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Abstract
of the Thesis Proposal of

Akshima for PhD
in Computer Science

Title: Time-Space Trade-offs in Cryptographic Primitives

The research in complexity theory, for a long time now, has been conscious of mem-
ory as a resource in building algorithms with improved asymptotic complexity. There
is an understanding to compare time-memory trade-offs as opposed to only running
times while choosing between algorithms to solve any problem. While cryptogra-
phers have recognized memory to be a resource, there has been little effort to analyze
cryptographic primitives in a memory-conscious manner until recently.

This work contributes towards the recent efforts of understanding the role of memory
in the security of cryptographic primitives. Our study is two-fold:

1. How much better can any adversary that is capable of performing pre-computation
and storing a bounded amount of information about the cryptographic primi-
tive (under attack) do?

2. Are there cryptographic applications which are provably more secure against
adversaries with lesser memory?

This work aims to focus on cryptographic hash functions for the first part of the
study. The study would analyze properties of collision resistance and resistance
against some restricted classes of collisions for these functions.

For the second part of the study, the aim is to analyze some popular constructions
of pseudo-random permutations and pseudo-random functions against the memory-
bounded adversaries.
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Definitions

Definition 1 Adversary is a malicious entity that attempts to prevent any cryp-
tosystem from achieving its goal.

Definition 2 Cryptographic Hash Functions, or simply referred to as Hash
Functions, are functions that map inputs of arbitrary size to fixed size outputs, i.e.,
H : {0, 1}∗ → {0, 1}ℓ for some fixed positive integer ℓ. They are one-way functions,
which means they are hard to invert. Brute force search or rainbow tables are used for
inverting these functions. Often times salted hash functions are used in applications
to make them harder to invert by brute force search or using rainbow tables. Salted
hash functions take an additional fixed size input called salt.

Definition 3 A Collision in a hash function H is defined as finding two distinct
messages in {0, 1}∗ that have the same output under H. m-way Collision in a
hash function H is defined as finding m distinct messages {0, 1}∗ that have the same
output under H where m is a positive integer.

Definition 4 Merkle Damg̊ard is a popular construction scheme for building a
collision resistant Hash function for arbitrary input sizes from collision resistant
compression functions on fixed input size. The scheme essentially breaks arbitrary
sized inputs into blocks of fixed size and applies the compression function in sequence
on these blocks.

Definition 5 Random Oracle O can be thought of as a machine implementing
a function H. Its internal working are assumed unknown. An input to it is called
query.

Definition 6 Pseudo Random Functions is a family of deterministic functions
that are efficiently computable and indistinguishable from a truly random function
by any efficient adversary.
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Definition 7 Pseudo Random Permutations is a family of deterministic per-
mutations that are efficiently computable and indistinguishable from a truly random
permutation by any efficient adversary.

Definition 8 To prove security of an application using H in the Random Oracle
Model, analysis assumes H to be a truly random function.

To prove security of an application using H in the Auxiliary-Input Random
Oracle Model, analysis assumes H to be a truly random function and 2-stage
adversaries A = (A0,A1) such that:

1. A0 gets computationally unbounded access to H and outputs a bounded size
information about H, say of S-bits, and called advice.

2. A1 takes the advice output by A0 and the challenge as input and gets to make
a bounded number of queries, say T to H to solve the challenge.

Definition 9 To prove security of an application using H in the Bit-Fixing Ran-
dom Oracle Model, analysis assumes H to be a truly random function and 2-stage
adversaries A = (A0,A1) such that:

1. A0 fixes some bounded number of bits of H, say P bits, to obtain say H ′

2. A1 takes the challenge as input and gets to make a bounded number of queries,
say T queries, to H ′ to solve the challenge for H ′.

Definition 10 A streaming adversary is characterized by two parameters m, q
such that the adversary gets to make q queries and receives the responses in a stream,
i.e., the adversary cannot access the response to a particular query unless it stores
that in its memory, which is bounded to m-bits.

Definition 11 Block ciphers are all functions E : {0, 1}k × {0, 1}n → {0, 1}n
such that for every K ∈ {0, 1}k, EK := E(K, ·) is a permutation on {0, 1}n. For a
block cipher E, we write E−1 to denote the inverse cipher, i.e. for every K ∈ {0, 1}k,
E−1

K (·) is inverse permutation of EK(·).

