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ABSTRACT

Operational networks commonly rely on machine learning models for many tasks, including

detecting anomalies, inferring application performance, and forecasting demand. Yet, unfor-

tunately, model accuracy can degrade due to concept drift, whereby the relationship between

the features and the target prediction changes due to reasons ranging from software upgrades

to seasonality to changes in user behavior. Mitigating concept drift is thus an essential

part of operationalizing machine learning models, and yet despite its importance, concept

drift has not been extensively explored in the context of networking—or regression models

in general. Thus, it is not well-understood how to detect or mitigate it for many common

network management tasks that currently rely on machine learning models. Unfortunately,

as we show, concept drift cannot always be mitigated by frequently retraining models using

newly available data, and doing so can even degrade model accuracy further. In this paper,

we characterize concept drift in a large cellular network for a major metropolitan area in

the United States. We find t hat c oncept d rift o ccurs a cross m any i mportant key perfor-

mance indicators (KPIs), independently of model, training set size, and time interval—thus

necessitating practical approaches to detect, explain, and mitigate it. To do so, we develop

Local Error Approximation of Features (LEAF). We introduce LEAF and demonstrate its

effectiveness on a  variety o f KPIs and m odels. LEAF detects d rift; explains f eatures and

time intervals that most contribute to drift; and mitigates drift using resampling, augmenta-

tion, or ensembling. We evaluate LEAF against industry-standard mitigation approaches

(notably, periodic retraining) with more than three years of cellular KPI data from a major

cellular provider in the United States. LEAF consistently outperforms periodic retraining

while reducing costly retraining operations by as much as an order of magnitude. Due to

its effectiveness, a  major cellular carrier i s now integrating LEAF into i ts forecasting and

provisioning processes.

vi



CHAPTER 1

INTRODUCTION

Network operators rely on machine learning models to perform many tasks, including anomaly

detection Shon and Moon [2007], Shon et al. [2005], performance inference Futuriom [accessed

August, 2021] and diagnosis, and forecasting Mei et al. [2020], Chinchali et al. [2018].

Deploying and maintaining the models can prove challenging in practice Sommer and Paxson

[2010]; a significant operational challenge is concept drift, whereby a model that is initially

accurate at a particular point in time becomes less accurate over time—either due to a sudden

change, periodic shifts, or gradual drift. Previous work in applying machine learning models

to network management tasks has generally trained and evaluated models on fixed, offline

datasets Sinclair et al. [1999], Dong and Wang [2016], Shon and Moon [2007], Shon et al.

[2005], Ayoubi et al. [2018], Mei et al. [2020], Chinchali et al. [2018], demonstrating the ability

to predict various network properties or instances at fixed points in time on a static dataset.

Yet, a model that performs well offline on a single dataset may not in fact perform well in

practice, especially over time as characteristics change.

Models can become less accurate at predicting target variables for many reasons. One

cause is a sudden, drastic change to the environment. For example, the installation of new

equipment, a software upgrade, or a sudden change in traffic patterns or demands can cause

models to suddenly become inaccurate. One notable instance that exhibited such a sudden

shift was the COVID-19 pandemic, an exogenous shock that resulted in significant changes

to behavior patterns Lutu et al. [2020] (e.g., reduced mobility) and traffic demands Liu

et al. [2021] (e.g., as people suddenly began using home WiFi connections more for specific

applications and relying less on mobile data). Another possible cause is periodic change,

whereby a model that is accurate on a particular time window may become less accurate

but will exhibit higher accuracy at fixed, periodic intervals in the future. For example, one

clear phenomena that we observe is drift in model accuracy with a seven-day period; diurnal
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and periodic patterns in network traffic are, of course, both well-documented and relatively

well-understood. A new contribution in this paper, however, is to demonstrate that machine

learning models also exhibit similar patterns with respect to model accuracy.

Concept drift is a relatively well-understood phenomenon in machine learning and has

been studied in the context of many other prediction problems Schlimmer and Granger [1986],

Lu et al. [2018], Gama et al. [2014]. Yet, although concept drift is a relatively well-understood

phenomenon in other fields, it has not been explored in the context of computer networking,

in spite of the relatively widespread use of machine learning models.

Mitigating concept drift for Key Performance Indicators (KPIs) in a cellular network

introduces fundamentally new challenges that make previous approaches from other domains

inapplicable. In contrast to tasks such as image or text classification, where the semantics of

prediction occurs on a fixed object and characteristics of the features change relatively slowly

over time Fdez-Riverola et al. [2007], Žliobaitė [2010a], Gama et al. [2014], predictions of

network characteristics occur continuously over time, and occur within the context of a system

that changes over time due to both gradual evolution and exogenous shocks. Additionally,

networks have unique characteristics, such as dynamic signal interference due to environment

changes (e.g., changes due to weather, seasonality, etc.) Zheng et al. [2014], which calls for

new approaches. One important implication of our findings is that one of the most common

practices for combatting drift in large networks—regularly retraining models Kantchelian

et al. [2013], Thomas et al. [2011]—is often ineffective and can in some cases even reduce

model accuracy. Due to the nature of certain components of drift, continually retraining

using a fixed-size window of recent observations can degrade model performance!

Beyond simply detecting and mitigating concept drift, operators often want to know

why a model has become less accurate. Thus, the ability to explain the behavior of black-

box regression models is necessary to help operators use these models in practice. To this

end, this paper not only characterizes concept drift in cellular networks, but also develops
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(1) approaches to explain how different features contribute to drift; and (2) strategies to

mitigate drift through triggered, focused re-retraining, re-sampling, and ensembling approaches

that are more efficient than näıve retraining. Towards this goal of explainable AI (XAI)

models in networking, this paper studies drift in the context of cellular networks and develops

new techniques to mitigate concept drift. Although past work has developed methods to help

explain concept drift, past work has largely focused on classification problems Jordaney et al.

[2017], Yang et al. [2021]; in contrast, prediction problems in the content of cellular networks

are often regression problems, which generally lack methods to explain concept drift.

This paper makes three contributions:

First, we characterize concept drift in the context of a large cellular network,

exploring drift for many cellular key performance indicators (KPIs) using more than three

years of KPI data in a major United States city and surrounding metropolitan area, from

one of the largest cellular providers in the United States. We demonstrate concept drift in

a large cellular network comparing different KPIs, model families, training set sizes, and

periods across many regression models and tasks. Concept drift occurs consistently and

independently of both the size and period of the training set.

Second, we introduce LEAF (Local Error Approximation of Features) to detect,

explain, and mitigate concept drift in cellular networks. We apply Kolmogorov-

Smirnov Windowing (KSWIN) to time-series of estimated errors, which tells us when a model

drifts. We complement existing drift explanation methods in regression-based supervised

learning tasks. We use LEAplot and LEAgram to inform operators about for which feature,

where and how much concept drift occurs, which maps to the under-trained region of a model.

Based on these explanations, the framework strategically re-samples, augments the training

data, and creates spatio-temporal ensembles to mitigate drift.

Third, we evaluate these approaches holistically, on more than three years

of data from a large cellular carrier, evaluating both the effectiveness and cost
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of each approach, across many KPIs and families of machine learning models. LEAF

consistently outperforms periodic retraining, while reducing costly retraining operations by

as much as an order of magnitude. Although there is no single best mitigation strategy

for different types of models, we consistently reduce errors across KPIs. We also find that

KPIs with higher coefficient of variance are harder to mitigate. In terms of approaches,

resampling tends to be the best mitigation approach for boosting and bagging regression

models, augmentation is most effective for distance-based models, and ensembling works best

for recurrent neural networks.

A major cellular carrier in the United States is integrating LEAF into its forecasting and

provisioning processes. We believe that LEAF can also be applied beyond cellular networks,

to other network management problems that use black-box models for regression-based

prediction, such as demand forecasting and application performance prediction in ISPs and

service provider networks. Such avenues present rich opportunities for future work.
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CHAPTER 2

PROBLEM SETUP

We now introduce the problem we tackle in this paper, describing first the nature of the data

collected in a cellular network and then the specific modeling problems we address, including

the specific features and prediction targets.

