cβ,K ∑
|α|≤nτ

µI+K,α · lα,β,γ
1
α!

∣∣∣∣∣∣ ≤ ∑
|β|≤D

∑
K

∣∣∣cβ,K

∣∣∣ ∑
|α|≤nτ

∣∣µI+K,α
∣∣ · lα,β,γ

1
α!

If lα,β,γ > 0 then we must have |α| ≥ |γ| − |β| ≥ nτ − 2D.

≤ ∑
|β|≤D

∑
K

∣∣∣cβ,K

∣∣∣ ·(max
I

max
|α|∈nτ±2D

∣∣µI,α
∣∣)∑

α
lα,β,γ

1
α!

Proposition 3.32.

∑
α

lα,β,γ
1
α!

= emn ∏
u,i

(
βui

αui+βui−γui
2

)
Proof. Compute using Proposition 3.30.

Using the proposition,

≤ ∑
|β|≤D

∑
K

∣∣∣cβ,K

∣∣∣ ·(max
I

max
|α|∈nτ±2D

∣∣µI,α
∣∣) emn ∏

u,i

(
βui

αui+βui−γui
2

)

61



We can bound

∏
u,i

(
βui
kui

)
≤ ∏

u,i
2βui = 2|β| ≤ 2D.

In total, letting M be the number of nonzero coefficients in the constraint p and L be the

largest coefficient, this Fourier coefficient is at most,

M · L · 2Demn · max
I

max
|α|∈nτ±2D

∣∣µI+K,α
∣∣.

3.3 Proving PSD-ness using graph matrices

Pseudocalibration suggests a candidate pseudoexpectation operator/moment matrix that

satisfies (or almost satisfies) the problem constraints. What remains is to prove that the

moment matrix is PSD. The pseudocalibration formula in Definition 3.23 gives us the

Fourier coefficients of Ẽ, which expresses the moment matrix in terms of ribbons from

Chapter 2. The ribbons can be grouped into graph matrices if there is symmetry in the

Fourier coefficients of Ẽ, which is inherited from symmetry of the planted distribution.

Here we explain the approximate PSD decomposition, a general technique to prove PSD-ness

of the moment matrix once it is expressed in the graph matrix basis.

It is possible that pseudocalibration plus a suitably general application of this tech-

nique could be a universal lower bound technique for SoS on statistical distinguishing

problems. This is surprising, and partial progress is made in the tour-de-force work [PR20],

which gives sufficient conditions for an SoS lower bound. However, we do not state a

concrete conjecture about universality of the technique. (For various technical reasons,

we are not able to formally apply [PR20] in later chapters.)

We will not be too concerned with the specific definition of graph matrices in this
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section, expressing the moment moment in an abstract way for some coefficients λα,

Λ = ∑
shapes α

λαMα .

A first attempt to show Λ ⪰ 0, which works sometimes, is to bound all terms against

E Λ.

E Λ = ∑
shapes α:
E(α)=∅

λαMα .

It must be checked that E Λ ⪰ 0. To show that the spectrum of E Λ dominates the

spectrum of Λ, we can use the triangle inequality then the graph matrix norm bounds to

prove that:

∥Λ − E Λ∥ ≤ ∑
shapes α:
E(α) ̸=∅

|λα|∥Mα∥ ≤ o(minimum eigenvalue of E Λ) .

In the presence of a null space for E Λ, the situation is more delicate. We are able to use

this simpler approach and handle the null space in Chapter 4.

The approximate PSD decomposition is a more sophisticated approach that leverages

the combinatorial structure of graph matrices. We will use this approach in Chapter 6.

Recall that our goal is to show that the matrix ∑α λαMα is PSD. Each shape α decomposes

into left, middle, and right parts α = σ ◦ τ ◦ σ′⊺. We have a corresponding approximate

decomposition of the graph matrix for α, up to intersection terms,

Mα = Mσ◦τ◦σ′⊺ ≈ MσMτ M⊺
σ′ .

The dominant term in the PSD decomposition of Λ collects together α such that its

middle shape τ is trivial. We assume for simplicity that the coefficients λα factor, λα◦β =
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λα · λβ. The dominant term is approximately PSD:

∑
α: trivial

λαMα = ∑
σ,σ′

λσ◦σ′⊺Mσ◦σ′⊺ ≈ ∑
σ,σ′

λσλσ′ MσM⊺
σ′ =

(
∑
σ

λσMσ

)(
∑
σ

λσMσ

)⊺

.

There are two types of things to handle: α with nontrivial τ, and intersection terms.

For α with a fixed middle shape τ, these should all be charged directly to the dominant

term (include τ⊺ so the matrix is symmetric):

(
∑
σ

λσMσ

)
λτ(Mτ + M⊺

τ)

(
∑
σ

λσMσ

)⊺

⪯ 1
c(τ)

(
∑
σ

λσMσ

)(
∑
σ

λσMσ

)⊺

where we leave some space c(τ). Intuitively this is possible because nontrivial τ have

smaller coefficients λτ as the degree of the Fourier polynomial increases, and the norm of

Mτ is controlled due to the factorization of α into left, middle, and right parts. This check

amounts to ∑τ nontrivial λτ Mτ ⪯ o(1)Id, or essentially equivalently, ∑τ nontrivial|λτ|∥Mτ∥ ≤ o(1).

The intersection terms need to be handled in a recursive way so that their norms can

be kept under control: if σ, τ, σ′⊺ intersect to create a shape ζ, then we need to factor out

the non-intersecting parts of σ and σ′ from the intersecting parts γ, γ′. Informally writing

ζ = (σ − γ) ◦ τP ◦ (σ′ − γ′)⊺,

where τP is the intersection of γ, τ, γ′⊺, we now perform a further factorization

Mζ ≈ Mσ−γMτP M⊺
σ′−γ′

which recursively creates more intersection terms. The point is that the sum over σ −
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γ, σ′ − γ′ is equivalent to the sum over σ, σ′ (up to truncation error).

∑
σ−γ

∑
σ′−γ′

λσ◦τ◦σ′⊺Mσ−γMτP M⊺
σ′−γ′ =

(
∑

σ−γ

λσ−γMσ−γ

)
λγ◦τ◦γ′⊺MτP

(
∑

σ−γ

λσ−γM⊺
σ−γ

)

=

(
∑
σ

λσMσ

)
λγ◦τ◦γ′⊺MτP

(
∑
σ

λσM⊺
σ

)
+ truncation error.

In summary, we have the following informal decomposition of the moment matrix,

Λ =

(
∑
σ

λσMσ

)Id + ∑
τ nontrivial

λτ Mτ + ∑
intersection terms

τP∈Pγ,τ,γ′

λγ◦τ◦γ′⊺MτP


(

∑
σ

λσMσ

)⊺

+ truncation error .

We then need to compare the intersection terms MτP with Id. The shape τP is formed from

a middle shape with additional constrained intersections. The norm should be bounded

similarly to a middle shape, using an “intersection tradeoff lemma” to show that inter-

sections do not increase the norm too much. We also need to combinatorially bound the

number of ways to produce τP as an intersection pattern.

Finally, there is the issue of truncation. The total norm of the truncation error should

be small. This can be accomplished by taking a large truncation parameter relative to the

SoS degree.

If the approximate PSD decomposition described above succeeds, it proves a positive

lower bound on the minimum eigenvalue of Λ. If the matrix

Id + ∑
τ nontrivial

λτ Mτ + ∑
intersection terms

τP∈Pγ,τ,γ′

λγ◦τ◦γ′⊺MτP

instead has a nullspace, it must be handled via an additional argument.
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3.4 Open Problems

For statistical distinguishing problems, the low-degree hypothesis conjectures that for a cer-

tain class of problems, polynomial-time distinguishability is achievable if and only if

the low-degree likelihood ratio is a successful distinguisher. The conjecture was formu-

lated by Hopkins [Hop18, Conjecture 2.2.4]; for a formal statement and further discussion

see [HW20, ZSWB21].

In the context of sum-of-squares, the low-degree hypothesis implies that sum-of-squares

is no stronger than low-degree polynomials. A reduction from sum-of-squares to low-

degree polynomials has been proven for some settings by Hopkins et al [HKP+17]. How-

ever, their proof is not strong enough to formally imply SoS lower bounds in the settings

we consider in later chapters, and it would be useful to make their result more compos-

able.

We have mentioned that sum-of-squares is a semidefinite programming meta-algorithm.

For Constraint Satisfaction Problems (CSPs), it is known that degree-O(1) sum-of-squares

achieves the best approximation ratio of any polynomial-size semidefinite program [LRS15].

However, it seems possible that in general, sum-of-squares may not be the optimal choice

of semidefinite programming algorithm.

Question 3.33. Can we give a concrete problem where augmenting the sum-of-squares SDP with

additional linear constraints significantly improves performance of the algorithm?

CSPs are highly local, so it makes sense that SoSd (which has complete local reasoning)

could be an optimal semidefinite program. However, in general, it seems that adding

more global constraints could be helpful. Kothari, O’Donnell, and Schramm [KOS19]

prove a negative result along these lines for CSPs augmented with a global cardinality

constraint.

This open question points out a fundamental deficiency in existing SoS lower bounds,
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which is that the lower bound doesn’t formally apply if the polynomial system is tweaked

slightly, for example by binary searching over one of the parameters.
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CHAPTER 4

LOWER BOUND FOR THE SHERRINGTON-KIRKPATRICK MODEL

In this chapter we will study the performance of the sum-of-squares algorithm on the

generic quadratic optimization problem,

OPT(W) := max
x∈{±1}n

x⊺Wx, (4.1)

where W is a symmetric matrix in Rn×n. In the average-case setting where W has iid stan-

dard Gaussian entries, this is known to statistical physicists as the Sherrington-Kirkpatrick

(SK) model. Some of the most important ideas in statistical physics trace their roots to the

SK model. These ideas began with Parisi [Par79], who gave a heuristic argument (proven

rigorously by Talagrand [Tal06]) that

OPT(W) ≈ 2 · P∗ · n3/2

where P∗ ≈ 0.7632 is now referred to as the Parisi constant.

We will prove that sum-of-squares cannot certify the value of OPT(W); specifically,

sum-of-squares does no better than the basic spectral algorithm, which can only prove

that,

OPT(W) ≤ 2 · n3/2 .

Our technique reduces the problem to what we call the Planted Affine Planes problem. This

is a hypothesis testing problem in which one is given a collection of vectors d1, . . . , dm ∈

Rn and the task is to determine whether: (1) the vectors were sampled independently

from N (0, Id), or (2) the vectors are “planted” in two parallel affine planes, i.e. they are

sampled from N (0, Id) conditioned on ⟨v, di⟩2 = 1 where v ∼ N (0, Id) is a secret vector.

We prove that if the number of vectors m is at most m ≤ n1.5−ε for any ε > 0, then
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polynomial time sum-of-squares cannot successfully solve this problem.

We were interested in the Planted Affine Planes problem as a stepping stone to study-

ing random Constraint Satisfaction Problems (CSPs). The Planted Affine Planes problem

is a “dense problem” that we found as a tractable intermediate step on the way to study-

ing CSPs, which are usually “sparse”, i.e. the “constraint graph” has degree o(n) (usually

O(1)). Amusingly, the SK model was created by physicists for the same reason: it is a

“mean-field model” that is physically unrealizable due to being “dense”, but mathemat-

ically more tractable than the “sparse”, realizable models. Generalizing the techniques

from dense to sparse settings is a major challenge in both physics and computer science

literature. In Chapter 6 we will tackle sum-of-squares on sparse problems.

In this chapter, precise results on the SK model and Planted Affine Planes are stated

in Section 4.1. The main sum-of-squares lower bound uses some of the techniques from

Chapter 3, as well as some additional techniques, which are sketched in Section 4.2. We

pseudocalibrate, Section 4.3, and then carry out the details of the PSD-ness proof, Sec-

tion 4.4. Section 4.5 reduces the Sherrington-Kirkpatrick lower bound to the Planted

Affine Planes lower bound.

Bibliography. This chapter is based on [GJJ+20]. The proof outline, Section 4.2, has

been updated to fit the thesis exposition. The key charging arguments have been isolated

and significantly cleaned up in Section 4.2.3. Some technical proofs from the paper are

omitted.

4.1 Statement of Lower Bounds

Given W ∈ Rn×n, the general form of a quadratic optimization problem is:
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Variables: XX1, . . . , XXn

max XX⊺WXX

s.t. XX2
i = 1 ∀i = 1, . . . , n

By taking W to be a graph Laplacian [HLW06, Section 4] the problem is equivalent

to the Max Cut problem, a well-known NP-hard problem in the worst case [Kar72]. The

worst-case approximation factor of this problem is between logγ n and log n for some

γ > 0 [ABE+05, CW04].

Instead of considering OPT(W) for a worst-case W, one can consider the average-

case problem in which W is sampled according to some distribution. One of the simplest

models of random matrices is the Gaussian Orthogonal Ensemble, denoted GOE(n) for

n-by-n matrices and defined as follows.

Definition 4.1. The Gaussian Orthogonal Ensemble, denoted GOE(n), is the distribution of

1√
2
(A + A⊺) where A is a random n × n matrix with i.i.d. standard Gaussian entries.

In the special case where W is a random matrix drawn from the Gaussian Orthogonal

Ensemble, we refer to this as the Sherrington-Kirkpatrick problem. We have the following

theorem which is the main result of this chapter.

Theorem 4.2. There exists a constant δ > 0 such that, w.h.p. for W ∼ GOE(n), there is a degree-

nδ SoS solution for the Sherrington–Kirkpatrick problem with value at least (2 − o(1)) · n3/2.

In order to prove Theorem 4.2, we first introduce a new average-case problem we call

Planted Affine Planes (PAP) for which we directly prove a SoS lower bound. We then use

the PAP lower bound to prove a lower bound on the Sherrington–Kirkpatrick problem.

Definition 4.3 (Planted Affine Planes (PAP) problem). Given d1, . . . , dm ∈ Rn, determine

whether there exists v ∈ Rn such that

⟨v, du⟩2 = 1,
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for every u ∈ [m].

In other words, can we prove that m vectors are not all contained in two parallel hyper-

planes at equal distance from the origin? We show that for random vectors du ∼ D, SoS

cannot refute the existence of the parallel hyperplanes. Our results hold for the “Gaussian

setting” D = N (0, Id) and the “Boolean setting” where D is uniform over {±1}n, though

we conjecture (Section 4.6) that similar SoS bounds hold under more general conditions

on D.

We will furthermore restrict the solution vector v to be Boolean (scaled appropriately,

so that the entries are either 1√
n or −1√

n ). The Boolean restriction on v actually makes the

lower bound result stronger since SoS cannot refute even a smaller subset of vectors in

Rn.

With the additional Boolean restriction, Planted Affine Planes can be encoded as the

feasibility of the polynomial system (given d1, . . . , dm ∈ Rn):

Variable: v ∈ Rn

s.t. v2
i = 1

n ∀i = 1, . . . , n

⟨v, du⟩2 = 1 ∀u = 1, . . . , m

Theorem 4.4. For both the Gaussian and Boolean settings, there exists a constant c > 0 such

that for all ε > 0 and δ ≤ cε, for m ≤ n3/2−ε, w.h.p. there is a feasible degree-nδ SoS solution for

Planted Affine Planes.

It turns out that the Planted Affine Plane problem introduced above is closely re-

lated to the following “Boolean vector in a random subspace” problem, which we call the

Planted Boolean Vector problem, introduced by Mohanty–Raghavendra–Xu [MRX20] in

the context of studying the performance of SoS on computing the Sherrington–Kirkpatrick

Hamiltonian.

The Planted Boolean Vector problem is to certify that a random subspace of Rn is far
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from containing a Boolean vector. Specifically, we want to certify an upper bound for

OPT(V) :=
1
n

max
b∈{±1}n

b⊺ΠVb,

where V is a uniformly random p-dimensional subspace1 of Rn, and ΠV is the projector

onto V. In brief, the relationship to the Planted Affine Plane problem is that the PAP

vector v represents the coefficients on a linear combination for the vector b in the span of

a basis of V.

An argument of [MRX20] shows that, when p ≪ n, w.h.p., OPT(V) ≈ 2
π , whereas

they also show that w.h.p. assuming p ≥ n0.99, there is a degree-4 SoS solution with value

1 − o(1). They ask whether or not there is a polynomial time algorithm that can certify a

tighter bound; we rule out SoS-based algorithms for a larger regime both in terms of SoS

degree and the dimension p of the random subspace.

Theorem 4.5. There exists a constant c > 0 such that, for all ε > 0 and δ ≤ cε, for p ≥ n2/3+ε,

w.h.p. over V there is a degree-nδ SoS solution for Planted Boolean Vector of value 1.

4.1.1 Related work

We now summarize the existing work on these problems.

Note that GOE(n) is a particular kind of Wigner matrix ensemble, thereby satisfy-

ing the semicircle law, which in this case establishes that the largest eigenvalue of W

is (2 + o(1)) ·
√

n with probability 1 − o(1). Thus, a trivial spectral bound establishes

OPT(W) ≤ (2 + o(1)) · n3/2 with probability 1 − o(1). The natural upper bound of

(2 + o(1)) · n3/2 obtained via the spectral norm of W is also the value of the degree-2

SoS relaxation [MS16].

However, the true optimum is known to be smaller by a constant factor. In a founda-

1. V can be specified by a basis, which consists of p i.i.d. samples from N (0, id).

72



tional work based on a variational argument [Par79], Parisi conjectured that ,

E
W∼GOE(n)

[OPT(W)] ≈ 2 · P∗ · n3/2,

where P∗ ≈ 0.7632 is now referred to as the Parisi constant. Talagrand [Tal06] gave a

rigorous proof of Parisi’s conjecture.

Degree-4 SoS lower bounds on the Sherrington-Kirkpatrick Hamiltonian problem were

proved independently by Mohanty–Raghavendra–Xu [MRX20] and Kunisky–Bandeira [KB19]

whereas we prove a much stronger degree-nδ SoS lower bound for some constant δ > 0.

Our result is obtained by reducing the Sherrington-Kirkpatrick problem to the “Boolean

Vector in a Random Subspace” problem which is equivalent to our new Planted Affine

Planes problem on the normal distribution. The reduction from Sherrington-Kirkpatrick

problem to the “Boolean Vector in a Random Subspace” is due to Mohanty–Raghavendra–

Xu [MRX20]. The results of Mohanty–Raghavendra–Xu [MRX20] and Kunisky–Bandeira [KB19]

build on a degree-2 SoS lower bounds of Montanari and Sen [MS16].

Degree-4 SoS lower bounds on the “Boolean Vector in a Random Subspace” problem

for p ≥ n0.99 were proved by Mohanty–Raghavendra–Xu in [MRX20] where this prob-

lem was introduced. We improve the dependence on p to p ≥ n2/3+ϵ for any ϵ > 0 and

obtain a stronger degree-ncε SoS lower bound for some absolute constant c > 0.

Regarding the search task for the SK model, Talagrand’s result was existential. As it

turns out, in a recent breakthrough work, the search problem was shown by Montanari

to be algorithmically tractable [Mon21]! That is, there a polynomial-time algorithm that,

given W ∼ GOE(n), computes an x achieving close to OPT(W). In view of our results,

the SK model is likely to exhibit a gap between certification and search (as mentioned at

the start of Section 3.1.1, such gaps are fundamental assuming NP ̸= co-NP). See also

Section 4.6 for more discussion.

A pair of recent works by Zadik et al [ZSWB21] and Diakonikolas–Kane [DK21] shows
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that the Planted Affine Planes is actually algorithmically tractable if there is not a small

amount of additional noise used to “obscure” the hidden plane. Their algorithm is based

on the LLL lattice basis reduction algorithm, an algebraic method that is not captured by

sum-of-squares.

4.2 Proof Outline

We now provide a high-level description of our approach. The bulk of our technical

contribution lies in the SoS lower bound for the Planted Affine Planes problem, Theo-

rem 4.4. We will show that Planted Affine Planes in the Gaussian setting is equivalent to

the Planted Boolean Vector problem in Section 4.5. The final reduction from Sherrington-

Kirkpatrick to the Planted Boolean Vector problem is due to Mohanty–Raghavendra–

Xu [MRX20]; the reduction is also included in Section 4.5 for completeness.

As a starting point to the PAP lower bound, we employ the general techniques in

Chapter 3. We pseudocalibrate against a natural planted distribution to produce a good

candidate SoS solution Ẽ, and express the associated moment matrix M in terms of

graph matrices. The precise definition of graph matrices for this problem is given in

Section 4.2.1. Recall that to prove the SoS lower bound, we must show that Ẽ satisfies the

problem constraints and is PSD. Because of pseudocalibration, Fact 3.24, Ẽ automatically

satisfies the Boolean constraints “v2
i = 1

n".

The main step of the proof is to prove that M is PSD with high probability, and an

outline of the argument is given in Section 4.2.2. The key difficulty is handling a null space

in the moment matrix. The null space is caused by the constraints “⟨v, du⟩2 = 1” (in fact,

any constrained optimization problem induces a null space for the SoS moment matrix).

The outline describes how we “remove” the null space from the moment matrix by getting

rid of certain “spider shapes” Once we remove the spiders, we can show that the new

matrix is close to the identity matrix (thus the original moment matrix was close to a
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projection matrix and is PSD). The “closeness” here is proven by bounding the spectral

norm of the non-spider shapes. Showing that these shapes have o(1) norm is the most

crucial step in the proof. This norm bound argument is proven informally in Section 4.2.3.

Finally, the operator Ẽ unfortunately does not exactly satisfy the PAP constraints

“⟨v, du⟩2 = 1”, it only satisfies them up to a tiny error. We use an interesting and rather

generic approach to round Ẽ to a nearby pseudoexpectation operator Ẽ
′

which does ex-

actly satisfy the constraints. The overall technique is described in Section 3.2.1. This

somewhat long calculation with graph matrices is omitted, see [GJJ+20, Section 7].

It must be checked that Ẽ[1] = 1 + o(1). This is equivalent to checking that the low-

degree likelihood ratio cannot be used to distinguish the planted and random distributions.

As will be pointed out in Remark 4.20, w.h.p. in the unnormalized pseudocalibration,

Ẽ[1] = 1+ o(1) and so the error introduced does not impact the statement of any lemmas.

4.2.1 Graph matrices

In this chapter, we use the following concrete definitions of graph matrices.

The graphs that we study have two types of vertices, circles i and squares t . We let

Cm be a set of m circles labeled 1 through m, which we denote by 1 , 2 , . . . , m , and let

Sn be a set of n squares labeled 1 through n, which we denote by 1 , 2 , . . . , n . We will

work with bipartite graphs with edges between circles and squares, which have positive

integer labels on the edges.

Definition 4.6 (Proper). An edge-labeled graph is proper if it has no multiedges and no isolated

vertices.

When the graph is proper, such graphs are in one-to-one correspondence with Fourier

characters on the vectors du. An edge between u and i with label l represents hl(du,i)

where {hk} is the Fourier basis for the distribution of a single entry du,i.
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simple graph with labeled edges ⇐⇒ ∏
u ∈Cm,
i ∈Sn

hl( u , i )(du,i)

In the Gaussian case, {hk} are the (unnormalized, probabilist’s) Hermite polynomials,

and in the Boolean case, they are just the parity function, represented by

h0(x) = 1, h1(x) = x, hk(x) = 0 (k ≥ 2) .

An example of a Fourier polynomial as a graph with labeled edges is given in Fig. 4.1.

Unlabeled edges are implicitly labeled 1.

i1
u

j1

i2 j2

3

w1

2

Figure 4.1: The Fourier polynomial h3(du,i1)h1(du,i2)h2(du,w1)h1(du,j1)h1(du,j2) repre-
sented as a graph.

Define the degree of a vertex v, denoted deg(v), to be the sum of the labels incident to

v, and |E| to be the sum of all labels.

The matrices we study have rows and columns indexed by all subsets of Cm ∪ Sn.

Definition 4.7 (Matrix index). A matrix index is a set A of elements from Cm ∪ Sn.

We let A( i ) or A( u ) be 0 or 1 to indicate if the vertex is in A.

Definition 4.8 (Ribbons). A ribbon is an undirected, edge-labeled graph R = (V(R), E(R), AR, BR),

where V(R) ⊆ Cm ∪Sn and AR, BR are two matrix indices (possibly not disjoint) with AR, BR ⊆

V(R), representing two distinguished sets of vertices. Furthermore, all edges in E(R) go between

squares and circles.
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We think of AR and BR as being the “left” and “right” sides of R, respectively. We also

define the set of “middle vertices” CR := V(R) \ (AR ∪ BR). If e ̸∈ E(R), then we define

its label l(e) = 0. We also abuse notation and write l( i , u ) instead of l({ i , u }).

Definition 4.9 (Matrix for a ribbon). The matrix MR has rows and columns indexed by subsets

of Cm ∪ Sn, with a single nonzero entry defined by

MR[I, J] =


∏

e∈E(R),
e={ i , u }

hl(e)(du,i) I = AR, J = BR

0 Otherwise

The shape of a ribbon forgets all the vertex labels and retains only the graph structure

and the distinguished sets of vertices.

Definition 4.10 (Shape). Letting Sn permute the square labels and Sm permute the circle labels,

a shape is an orbit of ribbons under the action by Sm × Sn. It can be specified by a representative

α = (V(α), E(α), Uα, Vα).

We let U( i ) and U( u ) be either 0 or 1 for whether i or u , respectively, is in U. We’ll

also use Wα := V(α) \ (Uα ∪ Vα) to denote the “middle vertices” of the shape.

Remark 4.11. We will use i , j , u , v , . . . for both the vertices of ribbons and the vertices of

shapes. In ribbons, i, j, u, v can be either fixed or variable, whereas in shapes, they will always be

variable to avoid picking a specific representative of the shape.

Finally, given a shape α, the graph matrix Mα consists of all Fourier characters for

ribbons of shape α.

Definition 4.12 (Graph matrix). Given a shape α, the graph matrix Mα is

Mα = ∑
ribbon R of shape α

MR
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The moment matrix for PAP will turn out to be defined using graph matrices Mα

whose left and right sides only have square vertices, and no circles. However, in the

course of the analysis we will factor and multiply graph matrices with circle vertices in

the left or right.

The spectral norm of a graph matrix is determined, up to logarithmic factors, by rela-

tively simple combinatorial properties of the graph.

Definition 4.13 (Weight). For a subset S ⊆ V(α), we define the weight

w(S) := (# circles in S) · logn(m) + (# squares in S) .

Observe that nw(S) = m# circles in S · n# squares in S.

We define Smin of a shape α to be the minimum-weight vertex separator of Uα and Vα.

Let Iα denote the isolated (degree 0) vertices in Wα. Then whp for all shapes that appear

in the analysis (a formal statement is given in Lemma 2.17):

∥Mα∥ ≤ Õ
(

n
w(V(α))−w(Smin)+w(Iα)

2

)
.

4.2.2 Outline of PSD-ness proof

After performing pseudocalibration, in both settings, we will have essentially the graph

matrix decomposition,

M = ∑
shapes α

λαMα = ∑
shapes α:

Uα,Vα⊆Sn,
deg( i )+U( i )+V( i ) even,

deg( u ) even

1

n
|Uα |+|Vα |

2

·

 ∏
u ∈V(α)

hdeg( u )(1)

 · Mα

n|E(α)|/2
.

(4.2)
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Here hk(1) is in both settings the k-th Hermite polynomial, evaluated on 1. To show that

the matrix M is PSD, we need to study the graph matrices that appear with nonzero

coefficients in the decomposition.

First attempts. We might try to use the techniques in Section 3.3, for example showing

that EM is dominant, or using the approximate PSD decomposition. A fundamental

obstruction to using these approaches is that the nullspace of M is nontrivial, whereas

these arguments show a positive lower bound on the minimum eigenvalue of M. First

we explain how the naive approach fails, then we explain why the nullspace exists and

how we get around it.

Recall that a shape α = (V(α), E(α), Uα, Vα) is trivial if V(α) = Uα = Vα and E(α) = ∅.

The trivial shapes in the expression for M contribute (scaled) identity matrices 1
nk/2 Id on

the degree-k block of the moment matrix. If we could bound |λα|∥Mα∥ ≪ 1

n
|Uα |+|Vα |

2

for

all non-trivial graph matrices in M, then the identity matrices are dominant and M is

PSD.

For several shapes this strategy is indeed viable. To illustrate, let’s consider one such

shape α depicted in Fig. 4.2.

u1

w1

v1

w3

w2u u′

Uα Vα

Figure 4.2: Picture of basic non-spider shape α.

This graph matrix has |λα| = Θ( 1
n5 ). Using the graph matrix norm bounds, with high

probability the norm of this graph matrix is Õ(n2m): there are four square vertices and

two circle vertices which are not in the minimum vertex separator. Thus, for this shape α,
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with high probability |λα|∥Mα∥ is Õ
(

m
n3

)
and thus λαMα ⪯ 1

n Id (which is the multiple

of the identity appearing in the corresponding block).

Unfortunately, some shapes α that appear in the decomposition have ∥λαMα∥ too

large to be charged against the identity matrices. These are shapes with a certain sub-

structure whose norms cannot be handled by the preceding argument, and which we

denote spiders. The following graph depicts one such spider shape (and also motivates

this terminology):

u1

u2

v1

v2

u

Uα Vα

Figure 4.3: Picture of basic spider shape α.

The norm ∥λαMα∥ of this graph is Õ( 1
n2 ), as can be easily estimated through the norm

bounds (the coefficient is λα = −2
n4 , the minimum vertex separator is u , and there are no

isolated vertices). This is too large to bound against 1
n2 Id, which is the identity matrix on

this spider’s block.2

Existence of the null space. The kernel of the matrix M is nontrivial as a consequence

of satisfying the PAP constraints “⟨v, du⟩2 = 1". Consider the two shapes in Fig. 4.4, β1

and β2 (take note of the label 2 on the edge in β2).

We claim that if M is any moment matrix satisfying the PAP constraints, then every

column of the matrix 2Mβ1
+ 1

n Mβ2
is in the null space of M. There are m nonzero

2. There is a related obstruction to using the approximate PSD decomposition in addition to M’s non-
trivial nullspace. To use the approximate PSD decomposition, we need λσ◦σ⊺ for each approximately PSD
shape σ ◦ σ⊺. However, the spider shape is of this form, but has λσ◦σ⊺ < 0.
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u1

u2

u u

Uβ1

Vβ1

Vβ2

w

Uβ2
= ∅

2

Figure 4.4: Picture of shapes β1 and β2.

columns indexed by assignments to V, which can be a single circle 1 , 2 , . . . , m . The

nonzero rows are ∅ in β2 and { i , j } for i ̸= j in β1. Fixing I ⊆ [n], entry (I, u ) of the

product matrix M(2Mβ1
+ 1

n Mβ2
) is

2 ∑
i<j

Ẽ[vIvivj] · duiduj +
1
n

Ẽ[vI ] · ∑
i
(d2

ui − 1)

= 2 ∑
i<j

Ẽ[vIvivj] · duiduj + Ẽ[vIv2
i ] · ∑

i
d2

ui − Ẽ[vI ] (Ẽ satisfies “v2
i =

1
n

”)

= ∑
i,j

Ẽ[vIvivj]duiduj − Ẽ[vI ]

= Ẽ[vI(⟨v, du⟩2 − 1)]

= 0 (Ẽ satisfies “ ⟨v, du⟩2 = 1”)

In words, the constraint “⟨v, du⟩2 = 1” creates a shape 2β1 +
1
n β2 that lies in the null space

of the moment matrix.

Handling the null space. To skirt the spiders, we restrict ourselves to vectors x ⊥ Null(M).

Clearly it is sufficient to show x⊺Mx ≥ 0 to prove M ⪰ 0.

We claim the basic spider α in Fig. 4.3 satisfies x⊺Mα ≈ 0. We can approximately

factor the spider α across its central vertex, and when we do so, the shape β1 appears
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on the left side. Therefore Mα ≈ Mβ1
M⊺

β1
≈ (Mβ1

+ 1
2n Mβ2

)M⊺
β1

. The columns of the

u1

u2

u u

Uβ1

u1

u2

Uβ1

× ≈

u1

u2

v1

v2

u

Uα Vα

Vβ1
Vβ1

Figure 4.5: Approximation β1 × β
⊺
1 ≈ α.

matrix Mβ1
+ 1

2n Mβ2
are in the null space of M, so for x ⊥ Null(M) we have x⊺Mα ≈ 0

as claimed.

The graphical substructure present in a spider implies that the spider is close to the

zero matrix in Null(M)⊥. Because of this, we can almost freely add and subtract Mα

for spiders α while preserving the action of M on Null(M)⊥. Our strategy is to “kill”

the spiders by subtracting off λα · Mα for each spider α. Doing this for all spiders, we

produce a matrix whose action is equivalent on Null(M)⊥, and which is dominated by

the identity matrix by virtue of the fact that it has no spiders, showing that M is PSD.

More formally, handling the approximate equalities, for a spider α we are able to find

coefficients cβ for some non-dominant intersection terms β so that all columns of the

matrix

A = Mα + ∑
β

cβMβ

are in Null(M). We then observe the following fact:

Fact 4.14. If x ⊥ Null(M) and MA = 0, then for all matrices B, x⊺(AB+M)x = x⊺(B⊺A⊺+

M)x = x⊺Mx.

Using the fact, we can freely add multiples of A to M without changing the action of

M on Null(M)⊥. A judicious choice is to subtract λαA which will “kill” the spider from
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M.

The intersection terms β may themselves be spiders (though they will always have

fewer square vertices than α). Thus we must recursively kill these spiders, until there are

no spiders remaining in the decomposition of M. With ≡ denoting equality of the matrix

on Null(M)⊺, here is informally how the recursive process unfolds:

M = ∑
non-spiders α

λαMα + ∑
spiders α

λαMα

≡ ∑
non-spiders α

λαMα − ∑
spiders α

∑
intersection

terms β

λαcβMβ

= ∑
non-spiders α

λαMα − ∑
spiders α

∑
intersection

non-spiders β

λαcβMβ − ∑
spiders α

∑
intersection

spiders β

λαcβMβ

≡ ∑
non-spiders α

λαMα − ∑
spiders α

∑
intersection

non-spiders β

λαcβMβ + ∑
spiders α

∑
intersection

spiders β

∑
intersection

terms β′

λαcβcβ′ Mβ′

...

≡ ∑
non-spiders α

λαMα ± ∑
spiders α

∑
intersection
spiders β1

∑
intersection
spiders β2

· · · ∑
intersection
spiders βℓ

∑
terminal

non-spiders β

λαcβ1
· · · cβℓ

Mβ .

The total coefficient on any terminal non-spider β will be relatively small, but this must

be proven combinatorially.

4.2.3 Informal sketch of key charging lemmas

The critical part of the proof outline is to show that the two types of “terminal” shapes

can be charged to the identity matrices: non-spiders originally in M, and non-spiders that

result from killing the spiders. Using combinatorial arguments with the norm bounds, we

prove these two lemmas here.
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Non-spiders are negligible. We prove that non-spiders initially in the moment matrix

are dominated in norm by the identity matrix. We point out that this charging argument

critically relies on the assumption m ≤ n3/2−ε.

Definition 4.15 (Spider). A left spider is a proper shape α = (V(α), E(α), Uα, Vα) with the

property that there exist two distinct square vertices i , j ∈ Uα of degree 1 and a circle vertex

u ∈ V(α) such that E(α) contains the edges ( i , u ) and ( j , u ) (these are necessarily the only

edges incident to i and j ).

A right spider is the transpose of a left spider. A spider is a left or right spider.

The vertices i and j are called the end vertices of α. Because of degree parity, the end

vertices must lie in Uα \ (Uα ∩ Vα).

Remark 4.16. A spider can have many pairs of end vertices. For each possible spider shape, we

single out a pair of end vertices, so that in what follows we can discuss “the” end vertices of the

spider.

Lemma 4.17 (Non-spiders are negligible). If proper shape α is not a spider and α is non-trivial,

then |λα|∥Mα∥ ≪ 1

n
|Uα |+|Vα |

2

.

Proof. Plugging in the pseudocalibrated λα from Eq. (4.2), the shapes α with λα ̸= 0 have

the structural properties:

(i) The left and right sides contain only squares: Uα ∪ Vα ⊆ Sn,

(ii) Degree parity constraints: deg( i ) + U( i ) + V( i ) even, deg( u ) even.

Plugging in the norm bounds:

|λα|∥Mα∥ ≤ 1

n
|Uα |+|Vα |

2

·

∣∣∣∣∣∣ ∏
u ∈V(α)

hdeg( u )(1)

∣∣∣∣∣∣ · 1

n|E(α)|/2
· n

w(V(α))−w(Smin)
2 .
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Since circles have even degree, h2(1) = 0, and no circle can have degree 0 in a proper

shape such that (Uα ∪ Vα) ∩ Cm = ∅, we conclude a third structural property:

(iii) deg( u ) ≥ 4.

This is the key property we will need of hdeg( u )(1); this coefficient is otherwise upper

bounded by Proposition 4.45:

∣∣∣∣∣∣ ∏
u ∈V(α)

hdeg( u )(1)

∣∣∣∣∣∣ ≤ |E(α)|C|E(α)|

for some constant C. Since |E(α)|C ≪
√

n, this may be incorporated into 1
n|E(α)|/2 with

negligible loss.

Therefore it suffices to show for non-trivial, non-spider shapes α satisfying structural

properties (i), (ii), (iii):
1

n|E(α)|/2
n

w(V(α))−w(Smin)
2 ≪ 1.

The idea behind the proof is as follows. Each square vertex which is not in the mini-

mum vertex separator contributes
√

n to the norm bound while each circle vertex which

is not in the minimum vertex separator contributes
√

m. To compensate for this, we will

try and take the factor of 1√
n from each edge and distribute it among its two endpoints so

that each square vertex which is not in the minimum vertex separator is assigned a factor

of 1√
n or smaller and each circle vertex which is not in the minimum vertex separator is

assigned a factor of 1√
m or smaller.

Remark 4.18. Instead of using the minimum vertex separator, we will actually use a set S of

square vertices such that w(S) ≤ w(Smin). For details, see the actual distribution scheme below.

Remark 4.19. We will leave 1
nΩ(ε) unassigned per edge, turning ≤ into ≪ for non-trivial shapes.

To motivate the distribution scheme which we use, we first give two attempts which
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don’t quite work. For simplicity, for these first two attempts we assume that Uα ∩Vα = ∅

as vertices in Uα ∩ Vα can essentially be ignored (Section 2.3).

Attempt 1: Take each edge and assign a factor of 1
4√n

to its square endpoint and a

factor of 1
8√m

to its circle endpoint.

With this distribution scheme, since each circle vertex has degree at least 4, each

circle vertex is assigned a factor of 1√
m or smaller. Since each square vertex in Wα

has degree at least 2, each square vertex in Wα is assigned a factor of 1√
n or smaller.

However, square vertices in Uα ∪ Vα may only have degree 1 in which case they are

assigned a factor of 1
4√n

which is not small enough.

Remark 4.20. For analyzing Ẽ[1], this first attempt works as Uα = Vα = ∅. Thus, as

long as m ≤ n2−ϵ, with high probability Ẽ[1] = 1 ± o(1) .

To fix this issue, we can have all of the edges which are incident to a square vertex

in Uα ∪ Vα give their entire factor of 1√
n to the square vertex.

Attempt 2: For each edge which is between a square vertex in Uα ∪ Vα and a circle

vertex, we assign a factor of 1√
n to the square vertex and nothing to the circle vertex.

For all other edges, we assign a factor of 1
4√n

to its square endpoint and a factor of

1
6√m

to its circle endpoint (which we can do because m ≤ n
3
2−ϵ).

With this distribution scheme, each square vertex is assigned a factor of 1√
n . Since

α is not a spider, no circle vertex is adjacent to two vertices in Uα or Vα. Thus, any

circle vertex which is not adjacent to both a square vertex in Uα and a square vertex

in Vα must be adjacent to at least 3 square vertices in Wα and is thus assigned a

factor of 1√
m or smaller. However, we can have circle vertices which are adjacent to

both a square vertex in Uα and a square vertex in Vα. These circle vertices may be

assigned a factor of 1
3√m

, which is not small enough.
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To fix this, observe that whenever we have a circle vertex which is adjacent to both

a square vertex in Uα and a square vertex in Vα, this gives a path of length 2 from

Uα to Vα. Any vertex separator must contain one of the vertices in this path, so we

can put one of these two square vertices in S and not assign it a factor of 1√
n .

Actual distribution scheme: Based on these observations, we use the following distribu-

tion scheme (see Fig. 4.6 for an example). Here we are no longer assuming that Uα ∩ Vα is

empty.

1. Choose a set of square vertices S ⊆ Uα ∪ Vα as follows. Start with S = Uα ∩ Vα.

Whenever we have a circle vertex which is adjacent to both a degree-1 square vertex

in Uα \ Vα and a degree-1 square vertex in Vα \ Uα, put one of these two square

vertices in S (this choice is arbitrary). Observe that w(S) ≤ w(Smin).

2. For each edge which is incident to a square vertex in S, assign a factor of 1
3√m

to its

circle endpoint and nothing to this square.

3. For each edge which is incident to a degree-1 square vertex in (Uα ∪ Vα) \ S, assign

a factor of 1√
n to the square vertex and nothing to the circle vertex.

4. For all other edges, assign a factor of 1
4√n

to its square endpoint and a factor of 1
6√m

to its circle endpoint.

Now each square vertex which is not in S is assigned a factor of 1√
n or smaller. Since

α is not a spider, all circle vertices are incident to at most one edge from case 3 and are

assigned a factor of 1√
m or smaller.

For each edge, 1
nΩ(ε) is unassigned because m ≤ n3/2−ε, with the exception of case 3

in which the entire factor of 1√
n is assigned. This case is less than one quarter of the edges

of α, since the other edges incident to the circle must not be case 3, thus we can still have

1
nΩ(ε) unassigned per edge on average.
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Figure 4.6: Allocation of 1√
n from each edge to vertices. S consists of the gray square.

Observe that every circle receives a factor of at least 1√
m and every square not in S receives

a factor of at least 1√
n .
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Remark 4.21. The non-spider depicted in Fig. 4.7 is an obstruction to improving the assumption

on m from n3/2−ε to n2−ε. We have |λα|∥Mα∥ = Õ
(

m2

n5

)
using the norm bounds. The multiple

of the identity appearing on this block is 1
n2 Id, which is only larger if m ≪ n3/2.

Uα Vα

Figure 4.7

Terminal non-spiders are negligible. The non-spiders β that arise when killing a spider

α are certain intersection terms, and they do not need to have all the structural properties

that we utilized in the previous proof. In particular, the shapes may be improper, which

when linearized may have circle vertices of degree 2 or isolated vertices.

To handle the potentially larger norms, we will use that the coefficient of a new non-

spider term β is at most λα for the spider term α. Since α has more vertices/edges than β,

the extra factors of 1
n in λα are used to cancel out any increase in norm.

We will not formally define the set of intersection terms that arise until Section 4.4.

It suffices to note that they are improper shapes β that are intersections of α with the

following structural properties (properties (i), (ii), (iii) are the same as in the previous

proof):

(i) Uβ ∪ Vβ ⊆ Sn

(ii) Degree parity constraints: deg( i ) + U( i ) + V( i ) even, deg( u ) even.
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(iii) deg( u ) ≥ 4

(iv) Circles never intersect.

(v) If i intersected, then i was an end vertex at some point.

Lemma 4.22 (Terminal non-spiders are negligible). If β is an improper non-spider which is

an intersection of α, and β satisfies properties (i)-(v), then

|λα|
∥∥∥Mβ

∥∥∥≪ 1

n
|Uβ |+|Vβ |

2

.

Proof. Plugging in λα and the norm bounds,

|λα|
∥∥∥Mβ

∥∥∥ ≤ 1

n
|Uα |+|Vα |

2

·

∣∣∣∣∣∣ ∏
u ∈V(α)

hdeg( u )(1)

∣∣∣∣∣∣ · 1

n|E(α)|/2
· n

w(V(β))−w(Smin)+w(Iβ)
2 .

As in the previous proof, the Hermite terms may be upper bounded, and it suffices to

prove:
1

n
|Uα |+|Vα |−|Uβ |−|Vβ |

2

· 1

n|E(α)|/2
· n

w(V(β))−w(Smin)+w(Iβ)
2 ≪ 1 .

We will allocate factors to vertices in such a way that every isolated square vertex is al-

located at least 1
n , every isolated circle vertex is allocated at least 1

m , every square vertex

not in Smin is allocated at least 1√
n , and every circle vertex not in Smin is allocated at least

1√
m .

In addition to 1√
n per edge, we may also allocate 1√

n each time that a vertex disappears

from Uα or Vα. These factors should be allocated as follows. |Uα| + |Vα| shrinks if two

square vertices in Uα intersect, or two square vertices in Vα intersect. When this happens,

the new vertex is no longer in Uα (resp. Vα), so |Uα|+ |Vα| shrinks by two. Allocate two

factors of 1√
n to the intersected square vertex.

To allocate the edge factors, the charging strategy we use is:

90



1. If the edge has a parallel edge (there is a multiedge between these two vertices),

assign a factor of 1
4√m

to its circle endpoint and nothing to its square endpoint.

2. For the remaining edges, we use the same charging scheme as the non-spider charg-

ing scheme for β with all multiedges deleted.

If u is isolated in β with all multiedges deleted, all incident edges in β (of which there

are at least 4) are multiedges, therefore this vertex is allocated at least 1
m .

If i is isolated in β with all multiedges deleted, the incident edges in β are multiedges,

and hence i must have intersected (since circles don’t intersect by structural property

(iv)). Therefore, by property (v), i was an end vertex at some point, and therefore in Uα

or Vα. In order to become isolated, i moved out of Uα or Vα at some point; at this point

it was allocated a factor of 1
n .

By the previous charging argument for non-spiders, the non-isolated vertices are al-

located sufficiently. The only edge case is circle vertices of degree 2. Since these vertices

are allocated 1
4√m

per incident multiedge, of which there are at least 2, these vertices are

already allocated 1√
m .

Remark 4.23. Surprisingly the scaling factor of 1√
n is helpful here, as we allocate it to isolated

square vertices. See the discussion in [GJJ+20, Appendix D].

Remark 4.24. This part of the charging argument works under the weaker assumption m ≤ n2−ε.

4.3 Pseudocalibration

We formally define the random and the planted distributions for the Planted Affine Planes

problem in the Gaussian and Boolean settings. These two (families of) distributions are

required by the pseudocalibration machinery in order to define a candidate pseudoex-

pectation operator Ẽ. For the Gaussian setting, we have the following distributions.
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Definition 4.25 (Gaussian PAP distributions). The Gaussian PAP distributions are as follows.

1. (Random distribution) m i.i.d. vectors du ∼ N (0, Idn).

2. (Planted distribution) A vector v is sampled uniformly from
{
± 1√

n

}n
, as well as signs

bu ∈R {±1}, and m vectors du are drawn from N (0, Idn) conditioned on ⟨du, v⟩ = bu.