Definition 12 For a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n, we define Double
Encryption with E as a function in {0, 1}2k × {0, 1}n → {0, 1}n that on inputs
K̂1||K̂2, x returns EK̂2

(EK̂1
(x)).

Definition 13 For some positive integers M ≤ N , a permutation Π on {0, 1}logN ,
we define Truncated Permutation with Π as a function in {0, 1}logN → {0, 1}logM
that on input x returns the first (logN − logM) bits of Π(x).
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Abbreviations

PRP Pseudo Random Permutation
PRF Pseudo Random Function
RO Random Oracle
AI-RO Auxiliary Input Random Oracle
BF-RO Bit Fixing Random Oracle
CR Collision Resistance
MCR Multi-way Collision Resistance
MD Merkle Damg̊ard
DE Double Encryption
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Proposal Outline

Chapter 1 gives a summary of the related work for Chapters 2, 3, 5 and 6. Chapters
2-4 give an overview of the works already published or in submission to conferences.

Chapter 2 talks about our results for a restricted class of collisions for MD based
hash functions in the AI-RO model. Chapter 3 talks about our follow-up results
for a larger class of restricted collisions, again for MD based hash functions in the
AI-RO model. Chapter 4 talks about a tangential work on Encrypted databases.
The chapter is self- contained in terms of definitions and related work.

Chapters 5 and 6 present the proposed works. Both of these are works in progress.
Chapter 5 talks about more restricted classes of collisions and our conjectured re-
sults.

Chapter 6 is a proposed work contributing towards the second part of this study.
The first part of the chapter focuses on analyzing double encryption scheme as a
PRP and the second part focuses on analyzing truncated permutation scheme as a
PRF.

Finally, Chapter 7 gives an expected timeline for completing these works and grad-
uation.
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Chapter 1

Related Work

Hellman [1] was the first to study pre-processing attacks for inverting functions,
which was followed up by the famous work Fiat and Naor[2]. Recently, several
works [3], [4] set out to understand the power of such attacks for finding collisions.
All of them have studied this question in the auxiliary-input random oracle (AI-
RO) model proposed by Unruh [5], for dealing with non-uniform and preprocessing
attackers.

Dodis, Guo, and Katz [3] studied the collision resistance of a salted random
function (which also corresponds to the B = 1 case for Merkle-Damg̊ard). They
prove an Õ(S/N + T 2/N) security upper bound (with respect to a random salt).
This bound shows the naive attack which precomputes collisions for S distinct salts
as the advice (the Õ(T 2/N) term is tight due to birthday attack) to be optimal.

Coretti, Dodis, Guo and Steinberger [6] further studied collision finding for salted
Merkle-Damg̊ard hash functions (corresponds to arbitrary B). Interestingly, unlike
the B = 1 case, they show an attack achieving advantage Ω̃(ST 2/N), improving the
birthday attack by a factor of S. They also prove this attack is optimal.

We mention that time-space lower bounds of attacks (or non-uniform security)
against other fundamental cryptographic primitives, such as one-way functions,
pseudorandom random generators, discrete log, have been investigated in various
idealized models [3], [4], [6]–[11].

Motivated by analyzing post-quantum non-uniform security, several recent works [12],
[13] studied the same question in the quantum setting, in which the adversary is
given S-(qu)bit of advice and T quantum oracle queries. However, Unlike the clas-
sical setting, no matching bounds are known, even for B = 2 and B = T . The
Ω(ST 3/N) security bound by Guo et al., suggests that the optimal attack may
speed up the trivial quantum collision finding by a factor of S. However, the best
known attack achieves O(ST 2/N + T 3/N) for every 2 ≤ B ≤ T .