2.1 Dataset

We base our analysis in this paper on more than three years of daily eNodeB-level LTE

network measurements collected from a major wireless carrier in the United States. Table 2.1

summarizes the characteristics of the dataset. The dataset contains information collected

from 898 eNodeBs (evolved NodeBs, or the “base station” in the LTE architecture) in a

large city and surrounding metropolitan area (rural, suburban, and urban included) in the

United States. The dataset spans more than three years—from January 1, 2018 to May 3,

2021—and contains 737,577 logs.

Collection period Jan. 1st 2018 – May 3rd 2021

Identifiers eNodeB ID & Time stamp

Number of KPIs 224

Groups of KPIs Network performance
Resource utiliazation
User experience

KPIs of interest Downlink volume (DVol)
RRC est. success (REst.)
Downlink Throughput (DTP)
S1-U call drop rate (CDR)
Peak active UEs (PU)

Number of eNBs 898

Number of logs 737,577

Table 2.1: Summary of dataset.

Each log contains 224 Key Performance Indicators (KPIs) collected for a base station on
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a particular date. KPIs are statistics collected and used by the operator of the network to

monitor and assess network performance. The 224 KPIs fall into three categories: (1) access

network performance (e.g., throughput, access congestion, packet loss, establishment success),

(2) resource utilization (e.g., data volume, peak active users, active session time, cell availability

rate), and (3) user experience features (e.g., call drop rate, abnormal UE releases, VoLTE

user satisfaction rate). Further, some of the KPIs have separate directional measurements,

such as the downlink where the network is transmitting the data down to the UEs and the

uplink where the network is receiving data from the UEs. The data also contains features

like unique identifiers of dates, eNodeBs, and their characteristics (e.g., the density of their

deployment location).

KPIs are typically calculated using eNodeB counters, measurements, and events generated

by user equipment (UE) and radio access network (RAN) equipment. Counters are incre-

mented based on network events that are generated or received by the eNodeB. Some metrics

are established to measure the network based on the LTE standard released by 3GPP 3GPP

[accessed July, 2021], the body that determines cellular standards. These “raw” measurements

can be collected from the eNodeB using external tools that store data for longer periods of

time or build formulas (which resemble KPIs but are generated from one or many underlying

raw KPIs). One example of a formula to create a KPI is drop rate, which is calculated by

dividing the number of abnormal releases by the number of successful established connections.

KPIs are stored as statistical representations (e.g., min/max, average, percentiles).

2.2 Modeling Goal

We focus our study of concept drift in the context of network capacity forecasting. Capacity

forecasting is an important problem for operators as it guides infrastructure configuration,

management, and augmentation. We focus on per-eNodeB level KPI forecasting to provide

suggestions for capacity adjustment, deployment, maintenance, and operation in large cellular

networks. We aim to predict the following KPIs that are most relevant for use in capacity
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Characteristic DVol REst DTP CDR PU

Std/Mean 0.81 0.85 0.59 2.48 1.76

Periodic ! ! ! ! !

Bursty ! !

Data Lost !

Balanced ! !

Table 2.2: Characteristics of target KPIs. DVol: Downlink volume; REst: RRC establishment
success; DTP: Downlink Throughput; CDR: S1-U call drop rate; PU: Peak active UEs.

planning: measurements of network performance (downlink throughput, RRC / Radio

Resource Control establishment success), resource utilization (downlink data volume, peak

number of active UEs / User Equipment), and user experience (S1-U / S1 User plane external

interface call drop rate). Table 2.2 summarizes the main characteristics of these KPIs.

These KPIs exhibit a variety of statistical patterns and characteristics which, as we will

see in Section 5 can ultimately affect how models drift over time, as well as the best strategies

for mitigating drift for a particular KPI. All KPIs exhibit 7-day periodicity, although some

KPIs exhibit far more variance than others. Downlink volume (DVol) and RRC establishment

success (REst) present similar ranges in their distributions. In contrast, S1-U call drop rate

(CDR) and peak active UEs (PU) show a more bursty behavior over time. While the data

distributions of downlink throughput (DTP) and PU have balanced distributions that do not

present a long tail, DVol, REst, and CDR present more skewed distributions. Some data for

PU was lost between July 2019 and January 2020. We use historical data—i.e., all available

KPIs and dates (as features) up to a given day—to forecast one or more target KPIs of

interest 180 days in the future. We use a 180-day forecast window because the model outputs

we focus on are used in practice for network infrastructure provisioning and augmentation

over long timescales.
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2.3 Experiment Setup

We aim to evaluate the prediction performance of different models for a number of KPIs

180 days in the future. The nature of this problem is regression with time-series information.

Regression models are a better fit than classification because (1) we aim to forecast target

KPIs that are all characterized wide ranges of possible numerical values and (2) fine grained

forecasting better enables operators to understand the KPIs and take action on their network.

To explore the performance of different widely-adopted regression techniques, we use for

all experiments in this paper the AutoGluon AI [accessed July, 2021] AutoML pipeline and

TensorFlow. AutoGluon is used to quickly prototype deep learning and machine learning

algorithms on various existing frameworks: LightGBM, XGBoost, CatBoost, Scikit-learn,

MXNet, and FastAI. For all selected models, it enables automatic data processing, architecture

search, hyperparameter tuning, and model selection and ensembling. We emphasize that the

goal of our study is not to create and tune models that maximize performance, but rather to

demonstrate and better understand concept drift in a real-world network.

We select five different families of models: (1) gradient boosting algorithms like LightGBM,

LightGBMLarge, LightGBMXT, CatBoost, and XGBoost; (2) bagging algorithms such as

Random Forest and Extra Trees; (3) distance-based algorithms like KNeighbors; (4) recurrent

neural networks like LSTM. All models either incorporate temporal features (e.g., time

stamps), or are time-series models (LSTM). Although it is viable to fine tune each model’s

hyperparameters by hand, we rely on the default auto-selection pipeline with the goal of

maintaining a fair comparison and to make training scalable and efficient. For example, the

LSTM network is implemented in TensorFlow, which has 100 units for the LSTM, followed

by a dropout layer and a dense layer.

For all experiments, we develop models for each selected target KPI (listed in Table 2.1).

As the input of the models, we use a portion of the history of all categorical and numerical
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KPIs from all eNodeBs present in our dataset up to the date when the model is generated.

While we target the forecasting of the target KPIs on an eNodeB-by-eNodeB basis, we

generate a single model for the entire network, i.e., we create a single model capable of

forecasting values for each individual base station. We discard string-based features (e.g.,

eNodeB ID) because they might generate undesired bias that could affect accuracy when

predicting eNodeBs not present in the training set, i.e., text representation might be encoded

to representations which are not meaningful for base stations that are not present at all times

in the dataset.

2.4 Metrics for Evaluating Drift

The characterization of model performance over time is essential to evaluate concept

drift. Given that we model network capacity forecasting as a regression problem, we test

model effectiveness by computing distances between prediction and ground truth by date,

specifically using Root Mean Squared Error (RMSE). To better understand drift across

different KPIs whose natural operating value ranges are drastically different (e.g., call drop

rates are scalars mostly less than 1, while downlink volume scalars are often greater than

300,000), we normalize the RMSE and derive the Normalized Root Mean Squared Error

(NRMSE):

NRMSE(M, t) =

√
1
Nt

ΣNt
j=1(M(ktj) − M̂(ktj))2

max(ktj) − min(ktj)
(2.1)

Here we denote M as the model we aim to evaluate, t denotes a specific date, and k refers

to the target KPI being forecasted. kt is the subset on date t, Nt is the number of data

points on this subset, M(ktj) denotes the jth measurement, while M̂(ktj) identifies the jth

prediction of M .