For the Boolean setting, we have the following distributions.

Definition 4.26 (Boolean PAP distributions). The Boolean PAP distributions are as follows.

1. (Random distribution) m i.i.d. vectors du ∈R {−1,+1}n.

2. (Planted distribution) A vector v is sampled uniformly from
{
± 1√

n

}n
, as well as signs

bu ∈R {±1}, and m vectors du are drawn from {±1}n conditioned on ⟨du, v⟩ = bu.

For the pseudocalibration we truncate to only Fourier coefficients of size at most nτ.

4.3.1 Gaussian setting pseudocalibration

We start by computing the pseudocalibration for the Gaussian setting. Here the natural

choice of Fourier basis is the Hermite polynomials. Let α ∈ (Nn)m denote a Hermite

polynomial index. Define α! := ∏u,i αu,i! and |α| := ∑u,i αu,i and |αu| := ∑i αu,i. We

let hα(d1, . . . , dm) denote an unnormalized Hermite polynomial, so that hα/
√

α! forms an

orthonormal basis for polynomials in the entries of the vectors d1, . . . , dm, under the inner

product ⟨p, q⟩ = Ed1,...,dm∼N (0,Id)[p · q].

We can view α as an m × n matrix of natural numbers, and with this view we also

define α⊺ ∈ (Nm)n.

Lemma 4.27. For any I ⊆ [n], the pseudocalibration value is

Ẽ vI = ∑
α:|α|≤nτ ,
|αu| even,

|(α⊺)i|≡Ii (mod 2)

(
m
∏
u=1

h|αu|(1)

)
· 1

n|I|/2+|α|/2
· hα(d1, . . . , dm)

α!
.
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In words, the nonzero Fourier coefficients are those which have even row sums, and

whose column sums match the parity of I.

Proof. The truncated pseudocalibrated value is defined to be

Ẽ vI = ∑
α:|α|≤nτ

hα(d1, . . . , dm)

α!
· E

pl
[hα(d1, . . . , dm) · vI ]

So we set about to compute the planted moments. For this computation, the following

lemma is crucial. Here, we give a short proof of this lemma using generating functions.

For a combinatorial proof, see [GJJ+20, Appendix C].

Lemma 4.28. Let α ∈ Nn. When v is fixed and b is fixed (not necessarily +1 or -1) and d ∼

N(0, I) conditioned on ⟨v, d⟩ = b∥v∥,

E
d
[hα(d)] =

vα

∥v∥|α|
· h|α|(b).

Proof. It suffices to prove the claim when ∥v∥ = 1 since the left-hand side is independent

of ∥v∥. Express d = bv + (I − vv⊺)x where x ∼ N(0, Id) is a standard normal variable.

Now we want

E
x∼N(0,Id)

hα (bv + (I − vv⊺)x) .

The Hermite polynomial generating function is

∑
α∈Nn

E
x∼N (0,Id)

hα (bv + (I − vv⊺)x)
tα

α!
= E

x
exp

(
⟨bv + (I − vv⊺)x, t⟩ − ∥t∥2

2
2

)

=
∫

Rn

1

(2π)
n
2
· exp

(
⟨bv + (I − vv⊺)x, t⟩ − ∥t∥2

2
2

− ∥x∥2
2

2

)
dx.
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Completing the square,

=
∫

Rn

1

(2π)
n
2
· exp

(
⟨bv, t⟩ − ⟨v, t⟩2

2
− 1

2
· ∥x − (t − ⟨v, t⟩ v)∥2

2

)
dx

= exp

(
⟨bv, t⟩ − ⟨v, t⟩2

2

)

= exp
(

b ⟨v, t⟩ − 1
2
· ⟨v, t⟩2

)
.

How can we Taylor expand this in terms of t? The Taylor expansion of exp(by − y2

2 ) is

∑∞
i=0 hi(b)

yi

i! . That is, the i-th derivative in y of exp(by − y2

2 ), evaluated at 0, is hi(b).

Using the chain rule with y = ⟨v, t⟩, the α-derivative in t of our expression, evaluated

at 0, is vα · h|α|(b). This is the expression we wanted when ∥v∥ = 1, and along with the

aforementioned remark about homogeneity in ∥v∥ this completes the proof.

Now we can finish the calculation. To compute Epl[hα(d1, . . . , dm) · vI ], marginalize v

and the bu and factor the conditionally independent bu and du.

E
pl
[hα(d1, . . . , dm)vI ] = E

v,bu
vI

m
∏
u=1

E
d
[hαu(du) | v, bu]

= E
v,bu

vI ·
m
∏
u=1

vαu

∥v∥|αu|
· h|αu|(bu) (Lemma 4.28)

=

(
E
v

vI+∑m
u=1 αu

∥v∥∑m
u=1|αu|

)
·
(

m
∏
u=1

E
bu

h|αu|(bu)

)

The Hermite polynomial expectations will be zero in expectation over bu if the degree is

odd, and otherwise bu is raised to an even power and can be replaced by 1. This requires

that |αu| is even for all u. The norm ∥v∥ is constantly 1 and can be dropped. The nu-

merator will be 1
n|I|/2+|α|/2 if the parity of every |(α⊺)i| matches Ii, and 0 otherwise. This

completes the pseudocalibration calculation.

We can now write M in terms of graph matrices.
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Definition 4.29. Let L be the set of all proper shapes α with the following properties

• Uα and Vα only contain square vertices and |Uα|, |Vα| ≤ nδ

• Wα has no degree 0 vertices

• deg( i ) + Uα( i ) + Vα( i ) is even for all i ∈ V(α)

• deg( u ) is even and deg( u ) ≥ 4 for all u ∈ V(α)

• |E(α)| ≤ nτ

Remark 4.30. Note that the shapes in L can have isolated vertices in Uα ∩ Vα.

Remark 4.31. L captures all the shapes that have nonzero coefficient when we write M in terms

of graph matrices. The constraint deg( u ) ≥ 4 arises because pseudocalibration gives us that

deg( u ) is even, u cannot be isolated, and h2(1) = 0.

For a shape α, we define

α! := ∏
e∈E(α)

l(e)!

Note that this equals the factorial of the corresponding index of the Hermite polynomial

for this shape.

Definition 4.32. For any shape α, if α ∈ L, define

λα :=

 ∏
u ∈V(α)

hdeg( u )(1)

 · 1

n(|Uα|+|Vα|+|E(α)|)/2
· 1

α!

Otherwise, define λα := 0.

Corollary 4.33. Modulo the footnote3, M = ∑
shapes α

λαMα.

3. Technically, the graph matrices Mα have rows and columns indexed by all subsets of Cm ∪ Sn. The
submatrix with rows and columns from ( Sn

≤D/2) equals the candidate moment matrix for Ẽ.
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4.3.2 Boolean setting pseudocalibration

We now present the pseudocalibration for the Boolean setting. For the sequel, we need

notation for vectors on a slice of the Boolean cube.

Definition 4.34 (Slice). Let v ∈ {±1}n and θ ∈ Z. The slice Sv(θ) is defined as

Sv(θ) :=
{

d ∈ {±1}n | ⟨v, d⟩ = θ
}

.

We use Sv(±θ) to denote Sv(θ) ∪ Sv(−θ) and S(θ) to denote Sv(θ) when v is the all-ones

vector.

Remark 4.35. With our notation for the slice, the planted distribution in the Boolean setting can

be equivalently described as

1. Sample v ∈
{
±1√

n

}n
uniformly, and then

2. Sample d1, . . . , dm independently and uniformly from S√
n·v(±

√
n).

The planted distribution doesn’t actually exist for every n, but this is immaterial, as

we can still define the pseudoexpectation via the same formula.

We will also need the expectation of monomials over the slice S(
√

n) since they will

appear in the description of the pseudocalibrated Fourier coefficients.

Definition 4.36. e(k) := Ex∈RS(
√

n) [x1 · · · xk] .

We now compute the Fourier coefficients of Ẽ vβ, where β ∈ Fn
2 . The Fourier basis

when d1, . . . , dm ∈R {±1}n is the set of parity functions. Thus a character can be specified

by α ∈ (Fn
2 )

m, where α is composed of m vectors α1, . . . , αm ∈ Fn
2 . More precisely, the

character χα associated to α is defined as

χα(d1, . . . , dm) :=
m
∏
u=1

dαu
u
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We denote by |α| the number of non-zero entries of α and define |αu| similarly. Thinking

of α as an m × n matrix with entries in F2, we also define α⊺ ∈ (Fn
2 )

m.

Lemma 4.37. We have

Ẽ vβ =
1

n|β|/2 ∑
α : |α|≤nτ ,
|αu| even,

|α⊺i |≡βi (mod 2)

m
∏
u=1

e(|αu|) · χαu(du).

The set of nonzero coefficients has a similar structure as in the Gaussian case: the rows

of α must have an even number of entries, and the i-th column must have parity matching

βi.

Proof. Given α ∈ (Fn
2 )

m with |α| ≤ nτ, the pseudocalibration equation enforces by con-

struction that

E
d1,...,dm∈{±1}n

(Ẽ vβ)(d1, . . . , dm) · χα(d1, . . . , dm) = E
pl

vβ · χα(d1, . . . , dm).

Computing the RHS above yields

E
v∈{±1}n

E
d1,...,dm∈RSv(±

√
n)

[
vβ

m

∏
u=1

χαu(du)

]
= E

v∈{±1}n
E

d1,...,dm∈RS(±
√

n)

[
vβ

m

∏
u=1

χαu(v)χαu(du)

]

= E
v∈{±1}n

χα1+···+αm+β(v) E
d1,...,dm∈S(±

√
n)

[
m

∏
i=1

χαi(di)

]

= 1[α1+···+αm=β] ·
m

∏
i=1

E
di∈S(±

√
n)
[χαi(di)]

= 1[α1+···+αm=β] ·
m

∏
i=1

1[|αi |≡0 (mod 2)] ·
m

∏
i=1

e(|αi|).

Since we have a general expression for the Fourier coefficient of each character, applying

Fourier inversion concludes the proof.

Claim 4.38. e(2) = 0.
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Proof. Fix y ∈ S(
√

n). Note that (∑n
i=1 yi)

2 = n implying ∑i<j yiyj = 0. Using this fact,

we get

E
x∈S(

√
n)
[x1x2] = E

σ∈Sn
yσ(1)yσ(2) = 0,

concluding the proof.

We can now express the moment matrix in terms of graph matrices.

Definition 4.39. Let Lbool be the set of shapes in L from Definition 4.29 in which the edge labels

are all 1.

Remark 4.40. Lbool captures all the shapes that have nonzero coefficient when we write M in

terms of graph matrices. Similar to Remark 4.31, since e(2) = 0, we have the same condition

deg( u ) ≥ 4 for shapes in Lbool .

Definition 4.41. For all shapes α, if α ∈ Lbool define

λα :=
1

n(|Uα|+|Vα|)/2 ∏
u ∈V(α)

e(deg( u ))

Otherwise, let λα := 0.

Corollary 4.42. M = ∑
shapes α

λαMα

4.3.3 Unifying the analysis

It turns out that the analysis of the Boolean setting mostly follows from the analysis in the

Gaussian setting. Initially, the Boolean pseudocalibration is essentially equal to the Gaus-

sian pseudocalibration in which we have removed all shapes containing at least one edge

with a label k ≥ 2. The coefficients on the graph matrices will actually be slightly differ-

ent, but they both admit an upper bound that is sufficient for our purposes (see Proposi-

tion 4.45 for the precise statement).
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During the course of the analysis, we may multiply two graph matrices and produce

graph matrices with improper parallel edges (the intersections terms). We will always

bound the intersection terms by applying the triangle inequality and norm bounds. Since

we show bounds that include the additional nonzero terms in the Gaussian case, the same

bounds apply in the Boolean case.

We will consider separate cases at any point where the analysis differs between the

two settings.

Furthermore, the lower bound should be universal for vectors di whose entries are iid

from a distribution D, provided that D is mean 0, variance 1, and D is O(1)-subgaussian

(this doesn’t cover some settings of interest where the di are not independent). The same

proof should go through using graph matrices consisting of the orthogonal polynomials

for D, and the generalized norm bounds from [AMP20]. However, we have not checked

all the details.

4.4 Proving PSD-ness

Here we give the details of the PSD-ness argument to prove Theorem 4.4. Fix a constant

ε > 0 and a random instance d1, . . . , dm with n ≤ m ≤ n3/2−ε. The candidate moment

matrix M constructed in Section 4.3 goes up to SoS degree nδ for a parameter δ > 0.

For the pseudocalibration we truncate to only Fourier coefficients of size at most nτ.

The relationship between the parameters is δ ≤ cτ ≤ c′ε where c′ < c < 1 are absolute

constants. We will assume that they are sufficiently small for all our proofs to go through.

It is possible that truncation degree O(nδ log n) or O(nδ/ε) instead of nτ would suffice

for our proof, but we have not attempted to optimize.
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4.4.1 Handling non-spiders

Looking at the shapes that make up M, the trivial shape with k square vertices contributes

an identity matrix on the degree-2k submatrix of M. Our ultimate goal will be to bound

all shapes against these identity matrices.

Recall the blocks of the moment matrix.

Definition 4.43 (Block). For k, l ∈ {0, 1, . . . , D/2}, the (k, l) block of M is the submatrix

with rows from (
[n]
k ) and columns from (

[n]
l ). Note that when M is expressed as a sum of graph

matrices, this exactly restricts M to shapes α with |Uα| = k and |Vα| = l.

We define the parameter η := 1/
√

n. The trivial shapes live in the diagonal blocks of

M, and on the (k, k) block contribute a factor of 1
nk = η2k on the diagonal. In principle, we

could make η as small as we like4 by considering the moments of a rescaling of v rather

than v itself. Counter-intuitively, it will turn out that the scaling helps us prove PSD-ness

(see [GJJ+20, Appendix D] for more details). It turns out that pseudocalibrating v as a

unit vector (equivalently, using η = 1/
√

n) is sufficient for our analysis.

Towards the goal of bounding M by the identity terms, we will bound the norm of

matrices on each block of M, and invoke the following lemma to conclude PSD-ness.

Proposition 4.44. Suppose a symmetric matrix A ∈ R
( [n]≤D)×( [n]≤D) satisfies, for some parameter

η ∈ (0, 1),

1. For each k ∈ {0, 1, . . . , D}, the (k, k) block has minimum singular value at least η2k(1 −
1

D+1)

2. For each k, l ∈ {0, 1, . . . , D} such that k ̸= l, the (k, l) block has norm at most ηk+l

D+1 .

Then A ⪰ 0.

4. Though pseudocalibration truncation errors may become non-negligible for extremely tiny η.
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Proof. We need to show that for all vectors x, x⊺Ax ≥ 0. Given a vector x, let x0, . . . , xD

be its components in blocks 0, . . . , D. Observe that

x⊺Ax ≥ ∑
k∈[0,D]

η2k
(

1 − 1
D + 1

)
∥xk∥2 − ∑

k ̸=l∈[0,D]

ηk+l

D + 1
∥xk∥∥xl∥

= (∥x0∥, η∥x1∥, . . . , ηD∥xD∥)



1 − 1
D+1 − 1

D+1 · · · − 1
D+1

− 1
D+1 1 − 1

D+1 · · · − 1
D+1

...
... . . . ...

− 1
D+1 − 1

D+1 · · · 1 − 1
D+1





∥x0∥

η∥x1∥
...

ηD∥xD∥


≥ 0.

We have the following general-purpose upper bound on the coefficients of the graph

matrices.

Proposition 4.45. |λα| ≤ η|Uα|+|Vα| · |E(α)|
3·|E(α)|

n|E(α)|/2

Proof. (Gaussian setting) Recall that the coefficients λα are either zero or are defined by

the formula

λα = η|Uα|+|Vα| ·

 ∏
u ∈V(α)

hdeg( u )(1)

 · 1

n|E(α)|/2
· 1

α!

The sequence hk(1) satisfies the recurrence h0(1) = h1(1) = 1, hk+1(1) = hk(1) −

khk−1(1). We can prove by induction that |hk(1)| ≤ kk and hence,

∏
u ∈V(α)

∣∣∣hdeg( u )(1)
∣∣∣ ≤ ∏

u ∈V(α)

(deg( u ))deg( u ) ≤ |E(α)||E(α)|.

(Boolean setting) In the boolean setting the coefficients λα are defined by

λα = η|Uα|+|Vα| ·

 ∏
u ∈V(α)

e(deg( u ))


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Using [GJJ+20, Corollary B.12], we have that |e(k)| ≤ k3k · n−k/2. Thus,

|λα| = η|Uα|+|Vα| · ∏
u ∈V(α)

|e(deg( u ))| ≤ η|Uα|+|Vα| · |E(α)|
3|E(α)|

n|E(α)|/2
.

The specific norm bounds we use are the following. See [GJJ+20, Appendix A] for the

proofs.

Lemma 4.46 (Boolean setting norm bound). There is a universal constant C such that the

following norm bound holds for all proper shapes α, allowing isolated vertices, whp:

∥Mα∥ ≤ 2 · (|V(α)| · log(n))C·|V(α)\(Uα∩Vα)| · n
w(V(α))−w(Smin)+w(Iα)

2

For a Hermite shape α, define the total size to be |Uα|+ |Vα|+ |Wα|+ |E(α)|.

Lemma 4.47 (Gaussian setting norm bound). There is a universal constant C such that the

following norm bound holds for all proper shapes α, allowing isolated vertices, with total size at

most n whp:

∥Mα∥ ≤ 2 · (|V(α)| · (1 + |E(α)|) · log(n))C·(|V(α)\(Uα∩Vα)|+|E(α)|) · n
w(V(α))−w(Smin)+w(Iα)

2

Lemma 4.48. If α ∈ L is not a trivial shape and not a spider, then

|λα|∥Mα∥ ≤ η|Uα|+|Vα|

nΩ(ε|E(α)|) .

Proof. This is the formal statement of Lemma 4.17. Using the formal norm bounds in the

proof, the only factor we have not handled is the log factor in the norm bound,

2 · (|V(α)| · (1 + |E(α)|) · log(n))C·(|V(α)\(Uα∩Vα)|+|E(α)|) .
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Observe that since there no degree 0 vertices in V(α) \ (Uα ∩Vα), we have that |V(α) \ (Uα ∩ Vα)| ≤

2|E(α)|. We also have |V(α)| · (1 + |E(α)|) · log n ≤ nO(τ). The log factor is upper

bounded by:

2 · (|V(α)| · (1 + |E(α)|) · log(n))C·(|V(α)\(Uα∩Vα)|+|E(α)|) ≤ nO(τ|E(α)|) .

Therefore, it can be absorbed into 1
nΩ(ε|E(α)|) without a qualitative change.

This says that nontrivial non-spider shapes have on(1) norm (ignoring the extra factor

η for the moment). We now demonstrate how to use this norm bound to control the

total norm of all non-spiders in a block of M, Corollary 4.50. We will first need a couple

propositions which will also be of use to us later after we kill the spiders.

Proposition 4.49. The number of proper shapes with at most L vertices and exactly k edges is at

most L8(k+1).

Proof. The following process captures all shapes (though many will be constructed mul-

tiple times):

• Choose the number of square and circle variables in each of the four sets U ∩ V, U \

(U ∩ V), V \ (U ∩ V), W. This contributes a factor of L8.

• Place each edge between two of the vertices. This contributes a factor of L2k.

Corollary 4.50. For k, l ∈ {0, 1, . . . , D/2}, let Bk,l ⊆ L denote the set of nontrivial, non-spiders

α ∈ L on the (k, l) block i.e. |Uα| = k, |Vα| = l. The total norm of the non-spiders in Bk,l satisfies

∑
α∈Bk,l

|λα|∥Mα∥ ≤ ηk+l · 1

nΩ(ε)
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Proof.

∑
α∈Bk,l

|λα|∥Mα∥ ≤ ηk+l · ∑
α∈Bk,l

1

nΩ(ε|E(α)|) (Lemma 4.48)

≤ ηk+l ·
∞

∑
i=1

nO(τi)

nΩ(εi)
(Proposition 4.49 and |E(α)| ≥ 1 for α ∈ Bk,l)

= ηk+l · 1

nΩ(ε)

4.4.2 Killing a single spider

We saw in the Proof Outline that the shape 2β1 +
1
n β2 lies in the nullspace of a moment

matrix which satisfies the constraints “⟨v, du⟩2 = 1". The shape β1 is exactly the kind

of substructure that appears in a spider! Therefore it is natural to hope that if α is a

left spider, then MMα = 0. This doesn’t quite hold because ⟨v, du⟩2 is “missing" some

intersection terms: in realizations of α, the end vertices are required to be distinct from the

other squares in α, which prevents terms for all pairs i, j from appearing in the product

MMα. There are smaller “intersection terms" (which we call collapses of α here) that we

can add so that the end vertices are permitted to take on all pairs i, j. After adding in these

terms, we will produce a matrix L with ML = 0.

We first define what it means to collapse a shape into another shape by merging two

vertices. Here, we only define it for merging two square vertices, since these are the only

kind of merges that will happen in our analysis of intersection terms.

Definition 4.51 (Improper collapse). Let α be a shape and let i , j be two distinct square

vertices in V(α). We define the improper collapse of i , j by:

• Remove i , j from V(α) and replace them by a single new vertex k .
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• Replace each edge { i , u } and { j , u }, if present, by { k , u }, keeping the same labels (note

that there may be multiedges and so the new shape may not be proper).

• Set U( k ) = U( i ) + U( j )(mod 2) and V( k ) = V( i ) + V( j )(mod 2).

Definition 4.52 (Collapsing a shape). Let α be a shape with two distinct square vertices i , j .

We say that β is a (proper) collapse of i , j if β has nonzero coefficient in the linearization of the

improper collapse of i , j .

Remark 4.53. If l1, . . . , lk are the labels of a set of parallel edges, then the product hl1(z) · · · hlk(z)

is even/odd depending on the parity of l1 + · · ·+ lk. Thus the nonzero Fourier coefficients in the

linearization will be the terms of matching parity. Therefore, in both the Boolean and Gaussian

cases, the shapes that are proper collapses of a given improper collapse are formed by replacing each

set of parallel edges by a single edge e such that l(e) ≤ l1 + . . . + lk and l(e) ≡ l1 + · · ·+ lk

(mod 2).

Remark 4.54. Looking at the definition and in light of the previous remark, we have the following.

1. The number of circle vertices does not change by collapsing a shape but the number of square

vertices decreases by 1.

2. α ∈ L has the property that the vertices have odd degree if and only if they are in (Uα ∪

Vα) \ (Uα ∩ Vα). When α collapses, this property is preserved.

We now define the desired shapes Lk which lie in the null space of M.

Definition 4.55. For k ≥ 2 define the shape ℓk on { 1 , . . . , k , 1 } with two edges {{ 1 , 1 }, { 2 , 1 }}.

The left side of ℓk consists of Uℓk
= { 1 , . . . , k }. The right side consists of Vℓk

= { 3 , . . . , k , 1 }.

Definition 4.56. Define the “completed” version Lk of ℓk to be the matrix which is the sum of

cβMβ for β being the following shapes with coefficients:

• (Lk,1): ℓk, with coefficient 2.
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• (Lk,2): If k ≥ 3, collapse 1 and 3 in ℓk with coefficient 2
n

• (Lk,3): If k ≥ 4, collapse 1 and 3 , and collapse 2 and 4 in ℓk with coefficient 2
n2

• (Lk,4): Collapse 1 and 2 , replacing the edges by an edge with label 2, with coefficient 1
n

• (Lk,5): If k ≥ 3, collapse 1 , 2 , and 3 , replacing the edges by an edge with label 2, with

coefficient 1
n .

For a pictorial representation of the ribbons/shapes, see Fig. 4.8 below.

Lemma 4.57. If M is a moment matrix satisfying the constraints “⟨v, du⟩2 = 1”, then MLk = 0

Proof. These shapes are constructed so that if we fix a partial realization of the vertices 1

and 3 , . . . , k as u ∈ Cm and S ∈ ( Sn
k−2), the squares 1 and 2 can still be realized as any

j1, j2 ∈ [n]. That is, exactly the following equality holds,

(MLk)I = ∑
u ∈Cm,

S∈( Sn
k−2)

 ∑
j1,j2∈[n]:

j1 ̸=j2

Ẽ[vIvSvj1vj2 ]duj1duj2 + ∑
j1∈[n]

Ẽ[vIvSv2
j1
](d2

uj1
− 1)


= ∑

u ∈Cm,
S∈( Sn

k−2)

Ẽ[vIvS(⟨v, du⟩2 − 1)]

= 0

To demonstrate how the coefficients arise, we analyze the ribbons R which Lk is com-

posed of and see how they contribute to the output. For pictures of the ribbons/shapes,

see Fig. 4.8 below. Let the ribbon be partially realized as u and S = { j3 , . . . , jk }. Let

(MLk)I(u,S) denote the terms in (MLk)I with this partial realization. In this notation we
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want to show

(MLk)I(u,S) = ∑
j1,j2∈[n]:

j1 ̸=j2

Ẽ[vIvSvj1vj2 ]duj1duj2 + ∑
j1∈[n]

Ẽ[vIvSv2
j1
](d2

uj1
− 1).

2

j1

j2

j3

j4

u

Uα1 ∩ Vα1

Uα1 \ Vα1
Vα1 \ Uα1

+2
n

j3
j2

j4

u

Uα2 ∩ Vα2

Uα2 \ Vα2 Vα2 \ Uα2 + 2
n2

j3
∅

j4

u

Uα3 ∩ Vα3

Uα3 \ Vα3

Vα3 \ Uα3

+1
n

j1

j3

j4

u

Uα4 ∩ Vα4

Vα4 \ Uα4

∅

Uα4 \ Vα4

2

+1
n

j3

j4

u

Uα5 ∩ Vα5

Vα5 \ Uα5

∅

Uα5 \ Vα5
2

∅

Figure 4.8: The five shapes that make up L4.

1. If we take a ribbon R with AR = { j1 , . . . , jk }, BR = { j3 , . . . , jk }∪ { u } and E(R) =

{{ j1 , u }, { j2 , u }} where j1 ̸= j2 and j1, j2 /∈ S then

(MMR)I(u,S) = Ẽ[vIvSvj1vj2 ]duj1duj2 .

This ribbon must “cover” both ordered pairs (j1, j2) and (j2, j1), so we want each

such ribbon R to appear with a coefficient of 2 in Lk.

2. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j3 }, BR = { j3 , . . . , jk } ∪ { u }
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and E(R) = {{ j3 , u }, { j2 , u }} where j1 = j3 ∈ S then

(MMR)I(u,S) = Ẽ[vIvS\{j3}vj2 ]duj3duj2 = n Ẽ[vIvSvj1vj2 ]duj1duj2 .

Taking a coefficient of 2
n in Lk covers the two pairs (j1, j2) and (j2, j1) for this case of

overlap with S.

3. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 , j3 , j4 }, BR = { j3 , . . . , jk }∪

{ u } and E(R) = {{ j3 , u }, { j4 , u }} where j1 = j3 ∈ S and j2 = j4 ∈ S then

(MMR)I(u,S) = Ẽ[vIvS\{j3,j4}]duj3duj4 = n2 Ẽ[vIvSvj1vj2 ]duj1duj2 .

Taking a coefficient of 2
n2 in Lk covers the two pairs (j1, j2) and (j2, j1) for this case

of overlap with S.

4. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 }, BR = { j3 , . . . , jk } ∪ { u }

and E(R) = {{ j1 , u }2} where j1 = j2 /∈ S then

(MMR)I(u,S) = Ẽ[vIvS](d2
uj1

− 1) = n Ẽ[vIvSv2
j1
](d2

uj1
− 1).

Taking a coefficient of 1
n in Lk covers these terms.

5. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 }, BR = { j3 , . . . , jk } ∪ { u }

and E(R) = {{ j3 , u }2} where j1 = j2 = j3 ∈ S then

(MMR)I(u,S) = Ẽ[vIvS](d2
uj3 − 1) = n Ẽ[vIvSv2

j1
](d2

uj1
− 1).

Taking a coefficient of 1
n in Lk covers these terms.
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Proposition 4.58. Let α, β be composable shapes. Assume that V(α) \ Vα has only square ver-

tices. Let Ĩ = {αP : P ∈ Pα,β} be the set of improper collapses (intersection terms) in MαMβ.

Then there are coefficients cγ for γ ∈ Ĩ ,
∣∣cγ
∣∣ ≤ 2|V(α)\Vα||V(γ)||V)α)\Uα|, such that

Mα · Mβ = ∑
γ∈Ĩ

cγMγ .

Proof. The coefficients exist by Proposition 2.39. We need to upper bound them by upper

bounding the coefficient of a ribbon from the right-hand side.

Let T be a ribbon on the right-hand side of shape γ. We say ribbons R of shape α and

S of shape β contribute to T if MRMS = MT. From T, we can completely recover the

sets AR and BS. The labels of V(R) \ AR must be among the labels of T; choose them

in at most |V(γ)||V(α)\Uα| ways. This also determines BR = AS. All that remains is to

determine the graph structure of S. Since improper collapsing doesn’t lose any edges,

knowing the labels of R we know exactly which edges of T must come from R and S. The

vertices V(T) \V(R) must come from S, as must BR; pick a subset of V(R) \ BR to include

in 2|V(α)\Vα| ways.

Let α be a left spider with end vertices i , j which are adjacent to a circle u . Recall

that our goal is to argue that MMα ≈ 0. To get there, we can try and factor Mα across the

vertex separator S = Uα ∪ { u } \ { i , j } which separates α into

Mα ≈ L|Uα| · Mbody(α)

where we have defined,

Definition 4.59. Let α be a left spider with end vertices i , j . Define body(α) as the shape whose

graph is α with i and j deleted and with Ubody(α) = Uα ∪ { u } \ { i , j }, Vbody(α) = Vα.

The definition is analogous for right spiders.
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Due to Lemma 4.57, the right-hand side of the approximation is in the null space of

M. We now formalize this approximate factorization.

Definition 4.60. Let α be a spider with end vertices i , j . Define Ĩα to be the set of shapes that

can be obtained from α by performing at least one of the following steps:

• Improperly collapse i with a square vertex in α

• Improperly collapse j with a square vertex in α

Let Iα be the set of proper shapes that can be obtained via the same process but using proper

collapses.

In the above definition, we allow i , j to collapse with two distinct squares, or to

collapse together, or to both collapse with a common third vertex. For technical reasons

we need to work with a refinement of Iα into two sets of shapes and use tighter bounds

on coefficients of one set.

Definition 4.61. Let I(1)α be the set of shapes that can be obtained from α by performing at least

one of the following steps:

• Collapse i with a square vertex in body(α) \ Uα

• Collapse j with a square vertex in body(α) \Uα (distinct from i ’s collapse if it happened)

Let I(2)α := Iα \ I(1)α and define the improper versions Ĩ(1)α , Ĩ(2)α analogously.

Lemma 4.62. Let α be a left spider with end vertices i , j . There are coefficients cβ for β ∈ Ĩα

such that

L|Uα| · Mbody(α) = 2Mα + ∑
β∈Ĩα

cβMβ,

∣∣∣cβ

∣∣∣ ≤


40|V(α)|3 β ∈ Ĩ(1)α

40|V(α)|3
n β ∈ Ĩ(2)α

.
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Proof. First, we can check that the coefficient of Mα is 2. Only the ℓk term of Lk has the

full number of squares, and it has a factor of 2 in Lk.

The shapes in Ĩα are definitionally the intersection terms that appear in this graph

matrix product, and furthermore the shapes in Ĩα are definitionally the intersection terms

for the ℓk term. Using Proposition 4.58, for each of the five shapes in L|Uα| the coefficient

it contributes is bounded by 4|V(α)|3. The coefficient on ℓk is 2, so the coefficients for Ĩ(1)α

are at most 8|V(α)|3. The maximum coefficient of the other four shapes in L|Uα| is 2
n , so

their total contribution to coefficients on Ĩ(2)α is at most 32|V(α)|3
n .

Proposition 4.63. Let l1 ≤ · · · ≤ lk ∈ N and let L = l1 + · · · + lk. Assume L ≥ 1. In

the Fourier expansion of hl1(z) · · · hlk(z), the maximum coefficient is bounded in magnitude by

(2L)L−lk .

Proof. In the boolean case, the coefficient is 1. In the Gaussian case, the “linearization

coefficient” of hp(z) in this product is given by orthogonality to be

Ez∼N (0,1)[hl1(z) · · · hlk(z) · hp(z)]

Ez∼N (0,1)[h
2
p(z)]

=
Ez∼N (0,1)[hl1(z) · · · hlk(z) · hp(z)]

p!

A formula from, e.g., [RW97, Example G (Continued)] shows that E[hl1 · · · hlk · hp] equals

the number of “block perfect matchings”: perfect matchings on l1 + · · ·+ lk + p elements

divided into blocks of size li or p such that no two elements from the same block are

matched. Bound the number of block perfect matchings by:

• Pick a partial function from blocks l1, . . . , lk−1 to [L] in at most (L + 1)L−lk ways.

• If this forms a valid partial matching and there are p unmatched elements remain-

ing, match them with the elements from the block of size p in p! ways.

Therefore the coefficient is bounded by (L + 1)L−lk ≤ (2L)L−lk .
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Lemma 4.64. If α is a left spider, there are coefficients cβ for each β ∈ Iα such that

L|Uα| · Mbody(α) = 2Mα + ∑
β∈Iα

cβMβ,

∣∣∣cβ

∣∣∣ ≤


160|V(α)|7|E(α)|2 β ∈ I(1)α

160|V(α)|7|E(α)|2
n β ∈ I(2)α

.

Proof. We express each Mβ, β ∈ Ĩα in Lemma 4.62 in terms of proper shapes. We apply ??

using the following bounds on CFourier and CAut. The only improperness in β comes

from collapsing (at most) the two end vertices, which have a single incident edge each.

Therefore the set of labels of any parallel edges is either {1, k} or {1, 1, k}, for some k ≤

|E(α)|. By Proposition 4.63, we have CFourier ≤ 4|E(α)|2. There are at most two extra

parallel edges in β, so we have CAut ≤ |V(α)|4 using Proposition 2.26. Therefore the

coefficients increase by at most CFourier · CAut ≤ 4|E(α)|2|V(α)|4.

Corollary 4.65. If α is a right spider, there are coefficients cβ with the same bounds given in Lemma 4.64

such that

Mbody(α) · L⊺|Uα| = 2Mα + ∑
β∈Iα

cβMβ.

Corollary 4.66. If M satisfies the constraints “⟨v, du⟩2 = 1”, x ⊥ Null(M) and α is a spider,

then for some cβ with the same bounds given in Lemma 4.64,

x⊤(Mα − ∑
β∈Iα

cβMβ)x = 0

Proof. For a left spider, since

M(2Mα + ∑
β∈Iα

cβMβ) = M· L|Uα| · Mα′ = 0
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every column of 2Mα + ∑β∈Iα
cβMβ is in Null(M) and the claim follows. For a right

spider, the proof is analogous.

4.4.3 Proving PSD-ness: killing all the spiders

We must bound the accumulation on the coefficients λ′
β. We do this by considering the

web of spiders and non-spiders created by each spider and using bounds on the cβ and λα

to argue that the contributions do not blow up, via an interesting charging scheme that

exploits the structure of these graphs.

The strategy is to start with the moment matrix M and apply Corollary 4.66 repeat-

edly until we end up with no spiders in our decomposition. For each spider, killing it

via Corollary 4.66 leaves only intersection terms. Some of those intersection terms may

themselves be smaller spiders, in which case we will apply the corollary again and again

until only non-spiders remain. The difficulty during this procedure is to bound the total

coefficient accumulated on each non-spider. To capture this process, we define the web

of a spider α, which will be a directed acyclic graph that will capture the spider killing

process. For the sake of distinction, we will call the vertices of this graph “nodes".

Definition 4.67 (Web of α). The web W(α) of a spider α is a rooted directed acyclic graph (DAG)

whose nodes are shapes and whose root is α. Each spider node γ has edges to nodes β for each shape

β ∈ Iγ. The non-spider nodes are leaves/sinks of the DAG.

Remark 4.68. The DAG structure arises because each shape in Iγ has strictly fewer square ver-

tices than γ for any spider γ. As a consequence, the height of a web W(α) is at most |V(α)|.

Each node γ of W(α) also has an associated value vγ, which is defined by the following

process:

• Initially, set vα = 1 and for all other γ, set vγ = 0.

• Starting from the root and in topological order, each spider node γ adds vγcβ to vβ
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for each child β ∈ Iγ, where the cβ are the coefficients from Corollary 4.66.

Proposition 4.69. If M satisfies the constraints “⟨v, du⟩2 = 1” and x ⊥ Null(M), then

x⊺

Mα − ∑
leaves γ of W(α)

vγMγ

 x = 0.

Proof. Start with the equation x⊺Mαx = x⊺vαMαx. In each step, we take the topologically

first spider γ, which in this case means the spider closest to the root of W(α), that is

present in the right hand side of our equation and using Corollary 4.66, we replace vγMγ

by ∑β∈children(γ) vγcβMβ. Precisely by the definition of the vγ, this process ends with the

equation

x⊺Mαx = x⊺

 ∑
leaves γ of W(α)

vγMγ

 x

Proposition 4.70. For any node β in W(α), |parents(β)| ≤ 4|V(α)|3 · |E(α)|2 where parents(β)

is the set of nodes γ in W(α) such that β ∈ Iγ.

Proof. The following process covers all parent left spiders γ which could possibly collapse

their end vertices to form β. Starting from γ = β,

• Pick a circle vertex u ∈ V(γ) to be the neighbor of the end vertices.

• Pick a square vertex i ∈ V(γ) to be the collapse of the first end vertex. “Uncol-

lapse” it by adding a new square to Uγ with a single edge to u with label 1. Flip the

value of Uγ( i ). Modify the label of { i , u } to any number up to |E(α)|.

• Pick a square vertex j ∈ V(γ) to be the second end vertex. Optionally uncollapse

it by adding a new square to γ in the same way as above.

The process can be carried out in at most |V(α)|3|E(α)|(|E(α)| + 1) ≤ 2|V(α)|3|E(α)|2

ways. We multiply by 2 to accommodate right spiders.
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Let us label each parent-child edge (γ, β) as either a “type 1” edge if β ∈ I(1)γ or a

“type 2” edge if β ∈ I(2)γ .

Proposition 4.71. Let p be a path in W(α) with #1(p) type 1 edges and #2(p) type 2 edges. Then

#1(p) ≤ |E(α)| + 2#2(p).

Proof. For a shape γ, let Sγ be the set of square vertices in γ. Then, Sγ ∩ Wγ will be the

set of middle vertices of γ which are squares. We claim that the quantity
∣∣Sγ ∩ Wγ

∣∣ +∣∣Uγ \ (Uγ ∩ Vγ)
∣∣+ ∣∣Vγ \ (Uγ ∩ Vγ)

∣∣ decreases during a collapse.

Fix a pair of consecutive shapes (γ, β) which form a type 1 edge. Looking at the

definition of I(1)γ , each end vertex either collapses with (1) nothing, or (2) a vertex of Wγ,

or (3) a vertex from Vγ \Uγ (if γ is a left spider; for a right spider, Uγ \ Vγ). Furthermore,

case (2) or (3) must occur for at least one of the end vertices and also, they do not collapse

together.

If case (2) occurs, then
∣∣∣Sβ ∩ Wβ

∣∣∣ < ∣∣Sγ ∩ Wγ
∣∣while

∣∣∣Uβ \ (Uβ ∩ Vβ)
∣∣∣ = ∣∣Uγ \ (Uγ ∩ Vγ)

∣∣
and

∣∣∣Vβ \ (Uβ ∩ Vβ)
∣∣∣ = ∣∣Vγ \ (Uγ ∩ Vγ)

∣∣. If case (3) occurs, then Wβ = Wγ while
∣∣∣Uβ \ (Uβ ∩ Vβ)

∣∣∣ <∣∣Uγ \ (Uγ ∩ Vγ)
∣∣ and

∣∣∣Vβ \ (Uβ ∩ Vβ)
∣∣∣ <

∣∣Vγ \ (Uγ ∩ Vγ)
∣∣. In all cases,

∣∣∣Sβ ∩ Wβ

∣∣∣ +∣∣∣Uβ \ (Uβ ∩ Vβ)
∣∣∣+ ∣∣∣Vβ \ (Uβ ∩ Vβ)

∣∣∣ < ∣∣Sγ ∩ Wγ
∣∣+ ∣∣Uγ \ (Uγ ∩ Vγ)

∣∣+ ∣∣Vγ \ (Uγ ∩ Vγ)
∣∣

as desired.

Now we bound this expression for α. From the definition of L, Definition 4.29, for

spiders appearing in the pseudocalibration, the square vertices in Wα, Uα \ (Uα ∩Vα) and

Vα \ (Uα ∩ Vα) have degree at least 1 and can only be connected to circle vertices. There-

fore their number is bounded by |E(α)|. Hence, initially |Sα ∩ Wα|+ |Uα \ (Uα ∩ Vα)|+

|Vα \ (Uα ∩ Vα)| ≤ |E(α)|.

Finally, each type 2 edge in p can only increase
∣∣Sγ ∩ Wγ

∣∣+ ∣∣Uγ \ (Uγ ∩ Vγ)
∣∣+ ∣∣Vγ \ (Uγ ∩ Vγ)

∣∣
by at most 2. Therefore, we have the desired inequality #1(p) ≤ |E(α)|+ 2#2(p).

Corollary 4.72. #2(p) ≥ |p|
3 − |E(α)|

3 .
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Proof. Plug in |p| = #1(p) + #2(p) and rearrange.

Finally, we can bound the accumulation on each non-spider by a term which only

depends on the parameters of the spider α.

Lemma 4.73. There are absolute constants C1, C2 so that for all leaves γ of W(α),

∣∣vγ
∣∣ ≤ (C1 · |V(α)| · |E(α)|)C2|E(α)|.

Proof. To bound
∣∣vγ
∣∣ we will sum the contributions of all paths p = (β0 = α, . . . , βr = γ)

in W(α) starting from α and ending at γ. This path contributes a product of coefficients

cβ towards vγ.

Remark 4.74. Here it is important that type 2 edges have stronger bounds on their coefficients∣∣∣cβ

∣∣∣ ≤ C · (|V(α)||E(α)|)O(1)/n ≪ 1.

Before we proceed with the proof we establish some convenient notation and recall

some facts. For consecutive shapes βi−1, βi (i.e. βi is a child of βi−1), we denote by cβi
the

coefficient from Corollary 4.66 applied on βi−1. By Proposition 4.70, the in-degree of W(α)

can be bounded as B1 · (|V(α)||E(α)|)B2 for some constants B1, B2. Thus, the number of

paths of length r ending at γ is at most (B1|V(α)||E(α)|)B2r. Using Corollary 4.66, set

B1, B2 large enough so that cβi
is at most B1 · (|V(α)||E(α)|)B2 for a type 1 edge (resp.

B1 · (|V(α)||E(α)|)B2/n for a type 2 edge).
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|vγ| ≤
∞

∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W(α)

r

∏
i=1

∣∣cβi

∣∣
≤

∞

∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W(α)

(
B1 · (|V(α)||E(α)|)B2

)#1(p) (
B1 · (|V(α)||E(α)|)B2 /n

)#2(p)
(Corollary 4.66)

≤
∞

∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W(α)

(
B1 · (|V(α)||E(α)|)B2

)|E(α)|+2#2(p) (
B1 · (|V(α)||E(α)|)B2 /n

)#2(p)
(Proposition 4.71)

=
∞

∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W(α)

(
B1 · (|V(α)||E(α)|)B2

)|E(α)| (
B′

1 · (|V(α)||E(α)|)B′
2 /n

)#2(p)

for some constants B′
1, B′

2. We split the above sum into two sums, r ≤ 3|E(α)| and

r > 3|E(α)|. For r ≤ 3|E(α)|, upper bounding the #2(p) term by 1 and upper bounding

the number of paths by (B1|V(α)||E(α)|)B2r gives a bound of (B′′
1 |V(α)||E(α)|)B′′

2 |E(α)| for

some constants B′′
1 , B′′

2 . For larger r, we lower bound #2(p) ≥ r/9 = |E(α)|/3 using Corol-

lary 4.72. Applying the same bound on the number of paths, the total contribution of the

terms corresponding to larger r is bounded by 1 using the power of n in the denominator

(assuming δ, τ are small enough).

We define the result of all this spider killing to be a new matrix M+.

Definition 4.75. Define the matrix M+ as the result of killing all the spiders,

M+ := M− ∑
spiders α

λα

Mα − ∑
leaves γ of W(α)

vγMγ


Let λ+

α be the coefficients in the graph matrix basis,

M+ = ∑
shapes α

λ+
α Mα .
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4.4.4 Finishing the proof

Proposition 4.76. If β is a trivial shape, λ+
β = λβ.

Proof. A trivial shape cannot appear in W(α) for any α, since every collapse of a spider

always keeps its circle vertices around.

Lemma 4.77. If β is a nontrivial non-spider and β ∈ W(α) for some spider α ∈ L, then

|λα|
∥∥∥Mβ

∥∥∥ ≤ η|Uβ|+|Vβ|

nΩ(ε|E(α)|) .

Proof. This is the formal statement of Lemma 4.22. Using the formal norm bounds Lemma 4.46

and Lemma 4.47, the only unaccounted factor is log factor in the norm bound,

2 · (|V(β)| · (1 + |E(β)|) · log(n))C·(|Vrel(β)|+|E(β)|) .

The base is upper bounded by nO(τ). In the exponent, we have |Vrel(β)| ≤ 2(|E(α)| +

|E(β)|) since all the degree 0 vertices in Vrel(β) would have had vertices of Vrel(α) collapse

into it in the chain of collapses and there are no degree 0 vertices in Vrel(α). Finally,

since |E(β)| ≤ |E(α)|, the exponent is at most O(|E(α)|). Therefore the log factor can be

absorbed into 1
nΩ(ε|E(α)|) .

Lemma 4.78. For k, l ∈ {0, 1, . . . , D/2}, let Bk,l denote the set of nontrivial non-spiders on block

(k, l). Then

∑
β∈Bk,l

∣∣∣λ+
β

∣∣∣∥∥∥Mβ

∥∥∥ ≤ ηk+l · 1

nΩ(ε)

Proof.

∑
β∈Bk,l

∥∥∥λ+
β Mβ

∥∥∥ ≤ ∑
β∈Bk,l

∣∣∣λβ

∣∣∣∥∥∥Mβ

∥∥∥+ ∑
β∈Bk,l

∑
spiders α:
β∈W(α)

∣∣∣vβ

∣∣∣|λα|
∥∥∥Mβ

∥∥∥
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To bound the first term, we checked previously in Corollary 4.50 that the total norm of

nontrivial non-spiders appearing in the pseudocalibration (i.e. this term) is ηk+lon(1).

For the second term, via Lemma 4.73 we have a bound on the accumulations vγ of one

spider on one non-spider, so it is at most

≤ ∑
β∈Bk,l

∑
spiders α:
β∈W(α)

(C1|V(α)| · |E(α)|)C2|E(α)| · |λα|
∥∥∥Mβ

∥∥∥.