Relevant to the second part of this study are works that have studied streaming
adversaries. Some of the most noteworthy recent works have revisited the switch-
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ing lemma, results on popular symmetric encryption designs and authenticated en-
cryption designs and many other results by considering the role of the adversary’s
memory capability. Memory had traditionally been considered by cryptanalysts,
as a large-memory algorithm may be infeasible to implement even if its runtime is
within reach. However, from the direction of proving impossibility results, memory
was not considered until recently, when it was pointed out [14], [15] that compu-
tational reductions in cryptography could be made “memory tight” and sometimes
yield a wider range of effective bounds. In particular, when a problem becomes
harder for small-memory algorithms (such as LPN), a memory-tight reduction may
be important. On the other hand, some problems (like finding a collision in a
generic hash function) are solved optimally with small memory and do not bene-
fit from memory-tightness. Subsequent work [16]–[20] has explored possibility and
impossibility results on memory tightness. Further work [21], [22] extended the
consideration of memory to information-theoretic steps as well.

Jaegar and Tessaro in [22] were the first to study the switching lemma with bounded
memory. They realized that giving time-memory lower bounds for adversaries that
can repeat queries would be difficult. This is because such an adversary can make
use of Pollard-rho type memoryless algorithms to find collisions. Hence, they focused
on adversaries that cannot repeat queries. The authors, however, found proving an
unconditional bound out of reach. Their proof relied on a combinatorial conjecture
on hypergraphs being true to give a conditional loose upper boundon the advantage.
Dinur [23] succeeded in proving a bound which has a matching attack up to log
factors, by giving a reduction from the Disjointness problem in the communication
model to streaming and using the existing results from communication complexity.
Another recent work [24] improved the result from [22].

Tessaro and Thiruvengadam [21] showed equivalence between Double Encryption
and a special case of Element distinctness, which is list disjointness, and used that
to give a conjectured time-space lower bound on Double Encryption.This bound
was later proved unconditionally in a restricted model, namely the post filtering
model, by Dinur [25]. It must be noted that our aim is to study Double Encryption
for a restricted class of adversary, namely the non-adaptive and non-repeating in
the streaming model. Follow-up works [16], [17], [21], [22], [26] have studied more
primitives, namely authenticated encryption and symmetric encryption.
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Chapter 2

Short Collisions

We study short collisions in MD hash functions in the AI-RO model. Formally, by
short collisions we mean the colliding messages are restricted in length size. Say
the MD hash function uses a one-way compression function h in [N ]× [M ] → [N ],
then a B-block collision looks for two distinct messages in [M ]B that have the same
output. We consider the following question.

How efficiently can an adversary in AI-RO model running in time T and
computing an S-bit advice, find 2-block collisions in MD hash functions?

The starting point of this work is the observation that Hellman’s attack based
on rainbow tables (or an easy modification of the attack in [6]) can find B-block
collisions with success probability roughly STB/N .

While the attack was easy to modify for short collisions, proving that it is optimal
constituted the main technical contribution of the work. In order to explain our
technique, we recall the approach of [6] used to prove the O(ST 2/N) bound for
(unrestricted) collisions in MD hash functions. They used a technical approach
(with tighter parameters) first developed by Unruh [5], which connects the AI-RO
to the bit-fixing random oracle (BF-RO) model. Their work transfers lower bounds
in the BF-RO to lower bounds in the AI-RO.

We show that the BF-to-AI template inherently cannot give a lower bound for
finding short collisions, because finding short collisions in the BF-RO is relatively
easy. That is, the lower bound of the form we would need for BF-RO simply does
not hold. Thus another approach is required.

2.0.1 Our lower bound technique.

Given that the BF-to-AI technique cannot distinguish between finding short and
unrestricted length collisions, we used find another approach. We employed an
elegant method of Impagliazzo using concentration inequalities.

Compression arguments were previously observed [6] to be difficult (or “in-
tractable”) to apply to the setting of MD collision finding despite working in the
original non-MD setting [3]. Given that compression was already difficult in this
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setting, it does not seem promising to extend it to the harder problem of short
collisions.

To address these difficulties, we introduce a new technique that first applies a
variant of the “constructive” Chernoff bound of Impagliazzo and Kabanets [27] to
prove time-space tradeoff lower bounds.

The concentration-based approach to time-space tradeoff lower bounds was, to
our knowledge, first introduced by Impagliazzo in an unpublished work, and then
later elucidated in an appendix [28] (there an older work of Zimand [29] is also
credited). The high-level idea is to first prove that any adversary (with no advice)
can succeed on any fixed U ∈ [N ] subset of Ω(S) of inputs with probability εΩ(S).
(In some sense bounding every sufficiently large “moment of the adversary”). The
argument continues by applying a concentration bound to the random variable that
counts the number of winning inputs for this adversary, showing that it wins on a
O(ε)-fraction of inputs except with probability 2−Ω(S). In a final elegant step, one
shows that every advice string is likely to be bad via a union bound over all possible
2S advice strings, to get a final bound of ε.