In addition to offering an equitable comparison across multiple KPIs, the NRMSE is

well-suited to understand concept drift because (1) it penalizes large errors that can be
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costly for ISPs operations (e.g., over-provision of resources); and (2) it captures the relative

impact of errors over extended periods of time. In practice, NRMSE scores under 0.1 and

R2 over 90% indicate that the regression model has very good prediction power Nau [2014].

To avoid possible error in interpretation, we also test the performance of regression by the

other metrics including coefficient of determination (i.e., R2), mean absolute percentage error,

mean absolute error, explained variance score, Pearson correlation, mean squared error, and

median absolute error. We omit these metrics for brevity. We observe that all phenomena we

describe in the paper using NRMSE also hold for these metrics.

Average NRMSE distance from a static model. To show the longe-term effectiveness of

different mitigation schemes, we study the relative evolution of errors over extended periods

of time. For each day in the dataset, we compute the average NRMSE across all eNodeBs

and compare it to the error generated by a model that is never retrained, i.e., a static model.

We define ∆NRMSE as the average distance between the error for a mitigated model M1

against the static model M0 in the form of a percentage distance. We define:

∆NRMSE(M1,M0) =
NRMSE(M1) −NRMSE(M0)

NRMSE(M0)
× 100% (2.2)

where NRMSE is the average over time.
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CHAPTER 3

DRIFT CHARACTERIZATION

We explore how trained forecasting models can be affected by concept drift by training a

number of models from different categories of regression-based predictors, targeting different

KPIs. We then study how different training set sizes and training periods can affect model

performance. After identifying concept drift behaviors in cellular network, we evaluate the

effectiveness of periodic retraining with recent data, which is the state of the art for mitigating

concept drift. We demonstrate that it is hard to identify a single retraining strategy across

models and KPIs, making näıve retraining a difficult strategy to implement in practice.

3.1 Drift Behavior for Different KPIs

In this section, we explore whether we can observe drift for the KPI forecasting task and

additionally whether the drift patterns from different KPIs are similar. We experiment with

different KPIs. We train all the models mentioned in Section 2.3 for each target KPI. To keep

all other variables the same, the inputs of models are completely unchanged, but we alter the

target KPI to predict. We use a 90-day window of historical data from all eNodeBs with an

end date of July 1, 2018 for our training data, i.e., forcasting KPIs starting from December

28th, 2018 (we plot from Mid-March 2019 because of data losses between January and March

2019). We then test these models on data subsets split by date. NRMSEs between the

predictions and ground truth values are calculated daily using 4 different models: CatBoost,

ExtraTreesMSE, KNeighborsDist, and LSTM.

Different KPIs exhibit different drift patterns. Figure 3.1 presents the concept drift

along with time for four classes of KPIs. Overall, the drift patterns are quite unique for each

class, and they vary in two aspects. First, deviations in NRMSE occur at different periods of

time. In Figure 3.1(a), NRMSE of downlink volume experiences a sudden shift in April 2020

(corresponding to quarantine period due to COVID-19), and gradually drifts back to normal
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values in later months of 2020. Conversely, the throughput prediction model in Figure 3.1(b)

witnesses a rather stable NRMSE series. Figure 3.1(c) exhibits higher values and larger

fluctuations before COVID-19, but the model stabilizes and shows improved NRMSE values

after April 2020. Moreover, short-lived, abrupt increases in error are much more frequent

than for any other KPIs, due to the burstiness of CDR. For the prediction of peak users,

Figure 3.1(d) demonstrates that July 2019 to November 2019 are harder to predict, because

of lost data.

Second, the high-frequency components have different patterns for different KPIs. By

using signal processing techniques like STFT, no obvious weekly pattern is found on NRMSE

of CDR. But if we look at the 3-week insets of Figures 3.1(a), 3.1(b), and 3.1(d), three

repetitions of similar signal patterns appear, which indicates a weekly pattern.

Different KPIs are most effectively predicted using different models. As shown in

Figure 3.1, we can find a model that performs relatively well for each target KPI. For all

the target KPIs, there is at least one model with NRMSE less than 0.1 for at least half of a

year. For example, even for call drop rate, the KPI that is most challenging to accurately

predict (due to high coefficient of variances), the average NRMSE from CatBoost is 0.069.

And ExtraTrees in volume has an average NRMSE of 0.098.

3.2 Drift Behavior for Individual KPIs

In this section, we analyze how changes in the model used, and how it is trained, impact

concept drift. We use a single KPI (downlink volume) as an illustrative example.

Individual KPI predictions drift consistently across different models. As mentioned

earlier, we use four different models to check for concept drift over time, while predicting

KPIs 180 days in the future. We find (Figure 3.1(a)) that all models exhibit the same pattern.

For example, between April and October 2020, all models exhibit a drastic rise in NRMSE

due to the COVID-19 pandemic. We find similar model drift across other metrics such as R2,

mean absolute error, etc. Given our observations that CatBoost performs well when instances
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of drift (e.g., COVID-19 jump in Volume and data loss for Peak UEs) happen across KPIs,

we use it for the rest of this paper to simplify presentation.

Consistent drift appears when trained using different training set sizes. To

investigate how parameters of a model could impact concept drift, we evaluate the impact of

varying the training set size. We vary the size of historical data from eNodeBs with an end

date of July 1st, 2018 and retrain models for each size training window. As Figure 3.2(a)

illustrates, all NRMSE values of different training set window sizes drift similarly over time.

While training set windows of one month of data lead to a higher NRMSE, and three

months and one year witness a glitch around June 2020, the signal pattern remains the same:

no matter what training set size, NRMSE experiences a sudden increase after COVID-19

lockdown and gradually recovers after October 2020.

In Figure 3.2(a), we see that the model effectiveness of two weeks performs very similarly

to that of one year, while model training time on two weeks is 18x more efficient than one

year. Given these results, we use two weeks for the training set window for the rest of the

paper if not otherwise specified. This optimizes the tradeoff between performance over time

(i.e., robustness) and efficiency.

Consistent drift appears when trained on different periods. Since we are testing

the long-term effectiveness of our model, another concern is that whether the choice of the

training period would affect the drift. In this experiment, we train on a number of different

14 day windows of historical data from all eNodeBs. In Figure 3.2(b), the legend shows which

14 days are selected for training: 14 days of data before the date. For each training set, the

model is tested daily in the future using a 180 day forecast.

Figure 3.2(b) also suggests that, no matter which training period, all NRMSE values drift

simultaneously at similar timestamps. Our experiment also suggests that models trained on

more recent time periods do not necessarily result in better model performance. For example,

during training, the green line uses all the data from June 17th to July 1st, 2019 as features
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and the downlink volume from December 18th to January 1st, 2020 as the forecasting target.

This means that the model is trained on a rather abnormal period—winter holiday before the

beginning of the COVID-19 lockdowns. Doing so results in less accurate model predictions

on the following test dates, especially when drastic changes brought by COVID-19 quarantine

begin. On the contrary, model trained on older data (blue line in Figure 3.2(b)) preserves the

performance better during COVID-19 lock downs. This observation opens new possibilities

for future research in exploring the best strategies for adapting to drift.

3.3 Näıve Retraining: Does It Work?

In operational networks, a common approach to counteract potential concept drift is to

retrain models regularly. Retraining using the most recent data is often considered an effective

way to deal with concept drift. Many existing solutions Kantchelian et al. [2013], Thomas

et al. [2011] adopt this approach. To understand whether this approach is indeed effective

and further analysis on concept drift is necessary, we retrain a number of different models

regularly using different retraining approaches, such as altering the frequency of retraining.

Note that we do not fine-tune the models because fine-tuning is very costly for retraining

and thus impractical, due to the need of manual adjustments from human experts. For this

experiment, we use a training set of 14 days to forecast traffic volume 180 days in the future,

using CatBoost. Given a retrain frequency N , a model is trained using using 14 days of

data and evaluated using the NRMSE for the N following days. The model is then retrained

iteratively every N days. We choose the model, period, and training set size based on the

observations presented later in Section 3.