Invoking the charging argument for non-spiders which are collapses, Lemma 4.77,

≤ ηk+l · ∑
β∈Bk,l

∑
spiders α:
β∈W(α)

(
C1|V(α)| · |E(α)|

nΩ(ε)

)C′
2|E(α)|

≤ ηk+l · ∑
β∈Bk,l

∑
spiders α:
β∈W(α)

(
C1nτ · nτ

nΩ(ε)

)C′
2|E(α)|

.

Bound the sum over all spiders by the sum over all shapes. By Proposition 4.49, the

number of shapes with i edges is nO(τ(i+1)). Summing by the number of edges, observe

that |E(α)| ≥ max(|E(β)|, 2) since spiders always have at least 2 edges.

≤ ηk+l ∑
β∈Bk,l

∞

∑
i=max(|E(β)|,2)

nO(τ(i+1)) ·
(

C1nτ · nτ

nΩ(ε)

)C′
2i

≤ ηk+l ∑
β∈Bk,l

1

nΩ(ε max(|E(β)|,2))

≤ ηk+l
∞

∑
i=0

nO(τ(i+1))

nΩ(ε max(i,2))

= ηk+l · 1

nΩ(ε)

Corollary 4.79. For k ∈ {0, . . . , D/2}, the (k, k) block of M+ has minimum singular value at

least η2k(1 − 1
nΩ(ε) ), and for k, l ∈ {0, . . . , D/2}, l ̸= k, the (k, l) off-diagonal block has norm at
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most ηk+l · 1
nΩ(ε) .

Proof. By Proposition 4.76 the identity matrix appears on the (k, k) blocks with coefficient

η2k. By construction, M+ has no spider shapes. By Lemma 4.78, the total norm of the

non-spider shapes on the (k, l) block is at most ηk+l · 1
nΩ(ε) .

This implies that M+ is PSD (in fact, positive definite). To conclude that M is PSD,

we need to fix M so that it exactly satisfies the constraints “⟨v, du⟩2 = 1”, rather than

approximately.

Lemma 4.80. There is an (
[n]

≤D/2)× (
[n]

≤D/2) matrix E with ∥E∥ ≤ 1
nΩ(nτ) such that the matrix

M f ix := M+ E is SoS-symmetric and exactly satisfies the constraints “⟨v, du⟩2 = 1”.

Proof. This is the statement of [GJJ+20, Corollary 7.3]. The proof is omitted.

Theorem 4.81. W.h.p. M f ix ⪰ 0.

Proof. For any x ∈ Null(M f ix), we of course have x⊺M f ixx = 0. For any x ⊥ Null(M f ix)

with ∥x∥2 = 1,

x⊺M f ixx = x⊺(M+ E)x

= x⊺M+x + x⊺

 ∑
spiders α

λα

Mα − ∑
leaves γ of W(α)

vγMγ

 x

+ x⊺Ex

= x⊺(M+ + E)x (Proposition 4.69)

Because the norm bound on E in Lemma 4.80 is significantly less than ηD = n−nδ
, the

bound on the norm of each block of M+ in Corollary 4.79 also applies to the blocks of

M+ + E . Therefore, we use Proposition 4.44 to conclude M+ + E ⪰ 0 and the above

expression is nonnegative.
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4.5 Reduction from SK model to PAP

Here, we prove Theorem 4.5 and Theorem 4.2.

Recall that in the Planted Boolean Vector problem, we wish to optimize

OPT(V) :=
1
n

max
b∈{±1}n

b⊺ΠVb,

where V is a uniformly random p-dimensional subspace of Rn.

Theorem 4.5. There exists a constant c > 0 such that, for all ε > 0 and δ ≤ cε, for p ≥ n2/3+ε,

w.h.p. over V there is a degree-nδ SoS solution for Planted Boolean Vector of value 1.

Proof. We wish to produce an SoS solution Ẽ on Boolean variables b1, . . . , bn such that

Ẽ[b⊺ΠVb] = n. Instead of sampling a uniformly random p-dimensional subspace V of

Rn, we first sample d1, . . . , dn i.i.d. p-dimensional Gaussian vectors from N (0, I), then

form an n-by-p matrix A with rows d1, . . . , dn, and finally take V to be the span of the

columns of A. Since the columns of A are isotropic i.i.d. random Gaussian vectors, we

have that V is a uniform p-dimension subspace5 of Rn.

We will consider V as the input for the Planted Boolean Vector problem while the

vectors d1, . . . , dn will be used to construct a pseudoexpectation operator for the Planted

Affine Planes problem6. Since n ≤ p3/2−Ω(ϵ), by Theorem 4.4, for all δ ≤ cϵ for a constant

c > 0, w.h.p., there exists a degree-nδ pseudoexpectation operator Ẽ
′

on formal variables

v = (v1, . . . , vp) such that Ẽ
′
[⟨v, du⟩2] = 1 for every u ∈ [n].

Define Ẽ by Ẽ[bu] := Ẽ
′
[⟨v, du⟩] for all u ∈ [n] and extending it to all polynomials

on {bu} by multilinearity. This is well defined because Ẽ
′
[⟨v, du⟩2] = 1. Note that Ẽ is a

5. Except for a zero measure event.

6. Note that the vectors du are not “given" in the Planted Boolean Vector problem, though the construc-
tion of Ẽ is not required to be algorithmic in any sense anyway.
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valid pseudoexpectation operator of the same degree as Ẽ
′
. Finally, observe that

1
n

Ẽ[b⊺ΠVb] =
1
n

′
Ẽ[v⊺A⊺ΠV Av] =

1
n

′
Ẽ[v⊺A⊺Av] = 1.

Now we prove lower bounds for the Sherrington-Kirkpatrick problem, using a reduc-

tion and proof due to [MRX20]. We include it here for completeness. Recall that the SK

problem is to compute

OPT(W) := max
x∈{±1}n

x⊺Wx,

where W is sampled from GOE(n).

Theorem 4.2. There exists a constant δ > 0 such that, w.h.p. for W ∼ GOE(n), there is a degree-

nδ SoS solution for the Sherrington–Kirkpatrick problem with value at least (2 − o(1)) · n3/2.

We will use the following standard results from random matrix theory of GOE(n).

Fact 4.82. Let λ1 ≥ . . . ≥ λn be the eigenvalues of W ∼ GOE(n) with corresponding normalized

eigenvectors w1, . . . , wn. Then,

1. For every p ∈ [n], the span of w1, . . . , wp is a uniformly random p-dimensional subspace of

Rn (see e.g. [OVW16, Section 2]).

2. W.h.p., λn0.67 ≥ (2 − o(1))
√

n (Corollary of Wigner’s semicircle law [Wig93])

Proof of Theorem 4.2. Let p = n0.67 and W ∼ GOE(n). Let λ1 ≥ . . . ≥ λn be the eigenval-

ues of W with corresponding orthonormal set of eigenvectors w1, . . . , wn. By Fact 4.82, we

have that λp ≥ (2−o(1))
√

n and that w1, . . . , wp span a uniformly random p-dimensional

subspace V of Rn.

We consider V as the input of the Boolean Planted Vector problem and by Theorem 4.5,

for some constant δ > 0, w.h.p. there exists a degree-nδ pseudoexpectation operator Ẽ
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such that Ẽ[x2
i ] = 1 and Ẽ[∑

p
i=1 ⟨x, wi⟩2] = Ẽ[x⊺ΠV x] = n. Now,

Ẽ[x⊺Wx] = Ẽ[
n
∑
i=1

λi ⟨x, wi⟩2] ≥ λp Ẽ[x⊺ΠV x]− |λn| Ẽ[
n
∑

i=p+1
⟨x, wi⟩2]

≥ (2 − o(1))n3/2 − |λn| Ẽ[⟨x, x⟩ −
p

∑
i=1

⟨x, wi⟩2]

= (2 − o(1))n3/2.

Remark 4.83. Using the same proof as above, we can obtain Theorem 4.2 even if we were only

able to prove SoS lower bounds for Planted Affine Planes for some m = ω(n). So, pushing the

value of m up to n3/2−ϵ, which is Theorem 4.4, offers only a modest improvement.

4.6 Open Problems

In light of the result of Montanari [Mon21], the situation is intriguing. Montanari showed

that for all ε > 0, there is a Oε(n2) time randomized algorithm that given a random W

drawn from the Gaussian Orthogonal Ensemble, outputs an x such that xTWx ≥ (1 −

ε)OPT(W). The correctness of the algorithm assumes a widely-believed conjecture from

statistical physics known as the full replica symmetry breaking assumption. However,

we show an integrality gap for SoS.

Based on this, it is an interesting question whether SoS, together with an appropri-

ate rounding scheme, is optimal for the Sherrington-Kirkpatrick problem. On the one

hand, the situation could be similar to the Feige-Schechtman integrality gap instance for

MaxCut [FS02]. For the Feige-Schechtman integrality gap instance, SoS fails to certify the

value of the optimal solution. However, applying hyperplane rounding to the SoS solu-

tion gives an almost-optimal solution for these instances. It could be the case that there

is a rounding scheme which takes an SoS solution for the Sherrington-Kirkpatrick prob-
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lem on a random W and returns an almost optimal solution x. On the other hand, we

currently don’t know what this rounding scheme would be.

We conjecture that the Planted Affine Planes problem remains difficult even with the

number of vectors increased to m = n2−ϵ.

Conjecture 4.84. Theorem 4.4 holds with the bound on the number of sampled vectors m loosened

to m ≤ n2−ε.

The reason for the upper bound comes from Remark 4.20. Analyzing Ẽ[1] is an es-

tablished way to hypothesize about the power of SoS in hypothesis testing problems (see

[Hop18, HKP+17]).

Dual to the Planted Affine Planes problem, we conjecture a similar bound for Planted

Boolean Vector problem whenever d ≥ n1/2+ε.

Conjecture 4.85. Theorem 4.5 holds with the bound on the dimension p of a random subspace

loosened to p ≥ n1/2+ε.

The generic quadratic optimization problem maxx∈{−1,+1}n x⊺Wx does not have a

logγ n-approximation algorithm, assuming NP ̸⊆ quasi-P [ABE+05]. However, in the

average-case setting, there is only a constant-factor integrality gap for the spectral algo-

rithm and also for sum-of-squares. Can we prove logΩ(1) n integrality gap for sum-of-

squares running on a different instance?

Certifying bounds on x⊺Wx is also of interest when W is a random sparse matrix.

When W is the adjacency matrix of a random d-regular graph, this is the MaxCut problem.

An SoS lower bound is conjectured for this problem:

Conjecture 4.86. Let d ≥ 3, and let G be a random d-regular graph on n vertices. For some

δ > 0, w.h.p. there is a degree-nδ pseudoexpectation operator Ẽ on boolean variables xi with

MaxCut value at least
1
2
+

√
d − 1
d

(1 − od,n(1))
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The above expression is w.h.p. the value of the spectral relaxation for MaxCut, there-

fore qualitatively this conjecture expresses that degree nδ SoS cannot significantly tighten

the basic spectral relaxation (conversely, the true MaxCut value is near 1
2 + P∗√

d
where P∗

is the Parisi constant [DMS17]). Proving this conjecture is likely to require techniques for

the sparse regime developed in Chapter 6.
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CHAPTER 5

INNER PRODUCT POLYNOMIALS

In this chapter, we investigate a Fourier-like basis for a particular function space, the space

of orthogonally-invariant functions of a collection of random vectors {du}. These functions

only depend on the “angular configuration” of the du, i.e. how the vectors are arranged

in space, and not on the entries of the vectors themselves.

We give an “almost-orthogonal” polynomial basis for this vector space when the ran-

dom vectors are Gaussian, spherical, or Boolean. Specifically, polynomials of different

degree will be orthogonal, and polynomials with the same degree will have inner prod-

uct that is small relative to n, the dimension of the random vectors. In all three cases,

our basis admits an interesting combinatorial description based on the topology of an

underlying graph.

We encountered the pG basis in the course of the work [GJJ+20] described in Chapter 4.

There, we construct a matrix M which is essentially an orthogonally-invariant function

of a collection of random Gaussian vectors {du}; the entries of M are naturally expressed

(via “pseudocalibration”) in terms of an orthogonal polynomial basis evaluated on the

du. Ultimately, we ended up using the standard Hermite basis as this was sufficient for

our purposes, though we also considered using the pG basis.

We expect that the pG will be most useful for applications where we work with large n

and relatively low-degree moments of the random vectors, such as analyzing the sum-of-

squares hierarchy or rounding algorithms for semidefinite programs. While other bases

may be simpler, the pG basis is specialized to orthogonally invariant functions and it

exhibits nontrivial combinatorial cancellations which would be hard to spot and explain

in other bases, and which might be intrinsic to some problems.

In Section 5.1 we give a general overview of the polynomials, related work, and some

general properties. The three cases of Gaussian, spherical, and Boolean random vectors
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are treated separately in Section 5.2, Section 5.3, Section 5.4. The spherical case exhibits

some intricacies. We show that the inner product between two polynomials is always

nonnegative in the Gaussian and Boolean cases. In the spherical case, we show that it can

be negative, but we conjecture that if the underlying graph of inner products is planar

then the inner product will always be non-negative. We prove an approximate Fourier

inversion formula using the combinatorial properties of the basis in Section 5.5.

Bibliography. This chapter is the content of [JP22]. The relationship to the Wick product

in Section 5.1.1 and Section 5.2 is new. The reader may benefit from the omitted table of

example polynomials in [JP22, Appendix A].

5.1 Overview

When we have a collection of random variables, it is often extremely useful to find a basis

of polynomials in the random variables which is orthonormal under the natural inner

product ⟨ f , g⟩ := E[ f · g], as demonstrated throughout the other chapters of this thesis.

Some important examples are as follows:

1. If x is a random point of the Boolean hypercube {−1, 1}n then the multilinear mono-

mials {∏i∈S xi : S ⊆ [n]} are an orthonormal basis.

2. When we have a single Gaussian variable x ∼ N (0, 1), the Hermite polynomi-

als (with the correct normalization) are an orthonormal basis. When x is an n-

dimensional vector with Gaussian coordinates (i.e. x ∼ N (0, Idn)), the multivariate

Hermite polynomials form an orthonormal basis.

3. When x ∈ Rn is a random unit vector (i.e. x ∈R Sn−1), spherical harmonics give an

orthonormal basis.
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In this chapter, we consider polynomials of inner products between a collection of

random vectors. More precisely, fix a finite set of vertices V and n ∈ N and consider

drawing i.i.d. random n-dimensional vectors du for each u ∈ V. We will work in three

settings: when the n-dimensional vector du is a standard Gaussian, a uniform unit vector,

and a uniform Boolean vector. We consider polynomials in the variables du,i with real

coefficients which have degree less than n and are orthogonally invariant i.e. unchanged

if the {du} are simultaneously replaced by {Tdu} for any orthogonal matrix T. Any such

orthogonally invariant polynomial will also be expressible1 in terms of the inner product

variables xuv := ⟨du, dv⟩.

A natural spanning set for the space of orthogonally invariant polynomials is the set

of monomials ∏u,v∈V xkuv
uv where each kuv ∈ N. Equivalently, there is one monomial for

each undirected multigraph on V (with self-loops allowed in the Gaussian case): for the

monomial ∏u,v∈V xkuv
uv we take the graph where there are kuv multi-edges from u to v. We

denote this monomial by mG where G is the underlying graph.

However, the monomials mG are not orthogonal. For example, one can check that in

the Gaussian case, the graph shown in Fig. 5.1 has

E[x12x23x34x14] = E
d1,d2,d3,d4∼N (0,Idn)

[⟨d1, d2⟩ ⟨d2, d3⟩ ⟨d3, d4⟩ ⟨d1, d4⟩] = n.

Our goal in this work is to orthogonalize the mG into a basis of polynomials pG. As it

turns out, the basis pG which we will obtain is not quite orthogonal, but it is very close.

In particular, we will have that ⟨pG, pH⟩ = 0 unless V(G) = V(H) and G and H have the

same degree at every vertex. In addition, even when G ̸= H and ⟨pG, pH⟩ ̸= 0, ⟨pG, pH⟩

1. When du is a Boolean vector, we instead require that the polynomials are invariant under permuta-
tions of [n] and changing the signs of coordinates (i.e. automorphisms of the Boolean hypercube). In this
setting, in addition to inner products, we also have k-wise inner products for all even k > 2. For more
details, see Section 5.4.
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Figure 5.1

will be small (see Lemma 5.89).

While the pG basis is not quite orthogonal, it exhibits some surprisingly beautiful com-

binatorics based on the underlying graph G. Even computing E[mG], one can already see

a connection to the topology of the graph G. In the Gaussian case, the magnitude of

E[mG] is nk where k is the maximum number of cycles that E(G) can be partitioned into

(and is 0 if G has a vertex with odd degree) and analogous results hold for the spheri-

cal and Boolean cases (see Lemma 5.19, Lemma 5.41, and Lemma 5.74). A theme of this

chapter is that quantities involving the mG and pG may not have clean exact formulas,

but their magnitudes in n are determined by combinatorial and topological properties of

G (these combinatorial properties are usually NP-hard to compute from G).

5.1.1 Constructing the polynomials

Given any inner product on polynomials, we can automatically construct an orthonor-

mal basis of polynomials by using the Gram-Schmidt process. However, to run Gram-

Schmidt, it is necessary to choose an order. A natural order for polynomials is by degree,

though within each degree it is not clear how the polynomials should be ordered. We skirt

this issue by only orthogonalizing a monomial against polynomials with lower degree2.

The resulting polynomials we produce are “mostly orthogonal”, with E[pG · pH ] possibly

nonzero for polynomials of the same degree (in fact, they will be orthogonal unless G and

H have the same degree on every vertex). We call this the degree-orthogonal Gram-Schmidt

2. Degree of a polynomial in this chapter always refers to total degree.
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process.

Definition 5.1. A polynomial family {pI}I∈I is degree-orthogonal (with respect to D) if Ed∼D [pI(d)pJ(d)] =

0 whenever deg(pI) ̸= deg(pJ).

The degree-orthogonal Gram-Schmidt process outputs the unique monic degree-orthogonal

basis.

Fact 5.2 (Uniqueness of degree-orthogonal basis). Let {mI}I∈I be the set of monomials of

degree at most τ in a set of variables ν and let D be a distribution on Rν such that {mI}I∈I are

linearly independent as functions on the support of D. There is a unique set of monic polynomials

{pI}I∈I such that

(i) The unique monomial of maximum degree in pI is mI ,

(ii) The family pI is degree-orthogonal with respect to D.

Furthermore, the pI are linearly independent and span the same space as the mI .

Proof. Condition (i) says that pI lies in the space span({mI}∪{mJ : deg(mJ) < deg(mI)}).

Condition (ii) says that pI is orthogonal to the latter subspace of codimension 1, and there-

fore pI is determined since it’s monic.

Remark 5.3. Our monomials {mG} are not linearly independent when the degree is too high. In

this case, {pG} will be a spanning set rather than a basis.

However, Gram-Schmidt certainly does not guarantee any nice description of the re-

sulting polynomials. It turns out that the pG also have closed-form combinatorial descrip-

tions and we now give one such description. However, calculations are still a pain using

this description. In the next sections we will give alternate combinatorial formulas for the

pG based on collections of matchings that allow for calculations, and also highlight the

connection between the pG and the topology of the graph G.
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An equivalent view of the degree-orthogonal Gram-Schmidt process is as follows. We

start with the vector space of polynomials PD = R≤D[d1,1, d1,2, . . . , d1,n, d2,1, . . . , ] of de-

gree at most D, endowed with the expectation inner product. Gram-Schmidt decomposes

PD as:

PD =
D⊕

i=0
Hi

where each Hi+1 is the orthogonal complement in Pi+1 of the smaller-dimensional spaces,

Hi+1 = Pi+1 ⊖

 i⊕
j=1

Hj

 .

The spaces Hi are definitionally degree-orthogonal. Therefore, a tautological way to pro-

duce the degree-orthogonal basis is to project a basis mG to πdeg(mG)
(mG), where πi is

the projection operator to Hi.3

The point is that the projection operators are reasonably explicit. Whenever the under-

lying random variables are jointly Gaussian, the projection πi is the Wick product and the

decomposition into ⊕iHi is known as the Wiener chaos decomposition [Jan97]. We will de-

scribe the Wick product explicitly in Section 5.2. If the underlying random variables are

independent Booleans, recall that a Boolean Fourier character (i.e., a multilinear mono-

mial) is already orthogonal to polynomials of lower degree. Therefore the projection in

the Boolean case is the identity (and also zeroing out non-multilinear terms).

For general vectors du drawn i.i.d from a distribution D on Rn, the projection operator

is as follows. Let {χα : α ∈ Nn} be the monic polynomial family on Rn which is degree-

orthogonal under D (this is the set of degree-orthogonal polynomials for a single vector,

e.g. the Hermite polynomials in the Gaussian case. This family is unique by Fact 5.2).

Then:

3. It’s not clear that projection preserves orthogonal invariance of mG, but we will check that this is the
case in our settings.
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Proposition 5.4. Let ∏u∈V dαu
u be a monomial, αu ∈ Nn. Let D = ∑u∈V |αu| be the degree of

the monomial. The projection πk is:

πk

(
∏

u∈V
dαu

u

)
=


∏

u∈V
χαu(du) k = D

0 k ̸= D .

In words, the projection replaces each monomial by the D-orthogonal polynomial with

that leading monomial.

Proof. First, we show that the result is in HD i.e. it is orthogonal to all polynomials of

lower degree. Let m = ∏u∈V dβu
u be a monomial with deg(m) < D. Using independence

of the du,

E

[
m · ∏

u∈V
χαu(du)

]
= ∏

u∈V
E
[
dβu · χαu(du)

]
.

Since deg(m) < D, one of the degrees |βu| must be smaller than the corresponding degree

|αu|. When the expectation is taken over just this vector du, by orthogonality of the χα,

the expectation is zero.

Second, since the degree-D part is not changed by this map (on the right-hand side

it remains the unique monomial ∏u∈V dαu
u , because χαu is monic), the projection is the

identity on degree-D polynomials modulo polynomials of degree <D.

5.1.2 Related work

Although Gram-Schmidt works well for univariate polynomials, in general finding an

explicit orthogonal basis of polynomials for a given space is a difficult task. Examples in-

clude polynomials on the unit ball and simplex [DX13] or a slice of the hypercube [Fil16].

Occasionally it is simpler to find a degree-orthogonal family, as we do here. For example,
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“the” spherical harmonics (as originally given by Laplace in n = 3 dimensions, see Chap-

ter 4 of [DX14] for general n) are an orthogonal basis for functions on the sphere. How-

ever, it is easier to use the “Maxwell representation”, which is only degree-orthogonal, as

we do in Section 5.3.

In the Gaussian case, the basis pG can be computed using the Wick product [Jan97].

This connection is explained further in Section 5.2.

To the best of our knowledge, the pG have not been explicitly explored before. We

now compare the pG with several similar families of polynomials.

Some of the combinatorics of the monomials mG is captured by the circuit partition

polynomial [Bol02] (see also the Martin polynomial [Mar77, EM98]) which is the univariate

generating function for circuit partitions of G:

rG(x) = ∑
k≥0

rk(G)xk

where rk(G) is the number of ways to split the edges of G into exactly k circuits. rG(n) = E[mG]

for the Gaussian distribution, as we show in Lemma 5.19. This formula was also com-

puted by Moore and Russell [MR10], who also prove the spherical case, Lemma 5.41.

When G equals k multiedges between two vertices 1 and 2, pG generalizes a univariate

orthogonal polynomial family evaluated on ⟨d1, d2⟩. For the spherical case this is the

Gegenbauer polynomials. For the Boolean case, this is the Kravchuk polynomials (after

an affine shift). For the Gaussian case, pG also depends on ∥d1∥ and ∥d2∥, but evaluated

on ⟨d1, d1⟩ = ⟨d2, d2⟩ = n this is the (probabilist’s) Hermite polynomials.

The matching polynomial of a graph G is the univariate generating function for the num-

ber of matchings in G. Despite both families generalizing e.g. the Hermite polynomials,

the matching polynomials and pG seem incomparable.
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For a permutation group G ≤ Sk, one defines the cycle polynomial [CS18]

∑
g∈G

xnumber of cycles in g.

Though this is similar in appearance to some calculations in this paper, there is not a clear

group G associated with the matching structures that we consider.

A possible approach to constructing an orthogonal basis for symmetric functions f :

(Rn)V → R is to take the “usual” orthogonal basis and symmetrize it. For example, the

Hermite polynomial hα(d1, . . . , dV), α ∈ Nn×V can be symmetrized into an orthogonally

invariant function by computing:

E
T∈RO(n)

[hα(Td1, . . . , TdV)] .

However, this does not produce the same polynomials pG that we construct in Section 5.2.

Our polynomials appear simpler.

5.2 Polynomial Basis for the Gaussian Setting

In this section we investigate the family {pG} when du ∼ N (0, Idn) i.i.d. The graph G is a

multigraph on V, possibly with self-loops. We will develop a combinatorial understand-

ing of the polynomials through “routings” (Lemma 5.14) and use it to give formulas for

the inner product (Lemma 5.26) and variance (Corollary 5.28). We start by explaining the

Wick product, which generally degree-orthogonalizes any function of Gaussian random

variables, and then we specialize to our setting.
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5.2.1 Wick Calculus

For functions on Gaussian space, nice combinatorial formulas for orthogonal polynomials

arise via the Wick product.

Definition 5.5 (Wick product). Given jointly Gaussian random variables X1, . . . , XN , the Wick

product is

:X1 · · · XN : = ∑
matchings M

on [N]

(−1)|M| ∏
(u,v)∈M

E[XuXv] ∏
unmatched u∈[N]

Xu .

Importantly, the Xi do not need to be independent or standard Gaussians. Some of the

Xi may be linear combinations of or the same as other Xi. For example:

Proposition 5.6. If X = X1 = · · · = XN are copies of a standard Gaussian random variable,

then

:Xn: = hn(X)

where hn is the n-th Hermite polynomial.

The Wick product orthogonalizes a monomial against lower degree. Extending it by

linearity, it can be used to orthogonalize a polynomial against lower degree.

Proposition 5.7. For jointly Gaussian random variables X1, . . . , XN and a homogeneous poly-

nomial p(X1, . . . , XN) of degree D, the Wick product :p: is orthogonal to any polynomial in

X1, . . . , XN with degree less than D.

Lemma 5.8. If jointly Gaussian random variables X1, . . . , XM are independent (uncorrelated)

from Y1, . . . , YN , then

:X1 · · · XMY1 · · ·YN : = :X1 · · · XM::Y1 · · ·YN :
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Proof. In Definition 5.5, any matching that goes between the X and Y variables is mul-

tiplied by E[XiYj] = 0. Therefore, the sum factors into matchings on X1, . . . , XM and

matchings on Y1, . . . , YN .

5.2.2 Definitions of inner product polynomials

We will give several equivalent formulas for the orthogonalized polynomials pG. First,

use the Wick product to orthogonalize the mG.

Definition 5.9 (Wick product definition of pG). pG = :mG:

Lemma 5.10 (Hermite sum definition of pG).

pG = ∑
σ:E(G)→[n]

∏
u∈V,i∈[n]

h|{e∋u : σ(e)=i}|(du,i).

Note that in this definition we consider a self-loop at u labeled i to contribute 2 to

|{e ∋ u : σ(e) = i}|.

Proof of Lemma 5.10.

mG = ∑
σ:E(G)→[n]

 ∏
{u,v}∈E(G)

du,idv,i


:mG: = ∑

σ:E(G)→[n]
:

 ∏
{u,v}∈E(G)

du,idv,i

 :

Since the du,i are independent, we may use Lemma 5.8 to move the Wick product onto

each du,i separately. Then, by Proposition 5.6 each of these is a Hermite polynomial ap-

plied to du,i, whose degree equals the multiplicity of the variable du,i.

To better capture the combinatorics of the pG, we look at matchings of the edge end-

points incident to a given vertex. More specifically we use a collection M of (partial or
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perfect) matchings on incident edges, one for each vertex.

Definition 5.11. Let PM(G) be the set of all perfect matching collections of the edges incident

to each vertex of G. Each element of PM(G) specifies |V(G)| perfect matchings, and the perfect

matching for vertex v is on deg(v) elements.

Let M(G) denote the set of all partial or perfect matching collections of the edges incident to

each vertex of G.

Definition 5.12. For M ∈ M(G), define the routed graph route(M) to be the graph obtained

by connecting up edge endpoints that are matched at each vertex v. Closed cycles are deleted, and

paths are replaced by a single edge between the final path endpoints.

Definition 5.13. For M ∈ M(G), define cycles(M) to be the number of closed cycles formed by

routing.

We give an example in Fig. 5.2. The graph on the left has 5 vertices, and 10 edges de-

noted by solid lines. The edges are partially matched up at each vertex using the dashed

edges. The right side shows the result of routing. cycles(M) = 1 and one closed cycle,

the triangle, was deleted.

Figure 5.2: Left: Unrouted graph with dashed edges denoting the partial matching col-
lection. Right: Result of routing.

With these definitions, we have the following topological definition of pG.
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Lemma 5.14 (Routing definition of pG).

pG = ∑
M∈M(G)

mroute(M) · ncycles(M) · (−1)|M|.

A given graph K can appear as route(M) for several different matchings M (even with

different numbers of cycles). This gives rise to interesting and nontrivial coefficients on

the monomials mK.

Proof of Lemma 5.14. Expand the Wick product,

:mG: = ∑
σ:E(G)→[n]

:

 ∏
{u,v}∈E(G)

du,idv,i

 :

= ∑
σ:E(G)→[n]

∑
matchings M on
edge endpoints

(−1)|M| ∏
((u,e),(v, f ))∈M

E[du,σ(e)dv,σ( f )] ∏
unmatched (u,e)

du,σ(e)

= ∑
matchings M on
edge endpoints

(−1)|M| ∑
σ:E(G)→[n]

∏
((u,e),(v, f ))∈M

E[du,σ(e)dv,σ( f )] ∏
unmatched (u,e)

du,σ(e) .

The only way the expectation can be nonzero is if (1) u = v for all matched pairs, and

(2) σ(e) = σ( f ) for every two matched incident edges. Therefore, M routes E(G) into

paths and closed cycles, and σ must be constant on any path or cycle. For each cycle,

there are n possible choices for σ, giving a factor of ncycles(M). For each path, summing

over the n possible choices for σ gives ⟨ds, dt⟩ where s, t are the start and end vertices of

the path. The ⟨ds, dt⟩ are collected into mroute(M).

As a consequence of the routing definition we have

Lemma 5.15. The polynomials pG are orthogonally invariant.

Corollary 5.16. pG is equal to the degree-orthogonal Gram-Schmidt process on mG.

Proof. The Wick product is degree-orthogonal and monic. The previous lemma shows
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that the pG are orthogonally invariant. Therefore they match the result of Gram-Schmidt

by Fact 5.2.

Example 5.17. Let G be the graph with vertices V(G) = {u, v1, v2, v3} and edges E(G) =

{{u, v1}, {u, v2}, {u, v3}}. We have that

mG =
〈
du, dv1

〉
⟨du, dv2⟩

〈
du, dv3

〉
= ∑

distinct i,j,k∈[n]
du,idu,jdu,kdv1,idv2,jdv3,k + ∑

i ̸=j∈[n]
d2

u,idu,jdv1,idv2,idv3,j

+ ∑
i ̸=j∈[n]

d2
u,idu,jdv1,idv2,jdv3,i + ∑

i ̸=j∈[n]
d2

u,idu,jdv1,jdv2,idv3,i + ∑
i∈[n]

d3
u,idv1,idv2,idv3,i.

Replacing the monomial d2
u,i with the corresponding Hermite polynomial d2

u,i − 1 and replacing

the monomial d3
u,i with the corresponding Hermite polynomial d3

u,i − 3du,i, we have that

pG = ∑
distinct i,j,k∈[n]

du,idu,jdu,kdv1,idv2,jdv3,k + ∑
i ̸=j∈[n]

(d2
u,i − 1)du,jdv1,idv2,idv3,j

+ ∑
i ̸=j∈[n]

(d2
u,i − 1)du,jdv1,idv2,jdv3,i + ∑

i ̸=j∈[n]
(d2

u,i − 1)du,jdv1,jdv2,idv3,i

+ ∑
i∈[n]

(d3
u,i − 3du,i)dv1,idv2,idv3,i

The term −du,jdv1,idv2,idv3,j and one of the 3 terms −du,idv1,idv2,idv3,i correspond to the collec-

tion of matchings M where v1 is matched to v2 at u (and all other matchings are trivial). Summing

these terms over all i ̸= j ∈ [n] gives −
〈
dv1 , dv2

〉 〈
du, dv3

〉
.

Similarly, the term −du,jdv1,idv2,jdv3,i and one of the 3 terms −du,idv1,idv2,idv3,i correspond

to the collection of matchings M where v1 is matched to v3 at u (and all other matchings are

trivial). Summing these terms over all i ̸= j ∈ [n] gives −
〈
dv1 , dv3

〉
⟨du, dv2⟩.

Finally, the term −du,jdv1,jdv2,idv3,i and one of the 3 terms −du,idv1,idv2,idv3,i correspond to

the collection of matchings M where v2 is matched to v3 at u (and all other matchings are trivial).
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Summing these terms over all i ̸= j ∈ [n] gives −
〈
dv2 , dv3

〉 〈
du, dv1

〉
.

Putting everything together,

pG =
〈
du, dv1

〉
⟨du, dv2⟩

〈
du, dv3

〉
−
〈
dv1 , dv2

〉 〈
du, dv3

〉
−
〈
dv1 , dv3

〉
⟨du, dv2⟩−

〈
dv2 , dv3

〉 〈
du, dv1

〉
.

5.2.3 Formulas and properties

Note that the mG are not completely linearly independent. For example, if n = 1, then

mG is determined by its degrees on each vertex. Despite this, the low-degree monomials

are linearly independent.

Lemma 5.18. The set of mG for |E(G)| ≤ n is linearly independent.

Proof. Suppose that ∑G:|E(G)|≤n cGmG = 0; we show cG = 0. Each inner product ⟨du, dv⟩

can be expanded as ∑n
i=1 du,idv,i. In this way, each edge gets a label from 1 to n. Expand-

ing mG,

mG = ∑
σ:E(G)→[n]

∏
{u,v}∈E(G)

du,σ({u,v})dv,σ({u,v}).

Since |E(G)| ≤ n, one monomial that appears in mG will have σ assign a distinct label to

each edge. We claim that this monomial appears in the sum with coefficient cG: because

the edge labels are distinct, we can recover the graph G from the monomial. Therefore

cG = 0.

For low-degree polynomials the orthogonalizations pG will therefore be a basis.

In the language of matching collections, we have the following formula for the expec-

tation E[mG].

Lemma 5.19. E[mG] = 0 if some vertex in G has odd degree. Otherwise,

E[mG] = ∑
M∈PM(G)

ncycles(M).
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Proof. Expanding mG and grouping by vertex,

mG = ∑
σ:E→[n]

∏
u∈V,i∈[n]

d#{e∋u : σ(e)=i}
u,i .

Taking expectations, the du,i are independent Gaussians. If one of the vertices has odd

degree, one of the labels i will necessarily occur an odd number of times at that vertex

and the overall expectation will be zero. Otherwise, E
[

Z2k
]
= (2k − 1)!! for Z ∼ N (0, 1).

The expression (2k − 1)!! counts the number of perfect matchings of 2k elements; in this

case when computing E
[
d#{e∋u : σ(e)=i}

u,i

]
these should be thought of as summing 1 for

each perfect matching of the edges incident to u which are labeled i. In summary, each σ

sums over a subset of PM.

Now fix a given collection of perfect matchings M ∈ PM; which σ contribute to it?

We require that, at each vertex, every pair of endpoints matched in M are assigned the

same label. Therefore, in any cycle formed by route(M), the labeling σ must assign all

edges of the cycle the same label. These labels can be any number from [n], and disjoint

cycles don’t affect each other. Therefore there are ncycles(M) such σ.

Corollary 5.20. The magnitude of E[mG] is nk where k is the maximum number of cycles into

which E(G) can be partitioned (note that this is NP-hard to compute from G).

To computationally compute E[mG], an alternate recursive method is to use the combinatorially-

flavored Isserlis’ theorem (also known as Wick’s lemma).

Lemma 5.21 (Isserlis’ theorem). Fix vectors d1, . . . , d2k ∈ Rn. Then for v a standard n-

dimensional Gaussian random variable,

E
v
[⟨v, d1⟩ · · · ⟨v, d2k⟩] = ∑

perfect matchings
M on [2k]

∏
(u,v)∈M

⟨du, dv⟩ .
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Observe also that the expectation is zero when there are an odd number of inner products.

Specifically, use the following minor generalization.

Lemma 5.22. For fixed d1, . . . , d2k ∈ Rn and v ∼ N (0, Idn),

E
v
[⟨v, v⟩2l ⟨v, d1⟩ · · · ⟨v, d2k⟩] = n(n + 2) · · · (n + 2l − 2) ∑

perfect matchings
M on [2k]

∏
(u,v)∈M

⟨du, dv⟩ .

Proof. By expressing v =
√

Qs where Q ∼ χ2(n) and s ∈R Sn−1 are independent,

this follows from the standard Isserlis theorem in a similar way as we will show in

Lemma 5.40.

The generalization can be iterated to compute E[mG] for a given graph G. We take the

expectation over the vectors du one at a time, and each application reduces our expression

to a sum over graphs that no longer involve u.

The proof of Proposition 5.4 shows that pG have a stronger “ultra-orthogonality”

property. If G and H have different graph degree at u, then only taking the expectation

over du already results in the zero polynomial.

Lemma 5.23. Let G and H be two multigraphs. If degG(u) ̸= degH(u) for some u ∈ V, then

E
du∼N (0,Idn)

[pG · pH ] = 0.

We now derive an explicit formula for the inner product and variance of pG. For

two graphs G, H on V, we define G ∪ H to be the disjoint union of the edges (the edge

multiplicity in G ∪ H is the sum of the multiplicities in G and H).

Definition 5.24. For two multigraphs, write G ↔ H if degG(u) = degH(u) for all u ∈ V.

Definition 5.25. Let PM(G, H) ⊆ PM(G ∪ H) be perfect matching collections such that at

each vertex v, the matching goes between edges incident to v in G and edges incident to v in H.
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Note that if G ̸↔ H, then PM(G, H) is empty.

Lemma 5.26. Let G and H be two multigraphs.

E[pG · pH ] = ∑
M∈PM(G,H)

ncycles(M)

Remark 5.27. Determining the maximum number of cycles in M ∈ PM(G, H) is NP-hard via

a slight modification of [Hol81]. This remains true if we restrict the cycles to be simple.

Proof. Use the routing definition of pH,

pG · pH = ∑
M1∈M(G),
M2∈M(H)

mrouteG(M1)
·mrouteH(M2)

· ncyclesG(M1)+cyclesH(M2) · (−1)|M1|+|M2|.

Taking expectations, by Lemma 5.19 we sum over all perfect matchings of routeG(M1) ∪

routeH(M2) which “complete” the partial matchings M1 and M2, when viewed as a

matching on the graph G ∪ H. The power of n is the number of cycles in the completed

matching. The net effect is to sum over all perfect matching collections in G ∪ H,

E[pG pH ] = ∑
M∈PM(G∪H)

ncyclesG∪H(M) ∑
pick some M-matched pairs to be in M1 or M2

(−1)|M1|+|M2|.

The inner summation often cancels to zero. In the graph G ∪ H, each edge-vertex inci-

dence comes from either G or H. We can only add an M-matched pair to M1 if both

matched edge-vertex incidences come from G; similarly only matched pairs which are

both in H can be picked for M2. If there are any such pairs, the inner summation is auto-

matically zero.

The remaining terms are those M in which, at every vertex, the perfect matching is a

perfect matching between incoming edges in G and those in H – that is, matching collec-

tions in PM(G, H). For these terms, the inner summation is trivially 1, which finishes
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the proof.

Corollary 5.28. n|E(G)| ≤ E[p2
G] ≤ |E(G)|2|E(G)| · n|E(G)|.

Proof. Using the result of Lemma 5.26, we claim maxM∈PM(G,G) cycles(M) = |E(G)|.

On the one hand, |E(G)| is achievable by matching each edge with its duplicate to create

2-cycles. On the other hand, every cycle in route(M) needs at least two edges (there

can be no self-loops as matchings with self-loops are not in PM(G, G)). This shows

n|E(G)| ≤ E p2
G ≤ |PM(G, G)| · n|E(G)|.

PM(G, G) consists of choosing a perfect matching at each vertex between two sets of

size deg(v).

|PM(G, G)| = ∏
v∈V

deg(v)! ≤ |E(G)|2|E(G)|.

5.3 Polynomial Basis for the Spherical Setting

Let Sn−1 = {x ∈ Rn : ∥x∥2 = 1}. With the du drawn uniformly and independently

from Sn−1 instead of the Gaussian distribution, for each multigraph G with no self-loops

(reflecting the fact that ⟨du, du⟩ = 1) we construct a polynomial pG. We again construct

the polynomials in terms of routings (Definition 5.34) and study the inner product (Sec-

tion 5.3.3) and variance (Corollary 5.46). For the most part, the proofs in this section

mirror their counterparts in the previous section, with the notable exception of the inner

product formula, which exhibits surprising difficulties.

5.3.1 Definitions of inner product polynomials

Let α ∈ Nn be a multi-index and |α| := ∑n
i=1 αi. We will need the Maxwell representation

of harmonic polynomials [DX13, Theorem 1.1.9]. Concretely, let the spherical harmonic
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sα : Sn−1 → R be (the restriction to Sn−1 of the function on Rn)

sα(x) = ∥x∥2|α|+n−2 ∂

∂xα ∥x∥−n+2

and then scaled to be monic. An alternate method to write down sα is to first write down

the Hermite polynomial ∏n
i=1 hαi(xi) and then multiply each non-leading monomial of

total degree |α| − 2k by approximately4 n−k. More precisely, we let xk be notation for the

“fall-by-2” falling factorial,

xk := x(x − 2)(x − 4) · · · (x − 2k + 2),

and let x−k := 1/xk. We also define xk likewise for rise-by-2. Then:

Fact 5.29. To form sα from hα, multiply monomials with degree |α| − 2k by (n + 2|α| − 4)−k.

We will need the moments of the uniform distribution on the sphere (using the nota-

tion introduced above):

Fact 5.30.

E
x∈RSn−1

[xα] =

 n−|α|/2 · EZ∼N (0,Idn)[Z
α] If αi even for all i

0 Otherwise

These spherical harmonics are degree-orthogonal (as functions of a single vector):

Fact 5.31. If |α| ̸= |β|, then E
x∈RSn−1

[sα(x)sβ(x)] = 0.

We remark that {sα : α ∈ Nn} is not completely linearly independent as functions on

Sn−1 because of the identity ⟨v, v⟩ = 1:

Fact 5.32. For each k, the set {sα : |α| ≤ k, αn = 0 or 1} is a basis for the set of degree-(≤ k)

4. Multiplying the monomials by exactly n−k creates polynomials orthogonal under the distribution
N (0, Idn/n), which is similar to the unit sphere.
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polynomial functions on Sn−1. The same holds for the monomials xα.

We now give three definitions of the orthogonal polynomials for the spherical case

which are analogous to Definitions 5.10, 5.14, and 5.9 for the Gaussian case:

Definition 5.33 (Spherical harmonic sum definition). Define pG by

pG = ∑
σ:E(G)→[n]

∏
u∈V

shistogram of {σ(e):e∋u}(du).

Definition 5.34 (Routing definition). Define pG by

pG = ∑
M∈M(G)

mroute(M) · ncycles(M) · (−1)|M| · ∏
v∈V

(n + 2 deg(v)− 4)
−|Mv|

where Mv is the partial matching of incident edges at v.

Definition 5.35 (Generic construction from Proposition 5.4). To construct pG, expand the

function mG in the basis of spherical harmonics as a function of du,i then truncate to the top-level

coefficients of degree 2|E(G)|.

Lemma 5.36. The three definitions above are equivalent.

Proof. Definitions 5.33 and 5.35 agree once we check that the leading monomial in Defini-

tion 5.33 is mG.

Definitions 5.33 and 5.34 agree as a consequence of equality between Lemma 5.10 and

Lemma 5.14 in the Gaussian case by the following argument. For reference, we recall the

two equal formulas for pG in the Gaussian case,

pG = ∑
σ:E(G)→[n]

∏
u∈V,i∈[n]

h|{e∋u : σ(e)=i}|(du,i) (5.1)

pG = ∑
M∈M(G)

mroute(M) · ncycles(M) · (−1)|M|. (5.2)
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For each fixed δ ∈ VN, let us restrict to only the monomials in the variables du,i with

total degree δ(u) on the variables {du,i : i ∈ [n]}. We clearly still have equality be-

tween Eq. (5.1) and Eq. (5.2) after making this restriction. The equality still holds if we

multiply both sides by an appropriate function of n; we choose this function of n to be the

product that appears on the right side of Definition 5.34, which only depends on δ. This

clearly converts Eq. (5.2) into Definition 5.34. Due to the choice of function, it also turns

Eq. (5.1) into Definition 5.33 because of the conversion between hα and sα in Fact 5.29.

As a consequence of the routing definition, we have:

Lemma 5.37. The polynomials pG are orthogonally invariant.

Corollary 5.38. Definitions 5.33, 5.34, 5.35 are equal to the output of the degree-orthogonal

Gram-Schmidt process on mG.

5.3.2 Formulas and properties

The monomials mG are not completely linearly independent as functions on (Sn−1)V . We

restrict ourselves to the set of low-degree functions, which are linearly independent.

Lemma 5.39. The set of mG with |E(G)| ≤ n − 1 is linearly independent as functions on

(Sn−1)V .

Proof. Suppose ∑G:|E(G)|≤n cGmG = 0 where cG are not all zero, and let G be a nonzero

graph with maximum number of edges. Expanding mG,

mG = ∑
σ:E(G)→[n]

∏
{u,v}∈E(G)

du,σ({u,v})dv,σ({u,v}).

Letting σ be an injective assignment of labels from [n − 1] (which exists because |E(G)| ≤

n− 1), we claim that the corresponding monomial, which we call the “special monomial”,

is uncancelled and appears with coefficient cG.
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First, the relations ⟨du, du⟩ = 1 mean that polynomials do not have a unique represen-

tation as functions on (Sn−1)V . We amend this by using the relations to reduce the degree

of variable du,n to 0 or 1 for each vertex u, replacing d2
u,n = 1 − ∑n−1

i=1 d2
u,i. Nothing needs

to be done for the special monomial.

After performing the replacement, the special monomial still does not arise from any

other graphs. This is because the reduction step must either lower the degree, or introduce

a variable with degree 2, whereas the special monomial is multilinear and was chosen

to have maximum degree. Therefore, the special monomial has coefficient cG, which is

nonzero, a contradiction.