The technique of Impagliazzo gives a direct and simple proof for the optimal
bound on inverting a random permutation. There are two issues in applying it to
short MD collisions however. First, as we formally show later, it provable fails ford
MD hashing. The issue is that the adversary may simply succeed with probability
greater than εS on some subsets U (see subsection ??), so the first step cannot be
carried out.

We salvage the technique by showing it is sufficient to bound the adversary’s
average advantage for random subsets U rather than all subsets. In the language of
probability, we use a concentration bound that only needs average of the moments
to be bounded by εΩ(S), rather than all of the moments; see Theorem ??.

So far we have been able to reduce the problem of proving a AI-RO lower bound
to the problem of bounding the probability that an adversary with no advice can
succeed on every element of a random subset of inputs. For the problems we consid-
ered, even this appeared to be complicated. To tame the complexity of these bounds,
we apply compression arguments; Note that we are only proving the simpler bound
needed for the Impagliazzo technique, but using compression, when previously com-
pression was used for the problem directly. Our variation has the interesting twist
that we can not only compress the random function (as other work did), but also
the random subset U on which the adversary is being run. This turns out to vastly
simplify such arguments.

2.0.2 Applications of our technique.

We first apply our technique to reprove the O(ST 2/N) bound for (non-short) col-
lision finding against salted MD hash functions. We then turn to the question of
short collisions and prove O(ST/N) bound for finding 2-block collisions which has
a matching attack.

We show that there are qualitative gaps between finding 1-block collisions, 2-
block collisions, and unrestricted-length collisions. Specifically, while for 1-block
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collisions we have ε = O((S + T 2)/N), we show that 2-block collisions are easier
when S > T , as the optimal bound is O((ST + T 2)/N). For unrestricted-length
collisions there is another gap, where the optimal bound is O(ST 2/N). Our bound
for length 2 collisions uses our new compression approach used above.

2.0.3 Bound for a restricted class of attacks.

In addition we consider ruling out the class of attacks that gives optimal attacks in
the known cases. Roughly speaking, these attacks use auxiliary information consist-
ing of S collisions at well-chosen points in the function graph. In the online phase,
the attack repeatedly tries to “walk” to these points by taking one “randomizing”
step followed by several steps with zero-blocks.

For this class of attacks, we show that the best of choice of collision points will
result in ε = O(STB/N). This result requires carefully analyzing the size of large,
low-depth trees in random functional graphs, a result that may be of independent
interest.
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Chapter 3

Bounded Length Collisions

This is a follow-up of the work talked about in 2. Our main contribution is the
following:

For any 2 < B < T , the advantage of the best adversary with S-bit advice and
T queries for finding B-block collisions in Merkle-Damg̊ard hash functions in the

AI-RO model, is Õ
(

κTB
N

+ T 2

N

)
where κ := max{S, S2T 2

N
}.

This result implies the following bounds:
For any 2 < B < T , the advantage of the best adversary with S-bit advice and
T queries for finding B-block collisions in Merkle-Damg̊ard hash functions in the
AI-ROM, is

1. Õ(STB/N + T 2/N) when ST 2 < N ;

2. Õ(S2T 3B/N2 + T 2/N) when ST 2 > N .

The first bound supports the STB conjecture from the work in Chapter 2, i.e.,
for any 2 < B < T for the range of S, T such that ST 2 < N . This result is
interesting despite the restriction on the range of S, T . That is because the only
known bound for any B before this work was the ST 2/N upper bound [6] which
could not be matched by any known attack. With the first bound, we conclude
Θ̃((STB + T 2)/N) bound on the advantage when ST 2 < N . With the first bound,
we can say that no attack can achieve better than (STB + T 2)/N advantage when
ST 2 < N . In other words, we conclude Θ̃((STB + T 2)/N) bound on the advantage
when ST 2 < N .