To our surprise—and counter to conventional practice—we find that näıvely retraining

regularly is not an optimal approach to adapt to concept drift. Compared to a static model,

Näıve retraining is either ineffective, or effective but very costly, requiring a large amount of

retrains. In Table 3.1, we show the average NRMSE changes compared to the static model.

For most models, i.e., DVol, REst, and DTP, the more frequently a model retrains, the
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Retraining ∆NRMSE of Target KPIs
#Retrains

frequency DVol REst DTP CDR PU

Static − − − − − 0
7 days −28.46% −27.94% −24.03% 32.59% −18.41% 149
30 days −17.21% −18.11% −19.82% 1.16% −10.72% 37
90 days −0.45% 0.08% −14.99% −3.88% −1.09% 12
180 days 0.84% 0.04% −10.52% −1.14% 1.80% 6
365 days −5.02% 0.78% −6.20% 0.85% −0.33% 3

Table 3.1: Changes of average NRMSE and number of retrains, over time, for different periodic
retraining strategies. Periodic retraining is often ineffective, especially for longer timescales.

better results we obtain. Unfortunately, while a 7 days retraining period can mitigate a large

portion of errors, frequent retrains can become very costly and require 12x more retrains

than a 90 days retraining period. Further, we observe that this trend breaks for bursty

KPIs such as CDR (32.59% of error increased). In this case, frequent retraining can even

adversely affect model performances. Overall, we conclude that näıve retraining is impractical

because it normally works all at high retraining frequencies and requires specific tests across

different KPIs to at best fine-tune its performance. Both are challenging when run at scale

in operational networks. The above results demonstrate that näıvely retraining models is not

an optimal solution to combat concept drift, motivating the rest of this paper.
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Figure 3.1: Drift of different models for KPIs of interest. Inset figures exhibit a 3-week view (all
starting from Sunday) of NRMSE for the box-selected period. We omit REst because similarity with
volume. Some data is lost between July, 2019 and January, 2020 for Peak active UEs.
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Figure 3.2: Effects of training set size and training set period on concept drift for the downlink
volume KPI
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CHAPTER 4

LOCAL ERROR APPROXIMATION OF FEATURES (LEAF)

In this section, we introduce LEAF, a framework for drift detection, explanation, and

mitigation. A common challenge in evaluating the performance of machine learning-based

solutions is that only a subset of algorithms (e.g., linear or logistic regression, KNeighbors,

decision trees, decision rules) are interpretable Molnar [2020]. Unfortunately, in practice, a

wide variety of uninterpretable models are used (i.e., outsourced models such as OpenAI GPT-

3 Brown et al. [2020], or black-box models). LEAF aims to work with any regression-based

supervised model, and provide detection, explanation, and mitigation capacities independently

of the model used. In this section, we describe the core intuition behind LEAF, followed by

the technical details for each component. We use a concrete example (applying CatBoost to

forecast downlink volume) to illustrate the framework in an operational setting.

4.1 LEAF Framework Overview

LEAF compensates for concept drift in machine learning models by implementing a pipeline

of three sequential components: 1) a drift detector ; 2) a set of tools to explain drift for a

feature; and 3) a drift mitigator. Note that LEAF does not require the use of any specific

model nor internal access to the model. Instead, it solely requires access to the previously

used training set data, new data as it arrives, and the generated model for execution.

Figure 4.1 shows the three steps in LEAF’s pipeline: First, the detector ingests the

outputs of the in-use model in the form of NRMSE time-series to determine whether drift is

occurring. The detector applies the well-known Kolmogorov-Smirnov Windowing (KSWIN)

method Raab et al. [2020] on the time-series to identify a change in distribution of the output

error, providing a signal on whether drift is occurring. If drift is detected, the explainer is

triggered, indicating the time instance at which drift occurred. The explainer uses LEAplot

and LEAgram to characterize the drift. These tools provide insights on the time intervals
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Figure 4.1: The LEAF framework that detects (§ 4.2), explains (§ 4.3), and mitigates (§ 4.4)
concept drift.

where drift is most severe, and offer guidance for model compensation. Based on the error

distribution, the mitigator automatically resamples or augments using previous data, or

creates ensembles for targeted regions.

Operators can use any or all of LEAF’s components to gain insight into their own inference

or prediction pipelines. Operators can be notified of the detection of drift. They can take the

output of the drift explainer to further understand drifting features, their severity, and the

regions in the dataset experiencing the most drift. Finally, the mitigator is automatically

triggered to provide effectiveness metrics for several candidate mitigated models. After a

monitoring phase, operators can either let LEAF automatically replace the original model,

or decide on an appropriate manual course of action based on the metrics that the model

provides.

4.2 Detection

The drift detection module monitors the NRMSE time-series and notifies operators when

drift occurs. Although drift detection is critical, it is not the main focus of this work, as

there is significant prior work on drift detection. Our main research contributions are in
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the areas of drift explanation and mitigation. Therefore, we apply the most effective drift

detection techniques in this well-explored area Lu et al. [2018], Gonçalves Jr et al. [2014],

Barros and Santos [2018], Bifet and Gavalda [2007]. We feed NRMSE time-series into

Kolmogorov-Smirnov Windowing (KSWIN) Raab et al. [2020], Togbe et al. [2021]1. Note

that we do not have the ground truths of drifts in our dataset, thus we cross-check detection

results with clear signals (e.g., missing data, network changes due to COVID-19).

KSWIN is a recent concept drift detection method Raab et al. [2020] based on KS test,

which is a non-parametric statistical test that makes no assumption of underlying data

distributions Togbe et al. [2021]. It monitors the performance distributions as data arrives.

We take the CatBoost NRMSE time-series to forecast downlink volume as an example; the

model is trained on a total volume of 14 days of data before July 1, 2018 (illustrated in

Figure 3.2(a)). By applying KSWIN, we observe that instances of drift are detected when

the data exhibits major anomalies around June 2019, December 2019, and April 2021. The

beginning and end of the COVID-19 quarantine period are also effectively detected. We

tested KSWIN across the NRMSE time-series of the five KPIs of interest, using different

model types and different training set sizes and periods. KSWIN performs well across all

tasks.

4.3 Explanation

To assist mitigation and help operators understand drift, we define our goals of the drift

explainer as follows: (1) to understand the extent of drift in a given feature range, (2) to

map errors back to operational costs and decompose them in a spatial-temporal manner.

The LEAF explanation module is based on the idea of local error decomposition: In any

regression-based black-box model, local errors may occur in a specific range of a given feature

or correlated feature set. Upon drift is discovered in the NRMSE time-series (e.g., COVID-19

1. We also tested ADWIN, DDM, HDDM, EDDM, PageHinkley, but KSWIN was the most effective on
our NRMSE series.
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Figure 4.2: The LEAplot (1,000 bins) that decomposes CatBoost NRMSE time-series in Fig-
ure 3.2(a). The distribution of drift is shown along with the values of the most important feature
avg ue downlink pkts (number of average user equipment downlink packets).

quarantine period of CatBoost in blue line of Figure 3.2(a)), LEAF aims to determine the

extent of error present in specific regions of the feature space.

LEAplot. We have developed LEAplot to help visualize the local error components and

compare them across different data subsets. We start by identifying the most sensitive feature

through permutation Breiman [2001] using Autogluon AI [accessed July, 2021]. For each

data subset, we then group samples based on the value of the important feature into N

bins. Next, NRMSE is computed for samples within each bin. This technique yields an

approximation of local errors over the range of the most sensitive feature(s) for a certain

model and corresponding dataset.

LEAplot also characterizes the extent of drift and provides the foundation of the LEAF

framework. Figure 4.2 illustrates local error decomposition using an LEAplot for the CatBoost

model. avg ue downlink pkts (number of average user equipment downlink packets) is the

most important feature for this model. When its value is below 0.75e9, the errors in “During
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((a)) LEAgram (before mitigation). ((b)) LEAgram (after TRAO mitigation).