There is a spherical Isserlis theorem which gives a recursive method to compute E[mG].

Lemma 5.40 (Spherical Isserlis theorem). Fix vectors d1, . . . , d2k ∈ Rn. Then for v ∈R Sn−1,

E
v
[⟨v, d1⟩ · · · ⟨v, d2k⟩] = n−k ∑

perfect matchings
M on [2k]

∏
(u,v)∈M

⟨du, dv⟩ .

Observe also that the expectation is zero when there are an odd number of inner products.

Proof. This follows from the standard Isserlis theorem. Let Q ∼ χ2(n) be a chi-square

random variable with n degrees of freedom, independent from v. Then

E
v,Q

[〈√
Qv, d1

〉
· · ·
〈√

Qv, d2k

〉]
= E

Z∼N (0,Idn)
[⟨Z, d1⟩ · · · ⟨Z, d2k⟩].

Factoring out Qk, the left-hand side is

E
v,Q

[
〈√

Qv, d1

〉
· · ·
〈√

Qv, d2k

〉
] = E

Q
[Qk] ·E

v
[⟨v, d1⟩ · · · ⟨v, d2k⟩] = nk E

v
[⟨v, d1⟩ · · · ⟨v, d2k⟩].

148



By the Gaussian Isserlis theorem, the right-hand side equals

E
Z∼N (0,Idn)

[⟨Z, d1⟩ · · · ⟨Z, d2k⟩] = ∑
perfect matchings

M on [2k]

∏
(u,v)∈M

⟨du, dv⟩ .

Dividing by nk proves the claim.

We also have explicit formulas based on matching collections,

Lemma 5.41. E[mG] = 0 if there is a vertex of odd degree, otherwise,

E[mG] = ∏
v∈V

n−deg(v)/2 ∑
M∈PM(G)

ncycles(M).

Proof. The proof goes through exactly as in the Gaussian case, but plug in the spherical

moments which contribute the rising factorial terms.

Remark 5.42. Lemma 5.41 is still valid if G has self-loops.

The “ultra orthogonality” property follows from Proposition 5.4.

Lemma 5.43. Let G and H be two multigraphs. If degG(u) ̸= degH(u) for some u ∈ V, then

Edu∈RSn−1 [pG · pH ] = 0.

5.3.3 Inner product

Unfortunately, we do not have a clean formula for the inner product of two spherical

polynomials. Compared to the Gaussian case, there are several complications. First, in the

spherical case some polynomials with G ↔ H are orthogonal (whereas in the Gaussian

case pG and pH are orthogonal iff G ̸↔ H, via Lemma 5.26). For example, the following

149



two polynomials are orthogonal:

pG = x12x13x45 −
x23x45

n
, pH = x14x15x23 −

x45x23
n

.

This shows that extra cancellations occur in the spherical case. Second, when n is small

some of the pG are degenerate. For example, if G is a triangle and n = 2 then pG = 0.

Third, even in the asymptotic regime of large n and constant-size graphs, in the spherical

case the inner product may be negative (whereas in the Gaussian case the inner product

is always non-negative). For example, this occurs if E(G), E(H) partition the edges of K5,

with the inner 5-cycle in G and the outer 5-cycle in H, as in Fig. 5.3.

Figure 5.3

In this case it can be computed (see [JP22, Appendix C]) that

E[pG · pH ] =
−8(n − 1)(n − 2)(n − 4)

n8(n + 2)4 .

Interestingly, we conjecture that negative inner product can only occur if the graph G ∪ H

is nonplanar.

To attack these complications, we first give a general expression for the inner product.

We use it to upper bound the magnitude of the inner product, showing that it’s no larger

than the Gaussian case, up to normalization (Corollary 5.47). We then study some situa-

tions when cancellations occur in an effort to determine the exact magnitude in n of the
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inner product. Due to the inherent difficulties, this section is a bit technical.

The proof strategy we use is to consider the contribution cM from each matching col-

lection M ∈ PM(G ∪ H) and then isolate cancellations that occur between these terms

(similarly to how the inner product was computed in the Gaussian case, Lemma 5.26).

Definition 5.44. For some M ∈ PM(G ∪ H), define a G-pair as a pair of matched endpoints in

M where both come from G. An H-pair and a (G, H)-pair are defined analogously.

Let gM(v) denote the number of G-pairs at vertex v and gM denote the total number

of G-pairs.

If G ̸↔ H then E[pG pH ] = 0 by Lemma 5.43, so we may assume G ↔ H.

Lemma 5.45. Let G, H be arbitrary multigraphs such that G ↔ H. Let d(v) = degG(v) =

degH(v). Then

E[pG · pH ] = ∏
v∈V

n−d(v) ∑
M∈PM(G∪H)

cM

where the coefficients cM are

cM = ncycles(M) ∏
v∈V

(−2)
gM(v)

(n + 2d(v)− 4)
gM(v)

.

Proof. By orthogonality, E[pG · pH ] = E[pG · mH ]. Using the routing definition,

pG ·mH = ∑
M∈M(G)

mrouteG(M) ·mH · ncyclesG(M) · (−1)|M| · ∏
v∈V

(n+ 2d(v)− 4)
−|Mv|.

Taking expectations5 using Lemma 5.41, we expand E[mrouteG(M) · mH ] into a sum over

all completions C of the partial matching M (on the graph G ∪ H). As in the Gaussian

case, we collect terms based on the overall matching M ∪ C ∈ PM(G ∪ H). Performing

5. We should not remove the self-loops in routeG(M) which is permitted by Remark 5.42.
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the grouping of terms, we have

E pGmH = ∑
M∈PM(G∪H)

ncyclesG∪H(M) ∑
S⊆G-pairs

(−1)|S| · ∏
v∈V

(n + 2d(v)− 4)
−|Sv| · n−d(v)+|Sv|

= ∑
M∈PM(G∪H)

ncycles(M) ∏
v∈V

∑
Sv⊆G-pairs at v

(−1)|Sv|(n + 2d(v)− 4)
−|Sv| · n−d(v)+|Sv|

= ∑
M∈PM(G∪H)

ncycles(M) ∏
v∈V

gM(v)

∑
k=0

(
gM(v)

k

)
(−1)k(n + 2d(v)− 4)−k · n−d(v)+k.

The inner summation (with v fixed) is

gM(v)

∑
k=0

(
gM(v)

k

)
(−1)k(n + 2d(v)− 4)−k · n−d(v)+k

= n−d(v)
gM(v)

∑
k=0

(
gM(v)

k

)
(−1)k(n + 2d(v)− 4)−k · (n + 2d(v)− 2)k

=
n−d(v)

(n + 2d(v)− 4)
gM(v)

gM(v)

∑
k=0

(
gM(v)

k

)
(−1)k(n + 2d(v)− 2gM(v)− 2)gM(v)−k · (n + 2d(v)− 2)k

=
n−d(v)

(n + 2d(v)− 4)
gM(v)

gM(v)

∑
k=0

(
gM(v)

k

)
(n + 2d(v)− 2gM(v)− 2)gM(v)−k · (−n − 2d(v) + 2)k.

Using the umbral formula (x + y)m =
m
∑
k=0

(
m
k

)
xkym−k [Rom05],

=
n−d(v)

(n + 2d(v)− 4)
gM(v)

(−2gM(v))gM(v)

=
n−d(v)

(n + 2d(v)− 4)
gM(v)

(−2)
gM(v)

.
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Corollary 5.46. For G such that |E(G)| ≤ o(log n/ log log n),

E[p2
G] = n−|E(G)|+o(1).

Proof. We have

∏
v∈V

n−d(v) = ∏
v∈V

n−d(v)+o(1) = n−2|E(G)|+o(1).

The magnitude of the coefficient cM is ncycles(M)−gM . Since G has no self-loops, the max

number of cycles for M ∈ PM(G ∪ G) is |E(G)|, therefore M has the largest magnitude

of n if and only if M pairs each edge with a parallel edge from the other copy of the graph.

For these M, cM = n|E(G)|. There is at least one such M and possibly up to |PM(G, H)|.

Under the size assumption on G, |PM(G, H)| = no(1) and therefore non-dominant terms

are negligible,

E[p2
G] = n−2|E(G)|+|E(G)|+o(1) = n−|E(G)|+o(1).

Up to the normalization factor of ∏v∈V n−d(v), the inner product is bounded by the

same formula from the Gaussian case.

Corollary 5.47. Let G and H be two multigraphs such that G ↔ H with degrees d(v), and

|E(G)|, |E(H)| ≤ o(log n/ log log n). Then

|E[pG · pH ]| ≤ ∏
v∈V

n−d(v) ∑
M∈PM(G,H)

ncycles(M)+o(1).
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Proof. From Lemma 5.45,

E[pG · pH ] = ∏
v∈V

n−d(v) ∑
M∈PM(G∪H)

cM

= ∏
v∈V

n−d(v) ∑
M∈PM(G∪H)

ncycles(M) ∏
v∈V

(−2)
gM(v)

(n + 2d(v)− 4)
gM(v)

.

If M has both a G-pair and an H-pair at v, observe how the magnitude of cM changes if

we re-match them into two (G, H)-pairs to get a new matching M′. gM(v) goes down by

1. cycles(M) may increase by 1, decrease by 1, or stay the same. Therefore the magnitude

of cM′ is at least as large as cM. Iterating this, the dominant terms are M ∈ PM(G, H),

and the size assumption means they are dominant up to a no(1) factor.

There are often significantly more cancellations than the Gaussian case. We con-

jecture that the magnitude for planar graphs G ∪ H is given by the simple matchings

M ∈ PM(G, H).

Definition 5.48. For a multigraph G and M ∈ PM(G), we say that M is v-simple if v is visited

at most once in each cycle induced by M. We say that M is simple if every cycle is simple.

Conjecture 5.49. Let G and H be two loopless multigraphs such that G ∪ H is planar, and

|E(G)|, |E(H)| ≤ o(log n/ log log n). Then

E[pG · pH ] =
1

n|E(G)|+|E(H)| ·

 ∑
simple M∈PM(G,H)

ncycles(M)

 · (1 ± o(1)).

If there are no simple M ∈ PM(G, H), then the expectation is zero.

K5 is a counterexample to an extension of the conjecture to non-planar graphs. E[pG pH ] < 0

for G and H equal to two 5-cycles despite that:

Proposition 5.50. Decomposing K5 into two 5-cycles G and H, there is no simple M ∈ PM(G, H).
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Proof. The cycles created by M ∈ PM(G, H) are necessarily even-length since they alter-

nate between G and H edges. They can’t be length-2 since E(G) ∩ E(H) = ∅. Therefore

there must be two cycles of lengths 4 and 6, or one cycle of length 10, but a length-6 or 10

cycle is not simple.

There are other examples with K5 minors with negative inner product. Taking G, H to

be the red and blue edges in Fig. 5.4,

E[pG pH ] =
−16(n − 1)(n − 2)(n − 4)

n11(n + 2)5 .

Taking G, H to be the red and blue edges in Fig. 5.5,

E[pG pH ] =
−16(n − 1)(n − 2)2(n − 4)

n11(n + 2)6 .

Figure 5.4 Figure 5.5

We don’t know of any similar examples based on K3,3. To lend support to the conjec-

ture, we consider an approach that almost works, and show some intuition for why the

failure of the approach is related to planarity (or is at least topological in nature).

Observe that fixing a matching collection off of a vertex v induces a matching of the

edges incident to v. To wit, if you leave v along edge e, and follow the fixed matching
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around outside of v, you will eventually return to v along some edge. If the induced

matching at v has a G-pair then we claim that summing over matchings at v produces

zero.

Lemma 5.51. Let M′ be a perfect matching collection for all vertices except v. If there is a G-pair

in the induced matching at v, then

∑
M:M extends M′ at v

cM = 0.

Proof. Abbreviate the sum in the statement as ∑M⪰M′ . The cM factor out a term for

vertices that are not v,

∑
M⪰M′

cM = ∏
w∈V,
w ̸=v

(−2)
gM′ (w)

(n + 2d(w)− 4)
gM(w) ∑

M⪰M′
ncycles(M) (−2)

gM(v)

(n + 2d(v)− 4)
gM(v)

.

We will argue that the latter sum is zero.

Let e1 and e2 be two edges which form a G-pair induced by the matchings M′ outside

of v. Consider the following map from matchings of the edges incident to v where e1 is

not matched to e2 to matchings where e1 is matched to e2. If e1 is matched to ei and e2 is

matched to ej then we match e1 and e2 and match ei and ej.

To invert this mapping, given a matching where e1 is matched with e2, we need to

know which of the d(v)− 1 other matched pairs ei and ej to swap with and we need to

know whether to match e1 with ei and e2 with ej or e1 with ej and e2 with ei.

Consider a given matching where e1 is matched with e2. Letting c + 1 be the number

of cycles in the matching and k + 1 be the number of G-pairs at v, this matching gives a

value of

nc+1 · (−2)k

(n + 2d(v)− 4)k · −2(k + 1)
n + 2d(v)− 2k − 4

.

We now show that this term cancels with the terms for all of the matchings where e1 is not
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matched to e2 which map to this matching. Observe an important property of the induced

matching: for all re-matchings of e1 and e2 with ei, ej, the number of cycles decreases by

exactly 1. For the 2(k + 1) matchings where e1 and e2 are mixed with an H-pair, each such

matching gives a value of

nc · (−2)k

(n + 2d(v)− 4)k .

For the 2d(v)− 2k − 4 matchings where e1 and e2 are mixed with another G-pair or are

matched with a (G, H)-pair, each such matching gives a value of

nc · (−2)k

(n + 2d(v)− 4)k · −2(k + 1)
n + 2d(v)− 2k − 4

.

Adding these terms together and dividing by nc · (−2)k

(n+2d(v)−4)k , we obtain

−2(k + 1)n
n + 2d(v)− 2k − 4

+ 2(k + 1)− 2(k + 1)(2d(v)− 2k − 4)
n + 2d(v)− 2k − 4

= 0.

The next corollary explains some cancellations.

Corollary 5.52. If G ∪ H has a cut vertex v such that a component C of (G ∪ H) \ v has an

unequal number of G edges and H edges incident to v, then E[pG pH ] = 0.

Proof. Fixing any perfect matching collection on C, this necessarily induces either an H-

pair or a G-pair at v. By the previous lemma, summing over the matchings at v yields

zero.

Even when we cannot apply Corollary 5.52, Lemma 5.51 can still be very useful in

computing E[pG pH ].

Example 5.53. Consider the graphs G and H depicted in Fig. 5.6 where V(G) = V(H) =

{1, 2, 3, 4}, E(G) = {{1, 2}, {1, 2}, {3, 4}, {3, 4}}, and E(H) = {{2, 3}, {2, 3}, {4, 1}, {4, 1}}.
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We can compute E[pG pH ] as follows. Consider vertex 1 and the edges incident to it. We

partition the collections of matchings based on how these edges are connected to each other in the

remainder of the graph. We then sum over the possible matchings at vertex 1.

Let e1 and e2 be the two copies of {1, 2} and let e3 and e4 be the two copies of {1, 4}.

1. If there is a path from e1 to e2 and a path from e3 to e4 (outside of vertex 1) then by Lemma

5.51, everything cancels at vertex 1.

2. If there is a path from e1 to e3 and a path from e2 to e4 (outside of vertex 1) then summing

over the matchings at vertex 1 gives

n2

n(n + 2)
+

n
n(n + 2)

− 2n
n2(n + 2)

=
n2 + n − 2
n(n + 2)

=
n − 1

n

To see this, note that the first term corresponds to the matching {e1, e3}, {e2, e4} at vertex

1 as this gives two cycles and gives a factor of 1
n(n+2) for vertex 1. The second term cor-

responds to the matching {e1, e4}, {e2, e3} at vertex 1 as this gives one cycle and gives a

factor of 1
n(n+2) for vertex 1. The third term corresponds to the matching {e1, e2}, {e3, e4}

at vertex 1 as this gives one cycle and gives a factor of −2
n2(n+2) for vertex 1.

Note that in order to have these paths, there must be G-H matchings at the other 3 vertices

and there are 4 ways to do this and route e1 to e3 and e2 to e4. When there are G-H matchings

at the other 3 vertices, each of these vertices gives a factor of 1
n(n+2)

3. The case when there is a path from e1 to e4 and a path from e2 to e3 behaves in the same way

as the previous case.

Adding everything together,

E[pG pH ] = 2 · 4 ·
(

1
n(n + 2)

)3
· n − 1

n
=

8(n − 1)
n4(n + 2)3
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Lemma 5.51 suggests an approach for cancelling matchings M ∈ PM(G∪ H) \PM(G, H)

or which are not simple. For a matching M ∈ PM(G ∪ H) and a vertex v, define the in-

duced re-matching at v to be M′ ∈ PM(G ∪ H) which agrees with M for all vertices except

v, where it is the induced matching at v. Now, if there is a G-pair at v in M′, then cM can

be cancelled out by summing over matchings at v and using Lemma 5.51. If M′ has only

(G, H)-pairs at v, observe that (1) the re-matching operation increases the magnitude of

cM, i.e. cM′ ≥ cM and (2) the re-matching is guaranteed to be v-simple as well. Therefore

cM is not dominant, and it can be upper bounded by the v-simple (G, H)-matching M′.

We would like to continue to the next vertex until the only remaining dominant matchings

are between G and H and are simple. Based on this argument, we initially conjectured

that Conjecture 5.49 held for all G, H not necessarily planar.

Unfortunately this strategy doesn’t work as some matchings M may be needed to

cancel out re-matchings for multiple distinct vertices. These matchings may appear with

nonzero coefficients. The observation is that such matchings must have certain “crossing"

structure. To explain this we specialize to the case where G, H have max degree 2. In this

case

cM = ncycles(M) ∏
v∈V


1 d(v) ≤ 1

1 d(v) = 2 and no G-pair at v

−2
n d(v) = 2 and G-pair at v

We group the cM based on an overall matching M ∈ PM(G, H). This can be seen as
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applying the cancellation trick in Lemma 5.51 simultaneously to all vertices.

Definition 5.54. For multigraphs G, H let V4 be the set of vertices with degG(v) = degH(v) =

2. For M ∈ PM(G, H) and v ∈ V4 let M⊕v ∈ PM(G ∪ H) be defined by re-matching v into a

G-pair and H-pair instead of two (G, H)-pairs. For S ⊆ V4 let M⊕S re-match all vertices in S.6

Lemma 5.55. Let G, H with max degree 2 and let V4 be the set of degree-4 vertices in G ∪ H.

E[pG pH ] = ∏
v∈V

n−d(v) ∑
M∈PM(G,H)

ncycles(M)

 ∑
S⊆V4

(−1)|S|
ncycles(M⊕S)

ncycles(M)+|S|

 .

Proof. Recall from Lemma 5.45,

E[pG pH ] = ∏
v∈V

n−d(v) ∑
M∈PM(G∪H)

cM.

Each M ∈ PM(G ∪ H) \ PM(G, H) has a coefficient of cM = ncycles(M)
(
−2
n

)gM
. For

each G-pair, say at v, there are two ways to rematch at v to get two (G, H)-pairs. Split the

coefficient −2
n between these two rematchings.

We say that a matching M is “uncancelled” if the inner summation over V4 is nonzero.

Let us fix G, H and an uncancelled term M ∈ PM(G, H) and assume for the sake of ex-

position that the inner summation is uncancelled and of order Ω(1); this is the maximum

possible magnitude for the inner summation, as the next lemma shows.

Lemma 5.56. cycles(M⊕S) ≤ cycles(M) + |S|

Proof. We have cycles(M⊕v) ≤ cycles(M) + 1 since the only way to increase the number

of cycles is if one cycle splits into two. The claim follows by induction.

We show how the non-cancelling property in this case is due to topological properties

of G and H (Lemma 5.61).

6. Note that the re-matchings in this definition are not necessarily induced re-matchings.
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Definition 5.57. S ⊆ V4 is dominant if cycles(M⊕S) = cycles(M) + |S|.

Definition 5.58. For each cycle C in M, let gg(C) be the set of vertices v such that

(i) v is visited twice in C,

(ii) restricting the matching collection M to all vertices except v, the induced matching at v has

a G-pair.

Let gg(M) =
⋃

C∈M gg(C).

In other words, M⊕v for vertices in gg(C) will split C into two subcycles. Fig. 5.7 gives

an example with G = {{1, 2}, {1, 2}, {2, 3}, {3, 4}}, H = {{2, 3}, {3, 4}}. The same cycle

C is drawn in two different ways. In the left image, the dashed lines are the matching

collections for each vertex. In the right image, a vertex which is visited more than once

by C is drawn more than once. The two vertices that are visited more than once are 2 and

3, and only 2 has an induced G-pair, so gg(C) = {2}.

Figure 5.7: gg(C) = {2}.

Remark 5.59. If one defines hh(M) analogously using H, then hh(M) = gg(M).

Definition 5.60. S ⊆ V4 is non-crossing if for each cycle C, S is a non-crossing subset of C drawn

in a circle.

In other words, the induced re-matching of all vertices in a non-crossing set S in a

cycle will subdivide the cycle. A picture is given in Fig. 5.8.
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Figure 5.8: In the left circle, {1, 2, 3} is a non-crossing subset of C. The right four circles
show the result of the induced rematching of {1, 2, 3}.

The key lemma is that the dominant terms are precisely non-crossing subsets of gg(M):

Lemma 5.61. S is dominant if and only if S is a non-crossing subset of gg(M).

Proposition 5.62. If S is dominant then any subset S′ ⊆ S is also dominant.

Proof. We have cycles(M⊕v) ≤ cycles(M)+ 1. If S′ is not dominant, meaning cycles(M⊕S′) <

cycles(M) +
∣∣S′∣∣, then cycles(M⊕S) cannot “catch up” to cycles(M) + |S|.

Proof of Lemma 5.61. First, observe that any non-crossing subset of gg(M) is dominant.

v ∈ gg(M) ensures that M⊕v splits the cycle containing v into two cycles. Because the set

of vertices is non-crossing, further splits will create one new cycle each time.

Now we show the converse. Let S ⊆ V4 be dominant. There are three possibilities for

v ∈ V4:

(i) v is in two different cycles of M,

(ii) v occurs twice in the same cycle and is in gg(M),

(iii) v occurs twice in the same cycle and is not in gg(M).

In the first case, cycles(M⊕v) = cycles(M)− 1 decreases. Therefore {v} is not dominant,

and by Proposition 5.62, v cannot be in S. In the third case, cycles(M⊕v) = cycles(M).

Again, {v} is not dominant and v cannot be in S. We deduce S ⊆ gg(M).
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Next, we claim that a pair of crossing vertices v, w ∈ gg(C) are not dominant. We have

cycles(M⊕{v,w}) = cycles(M) whereas a dominant term should increase the cycle count

by 2. Therefore, by Proposition 5.62 we conclude that S cannot contain any crossing pairs.

This completes the proof of the lemma.

Let sM be the leading coefficient,

Definition 5.63. sM := ∑
non-crossing S⊆gg(M)

(−1)|S|.

One step towards Conjecture 5.49 is to show that for planar graphs, an uncancelled

term is always upper bounded by a simple matching. A concrete, purely combinatorial

conjecture is the following,

Conjecture 5.64. If G, H are graphs, G ∪ H is planar, M ∈ PM(G, H) and sM ̸= 0, then there

is a simple matching M′ ∈ PM(G, H) with cycles(M′) ≥ cycles(M).

It is easy to check that a simple M ∈ PM(G, H) is always uncancelled since cycles(M⊕S) <

cycles(M) + |S| holds with strict inequality for all S ̸= ∅. If the above conjecture is true,

terms with sM ̸= 0 will therefore be dominated by simple terms.

5.4 Polynomial Basis for the Boolean Setting

Let Hn = {−1,+1}n. Letting du ∈R Hn, let SymV
bool be the set of polynomials p in the

du which are symmetric under simultaneous automorphism of the hypercube: for any

π ∈ Aut(Hn),

p(d1, . . . , du, . . . ) = p(πd1, . . . , πdu, . . . ).

Aut(Hn) is well-known to be the hyperoctahedral group.

Fact 5.65. Aut(Hn) consists of permutations of the coordinates [n] and bitflips using any z ∈

{−1,+1}n. Formally, Aut(Hn) is a semidirect product of Sn and Zn
2 .
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We give a nice basis for such functions, showing formulas that mirror the general

theme of routings and matchings in the underlying graph.

Definition 5.66 (Generalized inner product). For d1, . . . , d2k, let

⟨d1, . . . , d2k⟩ =
n
∑
i=1

d1,i · · · d2k,i.

This is also denoted by the variable x1,...,2k.

We say that a hypergraph is even if the size of every hyperedge is even. Let degG(v)

be the number of edges of G containing v. Given an even hypergraph G on vertex set [m],

let

mG = ∏
{e1,...,e2k}∈E(G)

xe1,...,e2k .

Note that edges are allowed to repeat.

The mG are not linearly independent. A basis is:

Lemma 5.67. The set of mG such that: there is σ : E(G) → [n] such that for all vertices u ∈ V

and edges e, f ∋ u, σ(e) ̸= σ( f ), is a basis for SymV
bool .

Proof. Expand

mG = ∑
σ:E(G)→[n]

∏
e={e1,...,e2k∈E(G)}

de1,σ(e) · · · de2k,σ(e).

If there is no such σ, then every term above has a square term d2
ij = 1. Therefore mG

simplifies to a lower-degree polynomial, and it can be expressed in terms of other mG.

If there is a σ for G, then mG contains a multilinear monomial with “shape” G, which

is linearly independent from other mG. More formally, to show linear independence,

suppose ∑G cGmG = 0 for some cG not all zero. Taking a nonzero graph G with max-

imum number of edges, precisely the coefficient cG appears on multilinear monomials
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with “shape” G, such as the monomial for σ, which is a contradiction.

Corollary 5.68. The set of mG such that G has at most n hyperedges is linearly independent.

Remark 5.69. The hyperedges are sets, so they don’t contain repeats (and thus G has no self-

loops). If we did have an edge e with a repeated vertex i in G, we could delete two copies of i from

e without affecting mG because we always have that d2
ij = 1.

As before, we can run Gram-Schmidt to orthogonalize the mG. We will generalize

matching collections to the Boolean case and use them to express the resulting polyno-

mials pG. In the Boolean case it is also useful to express pG and various calculations as a

sum over certain functions σ : E(G) → [n].

Definition 5.70. Let Mbool(G) be the set of partitions of E(G).

Definition 5.71. For M ∈ Mbool(G) define the routed hypergraph route(M) by replacing each

block B by a single hyperedge containing v ∈ V which are incident to an odd number of edges in

B.

Any block such that every v ∈ V is incident to an even number of edges in B is called a “closed

block”. Closed blocks are deleted from route(M).

Definition 5.72. For M ∈ Mbool(G) define the notation cycles(M) to be the number of closed

blocks of the partition.

Definition 5.73. Let PMbool(G) be the set of partitions of E(G) such that every block is closed.

Denote the falling and rising factorial by

xk := x(x − 1) · · · (x − k + 1), xk := x(x + 1) · · · (x + k − 1).

Lemma 5.74.

E[mG] = ∑
σ:E(G)→[n]

s.t. ∀i. σ−1(i) even

1 = ∑
M∈PMbool(G)

ncycles(M).
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Proof. The first equality is obtained by expanding mG into a sum of over all σ : E(G) →

[n], then using linearity of expectation. The second equality is obtained by casing on

which values of σ(e) are equal, which induces a partition of E(G). We have that σ con-

tributes to the first sum if and only if all of the blocks of the induced partition are closed.

Once the partition is fixed, there are ncycles(M) ways to choose distinct values for each

cycle.

For now we give only one definition of pG. The definition in terms of matchings is

more complicated and is included in Section 5.4.1.

Definition 5.75 (Generic construction from Proposition 5.4).

pG = ∑
σ:E(G)→[n]

s.t. ∀e, f∋u. σ(e) ̸=σ( f )

∏
e={e1,...,e2k}∈E(G)

de1,σ(e)de2,σ(e) · · · de2k,σ(e).

Lemma 5.76 (Automorphism-invariance). pG ∈ SymV
bool .

Proof. Neither of the two types of Hn symmetries changes pG. Coordinate permutation

doesn’t change pG because σ doesn’t depend on the names of the coordinates. Bitflips

don’t change pG because every hyperedge is even (so flips cancel out).

Corollary 5.77. pG equals the output of the degree-orthogonal Gram-Schmidt process on the mG.

We can easily compute the inner product of pG and pH in the Boolean case. The idea is

that pG and pH only contain terms where each vertex appears in each block at most once.

When we multiply pG and pH together, these blocks may merge, giving us blocks where

each vertex appears at most twice. If there is a block where a vertex appears only once,

this block will have zero expected value, so the only terms which have nonzero expected

value are the terms where in each block, each vertex either doesn’t appear or appears

twice, once from a G-edge and once from an H-edge. We now make this argument more

precise.
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Definition 5.78. Let PMbool(G, H) be the set of partitions of E(G) ∪ E(H) such that for each

vertex and each block, the number of G-edges containing the vertex equals the number of H-edges.

We say that a partition M ∈ PMbool(G, H) is simple if for each block, each vertex appears at

most 2 times.

Lemma 5.79.

E[pG pH ] = |Σ(G, H)| = ∑
simple M∈PMbool(G,H)

ncycles(M)

where Σ(G, H) is the set of functions σ : E(G ∪ H) → [n] such that

(i) For e, f ∈ E(G) such that e ∩ f ̸= ∅, σ(e) ̸= σ( f ).

(ii) For e, f ∈ E(H) such that e ∩ f ̸= ∅, σ(e) ̸= σ( f ).

(iii) For all u, i, the size of {u ∈ e ∈ E(G ∪ H) : σ(e) = i} is even. Note that from conditions

(i) and (ii) it must be size either 0 or 2.

Proof. The first equality follows from expanding pG, pH and using linearity of expecta-

tion. The second equality follows from looking at the partition induced by σ. The defini-

tion of Σ(G, H) exactly checks that this partition is simple and in PMbool(G, H).

Corollary 5.80. n|E(G)| ≤ E[p2
G] ≤ (2|E(G)|)2|E(G)|n|E(G)|.

Proof. Each cycle in M requires at least two edges, and hence the maximum magnitude

is bounded by n|E(G)|. Furthermore, this can be achieved by matching each edge with

its duplicate. The number of partitions of a k-element set is at most kk, which proves the

upper bound.

The inner product formula implies that all inner products are non-negative, so the

Boolean case does not exhibit the “negative inner product” abnormality of the spherical

case with the K5 example.
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5.4.1 Formulas using the partition poset

Since pG is automorphism-invariant, it can be expressed in terms of the mG basis. How-

ever, the coefficients on the mG are not that easy to work with.

Definition 5.81 (Routing definition).

pG = ∑
M∈Λc

G

µ(∅, M)ncycles(M)mroute(M)

where µ is the Möbius function of the poset Λc
G (to be defined in Definition 5.86).

These coefficients can be computed by an inclusion-exclusion recurrence (which is in

truth computing the Möbius function of a poset based on G, see [Sta12, Chapter 3] for an

overview of poset combinatorics).

Example 5.82. Let G have four parallel edges {s, t}. Using Definition 5.75,

pG = ∑
injective σ:[4]→[n]

ds,σ(1)dt,σ(1)ds,σ(2)dt,σ(2)ds,σ(3)dt,σ(3)ds,σ(4)dt,σ(4).

The leading monomial is ⟨ds, dt⟩4. Subtract off terms where two edges are given the same label,

(
4
2

)
n ⟨ds, dt⟩ .

This puts a coefficient of −2 on terms with three equal labels and one unequal label. Add them

back, (
4
1

)
2 ⟨ds, dt⟩2 .

The coefficient of terms with two pairs of two equal labels is −1. Add them back,

3 · n2.
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Finally, the coefficient of the all-equal label is now 6. Subtract out

6n.

In total,

pG = ⟨ds, dt⟩4 −
(

4
2

)
n ⟨ds, dt⟩2 +

(
4
1

)
2 ⟨ds, dt⟩2 + 3n2 − 6n.

Definition 5.83. Let ΛG be the partition poset of E(G): the elements are partitions of E(G), and

M1 ⪯ M2 if M1 refines M2.

ΛG has a unique minimal element (the partition into singletons, to be denoted by

∅) and a unique maximal element (the partition with one block). The example above

corresponds to the standard partition poset of {1, 2, 3, 4} [Sta12, Example 3.10.4].

Observe that the poset refinement relation exactly captures how several coefficients

on mG can contribute to the same coefficient on d. Stated formally, for σ : E(G) → [n] let

M(σ) denote the partition of E(G) induced by σ. Then

Fact 5.84. Given λ : ΛG → R,

∑
M∈ΛG

λ(M)ncycles(M)mroute(M) = ∑
σ:E(G)→[n]

 ∑
M′⪯M(σ)

λ(M′)

 ∏
e={e1,...,e2k}∈E(G)

de1,σ(e) · · · de2k,σ(e).

Inverting the coefficients can be done by Möbius inversion.

Lemma 5.85. Let κ ⊆ ΛG be downward-closed. Let κ = {∅} ∪ (ΛG \ κ). Then

∑
σ:E(G)→[n]
s.t. M(σ)∈κ

∏
e={e1,...,e2k}∈E(G)

de1,σ(e) · · · de2k,σ(e) = ∑
M∈κ

µ(∅, M)ncycles(M)mroute(M)

where µ is the Möbius function of κ.
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Definition 5.86. Let Λc
G be the set of partitions of E(G) such that either the partition is ∅ or

there is a block and a vertex such that there are at least 2 edges of the block containing the vertex.

Λc
G = κ where κ is the (downward-closed) defining set of partitions for pG in Defini-

tion 5.75. In summary from Lemma 5.85 we have,

Lemma 5.87. Definition 5.81 is equivalent to Definition 5.75.

There is also a “Boolean Isserlis theorem”. The Boolean Isserlis theorem allows us to

compute for fixed dij ∈ Rn and v ∈R {−1,+1}n,

E
v∈R{−1,+1}n

[⟨v, d1,1, . . . , d1,ℓ1
⟩⟨v, d2,1, . . . , d2,ℓ2

⟩ · · · ⟨v, dk,1, . . . , dk,ℓk
⟩].

Combining together the dij component-wise, it suffices to compute

E
v∈R{−1,+1}n

[⟨v, d1⟩⟨v, d2⟩ · · · ⟨v, dk⟩].

Let Λ2k be the partition poset for 2k elements and Λe
2k the subset where each block has

even size.

Lemma 5.88 (Boolean Isserlis theorem). For fixed di ∈ Rn and v ∈R {−1,+1}n,

E
v∈R{−1,+1}n

[⟨v, d1⟩⟨v, d2⟩ · · · ⟨v, d2k⟩] = ∑
σ:[2k]→[n]

s.t. ∀i. |σ−1(i)| even

d1,σ(1) · · · d2k,σ(2k)

= ∑
M∈Λe

2k

λ(M) ∏
{e1,...,eℓ}∈M

⟨de1 , . . . , deℓ⟩

170



where λ : Λe
2k → R is defined by the recursion

λ(perfect matching) = 1,

∑
M′⪯M

λ(M′) = 1.

Proof. The first equality is by expanding and applying linearity of expectation. The sec-

ond equality sums λ(M) in a way such that each coefficient on the relevant d is 1 or 0.

The function λ : Λ2k → R needs to satisfy

∀M ∈ Λe
2k. ∑

M′⪯M
λ(M′) = 1, ∀M ∈ Λ2k \ Λe

2k. ∑
M′⪯M

λ(M′) = 0.

There is a unique function, given by Möbius inversion on Λ2k,

λ(M) =


∑

M′⪯M:
M′∈Λe

2k

µ(M′, M) M ∈ Λe
2k

0 M ̸∈ Λe
2k

where µ(M′, M) is the Möbius function for Λ2k given in [Sta12, Example 3.10.4]. Equiva-

lently, λ(M) must equal the recursion given in the lemma statement.
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Examples:

E[⟨v, d1⟩ ⟨v, d2⟩] = ⟨d1, d2⟩

E[⟨v, d1⟩ ⟨v, d2⟩ ⟨v, d3⟩ ⟨v, d4⟩] = ⟨d1, d2⟩ ⟨d3, d4⟩+ ⟨d1, d3⟩ ⟨d2, d4⟩+ ⟨d1, d4⟩ ⟨d2, d3⟩

− 2⟨d1, d2, d3, d4⟩

E[
6

∏
i=1

⟨v, di⟩] = ⟨d1, d2⟩ ⟨d3, d4⟩ ⟨d5, d6⟩+ 15 terms of type (2,2,2)

− 2 ⟨d1, d2⟩ ⟨d3, d4, d5, d6⟩+
(

6
2

)
terms of type (2,4)

+ 16⟨d1, d2, d3, d4, d5, d6⟩

E[
8

∏
i=1

⟨v, di⟩] = ⟨d1, d2⟩ ⟨d3, d4⟩ ⟨d5, d6⟩ ⟨d7, d8⟩+ 105 terms of type (2,2,2,2)

− 2 ⟨d1, d2⟩ ⟨d3, d4⟩ ⟨d5, d6, d7, d8⟩+ 3
(

8
4

)
terms of type (2,2,4)

+ 16 ⟨d1, d2⟩ ⟨d3, d4, d5, d6, d7, d8⟩+
(

8
2

)
terms of type (2,6)

+ 4⟨d1, d2, d3, d4⟩⟨d5, d6, d7, d8⟩+
1
2

(
8
4

)
terms of type (4,4)

+ 8⟨d1, d2, d3, d4, d5, d6, d7, d8⟩

5.5 Inversion Formula for Approximate Orthogonality

Consider the problem of Fourier inversion: given parameters f̂ (G) for different graphs

G, find an orthogonally invariant function f : (Rn)V → R such that

⟨ f , pG⟩ = f̂ (G).

If the pG were completely orthogonal, then the function

f = ∑
G

f̂ (G) · pG
E p2

G
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is the unique f in the span of pG for given G. In general, let Q be the square matrix

indexed by graphs G with entries Q[G, H] := ⟨pG, pH⟩. Then f is given by

f = ∑
G

(
∑
H

Q−1[G, H] · f̂ (H)

)
· pG

provided that Q is invertible.

Because of approximate orthogonality, Q is close to a diagonal matrix. Therefore Q−1

is also close to a diagonal matrix. Formally we show

Lemma 5.89. Suppose we are in either the Gaussian, spherical, or Boolean setting. Let finitely

many nonzero f̂ (G) ∈ R be given where G is a graph of the appropriate type for the setting, and

assume that |E(G)| = o
(

log n
log log n

)
for all given G. For sufficiently large n, there is a unique f

satisfying ⟨ f , pG⟩ = f̂ (G), and f equals

f = ∑
H

(
f̂ (H) + o(1) · max

G↔H

∣∣∣ f̂ (G)
∣∣∣) · pH

E p2
H

.

Proof. Since the pG are orthogonal if G ̸↔ H, the matrix Q is block diagonal with blocks

defined by ↔. The bound on the size of given G implies that the dimension of each block

is no(1).

The diagonal terms are

E[p2
G] =


n|E(G)|+o(1) Gaussian case (Corollary 5.28)

n−|E(G)|+o(1) Spherical case (Corollary 5.46)

n|E(G)|+o(1) Boolean case (Corollary 5.80)

.
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The off-diagonal terms with G ↔ H are bounded by

|E[pG pH ]| ≤



max
M∈PM(G,H)

ncycles(M)+o(1) Gaussian case (Lemma 5.26)

n−2|E(G)| max
M∈PM(G,H)

ncycles(M)+o(1) Spherical case (Corollary 5.47)

max
simple M∈PMbool(G,H)

ncycles(M)+o(1) Boolean case (Lemma 5.79)

.

When G ̸= H, we claim that cycles(M) must be strictly less than |E(G)|. Any M ∈

PM(G, H) achieving |E(G)| cycles must pair up edges of G and H, which shows the

contrapositive.

Therefore the off-diagonal terms are smaller by a factor of n1−o(1) than the diagonal

term. Therefore Q is invertible (for sufficiently large n) and

Q−1[G, H] =


1

E[p2
G]

G = H

no(1)−1 · 1
E[p2

G]
G ̸= H

.

This proves the approximate Fourier inversion.

Remark 5.90. Using more careful counting, the assumption on |E(G)| can likely be improved to

|E(G)| ≤ nδ for some explicit δ > 0.

5.6 Open Problems

It remains to better understand the inner product polynomials in the spherical setting.

The connection to graph planarity is interesting but remains conjectural, Conjecture 5.49.

It’s possible that a different formula for pG in the spherical setting could clarify the inner

product calculation E[pG · pH ].

E[pG · pH ] in the Boolean setting (Lemma 5.79) and spherical setting (Conjecture 5.49)
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is determined by matchings between G and H such that the cycles are simple. Computing

the maximum number of cycles among such matchings is NP-hard, Remark 5.27. We

conjecture that checking whether or not a matching with simple cycles exists is already

NP-hard.

Conjecture 5.91. The following problem is NP-hard: given an undirected graph G where each

edge is either red or blue, can you partition E(G) into simple cycles that alternate color?

Conjecture 5.92. The following problem is NP-hard: given an undirected graph G, can you

partition E(G) into simple cycles with even lengths?
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CHAPTER 6

LOWER BOUND FOR SPARSE INDEPENDENT SET

We initiate the study of the sum-of-squares algorithm on random, sparse inputs. As a case

study, we analyze the performance of sum-of-squares on the independent set problem.

For the dense case, average-case independent set is equivalent to finding a clique and

the paper [BHK+16] shows an average-case lower bound against the sum-of-squares al-

gorithm. We extend the techniques introduced there, namely pseudocalibration, graph

matrices, and the approximate decomposition into positive semidefinite matrices, in or-

der to show that higher-degree sum-of-squares does not significantly beat the simple

spectral relaxation, the Lovász ϑ-function.

In previous sum-of-squares lower bounds, such as those in Chapter 4, the input is

a collection of iid random variables whose distribution is independent of n. For exam-

ple, on Constraint Satisfaction Problems, one fixes the structure of the instance and only

considers an instance to be specified by the signs of the literals, which can be viewed

as uniformly random {−1,+1} variables. In the sparse setting, the distribution of each

variable may depend on n, such as in Gn,p with p = o(1).

At its core, our proof uses the “pseudocalibration plus graph matrices” analysis in-

troduced in Chapter 3, but we need several significant extensions in the sparse setting.

For one, the pseudocalibration heuristic requires a planted distribution that is indistin-

guishable from the input distribution via low-degree tests. In the sparse case the natural

planted distribution does admit low-degree distinguishers (counting small subgraphs),

and we show how to adapt pseudocalibration to overcome this.

Graph matrix analysis in the sparse setting also requires a significant update. As

overviewed in Section 2.2, norm bounds for graph matrices on Gn,p depend on a differ-

ent type of minimum vertex separator than in the dense case. With these norm bounds in

hand, we perform an approximate PSD decomposition as described in Section 3.3, though
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there are several additional complications.

The layout of this chapter is as follows. In Section 6.1, we state the results. The ad-

ditional proof techniques for the sparse setting are outlined at a high level in Section 6.2.

The “connected truncation” fix for pseudocalibration is described in Section 6.3. The PSD-

ness proof is executed in Section 6.4.

Bibliography. This chapter is the main content of the paper [JPR+21]. The high-level

technical tools were extracted out into Chapter 2 and Chapter 3. The proof outline in

Section 6.2 is organized in a slightly different way than in the paper. A new overview of

the combinatorial arguments is provided in Section 6.4.2. Some technical components of

the proof have been omitted.

6.1 Statement of results

Sample G ∼ Gn, d
n

as an Erdős-Rényi random graph1 with average degree d, where we

think of d ≪ n. Specializing to the problem of independent set, a maximum independent

set in G has size:

Fact 6.1 ([COE15, DM11, DSS16]). W.h.p. the max independent set in G has size (1 + od(1)) ·
2 ln d

d · n.

The value of the degree-2 SoS relaxation for independent set equals the Lovász ϑ func-

tion, which is an upper bound on the independence number α(G), by virtue of being a

relaxation. For random graphs G ∼ Gn,d/n this value is larger by a factor of about
√

d

than the true value of α(G) with high probability.

Fact 6.2 ([CO05]). W.h.p. ϑ(G) = Θ( n√
d
).

We will prove that the value of higher-degree SoS is also on the order of n/
√

d, rather

1. Unfortunately our techniques do not work for a random d-regular graph. See Section 6.5.
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than n/d, and thereby demonstrate that the information-computation gap against basic

SDP/spectral algorithms persists against higher-degree SoS.

In considering relaxations for independent set of a graph G = (V, E), with variables

xv being the 0/1 indicators of the independent set, the SoS relaxation searches for pseu-

doexpectation operators satisfying the polynomial constraints

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 .

The objective value of the convex relaxation is given by the quantity Ẽ[∑v∈V xv] = ∑v∈V Ẽ[xv].

The following theorem states our main result.

Theorem 6.3. There is an absolute constant c0 ∈ N such that for sufficiently large n ∈ N and

d ∈ [(log n)2, n0.5], and parameters k, DSoS satisfying

k ≤ n
Dc0

SoS · log n · d1/2
,

it holds w.h.p. for G = (V, E) ∼ Gn, d/n that there exists a degree-DSoS pseudoexpectation

satisfying

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 ,

and objective value Ẽ[∑v∈V xv] ≥ (1 − o(1))k.

Remark 6.4. This is a non-trivial lower bound whenever DSoS ≤
(

d1/2

log n

)1/c0
.

Remark 6.5. It suffices to set c0 = 20 for our current proof. We did not optimize the tradeoff in

DSoS with k, but we did optimize the log factor (with the hope of eventually removing it).

Remark 6.6. Using the same technique, we can prove an nΩ(ε) SoS-degree lower bound for all

d ∈ [
√

n, n1−ε].

For nε ≤ d ≤ n0.5, the theorem gives a polynomial nδ SoS-degree lower bound. For
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smaller d, the bound is still strong against low-degree SoS, but it becomes trivial as DSoS

approaches (d1/2/ log n)1/c0 or d approaches (log n)2 since k matches the size of the max-

imum independent set in G, hence there is an actual distribution over independent sets

of this size (the expectation operator for which is trivially is also a pseudoexpectation

operator).

The above bound says nothing about the “almost dense” regime d ∈ [n1−ε, n/2].

To handle this regime, we observe that our techniques, along with the ideas from the

Ω(log n)-degree SoS bound from [BHK+16] for the dense case, prove a lower bound for

any degree d ≥ nε.

Theorem 6.7. For any ε1, ε2 > 0 there is δ > 0, such that for d ∈ [nε1 , n/2] and k ≤ n
d1/2+ε2

,

it holds w.h.p. for G = (V, E) ∼ Gn, d/n that there exists a degree-(δ log d) pseudoexpectation

satisfying

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 ,

and objective value Ẽ[∑v∈V xv] ≥ (1 − o(1))k.

In particular, these theorems rule out polynomial-time certification (i.e. constant de-

gree SoS) for any d ≥ polylog(n).