For the range of S, T,B such that ST 2 > N and B < T , our second bound strictly
improves over the known bound of Õ(ST 2/N) from [6]. For B = T , our bounds
recover the Õ(ST 2/N) bound which has a matching attack. Moreover, as T 2 ≤ N
(from the birthday bound), S2T 3B/N2 = O(S2TB/N) always holds which makes
our second bound off by a factor of at most S from the best-known attack.
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3.0.1 Our techniques

Our initial inspiration is the recent framework of Chung, Guo, Liu, Qian [12] for
establishing tight time-space tradeoffs in the quantum random oracle. Generally
speaking, they reduce proving the security of a problem with S-bit advice to proving
the security of multiple random instances of the problem, presented one at a time,
without advice. Roughly speaking, they observe that, if any adversary (with no
advice) can solve roughly S instances of the problem “sequentially” with advantage
at most δS, then any adversary with S-bit advice can solve one instance of the
problem with advantage at most O(δ).

This idea of reducing security of a problem with advice to the security of a multi-
instance problem without advice was first introduced by Impagliazzo and Kabanets
in [27] and also used by our previous work. The difference between [27] and the later
works, including this work, is that we reduce to a “sequential” multi-instance game
as opposed to “parallel” multi-instance problem. More concretely, in the parallel
multi-instance problem, the adversary is presented with all the randomly chosen
instances of the challenge problems to solve once at the start. Whereas in the multi-
instance game, the adversary gets a new randomly chosen instance of challenge
problem one at a time and only after solving all the previous challenges.

Chung et al. [12] recently explicitly demonstrated a separation between “sequential”
multi-instance games and “parallel” multi-instance problems in terms of proving
tight time-space lower bounds in the context of function inversion. In addition, Guo,
Li, Liu and Zhang [13] pointed out connections between “sequential” multi-instance
game and the presampling technique —— the main technique used by Coretti et
al. [6] for proving tight bounds for B = T . Roughly speaking, all results relying
on presampling technique can be reproved using “sequential” multi-instance games.
That suggested that “sequential” multi-instance games have the potential to prove
stronger results. Therefore we are motivated to adapt and take full advantage of
“sequential” multi-instance games in the context of collision finding.

To illustrate the power of this method, we show how to recover the O(ST 2/N) bound
for the general case via the connection with presampling technique. In a high level,
using “sequential” multi-instance games, it is sufficient to bound the advantage of
any adversary winning a new game, conditioning on winning all previous games,
by O(ST 2/N). The key point is that the adversary made at most ST queries in
previous rounds, and it has no advice about the random oracle. Therefore from the
view of the adversary, the random oracle is effectively a (convex combination of)
bit-fixing random oracles (BF-ROM), where at most ST -positions are known and
the rest remains independent and random. Hence, it is sufficient to upper bound
its winning probability in the bit-fixing random oracle by O(ST 2/N), which is what
exactly offered by the proof of Coretti et al. [6] using the presampling technique.

Work in Chapter 2 pointed out a barrier of using the presampling technique towards
proving B = 2. In particular, one can achieve Ω(ST 2/N) in BF-ROM even for
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B = 2. Our main insight is that, unlike the presampling technique in which bit-
fixed values can be arbitrary, the worst case bit-fixed values are not typical and
can be tolerated by refining the technique. By identifying the “high knowledge
gaining” events and manage to show that they are all unlikely (which is intuitive
but non-trivial to prove), we obtain a considerably simpler proof for the B = 2
result from 2 using our approach in this work. It is an upside of our technique that
it modularises and separates out the bad events, making the overall proof simpler
and more intuitive. Following the same structure, we then extend our proof to large
B by identifying a few events, and obtain our main result.
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Chapter 4

Reconstructing Encrypted
Databases

In a separate line of work, we studied Encrypted databases that support range
queries. We analyzed an abstraction of two dimensional database encryption schemes
that allow range queries but leak access patterns and search patterns or query dis-
tribution.

Prior works have shown that any one dimensional database encryption scheme that
has similar leakage is catastrophically prone to complete reconstruction up to reflec-
tion. Our objective here was to understand whether it is the same for two dimen-
sional databases. Our results indicate that this leakage alone is provably insufficient
for complete reconstruction.

We start by expanding on the technical terms used above before moving on to talk
about the related work in some more detail. Finally we state our result.