Figure 4.3: The LEAgrams that decompose NRMSE time-series, where over- and under-estimation
of models are different concerns of operators and they map back to extra infrastructure expenditure
and user unsatisfaction. (a) illustrates the decompostion of CatBoost NRMSE shown in Figure 3.2(a).
(b) shows errors of mitigated CatBoost model if TRAO (see Table 4.1) is in use.

COVID” test set are more than 10x those of training set and nearly 1.5x of those in the

“Before COVID” test set between 0.5e9 and 0.75e9. Drift is worse above 0.75e9 for “During

COVID” test set.

LEAgram. LEAgram augments LEAplot by incorporating temporal information. It divides

the test set by time interval (e.g., date) and assigns samples from those divided datasets

into N bins, based on the value of the most important feature with regard to drift. NRMSE

is computed within each bin. When N is greater than or equal to the number of samples

on each time interval, NRMSE is equivalent to Normalized Mean Absolute Error (NMAE).

LEAgram shows the error for individual samples in the entire test set, arranged temporally.

However, in operational cellular networks, overestimation leads to different outcomes

compared with underestimation when modeling for capacity planning purposes. For example,

overestimation could result in unnecessary infrastructure expenditure, while underestimation

can lead to user dissatisfaction as infrastructure is not augmented when it should be. Given

these practical issues, we improve the NRMSE-based approach to create LEAgrams with two
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modifications: first, we expand the choice of bin N to be always greater than the number

of samples to see individual sample effects; second, we change the metric to Normalized

Error (NE) to preserve the sign. Figure 4.3(a) shows the LEAgram which explains the

performance of CatBoost in Figure 3.2(a). From March 15, 2020 to November 1, 2020,

when the value of feature avg ue downlink pkts is above 0.75e9, large positive errors occur,

implying overestimation. If the operator were to base decisions on the output of this model,

they may unnecessarily add to infrastructure. The model also has negative prediction

errors above a value of 1e9 for feature avg ue downlink pkts, which could lead to user

dissatisfaction.

4.4 Mitigation

The mitigation module is based on the idea of informed adaptation. Given the information

from LEAF’s drift explainer, we can understand the feature that most contributes to drift,

the amount of drift at each range of values, and the over/underestimation status of each

sample. We develop 3 families of mitigation strategies using this information.

Resample data. When drift is detected, the latest samples are provided to the explanation

module to derive the distribution of errors along with the values of the most important

feature. This error distribution shows the area of the dataset that is inaccurately trained

or under-training. Thus, we sample from the existing collected dataset (including the latest

drifting samples) based on weights provided by this error distribution. In order to compensate

for the errors in the original model. We explicitly use non-linear (cubic) resampling Lahiri

and Lahiri [2003] to determine the weights.

Augment data. While resampling is an effective approach, there could be no sample in

the existing dataset that is within the range that we seek to mitigate. Therefore, we must

augment Cubuk et al. [2019], Zhong et al. [2020] the previous dataset. We observe the ground

truth of models, then characterize their distribution of outputs O when drift occurs. From

the error distribution E derived from LEAF, we linearly resample instances from the past.
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Then new data outputs of those samples are created by adding perturbation based on O and

random gaussian noise.

Ensemble model. The intuition behind the ensemble Dietterich et al. [2002], Krawczyk

et al. [2017] method is the locality of drifts we observed. As shown in Figure 4.3(a), when the

value of feature avg ue downlink pkts is above 0.75e9, large positive errors occur during

the COVID-19 quarantine period. Thus, a model targeting the specific temporal region

can be more effective. By ensembling multiple targeted retraining models, we can preserve

performance in regions of the dataset where existing models are performing well, while

improving in other regions. We split the training and testing set into quartiles based on values

of the most important feature. Then apply resampling or augmentation on each quartile.

4.5 Putting it Together: LEAF End-to-end Mitigation Schemes

In this section, we put together the LEAF components organically and define end-to-end

schemes. When drift detection is combined with explanation and individual mitigation

methods, the mitigator is often triggered more than once. In this case, another design

choice remains: how do we manage the data samples that are subsequently resampled or

augmented by LEAF? We denote the original model as M0 and the subsequent drift triggered

models as Mi. For instance, if we use one of the mitigation methods and derive a resampled

or augmented data subset Si for the ith mitigation. Because Si is derived from the error

distribution of the previous dataset, we must either append the latest Si only to the original

training set (AO), or continuously append sample Si to Si−1 (CA). The baseline Näıve

retraining, on the other hand, is always retrained on the latest dataset (AL). Mi substitutes

Mi−1 and drift is detected upon the new NRMSE series after switching the model.

Table 4.1 summarizes the abbreviations of end-to-end mitigation schemes. They are

named after the variations from each part of LEAF. Näıve retraining (no LEAF information

is used) and TLAL (Triggered Learning Always using Latest samples, only information from

the detector is used) are two baselines we compare LEAF schemes with. We evaluate these
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Scheme Detector Explainer Mitigator

Näıve No - Näıve
No

Latest
dataTLAL

Yes
- Triggered

TRAO

Yes

Resample
dataTRCA

TAAO Augment
dataTACA

TEAO Ensemble
modelTECA

Table 4.1: Abbreviations of LEAF end-to-end mitigation approaches. Näıve and TLAL are two
baselines in Section 5. AL: Always use Latest data; AO: Always append data to Original training
set; CA: Continuously Append data to the previous training set.

approaches comprehensively in Section 5.

As an example of the end-to-end schemes, Figure 4.3(b) shows the mitigated effects

of TRAO on CatBoost. Once the mitigation is triggered successfully at the beginning of

December 2019, and also after October 2020, the under-estimation above 1e9 is eased. Between

March 15th, 2020 and October 1st, 2020, the extreme over-predictions above 0.75e9 are largely

reduced. Overall, Figure 4.3(b) shows a 18.16% of reduction on ∆NRMSE compared to

Figure 4.3(a), which demonstrates the effectiveness of these end-to-end mitigation strategies.
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CHAPTER 5

EVALUATION

In this chapter, we evaluate how the LEAF framework drift mitigation compares to baseline

techniques, i.e., no retraining, näıve retraining and TLAL. We present how different mitigation

schemes improve end-to-end model performance over the entirety of the dataset first described

in Section 2.1. Our results demonstrate that LEAF consistently outperforms periodic

retraining while requiring orders of magnitude fewer retraining operations.

5.1 End-to-End Mitigation Results

We implement the LEAF detection, explanation, and mitigation pipeline and evaluate the

retraining schemes described in Section 4.5. We evaluate how pipelines perform across four

models (one per model family) and the five target KPIs (defined in Table 2.2). We compare

the average error over the duration of the dataset against the näıve retraining scheme and

TLAL, and study whether the mitigation improves predictions over time compared to a static

model.

Mitigation effectiveness of LEAF vs. baselines. We study how different mitigation

techniques perform across models and KPIs. In particular, we aim to understand (1) whether

LEAF’s mitigation schemes outperform standard baselines, and (2) which schemes work best

depending on model and KPI characteristics. We use näıve retraining Kantchelian et al.

[2013], Thomas et al. [2011] and “Triggered Learning Always using Latest data (TLAL)” as

the baselines. The former retrains the model every 90 days (because a retrain window of 90

days have 12 retrains and LEAF schemes are triggered to retrain 5 to 10 times, which makes

the comparisons fair), while the latter uses drift detection to retrain on the latest data.