6.1.1 Related work

The average-case independent set problem is a sparse version of the Planted Clique prob-

lem, and our proof technique extends the SoS lower bound for Planted Clique by Barak

et al [BHK+16].

For the case of independent set in random sparse graphs, many works have consid-

ered the search problem of finding a large independent set in a random sparse graph.

Graphs from Gn,d/n are known to have independent sets of size (2 + od(1)) · ln d
d · n with

high probability, and it is possible to find an independent set of size (1 + od(1)) · ln d
d · n,
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either by greedily taking a maximal independent set in the dense case [GM75] or by us-

ing a local algorithm in the sparse case [Wor95]. This is conjectured to be a computational

phase transition, with concrete lower bounds against search beyond ln d
d · n for local algo-

rithms [RV17a] and low-degree polynomials [Wei20]. The game in the search problem is

all about the constant 1 vs 2, whereas our work shows that the integrality gap of SoS is

significantly worse, on the order of
√

d. Lower bounds against search work in the regime

of constant d (though in principle they could be extended to at least some d = ω(1) with

additional technical work), while our techniques require d ≥ log(n). For search problems,

the overlap distribution of two high-value solutions has emerged as a heuristic indicator of

computational hardness, whereas for certification problems it is unclear how the overlap

distribution plays a role.

Norm bounds for sparse graph matrices were also obtained using a different method

of matrix deviation inequalities by Rajendran and Tulsiani [RT20].

The work [BBK+21b] constructs a computationally quiet planted distribution that is a

candidate for pseudocalibration. However, their distribution is not quite suitable for our

purposes. 2 3

A recent paper by Pang [Pan21] fixes a technical shortcoming of [BHK+16] by con-

structing a pseudoexpectation operator that satisfies “∑v∈V xv = k” as a polynomial con-

straint (whereas the shortcoming was Ẽ[∑v∈V xv] ≥ (1 − o(1))k like we have here).

2. [BBK+21b] provide evidence that their distribution is hard to distinguish from Gn,d/n with probability
1 − o(1) (it is not “strongly detectable”). However, their distribution is distinguishable with probability
Ω(1), via a triangle count (it is “weakly detectable”). In SoS pseudocalibration, this manifests as Ẽ[1] =
Θd(1). We would like the low-degree distinguishing probability to be o(1) i.e. Ẽ[1] = 1 + od(1) so that
normalizing by Ẽ[1] does not affect the objective value.

3. Another issue is that their planted distribution introduces noise by adding a small number of edges
inside the planted independent set.
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6.2 Proof Outline

Since SoS is a convex program, the goal of an SoS lower bound is to construct a dual object,

which is a feasible pseudoexpectation operator. We will follow the general approach to

SoS lower bounds outlined in Chapter 3. We use the p-biased Fourier basis (Section 6.2.1),

pseudocalibrate with an additional “connected truncation” (Section 6.2.2), then perform

graph matrix analysis as described in Section 6.2.3. The key charging arguments for the

approximate PSD decomposition are given in Section 6.2.4.

The sparse setting requires many new ideas which are outlined in this section, leaving

the technical details to later sections. The ideas here without the additional technical

details are almost enough to formally prove Theorem 6.7, as we describe in Section 6.2.5.

6.2.1 p-biased Fourier analysis and graph matrices

Since we are interested in sparse Erdős-Rényi graphs in this work, we will resort to p-

biased Fourier analysis [O’D14, Section 8.4]. Formally, we view the input graph G ∼ Gn,p

as a vector in {0, 1}(
n
2) indexed by sets {i, j} for i, j ∈ [n], i ̸= j, where each entry is

independently sampled from the p-biased Bernoulli distribution, Bernoulli(p). Here, by

convention Ge = 1 indicates the edge e is present, which happens with probability p. The

Fourier basis we use for analysis on G is the set of p-biased Fourier characters (which are

naturally indexed by graphs H on [n]).

Definition 6.8. χ denotes the p-biased Fourier character,

χ(0) =
√

p
1 − p

, χ(1) = −
√

1 − p
p

.

For H a subset or multi-subset of ([n]2 ), let χH(G) := ∏e∈H χ(Ge).

We will also need the function 1 − Ge which indicates that an edge is not present.
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Definition 6.9. For H ⊆ ([n]2 ), let 1H(G) = ∏e∈H(1 − Ge).

When H is a clique, this is the independent set indicator for the vertices in H.

Proposition 6.10. For e ∈ {0, 1}, 1 +
√

p
1−p χ(e) = 1

1−p (1 − e). Therefore, for any H ⊆ ([n]2 ),

∑
T⊆H

(
p

1 − p

)|T|/2
χT(G) =

1

(1 − p)|H| · 1H(G).

We now define the graph matrices that we use. The definitions will need to be modi-

fied slightly during the PSD-ness proof. See Section 6.4.

Definition 6.11 (Ribbon). A ribbon is a tuple R = (V(R), E(R), AR, BR), where (V(R), E(R))

is an undirected multigraph without self-loops, V(R) ⊆ [n], and AR, BR ⊆ V(R). Let CR :=

V(R) \ (AR ∪ BR).

Definition 6.12 (Matrix for a ribbon). For a ribbon R, the matrix MR has rows and columns

indexed by all subsets of [n] and has a single nonzero entry,

MR[I, J] =


χE(R)(G) I = AR, J = BR

0 Otherwise

Definition 6.13 (Ribbon isomorphism). Two ribbons R, S are isomorphic, or have the same

shape, if there is a bijection between V(R) and V(S) which is a multigraph isomorphism between

E(R), E(S) and is a bijection from AR to AS and BR to BS. Equivalently, letting Sn permute the

vertex labels of a ribbon, the two ribbons are in the same Sn-orbit.

Definition 6.14 (Shape). A shape is an equivalence class of ribbons with the same shape. Each

shape has associated with it a representative α = (V(α), E(α), Uα, Vα), where Uα, Vα ⊆ V(α).

Let Wα := V(α) \ (Uα ∪ Vα).
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Definition 6.15 (Graph matrix). For a shape α, the graph matrix Mα is

Mα = ∑
injective ϕ:V(α)→[n]

Mϕ(α).

6.2.2 Modifying pseudocalibration

Failure of pseudocalibration The first obstacle we overcome is the lack of a planted dis-

tribution. Pseudocalibration requires a planted and random distribution which are hard

to distinguish using the low-degree, likelihood ratio test (i.e. Ẽ[1] is bounded whp) [Hop18].

In the case of sparse independent set, we have the following natural hypothesis testing

problem with which one may hope to pseudocalibrate.

• Null Hypothesis: Sample a graph G ∼ Gn,p.

• Alternate Hypothesis: Sample a graph G ∼ Gn,p. Then, sample a subset S ⊆ [n]

where each vertex is chosen with probability k
n . Then, plant an independent set in

S, i.e. remove all the edges inside S.

In the case of sparse independent set, the naïve planted distribution is distinguishable

from a random instance via a simple low-degree test – counting 4-cycles. In all uses of

pseudocalibration that we are aware of, the two distributions being compared are con-

jecturally hard to distinguish by all polynomial-time algorithms. We are still searching

for a suitable planted distribution for sparse independent set, and we believe this is an

interesting question on its own.

Fixing pseudocalibration via connected truncation To get around with this issue, we

close our eyes and “pretend” the planted distribution is quiet, ignoring the obvious dis-

tinguisher, and make a “connected truncation” of the moment matrix to remove terms

which correspond to counting subgraphs in G. What remains is that Ẽ[xS] is essentially
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independent of the global statistics of G. It should be pointed out here that this is in-

herently distinct from the local truncation for weaker hierarchies (e.g. Sherali-Adams)

where the moment matrix is an entirely local function [CM18]. In contrast, our Ẽ[xS]

may depend on parts of the graph that are far away from S, in fact, even up to radius nδ,

exceeding the diameter of the random graph!

More formally, the candidate moment matrix Λ will be written as follows.

λα :=
(

k
n

)|V(α)|− |Uα |+|Vα |
2

·
(

p
1 − p

) |E(α)|
2

Λ := ∑
α∈S

λα · Mα .

We still use the natural planted distribution to compute the pseudocalibrated Fourier

coefficients λα. However, we also truncate (set to zero) several Fourier coefficients. S

ranges over all proper shapes α of appropriately bounded size such that all vertices of α

are connected to Uα ∪ Vα. The latter property is the important distinction from standard

pseudocalibration and is what we call “connected truncation”. This is perhaps the most

conceptually interesting part of the proof, and we hope that the same “connected trun-

cation” will be useful for other integrality gap constructions. Further discussion of the

connected truncation is in Section 6.3.

6.2.3 Graph matrix analysis

Once the candidate moment matrix is written as a sum of graph matrices, we can analyze

the sum to prove that it is PSD with high probability.

Norm bounds To bound error terms in the analysis, we need to understand the spectral

norm of a sparse graph matrix Mα with high probability.
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Existing norm bounds for graph matrices from [AMP20] may be applied to Gn,p, but

unfortunately, they’re too weak to be useful. Consider the case where we sample G ∼

Gn,p and try to bound the spectral norm of the one-edge shape, i.e. the centered and

normalized adjacency matrix A ∈ Rn×n whose entries are:

A[i, j] =


−
√

1−p
p {i, j} ∈ E(G)√

p
1−p {i, j} ̸∈ E(G)

.

Existing norm bounds give a bound of Õ(

√
n(1−p)√

p ) whereas the true norm is O(
√

n) re-

gardless of d or p. These differ by a poly(n) factor when p is sufficiently small, whereas

we would like to describe the norm up to subpolynomial factors (or better). This discrep-

ancy is even more pronounced when we use shapes with more vertices.

Using the trace method, in the full version of the paper we prove the norm bound:

∥Mα∥ ≤ Õ

 max
vertex separators

S of α

√
n|V(α)|−|S|

√
1 − p

p

|E(S)| .

The formal statement is given in Section 6.4.9. As described in Remark 2.19, this norm

bound is not always tight and could be improved.

When p = 1
2 , this bound recovers the norm bounds for Gn,1/2 up to lower order

factors, as in this case the minimizing separator is the smallest one. The key conceptual

takeaway is that, in the sparse setting, we need to redefine the weight of a vertex separator

to also incorporate the edges within the separator, as opposed to only considering the

number of vertices. We clearly distinguish these with the terms Dense Minimum Vertex

Separator (DMVS) and Sparse Minimum Vertex Separator (SMVS).
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Approximate PSD decomposition We then perform an approximate PSD decomposi-

tion of the graph matrices that make up Λ. The general factoring strategy is the same as in

Section 3.3, though in the sparse regime we must be very careful about what kind of com-

binatorial factors we allow. Each shape comes with a natural “vertex decay” coefficient

arising from the fractional size of the independent set and an “edge decay” coefficient

arising from the sparsity of the graph. The vertex decay coefficients can be analyzed in

a method similar to Planted Clique (which only has vertex decay). For the edge decay

factors, we use novel charging arguments given in the next subsection.

The moment matrix actually must have a null space, due to the independent set con-

straints. We are forced to include certain shapes that encode indicator functions of inde-

pendent sets. These shapes must be factored out and tracked separately throughout the

analysis, in a similar way to the clique constraints in Planted Clique [BHK+16].

At this point, the techniques are strong enough to prove Theorem 6.7, an SoS-degree

Ω(log n) lower bound for d ≥ nε, as we explain in Section 6.2.5. The remaining techniques

are needed to push the SoS degree up and the graph degree down.

Throwing away dense shapes In our analysis, it turns out that a norm bound from the

vanilla trace method is not quite sufficient. Sparse random matrices’ spectral norms are

fragile with respect to the influence of an unlikely event, exhibiting deviations away from

the expectation with polynomially small probability (rather than exponentially small prob-

ability, like what is obtained from a good concentration bound). These “bad events” are

small dense subgraphs present in a graph sampled from Gn,p.

In practice, this means that our trace method-based norm bound is not tight enough

for shapes with lots of edges (these are the shapes that will “detect” the rare, dense sub-

graphs). A second and more subtle problem with these dense shapes4 is that there are

4. Beware two uses of the terms “dense”/“sparse”. Here it refers to a small graph (the shape or a small
subgraph) as opposed to the overall input G ∼ Gn,p.
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too many of them; combinatorial factors will overwhelm the “charging” argument. We

utilize two methods to get rid of these dense shapes, so that we can restrict our sums to

only sparse shapes.

Method #1: conditioning The first way to handle dense shapes is to condition on the

high probability event that G has no small dense subgraphs. For example, for d = n1−ε

whp every small subgraph S has O(|S|) edges (even up to size nδ). For a shape which

is dense (i.e. v vertices and more than O(v) edges) we can show that its norm falls off

extremely rapidly under this conditioning, allowing us to throw away dense shapes.

This type of conditioning is well-known: a long line of work showing tight norm

bounds for the simple adjacency matrix appeals to a similar conditioning argument within

the trace method [BLM15, Bor15, FM17, DMO+19]. The conditioning is instantiated

through the following identity.

Observation 6.16. Given a set of edges E ⊆ ([n]2 ), if we know that not all of the edges of E are in

E(G) then

χE(G) = ∑
E′⊆E:E′ ̸=E

(√
p

1 − p

)|E|−|E′|
χE′(G)

This simple observation whose proof is deferred to Section 6.4.4 can be applied recur-

sively to replace a dense shape α by a sum of its sparse subshapes {β}.

Handling the subshapes {β} requires some care. Destroying edges from a shape can

cause its norm to either go up or down: the vertex separator gets smaller (increasing the

norm), but if we remove edges from inside the SMVS, the norm goes down. An important

observation is we do not necessarily have to apply Observation 6.16 on the entire set of

edges of a shape, but we can also just apply it on some of the edges. We will choose

a set of edges Res(α) ⊆ E(α) that “protects the minimum vertex separator” and only

apply conditioning on edges outside Res(α). In this way the norm of subshapes β will

be guaranteed to be less than α. The fact that it’s possible to reserve such edges is shown
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separately for the different kind of shapes we encounter in our analysis.

Method #2: Frobenius norm trick A relatively simple calculation shows that shapes

with many edges have small Frobenius norm ∥Mα∥F. The “tricky” part of the trick is

that we can bound ∥Mα∥ ≤ ∥Mα∥F for all shapes simultaneously without using a union

bound over α, by instead using Cauchy-Schwarz.

The Frobenius norm bound works well for shapes that have Ω(DSoS) excess edges

(edges beyond |V(α) \ (Uα ∪ Vα)|, which is what’s needed for connectivity). It doesn’t

work well for the identity matrix, i.e. the trivial shape with |Uα| = |Vα| = k. For this

shape, the Frobenius norm is (n
k) whereas the true norm is just 1.

6.2.4 Informal sketch for bounding τ and τP

The most important part of the approximate PSD decomposition in Section 3.3 is showing

that middle shapes τ and intersection terms τP can be charged to the identity matrix, i.e.

a type of “graph matrix tail bound” for middle shapes and intersection terms. In this

subsection, we describe the properties that τ and τP satisfy, their coefficients, and their

norm bounds. Using this, we show that for each individual non-trivial τ, λτ∥Mτ∥ ≪ 1

and for each intersection pattern P, λγ◦τ◦γ′⊺
∥∥MτP

∥∥ ≪ 1. The combinatorial arguments

in this section crucially rely on the connected truncation, which enforces that all vertices

in α have a path to Uα ∪ Vα.

Middle shapes

The decomposition of a shape into left, middle, and right parts respects the connected

truncation:

Proposition 6.17. If all vertices in α have a path to Uα ∪ Vα, then decomposing α = σ ◦ τ ◦ σ′⊺,

all vertices in τ have a path to both Uτ and Vτ.
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Proof. It suffices to show that there is a path to Uτ ∪ Vτ. In this case, say there is a path to

vertex u ∈ Uτ, then u must have a path to Vτ. Otherwise, Uτ \ {u} would be a smaller

vertex separator of τ than Uτ, a contradiction to τ being a middle shape.

Let v ∈ V(τ) ⊆ V(α). By assumption there is a path from v to u ∈ Uα ∪ Vα; without

loss of generality, u ∈ Uα. Since v is not in σ, which was constructed by taking all vertices

reachable from Uα without passing through Uτ, the path must pass through Uτ.

Proposition 6.18. For each middle shape τ such that |V(τ)| > |Uτ |+|Vτ |
2 and every vertex in τ

is connected to Uτ ∪ Vτ, λτ∥Mτ∥ ≪ 1.

Proof. The coefficient λτ is

λτ =

(
k
n

)|V(τ)|− |Uτ |+|Vτ |
2

(
−
√

p
1 − p

)|E(τ)|

The norm bound on Mτ is

∥Mτ∥ ≤ Õ

n
|V(τ)\S|

2

(√
1 − p

p

)|E(S)|
where S is the sparse minimum vertex separator of τ. We now have that |λτ|∥Mτ∥ is

Õ

( k√
n

√
p

1 − p

)|V(τ)|− |Uτ |+|Vτ |
2

(√
1 − p

np

)|S|− |Uτ |+|Vτ |
2 (√

p
1 − p

)|E(τ)\E(S)|−|V(τ)\S|
 .

We claim that each of the three terms is upper bounded by 1. This will prove the claim,

since the first term provides a decay for |V(τ)| > |Uτ |+|Vτ |
2 . The base of the first term is

less than 1 for k ⪅ n/
√

d. The exponent of the second term is nonnegative: since τ is a

middle shape, both Uτ and Vτ are minimum vertex separators of τ, and since S is a vertex

separator, it must have larger size. The exponent of the third term is nonnegative by the
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following lemma.

Lemma 6.19. For a middle shape τ such that every vertex is connected to Uτ ∪Vτ, and any vertex

separator S of τ,

|E(τ) \ E(S)| ≥ |V(τ) \ S|.

Proof. First, we claim that every vertex in τ is connected to S. Let v ∈ V(τ), and by the

connected truncation, v is connected to some u ∈ Uτ. Since τ is a middle shape, there

must be a path from u to Vτ (else Uτ \ {u} would be a smaller vertex separator than Uτ).

The path necessarily passes through S since S is a vertex separator, therefore we now have

a path from v to S.

Now, we can assign an edge of E(τ) \ E(S) to each vertex of V(τ) \ S to prove the

claim. To do this, run a breadth-first search from S, and assign an edge to the vertex that

it explores.

Intersection terms

Recall that intersection terms are formed by the intersection of σ, τ, σ′⊺. Then we factor

out the non-intersecting parts, leaving the middle intersection τP, which is an intersection

of some portion γ of σ, the middle shape τ, and some portion γ′ of σ′, which we now

make formal.

Definition 6.20 (Middle intersection). Let γ, γ′ be left shapes and τ be a shape such that γ ◦

τ ◦ γ′⊺ are composable. We say that an intersection pattern P ∈ Pγ,τ,γ′⊺ is a middle intersection

if Uγ is a minimum vertex separator in γ of Uγ and Vγ ∪ Int(P). Similarly, Uγ′ is a minimum

vertex separator in γ′ of Uγ′ and Vγ′ ∪ Int(P). Finally, we also require that P has at least one

intersection.

Let Pmid
γ,τ,γ′ denote the set of middle intersections.
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Remark 6.21. For middle intersections we use the notation τP to denote the resulting shape, as

compared to αP which is used for an arbitrary intersection pattern.

Remark 6.22. In fact this definition also captures recursive intersection terms which are created

from later rounds of factorization. We say that P ∈ P
γk,...,γ1,τ,γ′⊺

1 ,...,γ′⊺
k

is a middle intersection,

denoted P ∈ Pmid
γk,...γ1,τ,γ′

1,...,γ′
k
, if for all j = 0, . . . , k − 1, letting τj be the shape of intersections

so far between γj, . . . , γ1, τ, γ
′⊺
1 , . . . , γ

′⊺
j , the intersection γj+1, τj, γ

′⊺
j+1 is a middle intersection.

We need the following structural property of middle intersections.

Proposition 6.23. For a middle intersection P ∈ Pmid
γ,τ,γ′ such that every vertex of τ is connected

to both Uτ and Vτ, every vertex in τP is connected to both UτP and VτP .

Proof. By assumption, all vertices in τ have a path to both Uτ and Vτ. Since Uτ = Vγ,

and all vertices in γ have a path to Uγ by definition of a left shape, all vertices in τ have

a path to Uγ = UτP . Similarly, Vτ = Uγ′ is connected to Vγ′ = VτP . Thus we have shown

that all vertices in τ are connected to both UτP and VτP .

Vertices in γ have a path to UτP by definition; we must show that they also have a path

to VτP . A similar argument will hold for vertices in γ′. Since all vertices in γ have paths

to Uγ, it suffices to show that all u ∈ Uγ have a path to VτP . There must be a path from

u to some v ∈ Vγ ∪ Int(P), else this would violate the definition of a middle intersection

by taking Uγ \ {u}. The vertex v is in either τ or γ′, both of which are connected to VτP ,

hence we are done.

Now we show that middle intersections have small norm. We focus on the first level

of intersection terms; the general case of middle intersections in Remark 6.22 follows by

induction.

Proposition 6.24. For left shapes γ, γ′, proper middle shape τ such that every vertex in τ is

connected to Uτ ∪ Vτ, and a middle intersection P ∈ Pmid
γ,τ,γ′ ,

∣∣∣λγ◦τ◦γ′⊺

∣∣∣∥∥MτP

∥∥≪ 1.
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Proof. For an intersection pattern P, the coefficient is

λγ◦τ◦γ′⊺ =

(
k
n

)|V(τP)|+iP−
|UτP |+|VτP |

2
(
−
√

p
1 − p

)|E(τP)|

where iP :=
∣∣V(γ ◦ τ ◦ γ′⊺)

∣∣− |V(τP)| is the number of intersections in P.

The norm bound on MτP is

Õ

max
β,S

n
|V(β)|+|Iβ |−|S|

2

(√
1 − p

p

)|E(S)|+|E(τP)|−|E(β)|−2|Ephantom|



where the maximization is taken over all linearizations β of τP and all separators S for β.

Here Ephantom are the edges which are in τP but not in β.

We now have that
∣∣∣λγ◦τ◦γ′⊺

∣∣∣∥∥MτP

∥∥ is

Õ

(
max
β,S

{(
k√
n

√
p

1 − p

)|V(γ◦τ◦γ′⊺)|−
|Uβ |+|Vβ |

2
(√

1 − p
np

)iP−|Iβ|+|S|−
|Uβ |+|Vβ |

2

·

(√
p

1 − p

)|E(β)\E(S)|−|V(β)\S|−|Iβ|+2|Ephantom|
})

.

We claim that each of the three terms is upper bounded by 1, which proves the proposition

since the first term provides a decay (since an intersection is nontrivial). The base of the

first term (vertex decay) is less than 1 for k ⪅ n/
√

d. The second term has a nonnegative

exponent by the intersection tradeoff lemma from [BHK+16]. The version we cite is Lemma

9.32 in [PR20], with the simplification that τ is a proper middle shape, so Iτ = ∅ and∣∣Sτ,min
∣∣ = |Uτ| = |Vτ| (the full form is used for intersection terms with γ1, . . . , γk, k > 1).

Lemma 6.25 (Intersection tradeoff lemma). For all left shapes γ, γ′ and proper middle shapes
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τ, let P ∈ Pγ,τ,γ′⊺ be a middle intersection, then

|V(τ)| − |Uτ|+ |Vτ|
2

+ |V(γ)| − |Uγ|+ |V(γ′)| − |Uγ′ | ≥ |V(τP)|+ |IτP,min| − |SτP,min|

where Sα,min is defined to be a minimum vertex separator of α with all multi-edges deleted, and

Iα,min is the set of isolated vertices in α with all multi-edges deleted.

The above inequality is equivalent to

iP +
|Uτ|+ |Vτ|

2
− |Uγ| − |Uγ′ | ≥

∣∣∣IτP,min

∣∣∣− ∣∣∣SτP,min

∣∣∣.
Since |Uτ| ≤ |Uγ| = |Uβ|, |Vτ| ≤ |Uγ′ | = |Vβ|,

∣∣∣IτP,min

∣∣∣ ≥ |Iβ|, |S| ≥
∣∣∣SτP,min

∣∣∣, this

implies

iP − |Iβ|+ |S| −
|Uβ|+ |Vβ|

2
≥ 0.

The third term has a nonnegative exponent, as the following lemma shows. The proof of

this important lemma uses an explicit charging scheme; a second proof using induction

is given in [JPR+21, Lemma 6.9].

Lemma 6.26. For any linearization β of τP and all separators S for β,

|E(β)|+ 2|Ephantom| − |E(S)| ≥ |V(τP)|+ |Iβ| − |S|.

Proof. We first reduce Ephantom to only the set of edges which fully disappeared from τP

(each multiedge in τP was linearized to either a single edge or no edge; only keep the

phantom edges that linearize to no edge). Furthermore, only keep two parallel multi-

edges even if more disappeared.

Let τ
phant
P be the multigraph formed from β plus the pairs of phantom multiedges in

Ephantom. We need to assign each vertex of V
(

τ
phant
P

)
\ V(S) an edge of E

(
τ

phant
P

)
\
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Figure 6.1: Dashed edges denote edges in Ephantom. The 6 vertices that are only incident
to dashed edges are isolated in β. Note that S = ∅ is a separator for β.

Figure 6.2: The shape from Fig. 6.1 after contracting edge pairs that have been charged to
isolated vertices.

E(S), and we need to assign isolated vertices in Iβ two edges. Note that the connectivity

of τ
phant
P is exactly the same as τP. The difference between the two shapes is that the

nonzero edge multiplicities are modified.

For vertices that are in the same connected component of τ
phant
P as a vertex in S, con-

sider running a breadth-first search from S, and assign each edge to the vertex it explores.

Vertices in Iβ must be explored via a double edge, in order for them to become isolated

during linearization, so assign both.

For vertices that are not in the same component of τ
phant
P as S, the edge assignment is

more complicated. Let C be a component, for example as depicted in Fig. 6.1. Because of

the connected truncation, specifically Proposition 6.23, component C must intersect both

Uβ and Vβ. For the isolated vertices in Iβ ∩ C, order them by their distance from Uβ ∪ Vβ.

Charge them to the two edges along the shortest path to Uβ ∪ Vβ. For the remaining

non-isolated vertices, we claim that there is at least one additional double edge in C that

has not yet been charged. As noted just above using Proposition 6.23, there is a path P

between Uβ and Vβ in this component. However, since C does not intersect S, which is
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by assumption a separator in β, the path cannot be entirely in β i.e. it must contain at

least one double edge. If P does not pass through an isolated vertex, this double edge

evidently has not yet been charged. If P passes through an isolated vertex, because all

edges incident to isolated vertices are double edges, there must be more double edges in

P than isolated vertices in P. Since each isolated vertex only charges one incident double

edge, they can’t all be charged. In either case, P contains an uncharged double edge.

Now contract the edges in τ
phant
P that were charged for isolated vertices as in Fig. 6.2.

Order the non-isolated vertices by their distance from this double edge. The double edge

can be used to charge its two endpoints (which are not isolated), and the other vertices can

be charged using the next edge in the shortest path to the double edge. This completes

the charging, and the proof of the lemma.

6.2.5 Proof of Theorem 6.7

The lemmas in the preceding section are informal, but they actually show something

more that justifies Theorem 6.7. For technical reasons, our formal proof that implements

the proof outline will break for d ≥ n0.5, and thus it doesn’t cover Theorem 6.7, though

we show that the norm bounds, charging arguments, plus the argument of [BHK+16] are

already sufficient to prove Theorem 6.7.

In the proof of Proposition 6.18 the term λτ∥Mτ∥ was broken into three parts, each

less than 1. Using just the first two parts,

|λτ|∥Mτ∥ ≤ Õ

( k√
n

√
p

1 − p

)|V(τ)\S| ( k
n

)|S|− |Uτ |+|Vτ |
2

 .
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Letting k = n
d1/2+ε ,

|λτ|∥Mτ∥ ≤ Õ

( 1
dε

)|V(τ)|−|S| ( 1
d1/2+ε

)|S|− |Uτ |+|Vτ |
2


≤ Õ

( 1
dε

)|V(τ)|−|Sτ | ( 1
d1/2+ε

)|Sτ |− |Uτ |+|Vτ |
2


where Sτ is the dense MVS of τ. Observe that this equals λτ∥Mτ∥ in the dense case (p =

1/2) for a random graph of size d. That is, suppose we performed the pseudocalibration

and norm bounds from [BHK+16] for a random graph G ∼ Gd,1/2. Then we would get

λτ =
(

1
d1/2+ε

)|V(τ)|− |Uτ |+|Vτ |
2 and ∥Mτ∥ ≤ (log d)O(1)

√
d
|V(τ)|−|Sτ |, and λτ∥Mτ∥ is the

same as the above. The main point is: by the analysis from [BHK+16], we know that for

shapes up to size Ω(log d), the sum of these norms is o(1). Therefore5 our matrices sum

to o(1) for SoS degree Ω(log d).

The same phenomenon occurs for the intersection terms. Essentially we are neglecting

the effect of the edges and considering only the vertex factors. By taking the first two out

of three terms used in the proof of Proposition 6.24 we have the bound (k = n
d1/2+ε ):

∣∣λγ◦τ◦γ′⊺
∣∣∥MτP∥ ≤ Õ

( 1
dε

)|V(τP)|+|Iβ|−|S| ( 1
d1/2+ε

)|V(γ◦τ◦γ′⊺)|−|V(τP)|−|Iβ|+|S|−
|Uβ |+|Vβ |

2


≤ Õ

( 1
dε

)|V(τP)|+|IτP ,min|−|SτP ,min| ( 1
d1/2+ε

)|V(γ◦τ◦γ′⊺)|−|V(τP)|−|IτP ,min|+|SτP ,min|−
|UτP |+|VτP |

2


where SτP,min and IτP,min are the dense MVS and isolated vertices respectively in the

graph τP after deleting all multiedges. For G ∼ Gd,1/2, the pseudocalibration coefficient

5. The log factor is (log n)O(1) for our norm bound, vs (log d)O(1) for G ∼ Gd,1/2, but these are the same
up to a constant for d ≥ nε.
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and norm bounds are

λγ◦τ◦γ′⊺ =

(
1

d1/2+ε

)|V(γ◦τ◦γ′⊺)|−
|Uγ |+|U

γ′ |
2

∥∥MτP

∥∥ ≤ (log d)O(1)
√

d
|V(τP)|−|SτP,min|+|IτP ,min|.

Multiplying these together, one can see that λγ◦τ◦γ′⊺
∥∥MτP

∥∥ is the same. Therefore, the

analysis of [BHK+16] also shows that the sum of all intersection terms is negligible.

By passing to the “dense proxy graph” G ∼ Gd,1/2, we can essentially use [BHK+16]

to deduce a degree-Ω(log d) lower bound in the sparse case just using connected trun-

cation with the sparse norm bounds. The analysis of [BHK+16] is limited to SoS degree

Ω(log d) and d ≥ nε. In order to push the SoS degree up and the graph degree down

in the remaining sections, we need to utilize conditioning and handle the combinatorial

terms more carefully.

6.3 Pseudocalibration with connected truncation

6.3.1 The failure of “Just try pseudocalibration"

Despite the power of pseudocalibration in guiding the construction of a pseudomoment

matrix in SoS lower bounds, it heavily relies upon a planted distribution that is hard

to distinguish from the null distribution. Unfortunately, a “quiet” planted distribution

remains on the search in our setting.

Towards this end, we will consider the following “naïve" planted distribution Dpl that

likely would have been many peoples’ first guess:

(1) Sample a random graph G ∼ Gn,p;

(2) Sample a subset S ⊆ [n] by picking each vertex with probability k
n ;
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(3) Let G̃ be G with edges inside S removed, and output (S, G̃).

Proposition 6.27. For all d = O(
√

n) and k = Ω(n/d), the naïve planted distribution Dpl is

distinguishable in polynomial time from Gn,p with Ω(1) probability.

Proof. The number of labeled 4-cycles in Gn,d/n has expectation E[C4] =
d4

n4 · n(n− 1)(n−

2)(n − 3) and variance Var C4 = O(d4). In Dpl the expected number of labeled 4-cycles is

E
pl
[C4] =

d4

n4 · n(n − 1)(n − 2)(n − 3) ·
((

1 − k
n

)4
+ 4

k
n

(
1 − k

n

)3
+ 2

(
k
n

)2 (
1 − k

n

)2
)

=
d4

n4 · n(n − 1)(n − 2)(n − 3) ·
(

1 − O(k2/n2)
)

= E[C4]− O(d4k2/n2) = E[C4]− O(d2)

Since this is less than E[C4] by a factor on the order of
√

Var C4, counting 4-cycles succeeds

with constant probability.

Remark 6.28. To beat distinguishers of this type, it may be possible to construct the planted

distribution from a sparse quasirandom graph (in the sense that all small subgraph counts match

Gn,p to leading order) which has an independent set size of Ω(n/
√

d). In the dense setting,

the theory of quasirandom graphs states that if the planted distribution and Gn,1/2 match the

subgraph count of C4, this is sufficient for all subgraph counts to match; in the sparse setting this

is no longer true and the situation is more complicated [CG02].

Remark 6.29. Coja-Oghlan and Efthymiou [COE15] show that a slight modification of this

planted distribution (correct the expected number of edges to be p(n
2)) is indistinguishable from

the random distribution provided k is slightly smaller than the size of the maximum independent

set in Gn,p. This is not useful for pseudocalibration because we are trying to plant an independent

set with larger-than-expected size.

The Fourier coefficients of the planted distribution are:
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Lemma 6.30. Let xT(S) be the indicator function for T being in the planted solution i.e. T ⊆ S.

Then, for all T ⊆ [n] and α ⊆ ([n]2 ),

E
(S,G̃)∼Dpl

[xT(S) · χα(G̃)] =

(
k
n

)|V(α)∪T| ( p
1 − p

) |E(α)|
2

Proof. First observe that if any vertex of V(α) ∪ T is outside S, then the expectation is 0.

This is because either T is outside S, in which case xT = 0, or a vertex of α is outside S,

in which case the expectation of any edge incident on this vertex is 0 so the entire expec-

tation is 0 using independence. Now, each vertex of V(α) ∪ T is in S independently with

probability
(

k
n

)|V(α)∪T|
. Conditioned on this event happening, the character is simply

χα(0) =
(

p
1−p

) |E(α)|
2 . Putting them together gives the result.

This planted distribution motivates the following incorrect definition of the pseudo-

expectation operator.

Definition 6.31 (Incorrect definition of Ẽ). For S ⊆ [n], |S| ≤ DSoS,

Ẽ[xS] := ∑
α⊆([n]2 ):
|α|≤DV

(
k
n

)|V(α)∪S| ( p
1 − p

) |E(α)|
2

χα(G)

For this operator, Ẽ[1] = 1 + Ω(1). More generally, tail bounds of graph matrix sums

are not small, which ruins our analysis technique.

6.3.2 Salvaging the doomed

We will now discuss our novel truncation heuristic. The next paragraphs are for discus-

sion and the technical proof resumes at Definition 6.33. Letting S be the set of shapes α

that contribute to the moment Ẽ[xI ], the “connected truncation” restricts S to shapes α
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such that all vertices in α have a path to I (or in the shape view, to Uα ∪ Vα).

Why might this be a good idea? Consider the planted distribution. The only tests

we know of to distinguish the random/planted distributions are counting the number of

edges or counting occurrences of small subgraphs. These tests cannot be implemented

using only connected Fourier characters; shapes with disconnected middle vertices are

needed to count small subgraphs. For example, suppose we fix a particular vertex v ∈

V(G), and we consider the set of functions on G which are allowed to depend on v but

are otherwise symmetric in the vertices of G. A basis for these functions can be made by

taking shapes α such that Uα has a single vertex, Vα = ∅, then fixing Uα = v (i.e. take the

vector entry in row v). Let symv denote this set of functions.

Proposition 6.32. Let T(G) be the triangle counting function on G. Let conn(symv) be the

subset of symv such that all vertices have a path to v. Then T(G) ̸∈ span(conn(symv)).

Proof. T(G) has a unique representation in symv which requires disconnected Fourier

characters. For example, one component of the function is Tv(G) = number of triangles

not containing v. This is three vertices x, y, z outside of Uα with 1(x,y)∈E(G)1(x,z)∈E(G)1(y,z)∈E(G).

The edge indicator function is implemented by Proposition 6.10. But there are no edges

between x, y, z and Uα = v in these shapes.

It’s not even possible to implement Tv(G) = number of triangles containing v, as a

required shape is two vertices x, y outside of Uα connected with an edge.

Despite the truncation above, our pseudocalibration operator is not a “local function"

of the graph. Our Ẽ[xS] can depend on vertices that are far away from S, but in an atten-

uated way. The graph matrix for α is a sum of all ways of overlaying the vertices of α onto

G. The edges do not need to be overlaid. If an edge “misses” in G, then we can use this

edge to get far away from S, but we take a decay factor of χe(0) =
√

p
1−p =

√
d

n−d .

The “local function” property of Ẽ[xS] is also a connected truncation, but it is a con-

nected truncation in a different basis. The basis is the 0/1 basis of 1H(G) for H ⊆ (n
2). A
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reasonable definition of graph matrices in this basis is

Mα = ∑
injective σ:V(α)→[n]

1σ(E(α))(G)

which sums all ways to embed α into G. Ẽ[xS] is a local function if and only if in this

basis it is a sum of shapes α satisfying the (same) condition that all vertices are connected

to S = Uα ∪ Vα.

For sparse graphs, the two bases are somewhat heuristically interchangeable since:

1
p

1e(G) = 1 −
√

1 − p
p

χe(G) ≈ −
√

1 − p
p

χe(G).

Comparing the 0/1 basis and the Fourier basis, the 0/1 basis expresses combinatorial

properties such as subgraph counts more nicely, while spectral analysis is only feasible in

the Fourier basis. In the proof (see Definition 6.58), we will augment ribbons so that they

may also contain 0/1 indicators, and this flexibility helps us overcome both the spectral

and combinatorial difficulties in the analysis.

Using connected objects to take advantage of correlation decay is also a theme in the

cluster expansion from statistical physics (see Chapter 5 of [FV18]). Although not for-

mally connected with connected truncation, the two methods share some similar charac-

teristics.

Recall that we are given a graph G ∼ Gn,p where d = pn is the average degree and

our goal is to show that whp, degree DSoS SoS thinks there exists an independent set of

size k = n
d1/2D

c0
SoS log n

for some absolute constant c0, whereas the true independent set has

size ≈ n log d
d . Formally we define the candidate moment matrix as:
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Definition 6.33 (Moment matrix).

Λ := ∑
α∈S

(
k
n

)|V(α)|
·
(

p
1 − p

) |E(α)|
2 Mα

|Aut(α)| .

where S is the set of proper shapes such that

1. |Uα|, |Vα| ≤ DSoS.

2. |V(α)| ≤ DV where DV = CDSoS log n for a sufficiently large constant C.

3. Every vertex in α has a path to Uα ∪ Vα.

We refer to
(

k
n

)|V(α)|
as the “vertex decay factor” and

(
p

1−p

) |E(α)|
2 as the “edge decay

factor”. The candidate moment matrix is the principal submatrix indexed by (
[n]

≤DSoS/2).

The non-PSDness properties of Λ are easy to verify:

Lemma 6.34. Λ is SoS-symmetric.

Proof. This is equivalent to the fact that the coefficient of α does not depend on how

Uα ∪ Vα is partitioned into Uα and Vα for |Uα ∪ Vα| ≤ DSoS.

Lemma 6.35. Ẽ[1] = 1.

Proof. For Uα = Vα = ∅, the only shape in which all vertices are connected to Uα ∪ Vα is

the empty shape. Therefore Ẽ[1] = 1.

Lemma 6.36. Ẽ satisfies the feasibility constraints.

Proof. We must show that Ẽ[xS] = 0 whenever S is not an independent set in G. Observe

that if ribbon R contributes to Ẽ[xS], then if we modify the set of edges inside S, the

resulting ribbon still contributes to Ẽ[xS]. In fact, each edge also comes with a factor

of
√

p
1−p . By Proposition 6.10, we can group these ribbons into an indicator function

1

(1−p)(
|S|
2 )

1E(S). That is, Ẽ[xS] = 0 if S has an edge.
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Lemma 6.37. With probability at least 1 − on(1), Ẽ has objective value Ẽ[∑ xi] ≥ (1 − o(1))k.

Proof.

Claim 6.38.

E[Ẽ[xi]] =
k
n

Proof. The only shape that survives under expectation is the shape with one vertex, and

it comes with coefficient k
n .

Claim 6.39.

Var Ẽ[xi] ≤ d−Ω(ε)

Proof. Let Count(v, e) be the number of shapes with |Uα| = 1, Vα = ∅, v vertices and e

edges,

Var Ẽ[xi] = ∑
α ̸=∅:connected to i

((
k
n

)|V(α)| ( p
1 − p

)|E(α)|/2
)2

=
DV

∑
v=2

∑
v−1≤e≤v2

(
k
n

)2v ( p
1 − p

)e
· Count(v, e) · nv

≤ O(1)
DV

∑
v=2

(
4k
√

d
(1 − p)n

)v

≤ O

(
k
√

d
n

)

where the first inequality follows by observing the dominant term is tree-like and bound-

ing the number of trees (up-to-isomorphism) with v vertices by 22v.

Hence,

Pr[
∣∣∣∑ Ẽ[xi]− k

∣∣∣ ≥ t] ≤ Var ∑ Ẽ[xi]

t2 =
k
√

d
t2 ≤ on(1)

where the last inequality follows by picking t = n
1
2+δ = o(k) for δ > 0.
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What remains is to show Λ ⪰ 0. To do this it’s helpful to renormalize the matrix

entries by multiplying the degree-(k, l) block by a certain factor.

Definition 6.40 (Shape coefficient). For all shapes α, let

λα :=
(

k
n

)|V(α)|− |Uα |+|Vα |
2

·
(

p
1 − p

) |E(α)|
2

.

It suffices to show ∑α∈S λα
Mα

|Aut(α)| ⪰ 0 because left and right multiplying by a rank-1

matrix and its transpose returns Λ.

Proposition 6.41. If α, β are composable shapes, then λαλβ = λα◦β.

6.4 PSD-ness

We now work towards the formal proof of Theorem 6.3. Recall that our goal is to show

PSD-ness of the matrix ∑α∈S λα
Mα

|Aut(α)| .

Definition 6.42 (Properly composable). Composable ribbons R1, . . . , Rk are properly compos-

able if there are no intersections beyond the necessary ones BRi
= ARi+1

.

Definition 6.43 (Proper composition). Given composable ribbons R1, . . . , Rk which are not

necessarily properly composable, with shapes α1, . . . , αk, let R1 ⊙ R2 ⊙ · · · ⊙ Rk be the shape of

α1 ◦ · · · ◦ αk.

That is, R1 ⊙ · · · ⊙ Rk is the shape obtained by concatenating the ribbons but not collapsing

vertices which repeat between ribbons, as if they were properly composable. Compare this with

R1 ◦ · · · ◦ Rk, in which repetitions collapse.

Definition 6.44 (L and M). Let L and M be the set of left and middle shapes in S . Shapes in

these sets will be denoted σ, γ ∈ L and τ ∈ M. We abuse notation and let L, G ∈ L, T ∈ M

denote ribbons of shapes in L,M (following the convention of using Greek letters for shapes and

Latin letters for ribbons).
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Formalizing the process described in Section 3.3, we have the following lemma. It

is easier to formally manipulate unsymmetrized objects, ribbons, for the PSD decompo-

sition and switch to symmetrized objects, shapes, only when we need to invoke norm

bounds. The formal details are carried out in the next subsection.

Lemma 6.45. (Decomposition in terms of ribbons).

∑
α∈S

λα
Mα

|Aut(α)| = ∑
R∈S

λRMR =

(
∑

L∈L
λLML

)


2DSoS

∑
j=0

(−1)j ∑
Gj,...,G1,

T,
G′

1,...,G′
j

λGj⊙···⊙G1⊙T⊙G′
1
⊺⊙···⊙G′

j
⊺MGj◦···◦G1◦T◦G′

1
⊺◦···◦G′

j
⊺


(

∑
L∈L

λLML

)⊺

+ truncation errortoo many vertices + truncation errortoo many edges in one part

where

1.

truncation errortoo many vertices = − ∑
L,T,L′ :

|V(L◦T◦L′⊺)|>DV ,
L,T,L′⊺ are properly composable

λL◦T◦L′⊺ ML◦T◦L′⊺

+
2DSoS

∑
j=1

(−1)j+1 ∑
L,Gj,...,G1,T,G′

1,...,G′
j ,L

′ :
|V(L⊙Gj⊙...⊙G1)|>DV or
|V(G′

1
⊺⊙...⊙G′

j
⊺⊙L′⊺)|>DV

λL⊙Gj⊙···⊙G1⊙T⊙G′
1
⊺⊙···⊙G′

j
⊺⊙L′⊺ ML MGj◦···◦G1◦T◦G′

1
⊺◦···◦G′

j
⊺ MT

L′
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truncation errortoo many edges in one part = ∑
L,T,L′ :

|V(L◦T◦L′⊺)|≤DV ,
|Emid(T)|−|V(T)|>CDSoS

L,T,L′⊺ are properly composable

λL⊙T⊙L′⊺ ML◦T◦L′T

+
2DSoS

∑
j=1

(−1)j ∑
L,Gj,...,G1,T,G′

1,...,G′
j ,L

′ :
|V(L⊙Gj⊙...⊙G1)|≤DV and |V(G′

1
⊺⊙...⊙G′

j
⊺⊙L′⊺)|≤DV

|Emid(Gj)|−|V(Gj)|>CDSoS or |Emid(G′
j)|−|V(G′

j)|>CDSoS

L,(Gj◦...◦G1◦T◦G′
1
⊺◦...◦G′

j
⊺),L′⊺ are properly composable

λL⊙Gj⊙...⊙G′
j
⊺⊙L′⊺ ML◦Gj◦...◦G′

j
⊺◦L′T

where for a ribbon R, Emid(R) is the set of edges of R which are not contained in AR, not

contained in BR, and are not incident to any vertices in AR ∩ BR.

2. in all of these sums, the ribbons L, Gj, . . . , G1, T, G′
1, . . . , G′

j, L′ satisfy the following condi-

tions:

(a) T ∈ M, L, L′ ∈ L, and each Gi, G′
i ∈ L.

(b) L, Gj, . . . , G1, T, G′
1
⊺, . . . , G′

j
⊺, L′⊺ are composable.

(c) The intersection pattern induced by Gj, . . . , G1, T, G′
1, . . . , G′

j is a middle intersection

pattern.

(d) |V(T)| ≤ DV , |V(Gj ⊙ . . . ⊙ G1)| ≤ DV , and |V(G′
1
⊺ ⊙ . . . ⊙ G′

j
⊺
)| ≤ DV

(e) Except when noted otherwise (which only happens for truncation errortoo many edges in one part),

all of the ribbons Gj, . . . , G1, T, G′
1, . . . , G′

j (but not necessarily L, L′) satisfy the con-

straint that |Emid(R)| − |V(R)| ≤ CDSoS.