Let [a] := {1, . . . , a} and [a, b] := {a, a + 1, . . . , b} for any positive integer a, b such
that a ≤ b.

Definition 14 We define one-dimensional database as a collection of finite
number of records, say R, where each record is a tuple of (record token, record value)
in [R]× [N ] for some positive integer N . For any positive integers N0, N1, we define
a two-dimensional database as a collection of again R records where each record
takes a value in [N0]× [N1].

Definition 15 A range query (henceforth we will use query), is defined as a tuple
(a0, a1, b0, b1) where a0, b0 ∈ [N0], a1, b1 ∈ [N1], a0 ≤ b0 and a1 ≤ b1. The range query
is answered by returning all the records that have values in [a0, b0]× [a1, b1].
Let’s denote the set of all range queries by Q, i.e., Q := {(a0, a1, b0, b1)|a0, b0 ∈
[N0], a1, b1 ∈ [N1], a0 ≤ b0, a1 ≤ b1}.
Query distribution is defined as the distribution over this set Q.

Note that it is assumed in our abstraction of the searchable encryption schemes that
the records and queries are encrypted.
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Definition 16 Access pattern leakage is the revealing of record tokens for the
records returned in response to any queries made to the database.
Search pattern leakage is used to determine whether two identical responses cor-
respond to the same query.

4.0.1 Related Work

Kellaris et al. [30] show that for a one-dimensional database over domain [1, N ], one
can determine the exact record values up to reflection with O(N4 logN) uniformly
random queries. Also, reconstruction can be done with only O(N2 logN) queries if
the database is dense. Informally, a dense database is one in which each domain
value is associated with at least one record. In [31], Lacharitè et al. improve on
the dense database attack and present an algorithm that succeeds in reconstructing
dense databases with O(N logN) queries. For large N , these query complexities
can quickly become impractical, so they additionally presented an ϵ-approximate
database reconstruction (ϵ-ADR) attack that recovers all plaintext values up to some
additive ϵN error with O(N log ϵ−1) queries.

The sacrificial ϵ-ADR approximation attack by Grubbs et al. [32] is scale free,
i.e., its success depends only on the value of ϵ (as opposed to both ϵ and N).
The first attack issues O(ϵ−4 log ϵ−1) queries and the second attack succeeds with
O(ϵ−2 log ϵ−1) queries under the assumption that there exists some record in the
database whose value is in the range [0.2N, 0.3N ] (or its reflection). Both attacks rely
on uniform query distribution. The authors also prove that database reconstruction
from known queries can be reduced to PAC learning.

Reconstruction attacks from k-NN queries are presented by Kornaropoulos et
al. [33]. For cases when exact reconstruction is impossible, they characterize the
space of valid reconstructions and give approximation reconstruction methods. In
other work, Kornaropoulos et al. [34] combine access pattern leakage with search-
pattern leakage and apply statistical learning methods to reconstruct databases with
unknown query distributions from range and k-NN queries.

4.0.2 Our Work

This chapter elaborates only the contributions of the proposer to the paper[35]. We
showed that there may be an exponential number of databases that have the same
access pattern and search pattern leakage. This also characterizes this family of
databases with the same leakage profile.

We will repeatedly use a strategy that generalizes the main observation of [30].
There, in trying to determine a point x, they observed that one can compute the
proportion of responses in which x appears. Then they could proceed algebraically
to limit the number of possible values for x. In particular, in one dimension, this
narrowed x down to two values.

We generalized the notion of query density to two dimensions. And we show that
any database with records in [N0] × [N1] can be partitioned into components and
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databases may have a polynomial in N0, N1 number of reflectable components(i.e.,
reflecting component along a diagonal does not changes its leakage profile). Reflect-
ing a subset of these reflectable component results in a different database with the
same leakage profile as the original database. This gives a family of possibly an
exponential number of databases with the same leakage profile.
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Chapter 5

More Types of Collisions

We give a description of more restricted types of collisions that we would like to
study in the AI-RO model.