In Table 5.1, we present a summary of the ∆NRMSE (the more negative, the better). We

show the best schemes for each model and KPI in gray, with schemes from LEAF consistently

outperforming the two baselines. In particular, for the LSTM we find that our schemes are
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Model Schemes
∆NRMSE of Target KPIs

DVol REst DTP CDR PU

CBoost
Näıve −0.45% 0.08% −14.99% −3.88% −1.09%
TLAL −12.10% −9.90% −7.92% 44.06% −5.69%
TRAO −18.16% −18.78% −11.43% −7.85% −5.77%

XTrees
Näıve 4.88% −2.15% −13.24% 2.44% −4.33%
TLAL −12.01% −11.58% −9.66% 43.36% −8.76%
TRCA −14.58% −21.37% −9.29% −3.23% −5.47%

KNDist
Näıve 0.57% −7.35% −6.72% 4.96% 12.32%
TLAL 5.15% −7.67% 2.73% 9.83% 0.76%
TAAO −1.52% −16.67% −4.71% 1.63% −4.26%

LSTM
Näıve 68.46% 87.19% −34.16% 1.71% 54.11%
TLAL 39.09% 53.09% 25.24% 90.83% 17.09%
TEAO −11.82% 17.87% −35.90% 5.09% 13.02%

Table 5.1: Effectiveness of different mitigation schemes measured in ∆NRMSE (the lower the
better). The most effective LEAF schemes of each model are presented with two baselines. We
include representative models from different model families over a variety of KPIs. Based on the
amount of retrains, we choose näıve retraining every 90 days as one baseline. The full tables are in
Appendix B.

drastically better at reducing the NRMSE. The KPI for which naive retraining works best

across models is DTP (Downlink Throughput) due to its low coefficient of variance and lack

of abrupt drift (Figure 3.1(b)). Failures to mitigate drift (positive ∆NRMSE) for näıve

retraining across multiple models and KPIs echo with our findings in Section 3.3. Detailed

results for all schemes can be found in Appendix B.

Mitigation effectiveness vs. static models. We study how LEAF’s mitigation schemes

improve model performance over the duration of our dataset. Figure 5.1(a) shows the daily

NRMSE evolution over time for the CatBoost model applied to downlink volume prediction.

We show results for the static model and TRAO, the best performing mitigation scheme for

the model. Compared to the static model, we observe that the LEAF mitigation consistently

improves model performance (in terms of NRMSE)throughout the duration of the experiment.

We observe that mitigation promptly occurs once drift is detected. This is particularly

evident for sudden changes in the NRMSE distribution (e.g., around January and April 2020).

Throughout the time series, the NRMSE of TRAO for CatBoost never surpasses 0.125 (with
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Figure 5.1: CatBoost model performance for downlink volume predictions before and after mitigation
under different mitigation schemes.

the exception of spikes due to data errors) and goes as low as 0.04. This ensures a bounded

error distribution and decreases the average error by 18.16%. We observe similar behavior

for all models and KPIs (Figures 5.2, 5.3, and 5.4).

20
19

-09

20
19

-12

20
20

-03

20
20

-06

20
20

-09

20
20

-12

20
21

-03

Date

0.00

0.05

0.10

0.15

0.20

NR
M

SE

Schemes
Static
TRCA

((a)) Daily NRMSE.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

NRMSE

0.2

0.4

0.6

0.8
0.95

1.0

CD
F 

of
 e

No
de

B 
er

ro
rs

0.340.23

Schemes
Static
TRAO
TRCA
TAAO
TEAO

((b)) CDF of errors on August 1st, 2020.

Figure 5.2: ExtraTreesMSE model performance for downlink volume predictions before and after
mitigation under different mitigation schemes.
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Figure 5.3: KNeighborsDist model performance for downlink volume predictions before and after
mitigation under different mitigation schemes.
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Figure 5.4: LSTM model performance for downlink volume predictions before and after mitigation
under different mitigation schemes.

To better understand the effectiveness of different mitigation schemes, we study their

relative average improvement. Figure 5.1(b) shows the CDF of errors for CatBoost across

schemes and all eNodeBs on August 1, 2020. We observe that the 95% NRMSE of CatBoost

is effectively reduced from 0.29 for the static to 0.14 for TRAO. There is however, a variation
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in performance across different schemes, which we study in the next section for varying

models and KPIs.

5.2 Sensitivity Analysis

In this section, we discuss the impact of the choice of KPI and model on our mitigation

scheme.

Different KPIs. We find that different KPIs, depending on the characteristics of their

NMRSE time-series, are mitigated more or less effectively. For example, PU has the highest

NMRSE among KPIs across models, and is among the two most challenging KPIs to mitigate,

along with CDR. It is intuitive that PU has the highest NMRSE since it reflects a peak

value, which has inherent high variability. CDR has a low baseline NMRSE, but is difficult

to mitigate since its variation is of very high frequency, and would possibly require daily

mitigation to be effective. We validate this with the coefficient of variance, shown in Table 2.2,

where CDR and PU clearly have the highest coefficients of variation of 2.48 and 1.76,

respectively. These KPIs, when mitigated by a method such as TLAL, actually lead to a

large increase in NMRSE.

Different Models. As expected, we find that each model responds differently to LEAF’s

mitigation schemes. The targeted retraining schemes outperform the baselines across most

combinations of models and KPIs, but as expected, models vary in their reaction to the

choice of which data is used for retraining and how this data is added to the training set.

For different models, resampling is the best for bagging and boosting methods (CatBoost

and XTrees); augmentation for distance based approaches; and ensembling for LSTM. We

validate this by further testing on other boosting (LightGBM), bagging (Random Forest)

and distance-based (KNeighborsUnif) algorithms, and this general pattern holds. These

observations are rooted back in the capacity of each model and how they generalize. For

instance, LSTMs can make most effective use of the ensembling strategy because they learn

good features that are effective when using the smaller amounts of data available to each
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model in the ensemble. The extra data available in the resampling and augmentation methods

helps all the other models.

In terms of data-appending schemes, we observe that AO is better for CatBoost, KNeigh-

borsDist and LSTM, and CA is better for Extra Trees. Note that since the resampled or

augmented data are selected based on the weights generated from the error distribution of the

previous model, continuously absorbing “biased” data could make mitigation less effective.

For example, KNeighbors prefers AO, since with CA, the density of nearby points with

incorrect outputs is too high, leading to incorrect predictions. Overall, however, for models

with sufficient capacity like LSTMs, either CA or AO can be the most effective depending on

the particular KPI, so we encourage model trainers to try both approaches.

Correlated Feature Subsets. The LEAplot and LEAgram do not show the effect of

a single feature, but rather a joint effect of a correlated feature group. We find that the

distance of LEA distributions between the training set and any given test set are consistent

across correlated features. This indicates that these features naturally share the same error

distributions and therefore can be grouped together. The feature subset is identified by

the similarity of their error distributions measured by Wasserstein distance (WD). WD is a

metric that measures the distance between two distributions Ramdas et al. [2017]. It can

be interpreted as the minimum amount of “work” required to transform one distribution

into another. We can thus identify these joint effects. For instance, to forecast downlink

volume, the feature group including avg ue downlink pkts also contains avg ue uplink -

pkts (number of average user equipment uplink packets), ul pdcp sdu received withinpdb

(the uplink Packet Data Convergence Protocol Service Data Unit received within Packet

Delay Budget), erab rels normal enb (E-UTRAN Radio Access Bearer normal release for

this eNodeB)1. These are ranked by using permutation-based feature importance; features

with a zero importance score are excluded.

1. As a sanity check, we verified with the network operator that these features naturally correlate with
one another.
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CHAPTER 6

RELATED WORK

Concept drift is a pervasive phenomenon in machine learning that has been well-studied in

various contexts and scenarios. We survey various aspects of concept drift, within networking

and more broadly, as well as previous work in drift detection, explainable AI, and drift

adaptation—all of which are increasingly active research areas.

Drift in network management. Machine learning has been applied to many networking

problems, including anomaly detection Shon and Moon [2007], Shon et al. [2005], intrusion

detection Sinclair et al. [1999], Dong and Wang [2016], cognitive network management Ayoubi

et al. [2018], and network forecasting Mei et al. [2020], Chinchali et al. [2018]. Few studies have

explicitly explored concept drift in the networking context. It is, however, well-known that

network traffic is inherently variable over time. For example, mobile networks exhibit different

patterns of activity based on time of day, day of week, and location in Rome, Italy Reades

et al. [2009]. Features such as latency can also drift over long periods of time Nikravesh et al.