6.4.1 Proof of Lemma 6.45: formalizing the PSD Decomposition

Here we prove Lemma 6.45 by formally going through the approximate PSD decomposi-

tion described in Section 3.3.
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Proof. We abuse notation and write the sum over ribbons in S as

∑
α∈S

λα
Mα

|Aut(α)| = ∑
R∈S

λRMR.

(The automorphism group disappears as it was only there to ensure each ribbon is repre-

sented once anyway.)

From Proposition 2.45, every ribbon R ∈ S decomposes into R = L ◦ T ◦ L′⊺ where

L, L′ ∈ L and T ∈ M. We would like that

∑
R∈S

λRMR = ∑
L,L′∈L,T∈M:

|V(L◦T◦L′⊺)|≤DV

λL◦T◦L′⊺ML◦T◦L′⊺ .

However, this is not quite correct, as the ribbons on the right hand side may intersect.

Proposition 6.46.

∑
R∈S

λRMR = ∑
L,L′∈L,T∈M:

|V(L◦T◦L′⊺)|≤DV ,
L,T,L′⊺ are properly composable

λL◦T◦L′⊺ML◦T◦L′⊺ .

To start, we uncorrelate the sizes of L, T, L′. Add to the moment matrix

∑
L,L′∈L,T∈M:

|V(L◦T◦L′⊺)|>DV ,
L,T,L′⊺ are properly composable

λL◦T◦L′⊺ML◦T◦L′⊺ .

This term is added to truncation errortoo many vertices.

We define matrices for intersection terms Ik, factored terms Fk, and truncation error Tk

at level k recursively via the following process. We will maintain that the moment matrix
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satisfies for all k,

∑
R∈S

λRMR =

(
∑

L∈L
λLML

)(
k
∑
i=1

(−1)i+1Fi

)(
∑

L∈L
λLML

)⊺

+ (−1)k Ik +
k
∑
i=1

(−1)iTi.

In order to make this equation hold, given Ik we will choose Fk+1, Tk+1, and Ik+1 so that

Ik =

(
∑

L∈L
λLML

)
Fk+1

(
∑

L∈L
λLML

)⊺

− Tk+1 − Ik+1

At the start of the (k + 1)th iteration, we will have that Ik is equal to a sum over

middle ribbons T, “middle intersecting ribbons” (Gk, . . . , G1, G′
1
⊺, . . . , G′

k
⊺
) ∈ Mid(k)

T ,

and non-intersecting ribbons L, L′. Furthermore, the ribbons Gk, . . . , T, . . . , G′
k will sat-

isfy |Emid(R)| − |V(R)| ≤ CDSoS, in which case we say that “edge bounds hold”. Any

time that a violation of this bound appears, we will throw the term into the truncation

error for too many edges in one part. For example, initially we throw away T with too

many edges. Initially,

I0 := ∑
L,L′∈L,T∈M:

|V(L)|≤DV ,|V(T)|≤DV ,|V(L′⊺)|≤DV ,
L,T,L′⊺ are properly composable,

edge bounds hold

λL⊙T⊙L′⊺ML◦T◦L′⊺

T0 := ∑
L,L′∈L,T∈M:

|V(L)|≤DV ,|V(T)|≤DV ,|V(L′⊺)|≤DV ,
|Emid(T)|−|V(T)|>CDSoS,

L,T,L′⊺ are properly composable

λL⊙T⊙L′⊺ML◦T◦L′⊺

F0 := 0

Definition 6.47. For a middle ribbon T, let Mid(k)T be the collection of tuples of ribbons Gk, . . . , G1,G′
1, . . . , G′

k

such that the ribbons are composable and the induced intersection pattern of Gk ◦ · · · ◦ G1 ◦ T ◦

G′⊺
1 ◦ · · · ◦ G′⊺

k is a middle intersection pattern.
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The inductive hypothesis for Ik is,

Ik = ∑
T∈M,(Gk ,...,G′

k)∈Mid(k)T ,L,L′∈L:

|V(L⊙Gk⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺)|≤DV ,

L,Gk◦...◦G1◦T◦G′
1
⊺◦...◦G′

k
⊺,L′⊺ are properly composable,

edge bounds satisfied

λL⊙Gk⊙...⊙G1⊙T⊙G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺M

L◦Gk◦...◦G1◦T◦G′
1
⊺◦...◦G′

k
⊺◦L′T

.

We can approximate Ik by

(
∑

L∈L
λLML

)
Fk+1

(
∑

L∈L
λLML

)⊺

where

Fk+1 = ∑
T∈M,(Gk ,...,G′

k)∈Mid(k)T :

|V(Gk⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k
⊺
)|≤DV ,

edge bounds satisfied

λGk⊙...⊙G1⊙T⊙G′
1
⊺⊙...⊙G′

k
⊺MGk◦...◦G1◦T◦G′

1
⊺◦...◦G′

k
⊺

In order to make it so that Ik = (∑L∈L λLML) Fk+1 (∑L∈L λLML)
⊺ − Tk+1 − Ik+1, we

need to handle the following issues.

1. Ik only contains terms where |V(L ⊙ Gk ⊙ . . . ⊙ G1)| ≤ DV and
∣∣V(G′

1
⊺ ⊙ . . . ⊙ G′

k
⊺ ⊙ L′⊺)

∣∣ ≤
DV , whereas some larger terms appear in the approximation. To handle this, we add

∑
T∈M,(Gk ,...,G′

k)∈Mid(k)T ,L,L′∈L:

|V(Gk⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k
⊺
)|≤DV ,

|V(L⊙Gk⊙...⊙G1)|>DV or |V(G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺)|>DV ,

edge bounds satisfied

λL⊙Gk⊙...⊙G1⊙T⊙G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺MLMGk◦...◦G1◦T◦G′

1
⊺◦...◦G′

k
⊺ML′

⊺

to Tk+1. This is the source of the truncation error terms with too many vertices.

2. Ik only contains terms where L, Gk ◦ . . . ◦ G1 ◦ T ◦ G′
1
⊺ ◦ . . . ◦ G′

k
⊺, L′⊺ are properly

composable. The remaining terms are L, Gk ◦ . . . ◦ G1 ◦ T ◦ G′
1
⊺ ◦ . . . ◦ G′

k
⊺, L′⊺ such
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that they are not properly composable, and these will mostly be put into Ik+1.

∑
T∈M,(Gk ,...,G′

k)∈Mid(k)T ,L,L′∈L:

|V(L⊙Gk⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺)|≤DV ,

L,Gk◦···G1◦T◦G′⊺
1 ◦···G′⊺

k ,L′⊺ are not properly composable,
edge bounds satisfied

λL⊙Gk⊙...⊙G′
k
⊺⊙L′⊺MLMGk◦···◦G′

k
⊺ML′

⊺

These terms do not yet match our inductive hypothesis for Ik+1; for each L, Gk ◦ . . . ◦

G1 ◦ T ◦ G′
1
⊺ ◦ . . . ◦ G′

k
⊺, L′⊺ which are not properly composable, we must separate

out the intersecting portions Gk+1, G′
k+1. To do this, decompose L as L2 ◦ Gk+1

where BL2 = AGk+1
is the leftmost minimum vertex separator between AL and

BL ∪ {intersected vertices}. We decompose L′ as L′2 ◦ G′
k+1 in a similar way. This

is exactly the definition that Gk+1, . . . , G1, T, G′
1, . . . , Gk+1 are a middle intersection,

Definition 6.20. That is, (Gk+1, . . . , G′
k+1) ∈ Mid(k+1).

Claim 6.48. L2 and L′2 are left ribbons.

Proof. Definitionally, BL2 is the unique minimum vertex separator of L2. Further-

more, reachability of all vertices in L2 is inherited from L.

We record a lemma that will be needed later:

Lemma 6.49. Factoring L = L2 ◦ Gk+1 is oblivious to edges inside AL, BL, edges incident

to AL ∩ BL, or edges not in L.

Proof. Edges inside AL or BL do not affect the connectivity between AL, BL; the same

is true for edges incident to AL ∩ BL since all vertices of AL ∩ BL must be taken in

any separator of AL and BL. The last claim is clear because the factoring depends

only on which vertices of L intersected, as well as the structure of L.
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Observe that now instead of summing over L, Mid(k), L′, we may sum over L2, Mid(k+1), L′2.

That is, if we fix T and the ribbons Gk, . . . , G′
k, then L determines the pair L2, Gk+1,

and vice versa.

We take Ik+1 to be the subset of Gk+1 that satisfy the edge bound |Emid(Gk+1)| −

|V(Gk+1)| ≤ CDSoS. (L2 and L′2 are written as L, L′ here so as to more clearly match

the inductive hypothesis.)

∑
T∈M,(Gk+1,...,G′

k+1)∈Mid(k+1)
T ,L,L′∈L:

|V(L⊙Gk+1⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k+1
⊺⊙L′⊺)|≤DV ,

L,Gk+1◦...◦G1◦T◦G′
1
⊺◦...◦G′

k+1
⊺,L′⊺ are properly composable,

edge bounds satisfied

λL⊙Gk+1⊙...⊙G′
k+1

⊺⊙L′⊺M
L◦Gk+1◦...◦G′

k+1
⊺◦L′T

3. For technical reasons, we want to stop this process if |Emid(Gk+1)| − |V(Gk+1)| >

CDSoS or |Emid(G
′
k+1)| − |V(G′

k+1)| > CDSoS. Thus we take such terms Gk+1 and

G′
k+1

⊺ and add them to Tk+1 instead of to Ik+1.

∑
T∈M,(Gk+1,...,G′

k+1)∈Mid(k+1)
T ,L,L′∈L:

|V(L⊙Gk⊙...⊙G1)|≤DV ,|V(T)|≤DV ,|V(G′
1
⊺⊙...⊙G′

k
⊺⊙L′⊺)|≤DV ,

|Emid(Gk+1)|−|V(Gk+1)|>CDSoS or |Emid(G
′
k+1)|−|V(G′

k+1)|>CDSoS,

L,Gk+1◦...◦G1◦T◦G′
1
⊺◦...◦G′

k+1
⊺,L′⊺ are properly composable,

edge bounds satisfied up to k

λL⊙Gk+1⊙···⊙G′
k+1

⊺⊙L′⊺M
L◦Gk+1◦···◦G′

k+1
⊺◦L′T

This is the source of the truncation error terms with too many edges.

Iteratively applying this procedure gives the result.

Proposition 6.50. The recursion terminates within 2DSoS steps and I2DSoS = 0.

Proof. Each additional intersection Gk+1, G′
k+1 is nontrivial and increases

∣∣∣AGk+1

∣∣∣+ ∣∣∣AG′
k+1

∣∣∣.
Since

∣∣∣AGk

∣∣∣ is upper bounded by DSoS, the recursion ends within 2DSoS steps.
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6.4.2 Overview of handling combinatorial factors

Here we give a preview of the arguments needed to handle combinatorial factors, which

will be implemented during the course of the next sections. The charging arguments in

Section 6.2.4 show that each individual graph matrix has norm less than 1. Specifically,

except for another important combinatorial factor that we will need to return to later, the

charging arguments show that:

|λα|∥Mα∥ ≤ C ·
(

Ck
√

d
n

)|V(α)|− |Uα |+|Vα |
2

.

C denotes a universal constant, but one whose value we do not track. Explained in words,

we have a “decay factor” of Ck
√

d
n for each vertex of α, except for vertices in Uα ∪ Vα.

Notably, vertices in Uα ∩ Vα have no decay factor at all, so we’ll need to be careful about

handling vertices in Uα ∩ Vα.

We would like to prove that the sum of these norms over all non-trivial shapes α is less

than 1
10 , for concreteness. To do this, we introduce a function c(α), which is a summable

combinatorial tail bound for α. By “summable” we mean that

∑
α∈S :

non-trivial

1
c(α)

≤ 1
10

.

In order to make c(α) summable, the most natural choice of c(α) is to choose any c(α)

which is an upper on the number of shapes that “match” α. The upper bound c(α) must

be carefully chosen to satisfy
(

Ck
√

d
n

)|V(α)|− |Uα |+|Vα |
2 ≤ 1

c(α) , or equivalently,

(
n

Ck
√

d

)|V(α)|− |Uα |+|Vα |
2

≥ c(α) .
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Once we have this, it is clear that ∑ α∈S :
non-trivial

|λα|∥Mα∥ ≤ 1
10 as desired.

We will now give several upper bounds c(α), starting from a simple choice and work-

ing our way up to the final choice of c(α) that is defined formally later in Section 6.4.6.

The attempts will explain why we need to introduce various additional complications in

the PSD-ness proof in order to control combinatorial factors.

Attempt #1: c(α) = 2|V(α)|2C|V(α)|. This is an upper bound on the number of shapes

with |V(α)| vertices, since every such shape can be generated in the following way: for

each vertex, pick whether it’s in Uα or Vα (4 ways per vertex), then for each pair of ver-

tices, decide whether to include an edge. Therefore, it is clearly summable since we may

partition the sum over shapes by the number of vertices in |V(α)|, and (for large enough

C) we have a decreasing geometric series.

Unfortunately, we cannot prove
(

n
Ck

√
d

)|V(α)|− |Uα |+|Vα |
2 ≥ c(α) with this choice of

c(α). We will explain why it doesn’t work even with a slightly smarter choice.

Slightly smarter attempt #1: c(α) = |V(α)|2|E(α)|C|V(α)|. This is an upper bound on the

number of shapes with |V(α)| vertices and |E(α)| edges: each vertex chooses whether to

be in Uα or Vα, then each edge chooses its two endpoints. Hence it is summable.

The attempted inequality is
(

n
Ck

√
d

)|V(α)|− |Uα |+|Vα |
2 ≥ c(α) = |V(α)|2|E(α)|C|V(α)|. Un-

fortunately, we do not have decay factors for vertices in Uα ∩ Vα, and if |Uα ∩ Vα| is large

while the rest of the shape is small, then C|V(α)| will be too large to control. To fix this, as

suggested in Section 2.3, we would like to factor out dependence on Uα ∩ Vα.

This choice was successfully used in Planted Clique, [BHK+16]. The difference is that

n
Ck

√
d
= nε in the Planted Clique setting, and the size of the shapes is only O(log n), hence

even C|V(α)| can be handled by just one single factor of nε. In our setting, we use a smaller

decay factor, and also handle larger shapes (ideally up to the “brute force seach” regime

DSoS = Ω(α(G))). We would like the vertex decay factor to be n
Ck

√
d
= C|Uα ∪ Vα| (this
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is not quite the predicted best possible, see the open problems Section 6.5).

Attempt #2: c(α) = DSoS2|Uα∩Vα|·|Wα|C|V(α)\(Uα∩Vα)||V(α)|2|E(α)\(Uα∩Vα)×Wα|. Proof

of upper bound: first, choose how many vertices are in Uα ∩ Vα, up to DSoS. Then, each

vertex in Uα ∩Vα chooses a subset of Wα to be neighbors. Then, each other vertex chooses

whether to be Uα or Vα. Then, the remaining edges not incident to Uα ∩ Vα choose two

endpoints each.

This choice isolates the dependence on Uα ∩ Vα. Since there is no decay factor for

Uα ∩Vα, we must allocate any factors that depend on Uα ∩Vα to other vertices. The factor

that we must allocate is 2|Uα∩Vα|·|Wα|, which naturally may be allocated as 2|Uα∩Vα| per

vertex in Wα. Unfortunately, this could be 2DSoS per vertex, which is too much for each

vertex in Wα. A factor of 2DSoS per vertex would not let us improve past DSoS = O(log n).

To get around this combinatorial factor, we group edges into Uα ∩Vα into quasi-independent

set indicators. The definition is delayed until Section 6.4.3.

Attempt #3: c(α) = DSoS(2|Wα| · |Uα ∩ Vα|)|Wα|C|V(α)\(Uα∩Vα)||V(α)||E(α)| where α has

quasi-independent set indicators. Proof of upper bound: the same as the previous at-

tempt, except that the choice of edges incident to Uα ∩ Vα may be upper bounded by

the number of ways to choose quasi-independent set indicators, which is only (2|Wα| ·

|Uα ∩ Vα|)|Wα| (to be shown later).

The dependence on Uα ∩ Vα is now under control. Next, we must deal with shapes

that have too many edges. The factor |V(α)||E(α)| may be as large as |V(α)||V(α)\(Uα∩Vα)|2 .

This requires a factor of |V(α)||V(α)\(Uα∩Vα)| per vertex, which is too much. We deal with

this by conditioning the graph. After conditioning, we may assume that all shapes are

sparse, i.e. they have |E(α)| ≤ C · |V(α) \ (Uα ∩ Vα)|+ C.

Now we must pay a factor of approximately |V(α)|C per vertex. This is pretty good,

and it is sufficient for us when |V(α)| ≤ CDSoS. However, since |V(α)| could be as large
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as DV = CDSoS log n, this incurs log factors and hinders us from lowering the assumption

on the graph degree d below log n for these larger shapes. We would like to get rid of the

log factors and pay only DC
SoS per vertex (this is independent of n e.g. when DSoS = 4).

We improve the counting argument (this will also use the connected truncation).

Final attempt #4:

c(α) =


same as before |V(α)| ≤ CDSoS

DSoS(2|Wα| · |Uα ∩ Vα|)|Wα|C|V(α)\(Uα∩Vα)|

·(2CDSoS)
2CDSoS |V(α)|2 max(|E(α)|−|V(α)|−CDSoS,0) |V(α)| > CDSoS

where α is sparse and has quasi-independent set indicators. Proof of upper bound:

same as the prior proof, with the modification that to place the edges of α, we perform

the following process.

1. First we place a forest that connects all vertices to Uα ∪ Vα, which exists due to the

connected truncation. A forest can be specified in 32|V(α)\(Uα∩Vα)| ways: take a walk

of length 2|V(α) \ (Uα ∩ Vα)| and specify whether each step goes down the tree to a

new vertex, goes up the tree, or starts a new tree in the forest. The remaining edges

we call “excess edges”.

2. For each of the vertices in V(α) \ (Uα ∩ Vα), we specify whether or not it is adjacent

to one of the first CDSoS excess edges of the shape (2 ways per vertex).

3. For each of the first CDSoS excess edges of the shape, we specify its endpoints among

the just-selected vertex set, in at most ways (2CDSoS)
2 per edge.

4. For the remaining edges, we naïvely choose its endpoints in |V(α)|2 ways.

Using this choice of c(α), we only need to pay DC
SoS per vertex for the first CDSoS
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edges, as desired. The only remaining case is when the shape has many vertices and many

excess edges, in which case we will start to pay |V(α)|2 per edge, which is too much. For

these shapes, we improve the upper bound on ∥Mα∥ by giving a tighter bound on the

Frobenius norm of Mα. This allows us to show that these large shapes have small norm.

Other combinatorial factors We have neglected a combinatorial factor in the norm bound

of the form approximately D
|V(α)|− |Uα |+|Vα |

2
V . Since this equals CDSoS log n per vertex, this

factor requires one log factor per vertex to handle. There are also several other combina-

torial factors that crop up, but they are bounded by factors of DSoS per vertex. Hence in

total, we require a decay factor of DC
SoS log n, which is the source of the assumption in the

main theorem that

k ≤ n
DC

SoS · log n · d1/2
.

6.4.3 Factor out Π and edges incident to Uα ∩ Vα

The moment matrix Λ has a null space that we need to factor out. This is because Λ needs

to satisfy the independent set constraints (Ẽ[xS] = 0 if S has an edge). For independent

set it’s easy to factor out the null space, whereas handling the null space was the main

challenge in Chapter 4.

We need to augment our graph matrices to include missing edge indicators. There are

two reasons. First, the dominant term in the decomposition is a projection matrix with

these indicators, rather than the identity matrix. Second, we need to factor out depen-

dence on Uτ ∩ Vτ. These vertices do not essentially participate in the graph matrix, since

the matrix is block diagonal with a block for each assignment to Uα ∩ Vα. (When proving

things with graph matrices, it is smart to start by assuming Uα ∩ Vα = ∅, then handle the

case Uα ∩ Vα ̸= ∅).

For the first issue, define the matrix Π.
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Definition 6.51. Let π ∈ R
( n
≤DSoS

)×( n
≤DSoS

)
be the projector to the independent set constraints.

π is a diagonal matrix with entries

π[S, S] = 1[S is an independent set in G]

Definition 6.52. Let Π ∈ R
( n
≤DSoS

)×( n
≤DSoS

)
be a rescaling of π by

Π[S, S] =
(

1
1 − p

)(|S|2 )

1[S is an independent set in G]

The rescaling satisfies EG∼Gn,p [Π[S, S]] = 1. Recall that in Proposition 6.10, we had

the function 1+
√

p
1−p χ{e} = 1

1−p1e/∈E(G) which is 1
1−p times the indicator function for e

being absent from the input graph G. Since the coefficients λR come with
√

p
1−p for each

edge, we can group the edges inside AR, BR into missing edge indicators for all edges

inside AR, BR – that is, independent set indicators on AR, BR which form the matrix Π.

For all the sums of ribbons we consider, after grouping:

∑
R

λRMR = Π1/2

 ∑
R:

E(AR)=E(BR)=∅

(
1

1 − p

)(
|AR |

2 )/2+(
|BR |

2 )/2−(
|AR∩BR |

2 )

λRMR

Π1/2.

For the second issue, consider the function 1 +
√

p
1−p χ{e} = 1

1−p1e/∈E(G) again. The

magnitude of this function is clearly bounded by 1
1−p . However, if we try to bound the

magnitude of this function term by term, we instead get a bound of 2 because 1 always

has magnitude 1 and if e ∈ E(G) then
√

p
1−p χ{e} = 1, so the best bound we can give on

the magnitude of
√

p
1−p χ{e} is also 1.

This can become a problem if Uτ ∩ Vτ is large, in which case there are many possible

subsets of edges incident to Uτ ∩ Vτ even if the rest of the shape is small. If we try to

bound things term by term, we will get a factor of 2|Uτ∩Vτ | which may be too large.
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Figure 6.3: The two ribbons on the left side can be added together to get a multiple of the
indicator function for the edge {1, 2}, which is the red edge on the right. However, the
leftmost ribbon does not appear due to the connected truncation.

To handle this, our strategy will be to group terms into missing edge indicators, which

gives a factor of
(

1
1−p

)|Uτ∩Vτ |
per vertex instead. This almost works, however due to the

connected truncation there are some edge cases of Proposition 6.10 where we do not have

the term where T is empty. For example, see Fig. 6.3. We handle this using the following

lemma.

Lemma 6.53. For any set of potential edges E,

∑
E′⊆E:E′ ̸=∅

(√
p

1 − p

)|E′|
χE′ = ∑

e∈E

(√
p

1 − p

)
χ{e} ∑

E′⊆E\{e}

1

|E|(|E|−1
|E′| )

(
1

1 − p

)|E′|
1∀e′∈E′,e′/∈E(G)

Proof. Observe that if we give an ordering to the edges of E then we can write

∑
E′⊆E:E′ ̸=∅

(√
p

1 − p

)|E′|
χE′ = ∑

e∈E

(√
p

1 − p

)
χ{e}

(
∏

e′∈E:e′>e

(
1

1 − p

)
1e′/∈E(G)

)

Taking the average over all orderings of the edges of E gives the result. To see this, ob-

serve that if we take a random ordering, the probability of having a term
(√

p
1−p

)
χ{e} ·

218



(
1

1−p

)|E′|
1∀e′∈E′,e′/∈E(G) is 1

|E|(|E|−1
|E′ | )

as there must be exactly |E′| elements after e (so e

must be in the correct position) and these elements must be E′.

Remark 6.54. We take the average over all orderings of the edges E so that our expression will be

symmetric with respect to permuting the indices in Uτ ∩ Vτ.

Based on this lemma, we make the following definition.

Definition 6.55 (Quasi-indicator function). Given a set of edges E ⊆ ([n]2 ), we define the quasi-

missing edge indicator function qE to be

qE = (1 − p)|E|+1 ∑
E′⊆E

1

(|E|+ 1)( |E||E′|)

(
1

1 − p

)|E′|
1∀e∈E′,e/∈E(G)

Proposition 6.56. ∑E′⊆E:E′ ̸=∅

(√
p

1−p

)|E′|
χE′ =

(
1

1−p

)|E|
∑e∈E

(√
p

1−p

)
χ{e}qE\{e}

Remark 6.57. qE is a linear combination of terms where for each edge e ∈ E, either there is a

missing edge indicator for e or e is not mentioned at all. Moreover, we add the factor of (1 −

p)|E|+1 to qE so that the coefficients in this linear combination are non-negative and have sum at

most 1. This is the only fact that we will use about qE when we analyze the norms of the resulting

graph matrices.

Definition 6.58 (Augmented ribbon). An augmented ribbon is a vertex set V(R) ⊆ [n] with

two subsets AR, BR ⊆ V(R), as well as a multiset of edge-functions. In our augmentation, each

edge-function is either a (single edge) Fourier character, a (single edge) missing edge indicator, or

a (subset of edges) quasi-missing edge indicator.

Definition 6.59 (Matrix for an augmented ribbon). The matrix MR has rows and columns
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indexed by all subsets of [n], with entries:

MR[I, J] =


∏

edge-functions f on S⊆V(R)
f (G|S) I = AR, J = BR

0 Otherwise

Two augmented ribbons are isomorphic if they are in the same Sn-orbit (i.e. they are

equal after renumbering the vertices), and we define an augmented shape for each or-

bit. Equivalently, augmented shapes are equivalence classes of augmented ribbons under

type-preserving multi-hypergraph isomorphism, where the type of a hyperedge is the as-

sociated function. As before, we can specify the shape by a representative graph with

edge-functions. The graph matrix Mα for an augmented shape α is still defined as the

sum of MR over injective embeddings of α into [n].

Definition 6.60 (Permissible). We say that an augmented ribbon R is permissible if the following

conditions are satisfied:

1. All vertices v ∈ V(R) are reachable from AR ∪ BR using the Fourier character edges.

2. There is a missing edge indicator for all edges within AR and a missing edge indicator for

all edges within BR.

3. For any vertex v ∈ V(R) \ (AR ∩ BR) which is reachable from (AR ∪ BR) \ (AR ∩ BR)

without passing through (AR ∩ BR), there is a missing edge indicator for all edges between

(AR ∩ BR) and v.

4. For each connected component C of R \ (AR ∩ BR) which is disconnected from AR ∪ BR,

there is precisely one pair of vertices u ∈ AR ∩ BR and w ∈ C such that (u, w) ∈ E(R)

and R contains the quasi-missing edge indicator q((AR∩BR)×C)\{u,w} for all other edges

between AR ∩ BR and C.
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5. There are no other (quasi-)missing edge indicators, and the Fourier character edges are dis-

joint from the (quasi-)missing edge indicators.

A shape is permissible if any (equivalently, all) of its ribbons are permissible.

An example is shown in Fig. 6.4. To explain the conditions, the first condition is the

connected truncation. The second condition follows because we factored out indepen-

dent set indicators. The third condition observes that if we have a vertex v ∈ Wα that is

connected to (Uα ∪Vα) \ (Uα ∩Vα), then we can factor out a missing edge indicator for all

edges that go from v to Uα ∩ Vα because such edges do not affect the connectivity proper-

ties of α. The fourth condition picks out components of Wα that do affect the connectivity

and handles them via the definition of quasi-missing edge indicators as explained above.

Remark 6.61. For the remainder of Section 6.4, ribbon means “augmented ribbon” and shape

means “augmented shape”. E(α) refers to the multiset of Fourier characters edges in α. We

will write “permissible R ∈ S” to mean a permissible ribbon such that the corresponding non-

augmented ribbon that includes all edges involved in any edge function is in S (and similarly for

other sets of ribbons/shapes).

Lemma 6.62. If α is permissible, then πMα = Mαπ = Mα.

Proof. α has missing edge indicators for all edges inside Uα and Vα, hence Mα is zero on

any rows or columns that are not independent sets.

We count the extra factors of 1/(1 − p) with the following definition.

Definition 6.63. For a permissible shape or ribbon R, let:

m(R) =
(

1
1 − p

)(
|AR |

2 )/2+(
|BR |

2 )/2−(
|AR∩BR |

2 )+|V(R)\(AR∪BR)|·|AR∩BR|
.
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Figure 6.4: Example of a permissible shape. The solid red edges are independent set
indicators. The dashed red edges represent two quasi-missing edge indicators between
Uα ∩ Vα and the two “floating” connected components of V(α) \ (Uα ∩ Vα). Not shown
are missing edge indicators between all pairs of vertices in Uα and all pairs of vertices in
Vα.

222



Lemma 6.64.

∑
R∈S

λRMR =

Π1/2

 ∑
permissible

L∈L

m(L)λLML

 ·


2DSoS

∑
j=0

(−1)j ∑
permissible

Gj ,...,G1,T,G′
1,...,G′

j

m(T)

( j

∏
i=1

m(Gi)m(G′
i)

)
λGj⊙...⊙G1⊙T⊙G′

1
⊺⊙...⊙G′

j
⊺MGj◦...◦G1◦T◦G′

1
⊺◦...◦G′

j
⊺

 ·

 ∑
permissible

L∈L

m(L)λLML


⊺

Π1/2

+ truncation error

Proof. The factoring process is completely independent of edges inside AT, BT, AGi
, BGi

or edges incident to AR ∩ BR for any of these shapes, as noted in Lemma 6.49. All subsets

of edges inside AR or BR are present, but not all subsets of edges incident to AR ∩ BR

are present; because of the connected truncation, we do not have the empty set of edges

between AR ∩ BR and components of R \ (AR ∩ BR) which are disconnected from AR ∪

BR. Now group these Fourier characters into missing edge indicators and quasi-missing

edge indicators as explained above.

We can show the factor m(R) is a negligible constant:

Lemma 6.65. For any ribbon R with degree at most DSoS,

m(R) ≤
(

1
(1 − p)2DSoS

)|V(R)\(AR∩VR)|
.
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Proof. The claim follows from the following two inequalities:

(
|AR|

2

)
/2 +

(
|BR|

2

)
/2 −

(
|AR ∩ BR|

2

)
≤ DSoS(|AR \ (AR ∩ BR)|+ |BR \ (AR ∩ BR)|)

|AR ∩ BR||V(R) \ (AR ∪ BR)| ≤ DSoS|V(R) \ (AR ∩ BR)|.

This will be handled later by the vertex decay.

6.4.4 Conditioning I: reduction to sparse shapes

To improve norm bounds for dense shapes, we can replace them by sparse ones. The

replacement of dense ribbons is accomplished by the following lemmas.

Lemma 6.66. 1e∈E(G)χe = −
√

p(1 − p) + (1 − p)χe

Proof. Follows by explicit computation, as in Proposition 6.10.

Lemma 6.67. Given a set of edges E, if we know that not all of the edges of E are in E(G) then

χE = − ∑
E′⊆E:E′ ̸=E

(
−
√

p
1 − p

)|E|−|E′|
χE′

Proof. Since not all of the edges of E are in E(G), (1 − 1E⊆E(G))χE = χE. Now observe

that

1E⊆E(G)χE = ∏
e∈E

(1e∈E(G)χe) = ∏
e∈E

(−
√

p(1 − p) + (1 − p)χe)

Thus,

χE = (1−1E⊆E(G))χE = (1− (1− p)|E|)χE − ∑
E′⊆E:E′ ̸=E

(−
√

p(1 − p))|E|−|E′|(1 − p)|E
′|χE′
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Solving for χE gives

χE = − ∑
E′⊆E:E′ ̸=E

(
−
√

p
1 − p

)|E|−|E′|
χE′

Corollary 6.68. Given a set of edges E, if we know that at most k < |E| of the edges of E are in

E(G), then

χE = (−1)|E|−k ∑
E′⊆E:|E′|≤k

(
|E| − 1 − |E′|
|E| − 1 − k

)(
−
√

p
1 − p

)|E|−|E′|
χE′ .

Proof. Apply Lemma 6.67 repeatedly.

Corollary 6.69. Given a set of edges E, if we know that at most k < |E| of the edges of E are in

E(G), then

χE = ∑
E′⊆E:|E′|≤k

cE′χE′

where |cE′ | ≤ (2|E|√p)|E|−|E′|.

We can do the replacement if the graph of the shape does not occur in our random

sample of G ∼ Gn,p. We formalize a bound on the density of subgraphs of Gn,p. In

expectation the number of occurrences of a small subgraph H is essentially n|V(H)|p|E(H)|

and hence H is unlikely to appear in a random graph sample if it has too many edges

(specifically, morally all subgraphs are sparse, |E(H)| ≤ |V(H)| log1/p(n)). To translate

from expectation to concentration, we use a simple first moment calculation to bound the

densest-k-subgraph in Gn,p.

Proposition 6.70 (Sparsity of small subgraphs of Gn,p). For G ∼ Gn,p, p ≤ 1
2 , constant

η > 0, with probability at least 1 − O(1/nη), every subgraph S of G such that |V(S)| ≤ 3
√

n
d
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satisfies:

|E(S)| ≤ 3|V(S)| log1/p(n) + 3η log1/p(n).

Proof. Let e∗(v) := 3v log1/p(n) + 3η log1/p(n).

Pr[∃too dense subgraph] ≤
n
∑

v=2

(v
2)

∑
e=e∗(v)

E[number of subgraphs with v vertices, e edges]

≤
n
∑

v=2

(v
2)

∑
e=e∗(v)

(
n
v

)
v2e pe

≤
n
∑

v=2

(v
2)

∑
e=e∗(v)

nv

v!
(p1/3)e

=
n
∑

v=2

(v
2)

∑
e=e∗(v)

nv pe∗(v)/3

v!
(p1/3)e−e∗(v)

=
n
∑

v=2

(v
2)

∑
e=e∗(v)

1
nη · v!

(p1/3)e−e∗(v)

≤ O(1/nη).

Definition 6.71 (Sparse). A graph G is C′-sparse if |E(G)| ≤ C′|V(G)|. A shape α is C′-sparse

if the underlying graph (not multigraph) is. We will generally say that a graph/shape is sparse if

it is C′-sparse for some C′.

Corollary 6.72. For d ≤ n0.5, w.h.p. every subgraph of G ∼ Gn, d
n

of size at most n0.16 is

7-sparse.

Definition 6.73 (Forbidden subgraph). We call a graph H forbidden if it does not occur as a

subgraph of G.

The assumptions in Theorem 6.3 ensure that every graph of size at most DV that is not
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sparse is forbidden per Corollary 6.72. This is the only class of forbidden graphs that we

will need in this work.

Remark 6.74. For d = n1−ε, subgraphs up to size nΩ(ε) will be O(1/ε)-sparse. Using this

bound and our techniques, Theorem 6.3 can be extended to show a nΩ(ε) SoS-degree lower bound

for d = n1−ε.

Remark 6.75. For d ≪ nε, subgraphs of Gn,p will actually be significantly sparser. For example,

it is well-known that o(log n)-radius neighborhoods in Gn,d/n for constant d are trees with at

most one extra cycle.

Definition 6.76 (Subshape/subribbon, supershape/superribbon). We call shape β a sub-

shape of shape α if V(α) = V(β), Uα = Uβ, Vα = Vβ, and E(β) ⊆ E(α). Furthermore, the

(quasi-)missing edge indicators of β and α must be equal. Supershapes, subribbons, and superrib-

bons are defined similarly. We write α ⊆ β if α is a subshape of β.

Definition 6.77. For a sparse subribbon R of a forbidden ribbon U, let c(R, U) be the coefficient

on R after applying conditioning Corollary 6.68 to the non-reserved edges of U.

Definition 6.78. Let λ′
R incorporate the constant factors into λR,6

λ′
R := m(R)

(
∑

U⊇R
c(R, U)λU

)
λR,

λ′
R1⊙···⊙Rk

:=
k

∏
i=1

λ′
Ri

.

6. When R is a left L /middle T/intersecting G ribbon, the sum over U should be restricted to U with
the same type, and which actually appear in the decomposition. The stated sum is an upper bound.
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Lemma 6.79.

∑
R∈S

λRMR =

Π1/2

 ∑
sparse

permissible
L∈L

λ′
LML

 ·


2DSoS

∑
j=0

(−1)j ∑
sparse

permissible
Gj,...,G1,T,G′

1,...,G′
j

λ′
Gj⊙...⊙G1⊙T⊙G′

1
⊺⊙...⊙G′

j
⊺MGj◦...◦G1◦T◦G′

1
⊺◦...◦G′

j
⊺

 ·

 ∑
sparse

permissible
L∈L

λ′
LML


⊺

Π1/2

+ truncation error

The proof follows mostly by definition of λ′
R but there is an important detail. When

we condition a left L/middle T/intersection G ribbon, the result may no longer be a

left/middle/intersection ribbon. For example, the MVS might change drastically. It turns

out that we can avoid this by “reserving” O(|V(R)|) edges in the ribbon and only allow-

ing the removal of edges outside of the reserved set. The reserved edges guarantee that

the subribbon will continue to be a left/middle/intersection ribbon, at the cost of increas-

ing the sparsity. As shown in [JPR+21, Appendix B], O(|V(R)|) edges suffice for each of

the different types of ribbons.

We can show that the conditioning negligibly affects the coefficients of the ribbons.
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Lemma 6.80. Under the conditions of Theorem 6.3, for any ribbon R ∈ S ,

∑
U⊃R

λUc(R, U) = o(1)λR.

Proof. Let U be a superribbon with k more edges than R. We have

λU =

(√
p

1 − p

)k
λU ≤ (2

√
p)kλR. (6.1)

Using the bound from Corollary 6.69,

|c(R, U)| ≤ (2|E(U)|√p)k ≤ (2|V(R)|2√p)k. (6.2)

The number of ribbons U that are superribbons of R with k extra edges is at most

|V(R)|2k (6.3)

because (see [JPR+21, Appendix B]) due to the connectivity of the reserved set, the ver-

tex set of U and R is the same. Combining Eq. (6.1), Eq. (6.2), Eq. (6.3), the change in

coefficient is at most

∞

∑
k=1

λR(4|V(R)|4p)k ≤
∞

∑
k=1

λR

(
4D4

Vd
n

)k

≤ o(1)λR.

The last inequality uses d ≤ n0.5 and DV ≤ Õ(DSoS) ≤ Õ(n0.1).

6.4.5 Shifting to shapes

For a proper middle shape τ and left shapes γj, . . . , γ1, γ′
1, . . . , γ′

j, recall the notation

Pmid
γj,...,γ1,τ,γ′

1,...,γ′
j
for the set of middle intersection patterns (Definition 6.20 and Remark 6.22).
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We also let Pmid
τ contain a single term, the non-intersecting singleton partition.

We now analyze

∑
sparse

permissible
Gj,...,G1,T,G′

1,...,G′
j

λ′
Gj⊙...⊙G1⊙T⊙G′

1
⊺⊙...⊙G′

j
⊺MGj◦...◦G1◦T◦G′

1
⊺◦...◦G′

j
⊺

We first partition this sum based on the shapes γj, . . . , γ1, τ, γ′
1, . . . , γ′

j of Gj, . . . , G1, T, G′
1, . . . , G′

j.

We then partition this sum further based on the intersection pattern P ∈ Pmid
γj,...,γ1,τ,γ′

1,...,γ′
j
.

Definition 6.81. Define NP(τP) to be the number of ways to choose ribbons Gj, . . . , G1, T, G′
1, . . . , G′

j

of shapes γj, . . . , γ1, τ, γ′
1, . . . , γ′

j so that they have intersection pattern P and Gj ◦ . . . ◦ G1 ◦ T ◦

G′
1
⊺ ◦ . . . ◦ G′

j
⊺
= TP for a given ribbon TP of shape τP.

By symmetry, this is independent of the choice of TP.

Recall that an intersection pattern specifies both intersections and how the shapes

should be glued together via bijections between the V of each shape and the U of the

following shape (Definition 2.37).

Definition 6.82. We say that two intersection patterns are equivalent if there is an element of

Aut(γj)× . . . × Aut(γ1)× Aut(τ)× Aut(γ′
1
⊺
)× . . . × Aut(γ′

j
⊺
)

which maps one intersection pattern to the other (where the gluing maps are permuted accord-

ingly).
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This gives us the following equation:

∑
sparse

permissible
Gj,...,G1,T,G′

1,...,G′
j

λ′
Gj⊙...⊙G1⊙T⊙G′

1
⊺⊙...⊙G′

j
⊺MGj◦...◦G1◦T◦G′

1
⊺◦...◦G′

j
⊺

= ∑
sparse

permissible
γj,...,γ1,τ,γ′

1,...,γ′
j

∑
nonequivalent

P∈Pmid
γj,...,γ1,τ,γ′1,...,γ′j

NP(τP)λ
′
γj◦···◦γ1◦τ◦γ

′⊺
1 ◦···◦γ

′⊺
j

MτP

|Aut(τP)|

Grouping into shapes, here is the full decomposition:

Lemma 6.83 (Decomposition in terms of shapes).

∑
R∈S

λRMR =

Π1/2

 ∑
sparse

permissible
σ∈L

λ′
σ

Mσ

|Aut(σ)|

 ·


2DSoS

∑
j=0

(−1)j ∑
sparse

permissible
γj,...,γ1,τ,γ′

1,...,γ′
j

∑
nonequivalent

P∈Pmid
γj ,...,γ1,τ,γ′1,...,γ′j

NP(τP)λ
′
γj◦···◦γ1◦τ◦γ

′⊺
1 ◦···◦γ

′⊺
j

MτP

|Aut(τP)|

 ·

 ∑
sparse

permissible
σ∈L

λ′
σ

Mσ

|Aut(σ)|


⊺

Π1/2

+ Π1/2truncation errortoo many verticesΠ1/2 + Π1/2truncation errortoo many edges in one partΠ
1/2

where
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1.

truncation errortoo many vertices = − ∑
sparse, permissible

σ,τ,σ′ :
|V(σ◦τ◦σ′⊺)|>DV

λ′
σ◦τ◦σ′⊺

Mσ◦τ◦σ′⊺

|Aut(σ ◦ τ ◦ σ′⊺)|

+
2DSoS

∑
j=1

(−1)j+1 ∑
sparse, permissible

σ,γj,...,γ1,τ,γ′1,...,γ′j ,σ
′ :

|V(σ◦γj◦...◦γ1)|>DV or

|V(γ′1
⊺◦...◦γ′j

⊺◦σ′⊺)|>DV

∑
nonequiv.

P∈Pmid
γj ,...,γ

′
j

NP(τP)λ
′
σ◦γj◦...◦γ′j

⊺◦σ′⊺
Mσ

|Aut(σ)|
MτP

|Aut(τP)|
M⊺

σ′

|Aut(σ′)|

truncation errortoo many edges in one part = ∑
sparse, permissible

σ,τ,σ′ :
|V(σ◦τ◦σ′⊺)|≤DV ,

|Emid(τ)|−|V(τ)|>CDSoS

λ′
σ◦τ◦σ′⊺

M
σ◦τ◦σ′T

|Aut(σ ◦ τ ◦ σ′⊺)|

+
2DSoS

∑
j=1

(−1)j ∑
sparse, permissible

σ,γj,...,γ1,τ,γ′1,...,γ′j,σ
′ :

|V(σ◦γj◦...◦γ1)|≤DV and |V(γ′1
⊺◦···◦γ′j

⊺◦σ′⊺)|≤DV
|Emid(γj)|−|V(γj)|>CDSoS or |Emid(γ

′
j)|−|V(γ′j)|>CDSoS

∑
nonequiv.

P∈Pmid
γj,··· ,γ′j

λ′
σ◦γj◦···◦γ′j

⊺◦σ′⊺
Mσ◦τP◦σ′⊺

|Aut(σ ◦ τP ◦ σ′⊺)|

2. in all of these sums, the shapes σ, γj, . . . , γ1, τ, γ′
1, . . . , γ′

j, σ′ satisfy the following condi-

tions:

(a) τ ∈ M, σ, σ′ ∈ L, and each γi, γ′
i ∈ L.

(b) σ, γj, . . . , γ1, τ, γ′
1
⊺, . . . , γ′

j
⊺, σ′⊺ are composable.

(c) |V(τ)| ≤ DV , |V(γj ◦ . . . ◦ γ1)| ≤ DV , and |V(γ′
1
⊺ ◦ . . . ◦ γ′

j
⊺
)| ≤ DV

(d) Except when noted otherwise (which only happens for truncation errortoo many edges in one part),

all of the shapes γj, . . . , γ1, τ, γ′
1, . . . , γ′

j (but not necessarily σ, σ′) satisfy |Emid(α)| − |V(α)| ≤

CDSoS.

To analyze these expressions, we need upper bounds on the number of possible inter-
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section patterns, and on NP(τP). To gain slightly more control we furthermore partition

the intersection patterns based on how many intersections occur. The proofs of these

lemmas are found in [JPR+21, Section 6.6].

Lemma 6.84. There are at most

(4DSoS)
|V(τP)|−

|UτP |+|VτP |
2 +k(3DV)

k

non-equivalent intersection patterns P ∈ Pmid
γj,...,γ′

j
which have exactly k intersections.

Lemma 6.85. For any intersection pattern P which has exactly k intersections,

NP(τP) ≤
D

2k+|V(τP)|−
|UτP |+|VτP |

2
SoS

|UτP ∩ VτP |!
|Aut(τP)|

6.4.6 Counting shapes with the tail bound function c(α)

We have collected the unsymmetrized ribbons into symmetrized shapes, and we must

upper bound the number of possible shapes σ, γi and τ that are summed over. We will do

this by introducing a “tail bound function” c(α), such that ∑nontrivial permissible shapes α 1/c(α) ≪

1. The function will be of the form c(α) = f (α)|V(α)\(Uα∩Vα)|g(|E(α)|). That is, we need a

vertex decay of f (α) per vertex not in Uα ∩Vα, as well as a decay from conditioning when

the shape α has too many edges.

Definition 6.86. Let C′ be an upper bound on the sparsity of shapes in Lemma 6.83. Given a

permissible shape α such that |V(α) \ (Uα ∩ Vα)| = v ≥ 1, there are e edges in E(α) which are

not incident to a vertex in Uα ∩ Vα, and α \ (Uα ∩ Vα) has k connected components which are

disconnected from Uα ∪ Vα, we define c(α) by:
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1. If v ≤ CDSoS and e ≤ C′v then

c(α) = 40(2CD4C′+2
SoS )|V(α)|− |Uα |+|Vα |

2

2. If v ≤ CDSoS and e > C′v then

c(α) = 40(2CD4C′+2
SoS )|V(α)|− |Uα |+|Vα |

2 (2C2D2
SoS)

(e−C′v)

3. If v > CDSoS and e ≤ v − k + CDSoS then

c(α) = 40(16CD4
SoS)

|V(α)|− |Uα |+|Vα |
2

4. If v > CDSoS and e > v − k + CDSoS then

c(α) = 40(16CD4
SoS)

|V(α)|− |Uα |+|Vα |
2 (8DV)

e+k−v−CDSoS

If α is a trivial shape then we define c(α) = 1.

Lemma 6.87 ([JPR+21, Section 6.7]).

∑
α∈S :

non-trivial,
permissible

1
c(α)

≤ 1
10

.