1) m-way Collisions
Finding multi-collisions is harder than finding collisions in RO model but that

may not be the case in AI-ROM. We can surely say the following for now: - For
B = 1, θ(S/N + T 2/N) is the bound for finding collisions and θ(S/N + Tm/Nm−1)
is for m-way collisions. So there is clearly a difference between the two problems
for B = 1. - For unbounded length collisions, we can show θ̃(ST 2/N) for m-way
collisions which is the same as the known bound for collisions.

It would be interesting to explore this for B length collisions even though it is
reasonable to conjecture θ̃(STB/N) for SB >= T . It might be possible to prove
the Õ(STB/N) bound for multi-collisions. It is meaningful to study whether there
is a difference between CR and MCR in AI-ROM.

2) Target Collisions
The notion of Target collision resistance was introduced by Bellare and Rogaway.

It is the ability of an adversary to find the 2nd preimage for a fixed message (as
opposed to a random message in the notion of 2nd preimage resistance).

Analyzing Target collision finding and how it stands in comparison to collision find-
ing in the precomputation model should be interesting. Our conjecture is the advan-
tage of finding unbounded length collisions for fixed messages like the all 0s message
should match the collision finding bounds, that is there is an attack that achieves
Ω(ST 2/N) advantage.

3) Fixed Prefix Target Collisions
This further restricts the desirable set of collisions by giving the adversary a

prefix P alongside a random salt a in the online phase such that for a fixed message
M , adversary has to output M ′ such that P ||M ′ ̸= M and they collide in MDh.
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Chapter 6

Streaming Adversary

6.0.1 Design for Pseudo Random Permutation: Double Encryption

The DES block cipher was famously deployed with key length too short (56 bits)
to provide meaningful security against modern adversaries. In order to increase
security while reducing the difficulty of redeploying with replacement block ciphers,
Triple-DES X9.52, which runs DES three times under some keying strategy, has
become the standard in some domains. Triple encryption, rather than double (which
would already have a key length of 108 bits), is used to defeat generic attacks which
work faster than brute force. The famousmeet-in-the-middle attack (MITM) against
double encryption runs in about the time required to brute force a single key, leading
to the common-knowledge that double encryption is no more secure than the original
block cipher.

The MITM attack has the well-known drawback of requiring a large amount of
memory to achieve constant advantage. A bounded-memory version of MITM, where
one can store m blocks of memory and run in time q, achieves advantage about
mq/22k (the attack is usually presented with m ≈ q ≈ 2k, in which case it achieves
constant advantage). Thus, the common knowledge that double-encryption is no
more secure than single encryption needs to be reassessed: From the lack of a
better attack, it appears that there is an increase in security once on takes memory
complexity into account.

We show that this is indeed the case for a large class of non-adaptive attacks against
double encryption (that includes MITM). We prove it in the ideal-cipher model
(ICM) that mq/22k is the optimal advantage and double encryption can provide
non-trivial security beyond 2k queries against a restricted class of non-adaptive ad-
versaries with bounded memory.

6.0.2 Design for Pseudo Random Function: Truncated Permutations

Switching lemma suggests that any random permutation on logN -bits is indistin-
guishable from a logN -bit random function by any adversary making q queries as far
as q2 = o(N). However, the matching attack which looks for collisions in a brute-
force manner requires Õ(q) memory to achieve θ(q2/N) advantage. A bounded
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memory version of the attack only achieves θ(mq/N) advantage. Dinur’s work [23]
proved that no streaming adversary with m-bit memory making q queries can do
better than O(mq/N), proving the attack to be optimal.

More constructions such as the truncated permutations have been shown to defeat
the brute force attacks in the memory unbounded regime. For instance, the trun-
cated permutation construction that truncates last logM bits of the output from a
random permutation for some positive integer M ≤ N , is indistinguishable from a
log(N/M)-bit random function up to N ·M queries [36], [37]. We want to analyze
these constructions against adversaries with bounded memory.
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Chapter 7

Expected Timeline

Work and/or Current Status Expected
Completion

1 The project summarized in Chapter 3
is currently under submission and
needs some rewriting

April 2022

2 The project on analyzing streaming
adversaries, proposed in Chapter 6, is
currently in progress

May 2022

3 The project on studying more types of
collisions, proposed in Chapter 5 has
been started

July 2022

4 Thesis writing July/August
2022

5 Thesis defense August 2022

Table 7.1: Expected Timeline
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