[2014]. Moreover, the COVID-19 pandemic has provided a unique example of sudden drift and

its effects on network traffic patterns, network usage, and resulting model accuracy Liu et al.

[2021], Feldmann et al. [2020], Lutu et al. [2020], Comcast [accessed October, 2020], McKeay

[accessed October, 2020]. Sommer and Paxson articulate that applying machine learning to

anomaly detection is fundamentally difficult in large-scale operational networks Sommer and

Paxson [2010] due to these (and other) challenges. All these factors contribute to concept

drift in predictive models, yet, to our knowledge, this paper is the first to explore the effects

of these types of changes on model accuracy for network management tasks.

Drift in other related fields. Concept drift has also been studied across other real-world

contexts. For example, spam detection faces drift challenges, as spammers may actively

change the underlying distribution of their messages Fdez-Riverola et al. [2007]. Recommender

systems are another context where drift occurs: user side-effects such as preferences and item

32



side-effects such as popularity both change over time Gama et al. [2014], Lu et al. [2015].

Similar situations occur in monitoring systems Pechenizkiy et al. [2010], fraud Žliobaitė

[2010a], and malware detection Jordaney et al. [2017], Barbero et al. [2020], Yang et al. [2021].

Drift characterization and detection. Concept drift has been characterized both quantita-

tively based on probability distribution Webb et al. [2016], Gama et al. [2014], Lu et al. [2018],

as well as based on drift subject, frequency, transition, recurrence, and magnitude Webb

et al. [2016]. Sources of drift are also discussed using data distribution and decision boundary

changes Lu et al. [2018]. A long line of research has focused on detecting concept drift

in deployed systems. A significant body of detection methods are based on error rate Lu

et al. [2018]. For example, Drift Detection Method (DDM) Gama et al. [2004] provides

a warning level and a detection level by detecting changes in online error rate within a

landmark time window. Another approach is ADaptive WINdowing (ADWIN) Bifet and

Gavalda [2007], which uses two adjustable sliding windows to store older and recent data,

and detect drift based on the differences between them. KSWIN Raab et al. [2020] is a recent

improvement upon ADWIN which uses KS-test to capture distances between windows. Large

scale comparisons across drift detection methods have been conducted Gonçalves Jr et al.

[2014], Barros and Santos [2018], Raab et al. [2020] showing the effectiveness of DDM and

KSWIN. LEAF applies KSWIN to detect drift a large cellular network. LEAF’s contribution

is not to develop a new drift detection method; rather, the contribution of this work is

in developing new explanation and mitigation techniques for cellular networks; integrating

detection, explanation, and mitigation into a unified end-to-end framework; and evaluating

the utility of various end-to-end mitigation strategies.

Explainable AI and drift explanation. Explainable AI has recently attempted to address

the challenge of black-box model interpretation. Global model-agnostic methods, such as

Partial Dependence Plot (PDP) Friedman [2001] and Accumulated Local Effects (ALE)

plot Apley and Zhu [2020], Arzani et al. [2021], provide visual clues on the effect of different
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features and set of features on the prediction accuracy of black-box models. LEAF’s LEAplot

and LEAgram are inspired by PDP and ALE, but extend these techniques by (1) showing

errors instead of effects; (2) identifying the correlated sets of features that contribute to

drift (not just individual features), and (3) helping to visualize how drift evolves over time

in an operational setting. Local agnostic methods, such as LIME Ribeiro et al. [2016],

Alvarez-Melis and Jaakkola [2018] and LEMNA Guo et al. [2018], substitute a local model

region with an interpretable one, enabling targeted patching to improve accuracy. Recent

research has developed techniques to explain concept drift in the context of malware detection.

Transcend Jordaney et al. [2017] uses statistical comparison of samples to identify model

decay thresholds (i.e., decision boundary-based explanation). CADE Yang et al. [2021] uses

contrastive learning to develop a distance-based explanation to find the feature sets that have

the largest distance changes towards the centroid in the latent space. Unfortunately, both

explanation approaches only apply to classification problems, and do not apply to prediction

in general, such as the regression-based prediction problems we study in this paper. To

our knowledge, LEAF is the first framework to explain concept drift for regression-based

prediction problems for network management tasks.

Drift mitigation. Adapting a model to migitate concept drift is also a well-explored

area Gama et al. [2014], Lu et al. [2018]. Adaptation can be based on retraining or model

ensemble. Retraining-based approaches often require complex data management and sig-

nificant storage and memory. Online learning algorithms such as VFDT Domingos and

Hulten [2000] keep the latest instance that adapts to slow changes. Paired Learners Bach

and Maloof [2008] use one stable learner to learn on old data and another reactive learner to

learn from the latest data. DELM Xu and Wang [2017] adaptively adjusts the number of

hidden layer nodes to combat drift during retraining. Ensemble methods have also been used

for model adaptation Krawczyk et al. [2017]. Dynamic Weighted Majority Kolter and Maloof

[2007] deals with non-stationary streams by allocating weights on different models. Accuracy
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Updated Ensemble (AUE2) Brzeziński and Stefanowski [2011], Brzezinski and Stefanowski

[2013] incrementally updates sub-models on a small portion of data to adapt to drift. LEAF

is inspired by several of these approaches, but focuses more heavily on identifying features

that lead to concept drift, and performing mitigation at scale.
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CHAPTER 7

CONCLUSION

An important aspect of the applicability of machine learning models to networking tasks in

practice is that they continue to perform well over time, in a variety of settings—and help

operators understand why they don’t perform well when they don’t. A significant contributor

to degraded model accuracy in practice is concept drift, which can occur periodically, suddenly,

or gradually over time. Although this phenomenon has been explored in other contexts, it

has received limited attention in the networking domain. And yet, if machine learning models

are to be applied in practice, concept drift needs to be detected, explained, and mitigated.

Unfortunately, as this paper has also demonstrated, the simple approach of periodically

retraining a model is both extremely costly and can in some cases even reduce prediction

accuracy.

To address this critical problem, this paper has developed, presented, and evaluated

LEAF, a framework to detect, explain, and mitigate drift for machine learning models applied

to networks. The LEAF framework applies and extends several well-established techniques in

machine learning and explainable AI for drift detection, explanation, and mitigation to the

networking context; integrates them into an end-to-end drift mitigation system; and evaluates

the framework for network forecasting problems in a large metropolitan area for one of the

largest cellular networks in the United States. To our knowledge, the LEAF framework is

the first approach—in any setting—to explain drift in regression models. LEAF also helps

operators interpret error metrics in an operational context (e.g., to determine whether target

predictions are under- or over-estimated).

Our results based on more than three years of KPI data from this network show that

LEAF consistently outperforms periodic retraining while reducing costly retraining operations

by as much as an order of magnitude. Because of LEAF’s effectiveness for concept drift

mitigation in this context, the cellular carrier is now integrating the framework into its
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operational forecasting and provisioning processes.

We believe that the LEAF framework can be applied beyond cellular networks, to other

network management problems that use black-box models for regression-based prediction,

from demand forecasting to application performance prediction in ISPs and service provider

networks. Yet, these hypotheses are yet to be explored and thus make excellent avenue for

future work. Another caveat is that the evaluation LEAF to date has been conducted on

fully labeled datasets; thus, a promising direction could be improve LEAF to cope with

semi-supervised or unsupervised models with partial or no labels.
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Ensemble learning for data stream analysis: A survey. Information Fusion, 37:132–156,
2017.

SK Lahiri and SN Lahiri. Resampling methods for dependent data. Springer Science &
Business Media, 2003.