6.4.7 Statement of main lemmas

Now that we have wrangled the moment matrix into the correct form, we will show

that all the error terms are small. Recall the expression for the moment matrix from
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Lemma 6.83:

Π1/2

 ∑
sparse

permissible
σ∈L

λ′
σ

Mσ

|Aut(σ)|

 ·


2DSoS

∑
j=0

(−1)j ∑
sparse

permissible
γj,...,γ1,τ,γ′

1,...,γ′
j

∑
nonequivalent

P∈Pmid
γj,...,γ1,τ,γ′1,...,γ′j

NP(τP)λ
′
γj◦···◦γ1◦τ◦γ

′⊺
1 ◦···◦γ

′⊺
j

MτP

|Aut(τP)|

 ·

 ∑
sparse

permissible
σ∈L

λ′
σ

Mσ

|Aut(σ)|


⊺

Π1/2

+ Π1/2 · truncation error · Π1/2

The following lemmas, for which the intuition was given in Section 6.2.4, are sufficient

to prove Theorem 6.3.

Lemma 6.88. (Non-trivial Middle Shapes) For all sparse permissible τ ∈ M such that |V(τ)| > |Uτ |+|Vτ |
2

and |Emid(τ)| − |V(τ)| ≤ CDSoS,

λ′
τ

∥Mτ∥
|Aut(τ)| ≤

1
c(τ)

.

Lemma 6.89. (Intersection Terms) For all j ≥ 1 and sparse permissible γj, . . . , τ, . . . , γ′
j such

that for each shape |Emid(α)| − |V(α)| ≤ CDSoS,

∑
nonequivalent
P∈Pmid

γj,...,γ
′
j

NP(τP)λ
′
γj◦···◦γ

′⊺
j

∥∥MτP

∥∥
|Aut(τP)|

≤ 1

c(τ)∏
j
i=1 c(γi)c(γ′

i)
.
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Lemma 6.90. (Truncation Error)

truncation error ⪯ n−Ω(CDSoS)π.

Lemma 6.91. (Sum of left shapes is well-conditioned)

 ∑
sparse,

permissible
σ∈L

λ′
σ

Mσ

|Aut(σ)|


 ∑

sparse,
permissible

σ∈L

λ′
σ

Mσ

|Aut(σ)|


⊺

⪰ n−O(DSoS)π

Proof of Theorem 6.3 assuming Lemma 6.88, Lemma 6.89, Lemma 6.90, Lemma 6.91. For ease of

exposition we omit the automorphism groups. In the approximate PSD decomposition,

the term j = 0 can be broken up into the leading term π and remaining nontrivial middle

shapes,

∑
sparse,

permissible
τ∈M

λ′
τ Mτ = ∑

permissible
τ∈M:

Uτ=Vτ=V(τ)

λτ Mτ + ∑
sparse,

permissible
τ∈M:

|V(τ)|> |Uτ |+|Vτ |
2

λ′
τ Mτ

= π + ∑
sparse,

permissible
τ∈M:

|V(τ)|> |Uτ |+|Vτ |
2

λ′
τ Mτ.
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Using Lemma 6.62, the middle shapes (j = 0) and intersection terms (j ≥ 1) are

π

(
Id + ∑

sparse,
permissible

τ∈M:
|V(τ)|> |Uτ |+|Vτ |

2

λ′
τ Mτ

+
2DSoS

∑
j=1

(−1)j ∑
sparse,

permissible
γj,...,γ′

j

∑
nonequivalent:

P∈Pmid
γj,...,γ

′
j

NP(τP)λ
′
γj◦···◦γ

′⊺
j

MτP

)
.

By Lemma 6.88 and Lemma 6.89, (summed with Lemma 6.87) this is at least Ω(1)π.

Now plugging this into the PSD decomposition, we have:

∑
α∈S

λα
Mα

|Aut(α)| ⪰ Π1/2

 ∑
sparse

permissible
σ∈L

λ′
σMσ

Ω(1)π

 ∑
sparse

permissible
σ∈L

λ′
σMσ


⊺

Π1/2 + truncation error

By Lemma 6.62 again,

= Ω(1)Π1/2

 ∑
sparse

permissible
σ∈L

λ′
σMσ


 ∑

sparse
permissible

σ∈L

λ′
σMσ


⊺

Π1/2 + truncation error

By Lemma 6.91, Lemma 6.90, and taking C sufficiently large,

⪰ n−O(DSoS)Π − n−Ω(CDSoS)Π

⪰ 0
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6.4.8 Conditioning II: Frobenius norm trick

Shapes with a large number of excess edges should be handled using their Frobenius

norm. The Frobenius norm trick improves on the first moment method, Proposition 6.70,

so it could be used to also handle O(1)-sparse subgraphs in this work. On the other hand,

the forbidden subgraph method can handle forbidden graphs beyond the first moment

method, which may lead to improvements for smaller d.

There are two parts to the Frobenius norm trick. First, we compute the Frobenius

norm of a graph matrix.

Lemma 6.92. For all proper shapes α,

E[tr(MαM⊺
α)] ≤ |Aut(α)|n|V(α)|+|Iα|.

Proof. Any term contributing to E
[
tr(MαM⊺

α)
]

is a labeling of α and α⊺ s.t. every edge

appears exactly twice. After choosing the labels for α in n|V(α)| ways, the labeling of α⊺

gives an isomorphism between α and α⊺ (except for isolated vertices, which give an extra

factor of n each).

For proper shapes α, this gives a norm bound independent of the number of edges!

MVS with a large number of induced edges can’t hurt us. We have

λα∥Mα∥ ≤
(

k
n

)|V(α)|− |Uα |+|Vα |
2 √

p|E(α)|
√

n|V(α)| .

The number of edges could be smaller than the number of vertices, but only by DSoS

(since everything must be connected to Uα ∪ Vα). If there are at least CDSoS excess edges,

then the norm is small enough to sum.

The Frobenius norm is small for too-dense subgraphs of G. The second part of the

Frobenius norm trick allows us to use these bounds with high probability instead of in
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expectation, which we can do using Markov’s inequality once instead of using Markov’s

inequality on each one.

Lemma 6.93. For any random matrices M1, . . . , Mk,

E

[
tr

((
k
∑
i=1

Mi

)(
k
∑
i=1

Mi

)⊺)]
≤
(

k
∑
i=1

√
E [tr (Mi Mi

⊺)]

)2

Proof. Observe that by Cauchy-Schwarz,

E
[
tr(Mi Mj

⊺)
]
= E

[
∑
a,b

(Mi)ab(Mj)ab

]

≤

√√√√E

[
∑
a,b

(Mi)
2
ab

]√√√√E

[
∑
a,b

(Mj)
2
ab

]

=
√

E [tr (Mi Mi
⊺)]

√
E
[
tr
(

MjMj
⊺
)]

Applying this inequality for all i, j ∈ [k] gives the result.

6.4.9 Norm bounds

For improper shapes, we linearize them. Using orthonormality of the p-biased Fourier

character, we may linearize the character by:

χk = E
x∼Bernoulli(p)

[χk(x)] + E
x∼Bernoulli(p)

[χk+1(x)] · χ .

Proposition 6.94. For all k ∈ N and all p ≤ 1
2 ,

∣∣∣∣∣ E
x∼Bernoulli(p)

[χk(x)]

∣∣∣∣∣ ≤
(√

1 − p
p

)k−2

and

∣∣∣∣∣ E
x∼Bernoulli(p)

[
χk(x)1x=0

]∣∣∣∣∣ ≤
(√

1 − p
p

)k−2

.
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Proof.

E
x∼Bernoulli(p)

[χk(x)] = p ·
√

1 − p
p

k

+ (1 − p) ·
(
−
√

p
1 − p

)k

= (1 − p) ·
√

1 − p
p

k−2

+ p ·
(
−
√

p
1 − p

)k−2

≤ (1 − p) ·
√

1 − p
p

k−2

+ p ·
(√

1 − p
p

)k−2

=

√
1 − p

p

k−2

.

The second inequality follows similarly.

Proposition 6.95. For a shape α,

Mα = ∑
linearizations β of α

(√
1 − p

p

)|E(α)|−|E(β)|−2|Ephantom(β)|

Mβ.

Proof. Each Fourier character can be linearized as χk
e = E[χk

e ] + E[χk+1
e ]χe. Then use

Proposition 6.94.

Theorem 6.96. If DV ≥ ⌈DSoSln(n)⌉ then for any shape α (including improper shapes, shapes

with missing edge indicators, and shapes with quasi-missing edge indicators), taking Mα to be the

graph matrix where the rows and columns are indexed by sets (i.e. the definition we use throughout

the paper), with probability at least 1 − ε′ the following holds:

∥Mα∥ ≤ 20

(
2|E(α)|−|Eno repetitions(α)|

ϵ′

) 1
2DV

2|E(α)|−|Eno repetitions(α)|
√
|Uα|!|Vα|!

max
β,S

n
|V(α)|−|S|+|Iβ |

2 (12DV)
|V(α)|− |Uα |+|Vα |

2 +|S|− |LS |+|RS |
2

√
1 − p

p

|E(α)|−|E(β)|−2|Ephantom(β)|(
3

√
1 − p

p

)|E(S)|
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where Eno repetitions(α) is the set (rather than the multi-set) of edges of α, β is a linearization of

α, S is a separator of β, Iβ is the set of vertices of β which are isolated, and Ephantom(β) is the

set of edges of α which are not in β. As a special case, when α is a proper shape with no isolated

vertices (which may still contain missing edge indicators and quasi-missing edge indicators), with

probability at least 1 − ε′ the following holds:

∥Mα∥ ≤ 20
(

1
ϵ′

) 1
2DV
√
|Uα|!|Vα|! max

S

n
|V(α)|−|S|

2 (12DV)
|V(α)|− |Uα |+|Vα |

2 +|S|− |LS |+|RS |
2

(
3

√
1 − p

p

)|E(S)|
Proof. Omitted. See [JPR+21, Section 6.10].

One more proposition is needed to handle the automorphism terms that arise when

switching between ribbons/shapes/shapes indexed by ordered tuples,

Proposition 6.97. For a permissible shape α of degree at most DSoS,

√
|Uα|!|Vα|!
|Aut(α)| ≤ D|V(α)\(Uα∩Vα)|/2+|V(α)\(Uα∪Vα)|

SoS

Proof. Write √
|Uα|!|Vα|!
|Aut(α)| =

√
|Uα|!|Vα|!

|Uα ∩ Vα|!
· |Uα ∩ Vα|!
|Aut(α)|

The first ratio is upper bounded by D|V(α)\(Uα∩Vα)|/2
SoS .

For the second ratio, in a permissible shape, |Aut(α)| ≥ (|Uα ∩ Vα| − |V(α) \ (Uα ∪

Vα)|)!. This is because in a permissible shape, the number of edges incident to Uα ∩ Vα

is at most the number of connected components of V(α) \ (Uα ∪ Vα), which is upper

bounded by |V(α) \ (Uα ∪ Vα)|. The remaining vertices of U ∩ V that are not incident

to an edge are completely interchangeable. Therefore this ratio is upper bounded by

D|V(α)\(Uα∪Vα)|
SoS .
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6.4.10 Proof of main lemmas

Lemma 6.88: nontrivial middle shapes

Lemma 6.88. (Non-trivial Middle Shapes) For all sparse permissible τ ∈ M such that |V(τ)| > |Uτ |+|Vτ |
2

and |Emid(τ)| − |V(τ)| ≤ CDSoS,

λ′
τ

∥Mτ∥
|Aut(τ)| ≤

1
c(τ)

.

Proof. The remaining “core” shapes are τ ∈ M nontrivial, sparse, permissible with |E(α)| ≤

|V(α)|+ CDSoS. For these shapes, the norm bound in Theorem 6.96 with ε′ = 1
nc(τ) holds

whp, via Lemma 6.87.

λ′
τ

∥Mτ∥
|Aut(τ)|

≤m(τ)

(
λτ + ∑

U⊃τ

λUc(τ, U)

)
·

C
(

2|E(τ)|nc(τ)
) 1

2DV 2|E(τ)|·

max
separator S

n
|V(α)|−|S|

2 (12DV)
|V(α)|− |Uα |+|Vα |

2 +|S|− |LS |+|RS |
2

(
3

√
1 − p

p

)|E(S)|
·
√
|Uτ|!|Vτ|!
|Aut(τ)|
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We have:

m(τ) ≤
(

1
(1 − p)2DSoS

)|V(τ)\(Uτ∩Vτ)|
≤ 2|V(τ)\(Uτ∩Vτ)| (Lemma 6.65)

∑
U⊃τ

λUc(τ, U) = o(1)λτ (Lemma 6.80)

2|E(α)|/2DV ≤ C (τ is sparse)

n1/2DV ≤ 2

c(τ) ≤ CDc|V(τ)\(Uτ∩Vτ)|
SoS (Definition 6.86, τ is sparse)

c(τ)
1

2DV ≤ Dc
SoS (From previous line)

3|E(S)| ≤ C|V(τ)\(Uτ∩Vτ)| (τ is sparse)√
|Uτ|!|Vτ|!
|Aut(τ)| ≤ CDc|V(τ)\(Uτ∩Vτ)|

SoS (Proposition 6.97))

Going through the charging argument for middle shapes in Proposition 6.18,

λτn
|V(α)|−|S|

2

(√
1 − p

p

)|E(S)|

≤
(

k
√

d
n

)|V(τ)|− |Uτ |+|Vτ |
2

·
(

1√
d

)|S|− |Uτ |+|Vτ |
2

.

Using DSoS ≤ d1/2

log n , we have
√

d ≥ DV and the last term cancels D
|S|− |LS |+|RS |

2
V from the

norm bound after the following claim:

Claim 6.98. For a middle shape τ and any vertex separator S, |LS| ≥ |Uτ| and |RS| ≥ |Vτ|.

Proof. LS and RS are both vertex separators of τ, and since τ is a middle shape, Uτ, Vτ are

MVSs of τ.

Putting it together, the vertex decay of k
√

d
n on |V(τ)| − |Uτ |+|Vτ |

2 needs to be CDV Dc
SoS
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to overcome the combinatorial factors, as stated in Theorem 6.3.

λ′
τ

∥Mτ∥
|Aut(τ)| ≤

1
c(τ)

.

Lemma 6.89: bounding intersection terms

We will need the following proposition.

Proposition 6.99. For any C′-sparse permissible composable shapes α1, . . . , αk and any intersec-

tion pattern P on α1, . . . , αk, letting τP be the resulting shape,

|E(τP)| ≤ (2C′ + 1)
k
∑
i=1

(
|V(αi)| −

|Uαi |+ |Vαi |
2

)

Proof. Observe that since αi is permissible, the only edges incident to Uαi ∩Vαi are one for

each connected component of V(αi) \ (Uαi ∪ Vαi). Therefore, there are at most |V(αi) \

(Uαi ∪ Vαi)| of these edges. Since αi is C′-sparse,

|E(αi)| ≤ |V(αi) \ (Uαi ∪Vαi)|+C′|V(α) \ (Uαi ∩Vαi)| ≤ (2C′+ 1)
(
|V(αi)| −

|Uαi |+ |Vαi |
2

)

Since |E(τP)| = ∑k
i=1 |E(αi)|, summing this equation over all i ∈ [k] gives the result.

Lemma 6.89. (Intersection Terms) For all j ≥ 1 and sparse permissible γj, . . . , τ, . . . , γ′
j such

that for each shape |Emid(α)| − |V(α)| ≤ CDSoS,

∑
nonequivalent
P∈Pmid

γj,...,γ
′
j

NP(τP)λ
′
γj◦···◦γ

′⊺
j

∥∥MτP

∥∥
|Aut(τP)|

≤ 1

c(τ)∏
j
i=1 c(γi)c(γ′

i)
.

Proof. We index the intersecting shapes as αi = γk, . . . , γ1, τ, γ′
1, . . . , γ′

k. For each αi, by
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Lemma 6.65 and Lemma 6.80,

λ′
αi
≤ 2|V(αi)\(Uαi∩Vαi )|λαi .

Let pℓ(αi) be the number of nonequivalent intersection patterns P ∈ Pmid
γj,...,γ′

j
which have

exactly ℓ intersections.

Apply the norm bound in Theorem 6.96 with ε′ = 1
nC ∏2k+1

i=1 c(αi)pk(αi)
, which holds

whp via Lemma 6.87.

∑
non equiv. P

Np(τP) · λ
γk◦···◦γ1◦τ◦γ

⊺
1◦···◦γ

′⊺
k

∥∥MτP

∥∥
|Aut(τP)|

≤λ
γk◦···◦γ1◦τ◦γ

⊺
1◦···◦γ

′⊺
k
· 20

(
2|E(τP)|nC

2k+1

∏
i=1

c(αi)pℓ(αi)

) 1
2DV

2|E(τP)| ·

√
|UτP |!|VτP |!
|Aut(τP)|

·

max
β,S

 n
|V(τP)|−|S|+|Iβ |

2 (12DV)
|V(τP)|−

|UτP |+|VτP |
2 +|S|− |LS |+|RS |

2 ·

(√
1 − p

p

)|E(τP)|−|E(β)|−2|Ephantom(β)|(
3

√
1 − p

p

)|E(S)|  .
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Bounds:

12|E(τP)| ≤ C∑2k+1
i=1 |V(αi)|−

|Uαi |+|Vαi |
2 (Proposition 6.99)

nC/2DV ≤ 2

c(αi) ≤ C(Dc
SoS)

|V(αi)\(Uαi∩Vαi )| (Definition 6.86, αi is sparse)

c(αi)
1/2DV ≤ Dc

SoS (From previous line)

pℓ(αi) ≤ (Dc
SoS)

|V(τP)|−
|UτP |+|VτP |

2 Dℓ
V (Lemma 6.84)

∑
non equiv. P

NP(τP) ≤
(Dc

SoS)
∑2k+1

i=1 |V(αi)|−
|Uαi |+|Vαi |

2

|UτP ∩ VτP |!
|Aut(τP)| (Lemma 6.85)

√
|UτP |!|VτP |!
|Aut(τP)|

≤ C(Dc
SoS)

|V(τP)\(UτP∩VτP )| (Proposition 6.97)

Following the charging argument for intersection terms in Proposition 6.24,

λ
γk◦···◦γ1◦τ◦γ

⊺
1◦···◦γ

′⊺
k

n
|V(τP)|−|S|+|Iβ |

2

(√
1 − p

p

)|E(S)|+|E(α)|−|E(β)|−2|Ephantom(β)|

≤
(

k
√

d
n

)∑2k+1
i=1 |V(αi)|−

|Uαi |+|Vαi |
2

·
(

1√
d

)iP−|Iβ|+|S|−
|Uβ |+|Vβ |

2
.

In Proposition 6.24 we used the intersection tradeoff lemma, Lemma 6.25, to prove that

the exponent of the second term is nonnegative. In that proof, use the following claim to

get a lower bound of |S| − |LS|+|RS|
2 on the exponent.

Claim 6.100. |LS|+|RS|
2 ≥ |SτP,min|.

Proof. Both LS and RS are vertex separators of β, hence they are larger than SτP,min, which

is the smallest separator among all linearizations of τP.

Since
√

d ≥ DV , the second term cancels D
|S|− |LS |+|RS |

2
V in the norm bound.
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The remaining factors are mostly easily seen to be under control by the vertex de-

cay. One exception is the term Dℓ
V in pℓ(αi), the count of nonequivalent intersection pat-

terns. By combining this with D
|V(τP)|−

|UτP |+|VτP |
2

V from the norm bound we get at most

D∑2k+1
i=1 |V(αi)|−

|Uαi |+|Uαi |
2

V , which is controlled by one factor of DV in the vertex decay. In

total, a vertex decay of CDV Dc
SoS per vertex is sufficient.

Since each additional level of intersections is non-trivial, the total number of vertex

decay factors is at least k, which is sufficient to handle CDc
SoS per shape in addition to per

vertex.

Lemma 6.90: truncation error for shapes with too many vertices

Omitted. See [JPR+21, Section 6.11.3].

Lemma 6.90: truncation error for shapes with too many edges in one part

Omitted. See [JPR+21, Section 6.11.4].

Lemma 6.91: sum of left shapes is well-conditioned

Omitted. See [JPR+21, Section 6.11.5].

6.5 Open Problems

Several other problems on sparse graphs are conjectured to be hard for SoS and it is our

hope that the techniques here can help prove that these problems are hard for SoS. These

problems include MaxCut (see Conjecture 4.86), k-Coloring, and Densest-k-Subgraph. For

MaxCut in particular, since there are no constraints other than booleanity of the variables

it may be possible to truncate away dense shapes, which we could not do here due to the

presence of independent set indicator functions.
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Another direction for further research is to handle random graphs which are not

Erdős-Rényi. Since the techniques here depend on graph matrix norms, one would hope

that they generalize to distributions such as d-regular graphs for which low-degree poly-

nomials are still concentrated. However, in the non-iid setting, it is not clear what the ana-

logue of graph matrices should be used due to the lack of a Fourier basis that is friendly

to work with.

The polynomial constraint “∑v∈V xv = k” is not satisfied exactly by our pseudoexpec-

tation operator. It’s possible that techniques from [Pan21] can be used to fix this.

The parameters in this paper can likely be improved. One direction is to remove the

final factor of log n from our bound. This would allow us to prove an SoS lower bound

for the “ultrasparse regime” d = O(1) rather than d ≥ log2 n. This setting is interesting

as there is a nontrivial algorithm that finds an independent set of half optimal size [GS14,

RV17b]. Furthermore, this algorithm is local in a sense that we don’t define here. It would

be extremely interesting if this algorithm could be converted into a rounding algorithm

for constant-degree SoS.

Another direction is to improve the dependence on DSoS. While our bound has a

1
poly(DSoS)

dependence on DSoS, we conjecture that the dependence should actually be

(1 − p)O(DSoS). If so, this would provide strong evidence for the prevailing wisdom in

parameterized complexity and proof complexity that a maximum independent set of size

k requires nΩ(k) time to find/certify (corresponding to SoS degree Ω(k)).
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CHAPTER 7

CODE UPPER BOUNDS

Now we will switch gears and study an application to coding theory. A fundamental ques-

tion in coding theory is the maximum size of a binary code given a blocklength parameter

n and a minimum distance parameter dn. This value is typically denoted by A2(n, dn). A

particularly important regime occurs when limn→∞ dn/n = δ for some absolute constant

δ ∈ (0, 1/2). In this regime, A2(n, dn) is known to grow exponentially in n. However, the

precise rate of this exponential growth remains an elusive major open problem.

It is a folklore conjecture that known upper bounds on the rate are far from tight. The

best known upper bound on the rate for distances δ ∈ (0.273, 1/2) is obtained by con-

structing solutions to the dual program of Delsarte’s linear program, as done by McEliece,

Rodemich, Rumsey and Welch [MRRW77]. However, since their proof in the 1970s, upper

bounds on the rate have not improved; our goal is to improve this bound.

The idea that we pursue is to generalize Delsarte’s linear program to a hierarchy of

convex relaxations of the value A2(n, dn), with one convex relaxation for each ℓ ∈ N. For

ℓ = 1, the convex relaxation equals Delsarte’s linear program. As ℓ increases, the value of

the convex relaxation becomes a better approximation to the true value A2(n, dn). If we

can prove an upper bound on the value of a convex relaxation, as McEliece, Rodemich,

Rumsey, and Welch did for Delsarte’s linear program, we have the same upper bound on

A2(n, dn).

The hierarchy is defined in Section 7.2. Via symmetrization, the hierarchy admits sev-

eral equivalent formulations that we show in Section 7.3, where we also prove that it is

weaker than the sum-of-squares hierarchy. Completeness of the hierarchy is proven in

Section 7.4. Unfortunately we are not able to theoretically analyze the value of the hierar-

chy to improve upper bounds on code rates. In principle all one needs to do is construct

solutions to the dual program; in Section 7.5 we study this dual program.
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The hierarchy we define only gives improved upper bounds for the class of linear codes.

We will define hierarchies for both linear and general codes, then see that in the general

case, the hierarchy collapses to the first level (i.e. it has the same value as Delsarte’s

linear program). The contrast between completeness in the linear case and triviality in the

general case surfaces a natural question: are optimum codes very far from being linear?

Bibliography. This chapter is the work [CJJ22]. Some ongoing progress by the same set

of authors has been added: Section 7.3.6, an improved completeness proof in Section 7.4,

and Section 7.5. We take a slightly different perspective here than in [CJJ22], preferring

to emphasize Boolean Fourier analysis, convex programming, and the unsymmetrized

formulation of the hierarchy, whereas the paper derives the symmetrized version of the

hierarchy directly from generalized Kravchuk polynomials and MacWilliams identities.

The paper [CJJ22] contains a generalization of the hierarchy to association schemes that is

omitted here.

7.1 Preliminaries

7.1.1 Definitions

In this chapter we view the Boolean hypercube as Fn
2 .

Definition 7.1 (Code). A (binary) code C of blocklength n is a subset of Fn
2 .

Definition 7.2 (Linear code). A linear code is a subspace of Fn
2 .

Definition 7.3 (Hamming weight and distance). For a word x ∈ Fn
2 , we denote by |x| :=

|{i ∈ [n] | xi ̸= 0}| its Hamming weight. Given two words x, y ∈ Fn
2 , we denote by ∆(x, y) :=

|x − y| their Hamming distance.

Definition 7.4 (Distance of a code). The (minimum) distance of C is defined by ∆(C) :=

min{∆(x, y) | x, y ∈ C ∧ x ̸= y}.
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Definition 7.5 (Rate of a code). The rate of C is defined by r(C) := log2(|C|)/n.

In coding theory, we are usually interested in the tradeoff between rate and distance.

As the rate increases, the code packs more and more codewords into Fn
2 . We would like

these codewords to pairwise remain as far apart as possible.

Definition 7.6 (A2(n, d)). The maximum size of a code of blocklength n and minimum distance

at least d is defined as

A2(n, d) := max{|C| | C ⊆ Fn
2 , ∆(C) ≥ d}.

It is often convenient to denote the asymptotic basis of this growth as 2R2(δ), where

the rate R2(δ) is defined as:

Definition 7.7 (Asymptotic rate). We denote the asymptotic rate of codes of relative distance at

least δ as

R2(δ) := lim sup
n→∞

1
n

log2 (A2(n, ⌊δn⌋)) .

Note that a code of distance at least d can alternatively be viewed as an independent

set in the Hamming cube graph of distance less than d, Hn,d, which is defined by:

Definition 7.8. V(Hn,d) := Fn
2 , E(Hn,d) := {{x, y} ∈ (

Fn
2

2 ) | ∆(x, y) ≤ d − 1}.

Definition 7.9 (ALin
2 (n, d) and RLin

2 (δ)). We define ALin
2 (n, d) and RLin

2 (δ) for linear codes in

an analogous way, by further requiring the code C to be linear.

Definition 7.10 (Dual code). Given a linear code C ⊆ Fn
2 , the dual code of C is defined as

C⊥ := {x ∈ Fn
2 | ∀y ∈ C, χx(y) = 1}.

The Fourier transform of the indicator of a linear code maps it to a multiple of the

indicator of its dual code in the following way.
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Fact 7.11. If C ⊆ Fn
2 is a linear code and 1C is its indicator function, then 1̂C = |C| · 1C⊥/2n =

1C⊥/|C⊥|.

7.1.2 Problem background

Graph-theoretic interpretation Our goal is to understand the exponential growth rate

R2(δ) of the maximum code size A2(n, d) where d ≈ δn. An equivalent way of defining

A2(n, d) is as the independence number of the graph Hn,d whose vertex set is V(Hn,d) :=

Fn
2 and two vertices x, y ∈ V(Hn,d) are adjacent if and only if their Hamming distance

∆(x, y) lies in {1, . . . , d − 1}. Note that there is a one-to-one correspondence between in-

dependent sets in this graph and binary codes of blocklength n and minimum distance

d. Most of the literature about A2(n, d) takes advantage of this graph-theoretic interpre-

tation.

A lower bound on A2(n, d) follows from the trivial degree bound on the indepen-

dence number of a graph, namely, α(Hn,d) ≥ |V(Hn,d)|/(deg(Hn,d) + 1), which gives

α(Hn,d) ≥ 2(1−h2(d/n)+o(1))n where h2 is the binary entropy function. First discovered by

Gilbert [Gil52] and later generalized to linear codes by Varshamov [Var57], this existential

bound is now known as the Gilbert–Varshamov (GV) bound. Observe that the GV bound

readily implies that R2(δ) ≥ 1 − h2(δ). Despite its simplicity, this bound remains the best

(existential) lower bound on R2(δ).

A generic upper bound on the independence number of a graph is the Lovász ϑ func-

tion, which is a semidefinite programming relaxation for α(Hn,d). The Lovász ϑ function

also has the same value as the degree-2 sum-of-squares/Lasserre relaxation of α(Hn,d).

It turns out that this is essentially equal to the Delsarte linear program and it gives the

strongest known upper bound on A2(n, d). However, the upper bound is known not

to match the GV bound. Thus, it is natural to consider stronger convex relaxations for

A2(n, d).
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Viewed from this angle, the general problem can be seen as studying convex relax-

ations for independent set on a particular instance. The instance itself, Hn,d, is morally

similar to the noisy hypercube. The noisy hypercube is a complete weighted graph whose

vertex set is Fn
2 , and the weight of the edge between x, y is δ∆(x,y)(1− δ)n−∆(x,y) for a pa-

rameter δ ∈ [0, 1]. Equivalently, the noisy hypercube is a Markov chain where a transition

is made by flipping each bit with probability δ. Note that in the linear distance regime

d = δn, δ ∈ (0, 1/2) that we are interested in, the degree of Hn,d is polynomial in the

graph size.

Delsarte linear programming method The strongest known upper bound on A2(n, d)

is the Delsarte linear program [Del73]. The idea behind the method is to define a certain

linear programming relaxation DelsarteLP(n, d) for A2(n, d). By virtue of being a re-

laxation, we have A2(n, d) ≤ val(DelsarteLP(n, d)), and by proving an upper bound

on val(DelsarteLP(n, d)), we have the same upper bound for A2(n, d). By virtue of be-

ing convex, the value of the program can be upper bounded by exhibiting any feasi-

ble dual solution. Using the dual linear program, McEliece, Rodemich, Rumsey, and

Welch [MRRW77] proved an upper bound on val(DelsarteLP(n, d)). Their “first linear

programming bound” showed that R2(δ) ≤ h2(1/2 −
√

δ(1 − δ)) by constructing a fea-

sible dual solution using properties of the Kravchuk polynomials.1

There is a known gap between the value of Delsarte’s linear program and the GV bound [NS05].

In particular when δ = 1/2− ϵ, Delsarte’s linear program does not yield an upper bound

tighter than R2(1/2 − ϵ) ≤ Θ(ϵ2 log(1/ϵ)) (this matches the analysis of [MRRW77]),

whereas the GV bound establishes a lower bound of R2(1/2 − ϵ) ≥ Ω(ϵ2). There are

no known improvements to these bounds even for the important class of linear codes.

If the GV bound is indeed tight (i.e., a random construction is essentially optimal), then

1. In the same work, McEliece et al also gave the best known bound for δ ∈ (0, 0.273) via a second
family of linear programs. Since our techniques are more similar to their first linear programming bound,
we restrict our attention to it in this discussion.
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analyzing DelsarteLP is not sufficient to prove it.

As shown by Schrijver [Sch79], the Delsarte linear program is equal to the Lovász

ϑ function (with a small modification, namely that Delsarte includes additional non-

negativity constraints on the entries of the variable matrix). In fact, by symmetrizing the

convex program for the ϑ′ function, one obtains the Delsarte linear program exactly. Sym-

metrization is an important idea, as it reduces the exponential-in-n-size program for ϑ′ on

Hn,d to a poly(n)-size program, which is more feasible to run and analyze. Furthermore,

symmetrization reduces the positive semidefiniteness constraint to a system of linear in-

equalities, thus turning the semidefinite program for ϑ′ into a linear program.

Although quantitatively the McEliece et al [MRRW77] upper bound on R2(δ) has not

improved, our qualitative understanding of this upper bound is now substantially bet-

ter. Navon and Samorodnitsky [NS05] showed that the analysis of the Delsarte LP by

McEliece et al is tight up to lower-order terms. Friedman and Tillich [FT05] designed

generalized Alon–Boppana theorems in order to bound the size of linear binary codes. In-

spired by Friedman and Tillich, Navon and Samorodnitsky [NS09] rederived the McEliece

et al bound on R2(δ) for general codes using a more intuitive proof based on Fourier anal-

ysis. Despite a seemingly different language, the proof in [NS09] also yields feasible solu-

tions to the dual of Delsarte’s LP as in [MRRW77]. More recently, Samorodnitsky [Sam21]

gave yet a new interpretation of the McEliece et al upper bound and conjectured interest-

ing hypercontractivity inequalities towards improving the upper bound on R2(δ).

Stronger convex relaxations Prior work has also suggested using stronger convex re-

laxations to improve the upper bound on A2(n, d). When run experimentally on small n,

these programs have surpassed the Delsarte linear program (small n are important for the

real-world implementation of error-correcting codes). However, theoretically analyzing

these larger relaxations to improve the asymptotic rate R2(δ) seems challenging and has

remained out of reach.
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In Delsarte’s approach, only the distance between pairs of points is taken into account

in the optimization. For this reason, Delsarte’s approach is classified as a 2-point bound.

Nonetheless, there is no reason to restrict oneself to just 2-point interactions. Schri-

jver [Sch05] constructed a family of semi-definite programs (SDPs) for A2(n, d) designed

to take into account the 3-point interactions. Extending Schrijver’s result to a 4-point in-

teraction bound, Gijswijt, Mittelmann and Schrijver [GMS12] gave another tighter family

of SDPs for A2(n, d) (they also give a description of their hierarchy for arbitrary level ℓ).

The sum-of-squares relaxation for α(Hn,d) was proposed by Laurent [Lau07], building on

de Klerk et al [dKPS07]. So far, we do not even know how to analyze Schrijver’s pro-

gram, which is the simplest of these and is weaker than degree-4 sum-of-squares. Giving

a “block diagonalization” to symmetrize and reduce the size of the SDP matrix has been

a technically challenging step in these works [Gij09]. An advantage of our hierarchy is

that complete diagonalization is trivial (the equivalent SDP is symmetrized into a linear

program).

The sum-of-squares hierarchy is complete, meaning that a sufficiently high level of the

hierarchy exactly recovers the value α(Hn,d), essentially by brute force. There is an im-

plicit hope that low levels of the hierarchy will provide nontrivially improving bounds

over the Delsarte LP. Contrast this with the alternative, in which the value of the hierar-

chy at low levels hovers around the value of the first level of the hierarchy (the Delsarte

LP), then suddenly “shoots down” to the correct value once the level becomes very large.

We proved that this alternative behavior occurs for independent set on a random graph in

Chapter 6. However, we are tentatively hopeful that for Hn,d, low levels do provide an

improvement. A further implicit hope is that the improvement is on an exponential scale,

i.e. the upper bound on the rate R2(δ) is strictly monotonic with the level of the hierarchy.

To summarize, on the one hand, we have a thorough theoretical understanding of

techniques based on Delsarte’s LP, but if the true value of A2(n, d) or ALin
2 (n, d) is closer
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to the GV bound, then these techniques fall short of providing tight bounds. On the other

hand, we have ℓ-point bounds from stronger SDPs which experimentally seem stronger,

but (apparently) no clue how to theoretically analyze them to bound R2(δ) for general

codes or linear codes.

7.2 Definition of the Hierarchy

In this section, we define our hierarchy of convex relaxations FourierLP(n, d, ℓ) where ℓ ∈

N+ is the level of the hierarchy. Note that FourierLP(n, d, ℓ) is a relaxation for A2(n, d)ℓ

instead of A2(n, d). Level ℓ = 1 will correspond to the Delsarte linear program (LP).

We will actually define two hierarchies, FourierLP(n, d, ℓ) and FourierLPLin(n, d, ℓ), the

second being a stronger hierarchy that only applies to linear codes.

To show how the hierarchy structurally generalizes the Delsarte LP, we start by recall-

ing one formulation of the Delsarte LP, to be more formally denoted by DelsarteLP(n, d).

An equivalent formulation of this linear program was first introduced by Delsarte [Del73],

where it was obtained in greater generality from the theory of association schemes.

The variables of the linear program are ax, (x ∈ Fn
2 ), where in a true solution which is

a linear code, ax is the 0/1 for whether x is in the code. Recall that the Fourier transform

of the indicator function of a linear code is the indicator of the dual code (Fact 7.11).

The Delsarte LP relaxes this, so that the Fourier transform of ax is simply required to be
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nonnegative. The overall relaxation for ALin
2 (n, d) is the following:

Variables: ax x ∈ Fn
2

max ∑
x∈Fn

2

ax

s.t. a0 = 1 (Normalization)

ax = 0 |x| ∈ {1, . . . , d − 1} (Distance constraints)

∑
x∈Fn

2

axχα(x) ≥ 0 ∀α ∈ Fn
2 (Fourier coefficients)

ax ≥ 0 ∀x ∈ Fn
2 (Non-negativity).

As we have described it, DelsarteLP(n, d) relaxes the maximum size of a linear code (re-

call that for a linear code, having distance at least d is equivalent to having no words of

Hamming weight 1 through d − 1, as enforced by the distance constraints). Somewhat

surprisingly, MacWilliams, Sloane and Goethals proved that val(DelsarteLP(n, d)) also

upper bounds A2(n, d) for general codes [MSG72].

Our LP hierarchy for linear codes can be simply described as checking non-negativity

of products of Fourier coefficients. Define the linear programming hierarchy FourierLPLin(n, d, ℓ)

by:

Variables: ax x ∈ (Fn
2)

ℓ

max ∑
x∈(Fn

2 )
ℓ

ax

s.t. a0 = 1 (Normalization)

a(x1,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ). |w| ∈ {1, . . . , d − 1} (Distance constraints)

∑
x∈(Fn

2 )
ℓ

axχα(x) ≥ 0 ∀α ∈ (Fn
2)

ℓ (Fourier coefficients)

ax ≥ 0 ∀x ∈ (Fn
2)

ℓ (Non-negativity).

Lemma 7.12. For every n, ℓ ∈ N+ and d ∈ {0, 1, . . . , n}, val(FourierLPLin(n, d, ℓ)) ≥
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ALin
2 (n, d)ℓ.

Proof. Given a linear code C with distance d, a feasible solution with value |C|ℓ is a(x1,...,xℓ)
:=

∏ℓ
i=1 1[xi ∈ C]. The Fourier coefficient constraints are satisfied because

∑
x∈(Fn

2 )
ℓ

ℓ

∏
i=1

1[xi ∈ C]χαi(xi) = 2nℓ
ℓ

∏
i=1

1̂C(αi),

which are nonnegative by Fact 7.11.

In this hierarchy, the distance constraints are “semantic linearity constraints” that

are only valid if the code is linear. The corresponding hierarchy for non-linear codes

FourierLP(n, d, ℓ) is defined as:

Variables: ax x ∈ (Fn
2)

ℓ

max ∑
x∈(Fn

2 )
ℓ

ax

s.t. a0 = 1 (Normalization)

a(x1,...,xℓ) = 0 ∃i ∈ [ℓ]. |xi| ∈ {1, . . . , d − 1} (Distance constraints)

∑
x∈(Fn

2 )
ℓ

axχα(x) ≥ 0 ∀α ∈ (Fn
2)

ℓ (Fourier coefficients)

ax ≥ 0 ∀x ∈ (Fn
2)

ℓ (Non-negativity).

The fact that this is a sound relaxation of A2(n, d)ℓ is shown in [CJJ22, Proposition 3.12].

We make a few remarks about these two hierarchies.

1. The number of variables and constraints in the hierarchy is exponential in n, mak-

ing the hierarchy infeasible to compute. By symmetrizing the hierarchy in the next

section, we will reduce it to an equivalent program with poly(n) size for fixed ℓ (in

the same way that the standard formulation of the Delsarte linear program may be

obtained from the formulation we have given here).
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2. After symmetrizing, the variables of the hierarchy are interpreted as counting the

number of ℓ-tuples of codewords with a given “weight configuration”. In the linear

case, it counts the number of low-dimensional subspaces (dimension ≤ℓ) in the code

with a given “weight configuration”. In this sense the hierarchy takes advantage of

“ℓ-point interactions” of codewords.

3. The two hierarchies actually exhibit rather different behavior. The hierarchy FourierLPLin(n, d, ℓ)

for linear codes gives tighter and tighter bounds on ALin
2 (n, d) as ℓ increases, and

it is complete at level ℓ = n. On the other hand, the FourierLP(n, d, ℓ) hierar-

chy does not improve on the Delsarte LP. FourierLP(n, d, ℓ) is a “tensor product” of

FourierLP(n, d, 1) = DelsarteLP(n, d), and therefore solutions easily “lift”. There is

not enough structure in a general code to add nontrivial distance constraints. Both

of these results may be found in Section 7.4.1.

4. The hierarchy is weaker than sum-of-squares (Section 7.3.6).

5. The hierarchy is of linear programs rather than semidefinite programs. The dual

program is relatively clean and similar to other duals in the literature, thus offering

hope for a theoretical analysis (see Section 7.5).

We view the main contribution of the hierarchy as being sufficiently powerful to en-

sure completeness while still being sufficiently simple to remain a hierarchy of linear

programs (as opposed to genuine SDPs such as sum-of-squares), and bearing enough

similarities with the original Delsarte LP to be amenable to theoretical analysis.
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7.3 Alternative Formulations of the Hierarchy

7.3.1 Symmetrization of convex programs

The program FourierLP can be symmetrized into a smaller, equivalent program. We will

briefly describe the technique of symmetrizing convex programs, which is also described

in the survey article by Vallentin [Val19].

The technique exploits the fact that convex relaxations for the independence number

α(Hn,d) of the Hamming cube graph Hn,d of distance less than d are highly symmetric,

that is, programs that are invariant under large permutation groups as defined below.

Definition 7.13 (Program invariance). Let P be a linear program with variables (ax)x∈X for

some set X. We say that P is invariant under a permutation σ of X if for all feasible solutions

(ax), the point a · σ defined by (a · σ)x := aσ(x) is also feasible, and the objective value is the

same.

Similarly, a semidefinite program P with variable M ∈ RX×X is invariant under σ if for all

feasible M, the matrix M · σ defined by (M · σ)[x, y] := M[σ(x), σ(y)] is also feasible, and the

objective value is the same.

The group of permutations of X under which P is invariant is called the automorphism group

of P and is denoted Aut(P).

If the input of a program P is a graph G and the program only depends on the isomor-

phism class of G, then the program is invariant under the automorphism group Aut(G) of

the graph G. For convex relaxations such as the Lovász ϑ-function or the sum-of-squares

hierarchy, the variables of the program are indexed by tuples of vertices from G, and thus

a case of interest is when Aut(G) acts diagonally on tuples of vertices.

By symmetrizing solutions, i.e., by averaging the values of the variables over the au-

tomorphism group Aut(P), we may assume that the solution has the same symmetry:
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Fact 7.14. For any H ⊆ Aut(P), the value val(P) equals the value of P with the additional

constraints ∀σ ∈ H, ∀x ∈ X, ax = aσ(x) (or ∀σ ∈ H, ∀x, y ∈ X, M[x, y] = M[σ(x), σ(y)] for

an SDP).

A symmetrized solution is constant on each orbit of the group action on X or X2.

Therefore, the “effective” number of variables in the convex program is only the number

of orbits, which may be significantly smaller than even |V(G)|.

For example, the graph Hn,d has a large symmetry group:

Fact 7.15. For 1 < d < n, Aut(Hn,d) is the hyperoctahedral group, which is the semidirect

product Fn
2 ⋊ Sn in which Sn permutes the coordinates and Fn

2 applies a bit flip.

Even though the hypercube has size 2n and thus |V(Hn,ℓ)
ℓ| = 2nℓ, the number of

orbits of the diagonal action of Aut(Hn,d) on ℓ-tuples is only poly(n) for constant ℓ.

For example, for ℓ = 4, viewing the hypercube momentarily as {−1,+1}n, the orbit

of (x1, x2, x3, x4) essentially only depends on the angles between the vectors: it is deter-

mined by the seven numbers

⟨x1, x2⟩ , ⟨x1, x3⟩ , ⟨x1, x4⟩ , ⟨x2, x3⟩ , ⟨x2, x4⟩ , ⟨x3, x4⟩ ,
n
∑
i=1

x1,ix2,ix3,ix4,i. (7.1)

Since each of the numbers in (7.1) takes at most n + 1 values, the effective number of

variables in the degree-4 sum-of-squares relaxation for α(Hn,d) is at most O(n7). Thus,

the search for an upper bound on an exponential-size object is reduced to a polynomial-

size convex program! Of course, to actually run this in polynomial time, one also needs

to show that this polynomial-size convex program can be computed in polynomial time

(which rules out explicitly computing the original program then taking a quotient).
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7.3.2 Higher-order Kravchuk polynomial hierarchy

The linear programs FourierLP and FourierLPLin are symmetric under the action of Sn on

the coordinates of the codewords. We apply the symmetrization technique from the pre-

vious section to simplify FourierLP into a smaller program that uses higher-order Kravchuk

polynomials.

The specific invariant action is: consider the natural right action of Sn on Fn
2 given by

(x · σ)i := xσ(i) (x ∈ Fn
2 , σ ∈ Sn, i ∈ [n]) and take the diagonal action of Sn on (Fn

2 )
ℓ given

by

(x1, . . . , xℓ) · σ := (x1 · σ, . . . , xℓ · σ) ((x1, . . . , xℓ) ∈ (Fn
2 )

ℓ, σ ∈ Sn).

By Fact 7.14 we may consider only solutions to the LP that are symmetrized over Sn, that

is, we have ax = ay for each x, y ∈ (Fn
2 )

ℓ in the same orbit of the Sn-action.

We associate to each orbit of Sn on (Fn
2 )

ℓ a combinatorial object that we call a configura-

tion. In plain English, the symmetric difference configuration of an ℓ-tuple (z1, . . . , zℓ) ∈ (Fn
2 )

ℓ

of words captures all Hamming weights of linear combinations of the words (z1, . . . , zℓ).

Definition 7.16. The symmetric difference configuration of the ℓ-tuple (z1, . . . , zℓ) ∈ (Fn
2 )

ℓ is

the function Config∆
n,ℓ(z1, . . . , zℓ) : 2[ℓ] → {0, 1, . . . , n} defined by

Config∆
n,ℓ(z1, . . . , zℓ)(J) :=

∣∣∣∣∣∣∑j∈J
zj

∣∣∣∣∣∣,
for every J ⊆ [ℓ]. That is, the value of the function at J ⊆ [ℓ] is the Hamming weight of the linear

combination ∑j∈J zj.

Not every function c : 2[ℓ] → {0, 1, . . . , n} corresponds to a valid configuration. Viewing

Config∆
n,ℓ as a function (Fn

2 )
ℓ → R2[ℓ] (i.e., a function from the space of ℓ-tuples of words to the

space of functions 2[ℓ] → R), we denote the set of (valid) symmetric difference configurations by
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im(Config∆
n,ℓ).

Given a symmetric difference configuration g ∈ im(Config∆
n,ℓ), we will also abuse notation

and write (z1, . . . , zℓ) ∈ g to mean that (z1, . . . , zℓ) ∈ (Fn
2 )

ℓ has configuration Config∆
n,ℓ(z1, . . . , zℓ) =

g. In other words, this abuse of notation consists of thinking of a configuration as the set of all

ℓ-tuples of words that have this configuration (i.e. in the orbit). We also let |g| be the size of this

orbit, i.e., the number of ℓ-tuples whose configuration is g.

The trivial symmetric difference configuration is the constant 0 function (denoted by 0), which

is the symmetric configuration of the tuple (0, . . . , 0) ∈ (Fn
2 )

ℓ.

Lemma 7.17 ([CJJ22, Lemma 3.4]). The following are equivalent for (x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn
2 )

ℓ.

1. (x1, . . . , xℓ) and (y1, . . . , yℓ) are in the same Sn-orbit.

2. Config∆
n,ℓ(x1, . . . , xℓ) = Config∆

n,ℓ(y1, . . . , yℓ).

After symmetrizing FourierLP, since a(x1,...,xℓ) = a(y1,...,yℓ) whenever (x1, . . . , xℓ) and

(y1, . . . , yℓ) have the same configuration, the variables of the program may be considered

as ag for each configuration g ∈ im(Config∆
n,ℓ). The Fourier constraint can be re-expressed

as:

∑
g∈im(Config∆

n,ℓ)

ag ·

 ∑
(x1,...,xℓ)∈g

ℓ

∏
j=1

χαj(xj)

 ≥ 0
(
∀α ∈ (Fn

2 )
ℓ
)

.

The inner summation is a symmetrized Fourier character, which is naturally lifted to an

orthogonal polynomial on the space of configurations. For example, in the case ℓ = 1

i.e. the Delsarte linear program, a configuration is specified by a single Hamming weight

i ∈ {0, 1, . . . , n}. The orthogonal polynomials that appear are the Kravchuk polynomials Ki

(we also saw this in the background Section 1.3).

∑
x∈Fn

2 :
|x|=i

χα(x) = Ki(|α|) .

263



For higher ℓ, we analogously term these functions higher-order Kravchuk polynomials.

Definition 7.18 (Higher-order Kravchuk polynomial). Let h ∈ im(Config∆
n,ℓ) be a symmet-

ric difference configuration. The higher-order Kravchuk polynomial indexed by h is the function

Kh : im(Config∆
n,ℓ) → R defined by

Kh(g) := 2ℓn E
(y1,...,yℓ)∈(Fn

2 )
ℓ

1h(y1, . . . , yℓ) ·
ℓ

∏
j=1

χxj(yj)


= ∑

(y1,...,yℓ)∈h

ℓ

∏
j=1

χxj(yj),

(7.2)

for every symmetric difference configuration g ∈ im(Config∆
n,ℓ), where (x1, . . . , xℓ) ∈ g is any

ℓ-tuple of words with symmetric difference configuration g and 1h is the indicator function of the

set of ℓ-tuples whose symmetric difference configuration is h ([CJJ22, Lemma 3.19] shows this is

well-defined independent of the choice of (x1, . . . , xℓ)).

We therefore arrive at the following symmetrized version of FourierLP (note that the

variables are rescaled, see [CJJ22, Proposition 4.5] for details):

Definition 7.19. For n, ℓ ∈ N+ and d ∈ {0, 1, . . . , n}, we let KravchukLP(n, d, ℓ) be the

following linear program.

Variables: ag g ∈ im(Config∆
n,ℓ)

max ∑
g∈im(Config∆

n,ℓ)

ag

s.t. a0 = 1 (Normalization)

ag = 0 ∀g ∈ ForbConfig(n, d, ℓ) (Distance constraints)

∑
g∈im(Config∆

n,ℓ)

Kh(g) · ag ≥ 0 ∀h ∈ im(Config∆
n,ℓ) (MacWilliams inequalities)

ag ≥ 0 ∀g ∈ im(Config∆
n,ℓ) (Non-negativity)
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where

ForbConfig(n, d, ℓ) := {g ∈ im(Config∆
n,ℓ) | ∃j ∈ [ℓ], g({j}) ∈ {1, . . . , d − 1}}.

We also define KravchukLPLin(n, d, ℓ) as the linear program obtained by replacing the set

ForbConfig(n, d, ℓ) with

ForbConfigLin(n, d, ℓ) := {g ∈ im(Config∆
n,ℓ) | ∃J ⊆ [ℓ], g(J) ∈ {1, . . . , d − 1}}.

Proposition 7.20 ([CJJ22, Proposition 4.5]). For every n, ℓ ∈ N+ and every d ∈ {0, 1 . . . , n},

we have

val(FourierLP(n, d, ℓ)) = val(KravchukLP(n, d, ℓ)),

val(FourierLPLin(n, d, ℓ)) = val(KravchukLPLin(n, d, ℓ)).

This formulation of the hierarchy nicely parallels all of the combinatorial intuition

from the original formulation of the Delsarte linear program [Del73]. The original pro-

gram was based on the MacWilliams identities [Mac63], which show that the weight distri-

bution of the dual code C⊥ is determined by the weight distribution of a linear code C

(and there is a linear formula relating the two). Generalized MacWilliams identities also

hold for the distribution of ℓ-configurations in C and C⊥ (in general this is true for any

association scheme). For this and more, we refer the reader to Section 3 of [CJJ22].

Even though the space (Fn
2 )

ℓ has exponential size in n (for a fixed ℓ), the next lemma

says that the number of configurations is polynomial in n (for a fixed ℓ). Hence the size

of KravchukLP(n, d, ℓ) is only poly(n) for fixed ℓ, which should be compared to the ex-

ponential size of FourierLP.2

2. Computing the higher-order Kravchuk polynomials in poly(n) time needs to be done using dynamic
programming via a recursion formula [CJJ22, Lemma 3.19 or Lemma 3.20].
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Lemma 7.21 ([CJJ22, Lemma 3.3]). We have

∣∣∣im(Config∆
n,ℓ)
∣∣∣ = (n + 2ℓ − 1

2ℓ − 1

)
.

Remark 7.22. The linear programs FourierLP and FourierLPLin are not invariant under the

other automorphisms of the hypercube of the form x 7→ x + z (z ∈ Fn
2 ), because of the normal-

ization constraint and the distance constraints. It makes more sense to view the underlying space

as Fn
2 instead of the hypercube, which does not have the Fn

2 automorphism because the origin is

treated specially.

7.3.3 Subspace symmetrized hierarchy

Continuing the symmetrization from the previous section, there is actually more sym-

metry in the program FourierLP than just Sn. In the case of the program for non-linear

codes, there is a symmetry under the right action of Sℓ on (Fn
2 )

ℓ that permutes the words

x1, . . . , xℓ, that is, we have (x1, . . . , xℓ) · τ := (xτ(1), . . . , xτ(ℓ)) ((x1, . . . , xℓ) ∈ (Fn
2 )

ℓ,

τ ∈ Sℓ). In the case of the program for linear codes, we have symmetry under the ac-

tion of GLℓ(F2) that applies a basis change to (x1, . . . , xℓ), that is, it is given by

(A · x)i := ∑
j∈[ℓ]

A[i, j] · xj ∈ Fn
2 (A ∈ GLℓ(F2), x ∈ (Fn

2 )
ℓ, i ∈ [ℓ]) .

The distance constraints are evidently invariant under this action as it does not change

the linear subspace spanned by (x1, . . . , xℓ). The Fourier constraints are invariant since

χα(A · x) = χA⊤·α(x)

for every x, α ∈ Fℓ
2.

Note that the actions of GLℓ(F2) and Sn commute with each other and thus induce an
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action of the direct product GLℓ(F)× Sn on (Fn
2 )

ℓ.

If we symmetrize the program FourierLPLin(n, d, ℓ) over GLℓ(F2) and not over Sn,

we obtain the following program with a variable for each subspace of Fn
2 of dimension at

most ℓ. (In just a moment, we will fully symmetrize over both actions, although it is not

as easy to interpret the resulting orbits.)

Definition 7.23 (Grassmannian). Let Gr(≤ℓ, Fn
2 ) be the set of subspaces of Fn

2 with dimension

at most ℓ. Observe that Gr(≤ℓ, Fn
2 ) describes the set of orbits of the action of GLℓ(F2) on (Fn

2 )
ℓ.

Definition 7.24 (Subspace higher-order Kravchuks). For U ∈ Gr(≤ℓ, Fn
2 ), define:

Kℓ
U : Gr(≤ℓ, Fn

2 ) → R

Kℓ
U(S) := ∑

u∈(Fn
2 )

ℓ

χs(u) · 1span(u)=U

where s ∈ (Fn
2 )

ℓ is any ℓ-tuple with span(s) = S.

It is annoying that this function on subspaces depends on the parameter ℓ, but we do

not know how to formulate a hierarchy that is more basis-independent.

Define the linear programming hierarchy SubspaceLPLin(n, d, ℓ) by:

Variables: aS S ∈ Gr(≤ℓ, Fn
2 )

max ∑
S∈Gr(≤ℓ,Fn

2 )

aS

s.t. a0 = 1 (Normalization)

aS = 0 ∃x ∈ S. |x| ∈ {1, . . . , d − 1} (Distance constraints)

∑
S∈Gr(≤ℓ,Fn

2 )

aSKℓ
U(S) ≥ 0 ∀U ∈ Gr(≤ℓ, Fn

2 ) (Fourier coefficients)

aS ≥ 0 ∀S ∈ Gr(≤ℓ, Fn
2 ) (Non-negativity).

Following the symmetrization as in the previous section, we have the following lemma.
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Lemma 7.25. For every n, ℓ ∈ N+ and every d ∈ {0, 1, . . . , n}, we have

val(SubspaceLPLin(n, d, ℓ)) = val(KravchukLPLin(n, d, ℓ)) .

Suppose now that we symmetrize over the larger group action of GLℓ(F2)× Sn, which

gives another reasonable definition of the higher-order Kravchuk polynomials and linear

program. There is one Kravchuk polynomial and one free variable for each orbit of this

action.

Definition 7.26 (Fully symmetrized higher-order Kravchuks). Let O := (Fn
2 )

ℓ/(GLℓ(F2)×

Sn) be the set of orbits of the (GLℓ(F2) × Sn)-action as above. For each h ∈ O we define the

higher-order Kravchuk polynomial Kh : O → R by

Kh(g) := ∑
(α1,...,αℓ)∈h

ℓ

∏
j=1

χαj(xj),

where (x1, . . . , xℓ) is any element in the orbit g ∈ O.

Since the symmetry group is larger and the number of orbits is smaller, the size of the

resulting LP is minimized. However, since |GLℓ(F2)| = ∏ℓ−1
t=0 (2

ℓ − 2t) = Oℓ(1), for a

constant ℓ, this only decreases the size of KravchukLP by a constant factor. For practical

computations, constant factors make a difference and this symmetrization should likely

be performed. For theoretical analysis, KravchukLP may be preferred because the orbits

are simpler to describe (being captured by explicit combinatorial objects, configuration

functions).

A combinatorial interpretation of (GLℓ(F2)× Sn)-orbits as “subspace weight profiles”

is as follows. The right action of Sn naturally induces an action over linear subspaces of
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Fn
2 given by

W · σ := {w · σ | w ∈ W} (W ≤ Fn
2 , σ ∈ Sn).

It is straightforward to see that two ℓ-tuples (x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn
2 )

ℓ are in the

same (GLℓ(F2)× Sn)-orbit if and only if span{x1, . . . , xℓ} and span{y1, . . . , yℓ} are in the

same Sn-orbit, which in turn is equivalent to saying that both spaces have the same di-

mension, say k, and there are ordered bases bx = (bx
1 , . . . , bx

k ) and by = (by
1 , . . . , by

k ) of

these spaces respectively such that Config∆
n,k(b

x) = Config∆
n,k(b

y). Thus, the hierarchy

corresponding to the (GLℓ(F2)× Sn)-action has an interesting interpretation as measur-

ing weight statistics of linear subspaces of the linear code of dimension at most ℓ.

7.3.4 The Hierarchy as an SDP

The LP hierarchy is also equivalent to an SDP relaxation with the harsh constraint that

the SDP matrix must be translation invariant.

Define the semidefinite program TranslationSDP(n, d, ℓ) as

Variable: M ∈ R(Fn
2 )

ℓ×(Fn
2 )

ℓ
symmetric

max ∑
x∈(Fn

2 )
ℓ

M[0, x]

s.t. M[0, 0] = 1 (Normalization)

M[0, (x1, . . . , xℓ)] = 0 ∃i ∈ [ℓ]. |xi| ∈ {1, . . . , d − 1} (Distance constraints)

M[x, y] = M[0, y − x] ∀x, y ∈ (Fn
2)

ℓ (Translation symmetry)

M ⪰ 0 (PSD-ness)

M[x, y] ≥ 0 ∀x, y ∈ (Fn
2)

ℓ (Non-negativity)
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To form TranslationSDPLin(n, d, ℓ), replace the distance constraints by

M[0, (x1, . . . , xℓ)] = 0 ∃w ∈ span(x1, . . . , xℓ), |w| ∈ {1, . . . , d − 1}.

The crucial translation symmetry property of TranslationSDP ensures M lies in the

commutative matrix algebra span{Dz | z ∈ (Fn
2 )

ℓ}, where

Dz[x, y] := 1[y − x = z].

The coefficient of M on Dz is M[0, z].

Since the matrices Dz commute, they are simultaneously diagonalizable. More specif-

ically, their common eigenvectors are the Fourier characters.

Fact 7.27. The matrices Dz are simultaneously diagonalized by (χα | α ∈ (Fn
2 )

ℓ) with the

eigenvalue of Dz on χα being χα(z).

Therefore, the PSD-ness constraint in TranslationSDP is particularly simple: to check

that λzDz ⪰ 0, it is equivalent to check ∑z∈(Fn
2 )

ℓ λzχα(z) ≥ 0 for all α ∈ (Fn
2 )

ℓ. This

is a linear constraint on the λz, and hence we can express the SDP as an LP, giving the

FourierLP formulation of the hierarchy.

Proposition 7.28. For every n, ℓ ∈ N+ and every d ∈ {0, 1, . . . , n}, we have

val(FourierLP(n, d, ℓ)) = val(TranslationSDP(n, d, ℓ)),

val(FourierLPLin(n, d, ℓ)) = val(TranslationSDPLin(n, d, ℓ)).

Proof. The formal correspondence of the variables is M[0, x] = ax. The Fourier coefficient

constraints in FourierLP are equivalent to PSD-ness as described above, and the other

constraints also match up.
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Along with Proposition 7.20, the above implies that TranslationSDP also has the same

value as KravchukLP.

Remark 7.29. In previous convex relaxations for A2(n, d), in order to implement the program

efficiently, a key technical step has been finding an explicit block diagonalization of the SDP matrix

(which reduces the program size). This step requires significant technical work [Sch05, GMS12,

Gij09]. An advantage of the LP hierarchy is that complete diagonalization is trivial.

7.3.5 The Hierarchy as ϑ′

The hierarchy can also be seen as computing the (modified) Lovász ϑ′ function on pro-

gressively larger graphs, whose definition is recalled below. In fact, this formulation of

the hierarchy holds for any association scheme.

Definition 7.30 (ϑ′ Program). The (modified) Lovász ϑ′ function is defined as follows. For a

graph G, ϑ′(G) is the optimum value of the semidefinite program S(G) given by:

Variables: M ∈ RV(G)×V(G) symmetric

max ⟨J, M⟩

s.t. tr M = 1 (Normalization)

M[u, v] = 0 ∀{u, v} ∈ E(G) (Independent set)

M ⪰ 0 (PSD-ness)

M[u, v] ≥ 0 ∀u, v ∈ V(G) (Non-negativity)

where J is the all ones matrix and ⟨A, B⟩ := tr(A⊤B).

By strong duality ϑ′(G) is also the optimum value of the dual semidefinite program S ′(G)
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given by:

Variables: N ∈ RV(G)×V(G) symmetric

β ∈ R

min β

s.t. βI − N ⪰ 0 (PSD-ness)

N[u, v] ≥ 1 ∀u, v ∈ V(G) with {u, v} /∈ E (Independent set).

It is straightforward to see that ϑ′(G) is an upper bound for the independence number

of the graph G since if A ⊆ V(G) is an independent set, then 1A1
⊤
A/|A| is a feasible

solution of S(G) with value |A|.

In the same way that a code C ⊆ Fn
2 of distance at least d can be seen as an independent

set in the graph Hn,d, we can see Cℓ as an independent set in exclusion graphs defined

below based on the sets ForbConfig(n, d, ℓ) and ForbConfigLin(n, d, ℓ) of Definition 7.19.

Definition 7.31 (Exclusion Graph). We define the exclusion graph Hn,d,ℓ to have vertex set

(Fn
2 )

ℓ and edge set

E(Hn,d,ℓ) :=

{
(x, y) ∈

(
(Fn

2 )
ℓ

2

) ∣∣∣∣∣ Config∆
n,ℓ(x − y) ∈ ForbConfig(n, d, ℓ)

}
.

We define HLin
n,d,ℓ analogously replacing ForbConfig(n, d, ℓ) with ForbConfigLin(n, d, ℓ).

Lemma 7.32. For every n, ℓ ∈ N+ and every d ∈ {0, 1, . . . , n}, we have

val(TranslationSDP(n, d, ℓ)) = val(ϑ′(Hn,d,ℓ)),

val(TranslationSDPLin(n, d, ℓ)) = val(ϑ′(HLin
n,d,ℓ)).

Proof. The program S(Hn,d,ℓ) corresponding to ϑ′(Hn,d,ℓ) is invariant under Aut(G), so
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it is invariant in particular under the translation action of Fn
2 on itself.

Therefore, by Fact 7.14, we may consider only solutions of S(Hn,d,ℓ) that are transla-

tion invariant. Now there is a correspondence between solutions M for TranslationSDP

and translation invariant solutions M′ for S(Hn,d,ℓ) given by M = 2nℓ · M′. The proof

goes through similarly for the linear case.

7.3.6 Comparison with the Sum-of-Squares Hierarchy

The sum-of-squares hierarchy can also be run out-of-the-box on the Independent Set for-

mulation of A2(n, d). Here we prove that our hierarchy is weaker than the sum-of-squares

hierarchy. In the case of linear codes, the sum-of-squares hierarchy needs to be aug-

mented with additional semantic constraints. On the other hand, our hierarchy has the

advantage that it is simpler than sum-of-squares yet still complete.

Because our hierarchy may be able to prove new upper bounds on A2(n, d), sum-of-

squares reasoning may be able to prove new upper bounds. This suggests that current

approaches to this problem using suitably powerful hypercontractive inequalities have a

chance of succeeding [Sam21].

The sum-of-squares hierarchy is applied to the polynomial encoding of Independent

Set where for a graph G = (V(G), E(G)), we take a set of variables XX = {XXv}v∈V(G) and

use the polynomial system,

max ∑
v∈V(G)

XXv

s.t.

XX2
v = XXv ∀v ∈ V(G) (Booleanity)

XXuXXv = 0 ∀{u, v} ∈ E(G) (Independent Set) .

The sum-of-squares algorithm from Chapter 3 may be applied to this polynomial sys-
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tem, which results in the following SDP relaxation at level ℓ of the sum-of-squares hierar-

chy.

Definition 7.33 (Sum-of-squares relaxation SoS(G, 2ℓ)). The degree-2ℓ sum-of-squares relax-

ation for Independent set, denoted SoS(G, 2ℓ), is equivalent to the following SDP. The variable is

M ∈ R(∅∪V(G)ℓ)×(∅∪V(G)ℓ) where the row/column index set is to be interpreted as “the empty

set or V(G)ℓ".

Variables: M ∈ R(∅∪V(G)ℓ)×(∅∪V(G)ℓ) symmetric

max ∑
v∈V(G)

M[(v, . . . , v), (v, . . . v)]

s.t.

M[∅, ∅] = 1 (Normalization)

M[(u1, . . . , uℓ), (v1, . . . , vℓ)] = 0 if ∃i, j ∈ [ℓ].{ui, vj} ∈ E(G) (Independent set)

M[I, J] = M[I′, J′] ∀I ∪ J = I′ ∪ J′ as sets (SoS symmetry,
Booleanity)

M ⪰ 0 (PSD-ness)

For linear codes, we can add in the additional semantic constraints on distances to sum-of-

squares. Let SoSLin(Hn,d, ℓ) be SoS(Hn,d, ℓ) with the independent set constraints replaced by the

“distance constraints”

M[(u1, . . . , uℓ), (v1, . . . , vℓ)] = 0 if ∃x ∈ span(u1, . . . , uℓ, v1, . . . , vℓ). |x| ∈ {1, . . . , d − 1}.

The following proposition states that sum-of-squares is stronger than our hierarchy.

The intuitive reason for this is that, for (u1, . . . , uℓ), (v1, . . . , vℓ) ∈ (Fn
2 )

ℓ, the sum-of-

squares matrix entry M[(u1, . . . , uℓ), (v1, . . . , vℓ)] checks the distance constraint on span(u1, . . . , v1, . . . ),

whereas in our hierarchy the distance constraint is only on span(u1 − v1, . . . , uℓ − vℓ).
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Proposition 7.34.

val(SoS(Hn,d, 4ℓ)) ≤ val(KravchukLP(n, d, ℓ))1/ℓ

val(SoSLin(Hn,d, 4ℓ)) ≤ val(KravchukLPLin(n, d, ℓ))1/ℓ

Proof. We will interchangeably use the interpretation of an SoS solution as a moment

matrix M4ℓ or a pseudoexpectation operator Ẽ.

We compare SoS with the ϑ′(Hn,d,ℓ) formulation of the hierarchy, Lemma 7.32. Let

M4ℓ ∈ R(∅∪(Fn
2 )

2ℓ)×(∅∪(Fn
2 )

2ℓ) be a feasible SoS solution of degree 4ℓ. It suffices to

construct a feasible solution to ϑ′(Hn,d,ℓ) with the same value. The candidate solution

M ∈ R(Fn
2 )

ℓ×(Fn
2 )

ℓ
is formed by taking

M[x, y] = M4ℓ[(x, x), (y, y)] = Ẽ

[
ℓ

∏
i=1

XXxiXXyi

]

and then normalizing the matrix by tr(M).

Normalization and the independent set constraints follow definitionally. PSD-ness

follows from the fact that M is a principle submatrix of M4ℓ. For positivity, PSD-ness

of M4ℓ implies that all diagonal entries of M4ℓ are positive. By SoS symmetry and the

fact that x ∪ y contains at most 2ℓ strings, every entry of M appears somewhere on the

diagonal of M4ℓ. Therefore every entry of M is non-negative, and M is feasible.3

3. Except for the positivity constraint, SoS degree 2ℓ is sufficient to match level ℓ of KravchukLP.
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The objective value of M is:

⟨J, M⟩ =
∑x,y∈(Fn

2 )
ℓ Ẽ
[
∏ℓ

i=1 XXxiXXyi

]
∑x∈(Fn

2 )
ℓ Ẽ
[
∏ℓ

i=1 XXxi

]

=

Ẽ

[(
∑x∈Fn

2
XXx
)2ℓ
]

Ẽ

[(
∑x∈Fn

2
XXx
)ℓ] .

We want to claim this is at least val(SoS(Hn,d, 4ℓ))ℓ = Ẽ
[
∑x∈Fn

2
XXx
]ℓ

. If Ẽ were a real

expectation operator, then two applications of a basic fact about monotonicity of moments

would prove it.

Fact 7.35. For k ∈ N, if Z is a (sufficiently integrable) random variable such that Z ≥ 0 almost

surely, then E[Zk] ≥ E[Z]k.

Since this fact with k = 2ℓ has a degree-2ℓ SoS proof (Fact 3.20), the same conclusion

holds when using the pseudoexpectation operator.

7.4 Main Properties of the Kravchuk Hierarchies

This section presents our main results on the linear programming hierarchy.

The first result is the completeness of the higher-order linear programming hierarchies

for linear codes. We show that for linear codes the hierarchy KravchukLPLin(n, d, ℓ) is com-

plete at level ℓ = n, meaning that it recovers the correct value val(KravchukLPLin(n, d, n))1/n =

ALin
2 (n, d).

The second result is the collapse of the hierarchies for general codes. Not unexpectedly,

the hierarchy KravchukLP(n, d, ℓ) corresponding to general (not necessarily linear) codes

does not improve on Delsarte’s linear program. Without the extra structure of linearity,

the number of constraints we can add to our LP hierarchy is limited. We prove that

276



solutions of DelsarteLP(n, d) (easily) lift to solutions of KravchukLP(n, d, ℓ) with the same

value.

This contrast between the hierarchies KravchukLPLin(n, d, ℓ) and KravchukLP(n, d, ℓ)

reinvigorates the question of whether the maximum sizes of general and linear codes are

substantially different or not.

7.4.1 Completeness for Linear Codes

We prove that:

Theorem 7.36. For n, d ∈ N+, val(KravchukLP(n, d, n)) = ALin
2 (n, d)n.

Intuitively, this is true because at level n, the feasible region of the LP already encodes

ALin
2 (n, d). That is, since at level n there is a variable for each possible basis of a subspace

of Fn
q , just writing down the distance constraints of KravchukLPLin(n, d, n) allows one to

deduce the true value of ALin
2 (n, d). However, the LP hierarchy does not know how to

use that kind of reasoning, and hence our proof is more involved.

Note that we do not show that the polytope is integral, meaning that all vertices of the

polytope are true codes (and therefore all feasible points are convex combinations of true

codes). This is a stronger condition than completeness, but we believe it is not true for

KravchukLP(n, d, n) as we have defined it.

It is plausible that exact completeness of KravchukLPLin(n, d, ℓ) can be attained at

level O(k0), where k0 is the dimension of an optimum linear code over F2 of distance d

and blocklength n.

Proof of Theorem 7.36. Recall the unsymmetrized formulation of the hierarchy from Sec-
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tion 7.3.1.

Variables: ax x ∈ (Fn
2)

ℓ

max ∑
x∈(Fn

2 )
ℓ

ax

s.t. a0 = 1 (Normalization)

a(x1,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ). |w| ∈ [d − 1]} (Distance constraints)

∑
x∈(Fn

2 )
ℓ

axχα(x) ≥ 0 ∀α ∈ (Fn
2)

ℓ (Fourier coefficients)

ax ≥ 0 ∀x ∈ (Fn
2)

ℓ (Non-negativity).

Let k0 = log2 ALin
2 (n, d) be the maximum dimension of a distance-d linear code. We

may weaken the distance constraints to the following “dimension constraints”. This is a

weakening by the definition of k0.

a(x1,...,xℓ) = 0 if dim(span(x1, . . . , xℓ)) > k0 (Dimension constraints)

It suffices to show that this weakened program still has value ALin
2 (n, d)ℓ (which is still

intuitively true, since writing down the dimension constraints is enough to determine k0).

By symmetrizing over the basis change action of GLℓ(F2) as in Section 7.3.3, we may

assume that ax = ay if span(x) = span(y). We will use S instead of x to keep in mind that

S ≤ Fn
2 is a subspace of Fn

2 .

Each of the variables aS is the relaxation of the indicator 1S⊆C for a code C. For in-

tuition, we rename the variable as aS = P̃r[S ⊆ CC] where CC is a formal variable that

represents a code drawn from the pseudodistribution.

The polytope is integral if and only if the pseudodistribution is a true distribution on

codes, viz. P̃r[S = CC] form a valid probability distribution. Formally, these are formal

variables which are a wisely-chosen linear transformation of the variables P̃r[S ⊆ CC],
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defined by the system of linear equations:

P̃r[S ⊆ CC] = ∑
T≥S

P̃r[T = CC] (S ≤ Fn
2 ) .

The idea of the proof is to rewrite the linear program in terms of the variables P̃r[S = CC]

and then argue about the program from the perspective of the pseudoprobabilities. The

notation is shortened to P̃r[S] = P̃r[S = CC].

• For ℓ ≥ n, the rewritten objective function is

∑
x∈(Fn

2 )
ℓ

P̃r[span(x) ⊆ CC] = ∑
x∈(Fn

2 )
ℓ

∑
T≥span(x)

P̃r[T]

= ∑
S≤Fn

2

|S|ℓ P̃r[S] .

• The dimension constraints are

∑
T≥S

P̃r[T] = 0 (S ≤ Fn
2 : dim(S) > k0) .

By induction downwards on the dimension of S, equivalently

P̃r[S] = 0 (S ≤ Fn
2 : dim(S) > k0)

• The left-hand side of the Fourier constraint for α is

∑
x∈(Fn

2 )
ℓ

P̃r[span(x) ⊆ CC]χα(x) = ∑
x∈(Fn

2 )
ℓ

χα(x) ∑
T≥span(x)

P̃r[T]

= ∑
S≤Fn

2

P̃r[S] ∑
x∈Sℓ

χα(x) .
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The inner summation often cancels to zero, as shown by the following lemma.

Lemma 7.37. For α ∈ (Fn
2 )

ℓ, S ≤ Fn
2 ,

∑
x∈Sℓ

χα(x) =


|S|ℓ S ≤ span(α)⊥

0 otherwise
.

Proof. If S ⊆ span(α)⊥, then χαi(xi) = (−1)⟨αi,xi⟩ = 1 for all αi and xi ∈ S. The

summation is |S|ℓ. Conversely, if S contains some vector s such that
〈

s, ∑ℓ
i=1 biαi

〉
=

1, for some coefficients bi ∈ F2, then there is a cancellation between terms

(x1, . . . , xℓ) ∈ Sℓ and (x1 + b1s, . . . , xℓ + bℓs) ∈ Sℓ .

The bi cannot all be 0, hence the terms in the sum pair up and cancel.

Therefore the Fourier constraint for α is

∑
S≤span(α)⊥

|S|ℓ P̃r[S] ≥ 0 .

In summary, KravchukLP(n, d, ℓ) (when weakened to the dimension constraints) is
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formulated in terms of pseudoprobabilities as the following linear program.

Variables: P̃r[S] S ≤ Fn
2

max ∑
S≤Fn

2

|S|ℓ P̃r[S]

s.t. ∑
S≤Fn

2

P̃r[S] = 1 (Normalization)

P̃r[S] = 0 if dim(S) > k0 (Dimension constraints)

∑
S≤U

|S|ℓ P̃r[S] ≥ 0 ∀U ≤ Fn
2 (Fourier coefficients)

∑
T≥S

P̃r[T] ≥ 0 ∀S ≤ Fn
2 (Non-negativity).

We claim that optimal solutions of this program are integral, i.e. they have P̃r[S] ≥

0 for all S ≤ Fn
2 . This is sufficient to finish the proof, since integral points are a true

probability distribution on subspaces S of dimension at most k0, and hence the value is

upper bounded by the true value 2k0ℓ = ALin
2 (n, d)ℓ.

Let P̃r be an optimal point. Let Smin be a subspace of minimum dimension in the

support of P̃r. By the Fourier constraint on Smin, P̃r[Smin] ≥ 0 for any minimal subspace

in the support of P̃r. We show that dim(Smin) = k0, i.e. that P̃r is supported on spaces of

dimension exactly k0, to conclude that P̃r is nonnegative.

To show that dim(Smin) = k0, assume for the sake of contradiction that dim(Smin) <

k0. Then there is a way to increase the value of P̃r, a contradiction. Indeed, we may divide

the probability mass equally among the spaces S ≥ Smin with dim(S) = dim(Smin) + 1.

Letting m be the number of such spaces, formally we define:

P̃r+[S] =


0 S = Smin

P̃r[S] + P̃r[Smin]
m S ≥ Smin and dim(S) = dim(Smin) + 1

P̃r[S] otherwise

.
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This evidently increases the objective function. Let us verify that P̃r+ remains a feasible

solution.

• P̃r+ respects the normalization ∑S≤Fn
2

P̃r+[S] = 1.

• The dimension constraints are not violated since dim(S) = dim(Smin) + 1 ≤ k0.

• In Fourier constraints with U ̸≥ Smin, nothing changes. In U = Smin, the left-hand

side is 0. In U > Smin, U contains at least one of the subspaces S with increased

mass. Therefore the change in the left-hand side is at least

|S|ℓ · P̃r[Smin]

m
− |Smin|ℓ · P̃r[Smin] .

Since m ≤ 2n while |S|ℓ

|Smin|ℓ
= 2ℓ ≥ 2n, this is nonnegative.

• The non-negativity constraints remain satisfied.

Therefore, P̃r must be supported only on spaces of dimension exactly k0, it is nonneg-

ative and integral, and the proof is complete.

7.4.2 Hierarchy Collapse for General Codes

In this section, we show that without the additional semantic linearity constraints im-

posed by KravchukLPLin(n, d, ℓ), the associated hierarchy KravchukLP(n, d, ℓ) does not

give any improvement over the original Delsarte linear programming approach.

Theorem 7.38 (Lifting). For every n, d, ℓ ∈ N+,

val(KravchukLP(n, d, ℓ))1/ℓ = val(DelsarteLP(n, d)).

282



Proof. We will use the ϑ′ formulation of the program from Lemma 7.32. We have

val(KravchukLP(n, d, ℓ)) = ϑ′(Hn,d,ℓ) .

The graph Hn,d,ℓ is just the tensor product H⊗ℓ
n,d, reflecting the fact that KravchukLP only

enforces a constraint on (x1, . . . , xℓ), (y1, . . . , yℓ) by looking separately at each index i ∈

[ℓ],

|xi − yi| ̸∈ {1, . . . , d − 1} .

It is easy to see that ϑ′(G⊗ℓ) = ϑ′(G)ℓ by tensoring the primal and dual solutions. Mean-

while, we have val(DelsarteLP(n, d)) = val(KravchukLP(n, d, 1)) = ϑ′(Hn,d), and there-

fore

val(KravchukLP(n, d, ℓ)) = ϑ′(Hn,d,ℓ) = ϑ′(Hn,d)
ℓ = val(DelsarteLP(n, d))ℓ .

7.5 Dual Program

For linear codes, we would like to use the LP hierarchy to improve upper bounds on

ALin
2 (n, d) beyond the Delsarte LP. The natural way to do this is to construct dual solutions

to a higher level of the hierarchy. Let FourierLP′
Lin(n, d, ℓ) denote the dual linear program.

For any level ℓ of the hierarchy, if we construct a feasible point f for the dual, then by weak

duality we immediately prove:

ALin
2 (n, d) ≤ val( f )1/ℓ.
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As evidenced by the substantial effort invested in Chapter 4 and Chapter 6, constructing

dual solutions for convex programs can be difficult.

We already developed one formulation of the dual program through the Lovász ϑ′

function, Definition 7.30. Here we develop another formulation that closely parallels

the dual of the Delsarte LP, for which good solutions were constructed by McEliece et

al [MRRW77] (in the Boolean setting) and by Cohn and Elkies [CE03] and Viazovska [Via17]

(in the sphere packing setting). The construction of solutions for this program is ongoing

work.

In this section, we introduce the following notation.

Definition 7.39 (Valid). We say that C ⊆ Fn
2 is valid if for all w ∈ C, |w| = 0 or |w| ≥ d.

If there is a word w ∈ C with |w| ∈ {1, . . . , d − 1}, we say C is invalid. We also use the same

terminology for x = (x1, . . . , xℓ) ∈ (Fn
2 )

ℓ with reference to the subspace span(x1, . . . , xℓ).

We construct the dual from the FourierLPLin(n, d, ℓ) formulation of the hierarchy. De-

fine the dual program FourierLP′
Lin(n, d, ℓ) as follows.

Variables: f : (Fn
2 )

ℓ → R

min f (0)

s.t. f̂ (0) = 1 (Normalization)

f (x) ≤ 0 ∀ valid x, x ̸= 0 (Distance constraints)

f̂ (α) ≥ 0 ∀α ∈ (Fn
2 )

ℓ (Fourier coefficients)

We can prove weak duality of these programs via a direct argument. (Strong duality

we will show afterwards.)

Proposition 7.40. For any pair of feasible solutions ax (x ∈ (Fn
2 )

ℓ) to FourierLPLin(n, d, ℓ)

284



and f : (Fn
2 )

ℓ → R to FourierLP′
Lin(n, d, ℓ),

val(ax) ≤ val( f ) .

Proof. Change ax into a function a′ : (Fn
2 )

ℓ → R by a′(x) = 2−nℓax.

val(ax) = ∑
x∈(Fn

2 )
ℓ

ax

= 2nℓ E
x∈R(F

n
2 )

ℓ
[a′(x)]

= 2nℓ â′(0) f̂ (0) (Normalization of f )

≤ 2nℓ ∑
α∈(Fn

2 )
ℓ

â′(α) f̂ (α) (Fourier coefficient constraints)

= 2nℓ E
x∈(Fn

2 )
ℓ

a′(x) f (x) (Plancherel identity, Fact 1.8)

≤ 2nℓa′(0) f (0) (Distance constraints and non-negativity)

= a(0) f (0) = f (0) (Normalization of a)

= val( f )

On the other hand, â(0) = val(primal), finishing the claim.

To prove strong duality, we show that this dual program is equivalent to the dual of

the ϑ′ formulation of the hierarchy, Lemma 7.32.

Lemma 7.41. val(FourierLP′
Lin(n, d, ℓ)) ≤ ϑ′(HLin

n,d,ℓ). Along with the previous proposition,

this implies val(FourierLP′
Lin(n, d, ℓ)) = val(FourierLPLin(n, d, ℓ)).

Proof. We start by converting the dual ϑ′(HLin
n,d,ℓ) SDP into an LP, as in Section 7.3. The

program is invariant under the translation action of Fn
2 on itself, therefore we may assume

that the solution matrix is translation-invariant. The eigenvectors are therefore given by
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the Boolean Fourier characters. The PSD-ness constraint becomes a set of linear con-

straints, resulting in the following program.

Variables: cz (z ∈ (Fn
2 )

ℓ)

β ∈ R

min β

s.t. cz ≥ 1 ∀ valid z (Distance constraints)

∑
z∈(Fn

2 )
ℓ

czχα(z) ≤ β ∀α ∈ (Fn
2 )

ℓ (Fourier coefficients)

Let (cz, β) be an optimal solution to this program. We may assume that c0 = 1, since low-

ering c0 can only aid the Fourier coefficient constraints. We define the candidate solution

f ′ : (Fn
2 )

ℓ → R by:

f (x) =


1 − cx x ̸= 0

β x = 0

and then normalizing f ′ = f
f̂ (0)

.

The distance constraints on f ′ are evidently satisfied. For the Fourier coefficient con-

straints, the Fourier coefficients of f are

f̂ (α) = E
x∈R(F

n
2 )

ℓ
[ f (x)χα(x)]

= 2−nℓβ + E
x∈R(F

n
2 )

ℓ
[(1 − cx)χα(x)]− 2−nℓ(1 − c0)

= 2−nℓβ + E
x∈R(F

n
2 )

ℓ
[(1 − cx)χα(x)]

=


2−nℓβ − ĉ(α) α ̸= 0

2−nℓβ + 1 − ĉ(0) α = 0
.
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These are nonnegative via the Fourier constraints on c. This proves that f ′ is feasible.

Moreover, the last equation above also shows f̂ (0) ≥ 1. The objective value is

f ′(0) =
β

f̂ (0)
≤ β .

Thus f shows val(FourierLP′
Lin(n, d, ℓ)) ≤ ϑ(HLin

n,d,ℓ) as desired.

For the interested reader, the explicit transformation in reverse sets c0 = 1 and cx =

1 − f (x) for x ̸= 0, and then β = 2nℓ maxα∈(Fn
2 )

ℓ ĉ(α) = 2nℓ ĉ(0) = f (0).

We work towards understanding the dual program. By symmetrizing, we may as-

sume that a feasible function f (x1, . . . , xℓ) depends only on Config(x1, . . . , xℓ). Recall that

a configuration specifies the Hamming weight of each linear combination of x1, . . . , xℓ. Ig-

noring the trivial linear combination, which always has Hamming weight 0, the space of

configurations can be visualized as a subset of {0, 1, . . . , n}2ℓ−1. Not every element of this

set arises from a configuration; the bona fide configurations lie in the polytope formed by

2ℓ affine planes (essentially coming from the triangle inequality on Hamming weights).

For example, the case ℓ = 2 is visualized in Fig. 7.1a.

The distance constraints require that f is nonpositive on any valid configuration (ex-

cept 0). The set of valid configurations can be concisely described as the set

({0} ∪ [d, n])2ℓ−1 .

The case ℓ = 2 is visualized in Fig. 7.1b.

One of the difficult aspects of studying the FourierLP′
Lin(n, d, ℓ) program is that the

distance constraints are not on a connected subset. The subcube [d, n]2
ℓ−1 consists of

“most” of the valid configurations, but there are additional lower-dimensional spaces

where one or more of the coordinates equal zero.

Since we are studying the exponential asymptotics of ALin
2 (n, d) where d

n = δ is a con-
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(a) Locus of possible configurations for ℓ = 2.
The point (x, y, z) represents

(
|x1|

n , |x2|
n , |x1+x2|

n

)
where x1, x2 ∈ Fn

2 .

(b) Valid configurations for which the distance
constraints require f (x) ≤ 0. The set consists
of three lines and a polyhedral region. The
polyhedral region is the intersection of the left
picture with the cube [d, 1]3.

Figure 7.1

stant, we would like to scale the above pictures by n and characterize limn→∞
1
n log2 val(FourierLP(n, d, ℓ))

by a program that is independent of n.4 The constraints in the two figures above behave

nicely under this limit.

However, we do not know how to enforce the Fourier constraints under this limit.

The distribution underlying the Fourier coefficients is the uniform distribution on (Fn
2 )

ℓ.

Let c be a random variable for the induced point in configuration space {0, 1, . . . , n}2ℓ−1.

Given (x1, . . . , xℓ) ∈R (Fn
2 )

ℓ, the entries of c are

cS =

∣∣∣∣∣∑i∈S
xi

∣∣∣∣∣ (S ⊆ [ℓ], S ̸= ∅) .

The distribution of c in the limit n → ∞ can be understood. Each coordinate of c is

4. This technique is reminiscent of calculating the free energy density in statistical physics of n-particle
systems [MM09].
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individually a balanced binomial distribution, and the limiting version of c turns out to

be a standard Gaussian centered around the point (n
2 , . . . , n

2 ) with standard deviation on

the order
√

n, exactly as if one took the limit of each coordinate independently.

Proposition 7.42.
c − (n/2, . . . , n/2)√

n/2
d→ N (0, Id) .

Proof. We can express c as the sum of n i.i.d. vectors vi, one for each coordinate i ∈ [n].

The distribution of a single vector v is uniform over 2ℓ choices. For each α ⊆ [ℓ], the α-th

choice is the parity of all nonempty subsets of α’s coordinates. For example, for ℓ = 2,

the four vectors are:

Subsets α = 00 α = 01 α = 10 α = 11
{1}

{2}

{1, 2}




0

0

0




0

1

1




1

0

1




1

1

0


For ℓ = 3, the eight vectors are:

Subsets α = 000 α = 001 α = 010 α = 100 α = 011 α = 101 α = 110 α = 111

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

{1, 2, 3}





0

0

0

0

0

0

0





0

0

1

0

1

1

1





0

1

0

1

0

1

1





1

0

0

1

1

0

1





0

1

1

1

1

0

0





1

0

1

1

0

1

0





1

1

0

0

1

1

0





1

1

1

0

0

0

1


The Gaussian limit of c is a consequence of the central limit theorem for sums of indepen-

dent vectors,
c − n E[v]√

n
d→ N (0, E[(v − E[v])(v − E[v])⊺]) .
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The mean of v is the all-1/2 point, while the covariance matrix of v is pleasantly just 1
4Id.

Indeed, this distribution on v is well-known as a canonical distribution such that the bits

of v are uncorrelated but not independent (the distribution has only ℓ bits of entropy,

yet the number of uncorrelated bits of v is 2ℓ − 1). To compute the correlation, for any

S, T ⊆ [ℓ],

E
α⊆[ℓ]

[(vS − 1/2)(vT − 1/2)] =
1
4

E
α∈R{−1,+1}ℓ

[χS(α)χT(α)] =
1
4
1S=T .

On the other hand, the bits are not 3-wise independent, since for any S, T, U such that

S△T△U = ∅,

E
α⊆[ℓ]

[(vS − 1/2)(vT − 1/2)(vU − 1/2)] =
1
8

E
α∈R{−1,+1}ℓ

[χS(α)χT(α)χU(α)] =
1
8
̸= 0 .

This is a nice distribution as n → ∞, but it does not behave well under the 1
n rescal-

ing. This distribution is highly concentrated around the all-n
2 point, and when rescaled it

becomes a point mass in the limit n → ∞.

7.6 Open Problems

The main open problem is to prove bounds on the value of the LP hierarchy for linear

codes. Can analyzing the hierarchy for ℓ = 2 prove a new upper bound on the maximum

rate of a binary code?

Question 7.43. For δ = d
n = 1

2 − ε, what upper bound on the rate is proven by the hierarchy,

limn→∞
1
ℓn log2 KravchukLPLin(n, d, ℓ)? Is it strictly less than limn→∞

1
n log2 DelsarteLP(n, d)?

In Section 7.3.6, we showed that degree-4ℓ sum-of-squares is stronger than level-ℓ of

the hierarchy. Both hierarchies are complete and have value ALin
2 (n, d) at level ℓ = O(n).
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Do the hierarchies converge to ALin
2 (n, d) at a similar rate, or is sum-of-squares faster?

Question 7.44. Does KravchukLPLin interleave the SoS hierarchy, in the sense that for a con-

stant C and all ℓ ∈ N,

val(KravchukLPLin(n, d, C · ℓ))1/Cℓ ≤ val(SoSLin(Hn,d, ℓ)) ?

Our techniques provide a higher-order version of the linear program responsible for

the first linear programming bound in [MRRW77]. The second linear programming bound

in [MRRW77] also consists of analyzing a Delsarte LP but for the Johnson scheme instead

of the Hamming scheme. In the paper version of this chapter [CJJ22], we show an ana-

logue of the hierarchy for codes in any translation scheme. However, since the Johnson

scheme is not a translation scheme, one cannot apply the theory. It is then natural to ask if

there is a suitable generalization of this construction that would apply to non-translation

schemes such as the Johnson scheme.

Sphere packing exhibits many similarities to Boolean error-correcting codes [CE03].

Initial calculations suggest that there may be an analogous linear program hierarchy that

upper bounds the density of lattice packings in Rn (the analog of linear codes from the

Boolean setting). A distant goal is to prove new upper bounds on the density of lattice

packings for large n. A possibly more tractable goal is to upper bound the density of

lattice packings in a fixed dimension via computer calculation. For n = 10, the densest

packing is conjectured is to be the Best packing, which is not a lattice packing [CS95].

Running the LP hierarchy to upper bound the density of lattice packings in R10 may be

able to prove the following conjecture.

Conjecture 7.45. The Best packing is denser than any lattice packing in R10.
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