Shinan Liu, Paul Schmitt, Francesco Bronzino, and Nick Feamster. Characterizing service
provider response to the covid-19 pandemic in the united states. In PAM 2021-Passive
and Active Measurement Conference, 2021.

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. Recommender
system application developments: a survey. Decision Support Systems, 74:12–32, 2015.

41

https://blog.google/inside-google/infrastructure/keeping-our-network-infrastructure-strong-amid-covid-19/
https://blog.google/inside-google/infrastructure/keeping-our-network-infrastructure-strong-amid-covid-19/


Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under
concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):
2346–2363, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st international conference on neural information processing systems,
pages 4768–4777, 2017.

Andra Lutu, Diego Perino, Marcelo Bagnulo, Enrique Frias-Martinez, and Javad Khangosstar.
A characterization of the covid-19 pandemic impact on a mobile network operator traffic.
In Proceedings of the ACM Internet Measurement Conference, pages 19–33, 2020.

Martin McKeay. Parts of a Whole: Effect of COVID-19 on US Inter-
net Traffic, accessed October, 2020. https://blogs.akamai.com/sitr/2020/04/

parts-of-a-whole-effect-of-covid-19-on-us-internet-traffic.html.

Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifan Han, Feng Li, and Jin Li. Realtime
mobile bandwidth prediction using lstm neural network and bayesian fusion. Computer
Networks, 182:107515, 2020.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Robert Nau. Notes on linear regression analysis. Fuqua School of Business, Duke University Re-
trieved from: https: // people. duke. edu/ ~ rnau/ Notes_ on_ linear_ regression_

analysis--Robert_ Nau. pdf , 2014.

NCTA. COVID-19: How Cable’s Internet Networks Are Performing: METRICS, TRENDS
& OBSERVATIONS, accessed October, 2020. https://www.ncta.com/COVIDdashboard.

Ashkan Nikravesh, David R Choffnes, Ethan Katz-Bassett, Z Morley Mao, and Matt Welsh.
Mobile network performance from user devices: A longitudinal, multidimensional analysis.
In International Conference on Passive and Active Network Measurement, pages 12–22.
Springer, 2014.

Nokia. Network traffic insights in the time of COVID-19: April
9 update, accessed October, 2020. https://www.nokia.com/blog/

network-traffic-insights-time-covid-19-april-9-update/.

OECD. Keeping the Internet up and running in times of crisis, accessed
October, 2020. https://www.oecd.org/coronavirus/policy-responses/

keeping-the-internet-up-and-running-in-times-of-crisis-4017c4c9/.

Seongchul Park, Sanghyun Seo, Changhoon Jeong, and Juntae Kim. Network intrusion detec-
tion through online transformation of eigenvector reflecting concept drift. In Proceedings of
the First International Conference on Data Science, E-learning and Information Systems,
pages 1–4, 2018.

42

https://blogs.akamai.com/sitr/2020/04/parts-of-a-whole-effect-of-covid-19-on-us-internet-traffic.html
https://blogs.akamai.com/sitr/2020/04/parts-of-a-whole-effect-of-covid-19-on-us-internet-traffic.html
https://people.duke.edu/~rnau/Notes_on_linear_regression_analysis--Robert_Nau.pdf
https://people.duke.edu/~rnau/Notes_on_linear_regression_analysis--Robert_Nau.pdf
https://www.ncta.com/COVIDdashboard
https://www.nokia.com/blog/network-traffic-insights-time-covid-19-april-9-update/
https://www.nokia.com/blog/network-traffic-insights-time-covid-19-april-9-update/
https://www.oecd.org/coronavirus/policy-responses/keeping-the-internet-up-and-running-in-times-of-crisis-4017c4c9/
https://www.oecd.org/coronavirus/policy-responses/keeping-the-internet-up-and-running-in-times-of-crisis-4017c4c9/


Craig Partridge, Paul Barford, David D Clark, Scan Donelan, Vern Paxson, Jennifer Rexford,
Mary K Vernon, and Jon Eisenberg. The internet under crisis conditions: learning from
september 11. Computer Communication Review, 33(2):1–8, 2003.
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APPENDIX A

CONCEPT DRIFT BEHAVIOR

In this chapter, we report concept drift behavior for models or RRC establishment success

(Figure A.1).
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Figure A.1: Drift of different models for RRC establishment success. Inset figures exhibit a 3-week
view (all starting from Sunday) of NRMSE for the box-selected period. It shows similar patterns as
the downlink volume with a stronger weekly effects.

46



APPENDIX B

END-TO-END DRIFT MITIGATION

In this chapter we report the ∆NRMSE for all LEAF schemes across all models and targeted

KPIs (Tables B.1, B.2, B.3, and B.4).

Mitigt. Change of NRMSE mean (∆NRMSE)

schemes DVol REst DTP CDR PU

Näıve −0.45% 0.08% −14.99% −3.88% −1.09%
TLAL −12.10% −9.90% −7.92% 44.06% −5.69%
TRAO −18.16% −18.78% −11.43% −7.85% −5.77%
TRCA −17.25% −16.85% −14.55% 13.04% −7.50%
TAAO −1.09% −2.69% 3.93% 3.35% −2.60%
TACA 33.36% −0.78% 9.57% 10.94% 4.33%
TEAO −17.29% −15.72% −13.11% 29.26% −6.71%
TECA −15.67% −12.17% −14.22% 0.32% −2.08%

Table B.1: Effectiveness of different mitigation schemes on CatBoost. The best performant schemes
for each KPI under different metrics are shaded in gray.

Mitigt. Change of NRMSE mean (∆NRMSE)

schemes DVol REst DTP CDR PU

Näıve 4.88% −2.15% −13.24% 2.44% −4.33%
TLAL −12.01% −11.58% −9.66% 43.36% −8.76%
TRAO −16.80% −14.87% −10.67% 3.27% −6.75%
TRCA −14.58% −21.37% −9.29% −3.23% −5.47%
TAAO −1.13% −0.43% 9.24% 2.24% −2.58%
TACA 35.45% 3.79% 9.76% 4.66% 5.60%
TEAO −13.72% −12.23% −5.02% 12.85% −6.85%
TECA −6.77% −12.72% −11.64% −1.07% −1.04%

Table B.2: Effectiveness of different mitigation schemes on ExtraTreesMSE. The best performant
schemes for each KPI under different metrics are shaded in gray.
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Mitigt. Change of NRMSE mean (∆NRMSE)

schemes DVol REst DTP CDR PU

Näıve 0.57% −7.35% −6.72% 4.96% 12.32%
TLAL 5.15% −7.67% 2.73% 9.83% 7.76%
TRAO 5.95% −4.85% −1.08% 4.65% 2.64%
TRCA 10.70% −5.46% −0.30% 55.98% 7.40%
TAAO −1.52% −16.67% −4.71% 1.63% −4.26%
TACA 7.55% 17.83% −4.93% 0.88% 5.15%
TEAO 5.12% −8.86% −0.79% 3.99% 3.24%
TECA 14.43% −1.96% −0.08% 6.22% 10.62%

Table B.3: Effectiveness of different mitigation schemes on KNeighborsDist. The best performant
schemes for each KPI under different metrics are shaded in gray.

Mitigt. Change of NRMSE mean (∆NRMSE)

schemes DVol REst DTP CDR PU

Näıve 68.46% 87.19% −34.16% 1.71% 54.11%
TLAL 39.09% 53.09% 25.24% 90.84% 17.09%
TRAO 19.13% 28.46% −31.33% 43.89% 11.70%
TRCA 28.26% 41.54% −29.11% 148.09% 19.02%
TAAO 9.84% 48.12% −34.62% −9.93% 12.86%
TACA 10.25% 50.45% −34.16% 95.96% 7.47%
TEAO −11.82% 17.87% −35.90% 5.09% 13.02%
TECA −1.25% −8.44% −40.38% 18.19% 23.92%

Table B.4: Effectiveness of different mitigation schemes on LSTM. The best performant schemes
for each KPI under different metrics are shaded in gray.
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