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ABSTRACT

With more videos being recorded by edge sensors (cameras) and analyzed by computer-vision

deep neural nets (DNNs), a new breed of video streaming systems has emerged, with the

goal to compress and stream videos to remote servers in real time while preserving enough

information to allow highly accurate inference by the server-side DNNs. An ideal design of the

video streaming system should simultaneously meet three key requirements: (1) low latency

of encoding and streaming, (2) high accuracy of server-side DNNs, and (3) low compute

overheads on the camera. Unfortunately, despite many recent efforts, such video streaming

system has hitherto been elusive, especially when serving advanced vision tasks such as object

detection or semantic segmentation.

This paper presents AccMPEG, a new video encoding and streaming system that meets

the three objectives. The key is to learn how much the encoding quality at each (16x16)

macroblock can influence the server-side DNN accuracy, which we call accuracy gradients.

Our insight is that these macroblock-level accuracy gradients can be inferred with sufficient

precision by feeding the video frames through a cheap model. AccMPEG provides a suite

of techniques that, given a new server-side DNN, can quickly create a cheap model to infer

the accuracy gradients on any new frame in near realtime. Our extensive evaluation of

AccMPEG on two types of edge devices (one Intel Xeon Silver 4100 CPU or NVIDIA Jetson

Nano) and three vision tasks (six recent pre-trained DNNs) shows that compared to the

state-of-the-art baselines, AccMPEG (with the same camera-side compute resources) can

reduce the end-to-end inference delay by 10-43% without hurting accuracy.

vii



CHAPTER 1

INTRODUCTION

Empowered by modern computer vision, video analytics applications running on edge/mobile

devices are poised to transform businesses (retail, industrial logistics, home assistance,

etc), and public policies (traffic management, urban planning, etc) TrafficVision (2021);

TrafficTechnologyToday (2019); GoodVision (2021); intuVision (2021); VisionZero; Microsoft

(2019). These emerging video applications use deep neural networks (DNNs) to analyze massive

videos from edge video sensors, creating an explosive growth of video data SecurityInfoWatch

(2012, 2016) that serve analytical purposes rather than being watched by human users for

entertainment SecurityInfoWatch (2016); GrandViewResearch (2018); Slate (2019).

A key component of these video-analytics applications is an efficient video compression1

algorithm, which compresses videos in realtime while preserving enough information for

accurate inference by the final DNN running on a remote (cloud) server StreamingMedia

(2019). An ideal video compression algorithm should meet three requirements that are key

to edge video analytics applications: (1) high inference accuracy by the final DNN, (2)

low end-to-end delay of encoding and streaming the video to the analytical server, and (3)

low compute overhead on the camera side. There have recently been many proposals of

such analytics-oriented video compression algorithms; for instance, they leverage the spatial

heterogeneity of the final DNNs Du et al. (2020); Liu et al. (2019), such as object detection

and segmentation: only in a small fraction of regions (e.g., which contain important details),

lowering quality tends to lower inference accuracy and renders it useless.

Unfortunately, none of the existing solutions can simultaneously meet the three re-

quirements, especially when serving advanced tasks such as object detection or semantic

segmentation. For instance, using camera-side heuristics to filter out (or lower encoding of)

unuseful pixels quality is sensible Zhang et al. (2015); Li et al. (2020); Canel et al. (2019),

1. We use video compression and encoding interchangeably.
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but existing designs cannot precisely lower quality of unuseful pixels without affecting useful

ones, unless the heuristics themselves are almost as compute-intensive as the final DNNs. In

response, some proposals achieve high accuracy and low camera-side overhead by sending the

content to the server-side DNN first to extract feedback Du et al. (2020); Liu et al. (2019);

Zhang et al. (2021) from the server, based on which the camera can then encode the video

near-optimally or run local inference (e.g., object tracking), causing high end-to-end delay.

Other solutions extract and encode feature maps on the camera Duan et al. (2020); Xia et al.

(2020); Emmons et al. (2019); Kang et al. (2017b); Matsubara et al. (2019), and they work

well for classification models but not for advanced DNNs (object detection and segmentation

models), whose feature maps are orders of magnitude larger than those of classification DNNs.

This paper presents a new video streaming system called AccMPEG that meets the

three aforementioned requirements. At a high level, AccMPEG runs a cheap quality selector

logic (a shallow neural net, MobileNet-SSD Howard et al. (2017); Sandler et al. (2018)) that

determines a near-optimal encoding scheme for any frame—the encoding quality at each

(16x16) macroblock, and encodes the frames using popular video codecs like h.26x with

region-of-interest (RoI) encoding. The insight underpinning the cheap quality selector is that

inferring the influence of the encoding quality at each macroblock on the final DNN accuracy,

which we call accuracy gradients or AccGrads, is much simpler than semantic segmentation

(a common vision task) for multiple reasons (§3.2): for instance, assigning high or low quality

to macroblocks of a 720p frame (1280x720) is equivalent to assigning binary labels on an

80x45 image (a 720p frame has 80x45 macroblocks), which can be much simpler than most

modern vision tasks.

AccMPEG’s quality selection also strikes a favorable accuracy-delay balance. Prior

techniques assign encoding quality at coarser granularities, such as encoding entire bounding

boxes in high quality and entire background in low quality. In contrast, AccMPEG’s

macroblock-level quality selection could outperform them by encoding some background

2
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Figure 1.1: Example results of the accuracy-delay tradeoffs of AccMPEG and baselines.
AccMPEG achieves 10-30% smaller end-to-end delay without sacrificing accuracy, or 1-5%
higher inference accuracy than state-of-the-art solutions.

macroblocks in high quality (e.g., to provide necessary context that improves accuracy) and

some inside the bounding boxes in low quality (e.g., if encoding other macroblocks of a large

object in high quality is sufficient to achieve high accuracy).

Finally, one must be able to quickly customize the quality selector based on the need of a

new final DNN. Traditionally, training such quality selector would run numerous forward and

backward propagations on an entire pipeline (quality selection, encoding, and inference) over

many training images. In contrast, AccMPEG decouples the final DNN from the training of

the quality selector (§5). To this end, we directly derive the true AccGrad per macroblock

by treating the final DNN as a differentiable blackbox, and then train the quality selector

as a standalone (low-dimensional) segmentation model to infer these AccGrads, which also

reduces the number of training iterations and training images.

Using videos of three different genres, three typical vision tasks (object detection, semantic

segmentation, and keypoint detection), and five recent off-the-shelf vision DNNs, we show

that on two types of edge devices (one CPU or a Jetson Nano) AccMPEG can reduce the

inference delay by 10-43% without hurting accuracy compared to various state-of-the-art

baselines. Figure 1.1 shows an example improvement of AccMPEG’s accuracy-delay tradeoffs

over the baselines (See Figure 6.1 for the complete results). AccMPEG’s encoding speed

(30fps with one Intel Xeon Silver 4100 CPU) is only marginally slower than basic video

3



encoding and is much faster than the baselines that achieve similar compression efficiency.

Moreover, an AccMPEG encoder for a new DNN can be created within only 8 minutes.

Admittedly, not all techniques of AccMPEG are exactly new: it uses standard video codec

libraries Wiegand et al. (2003); Coding & Rec (2013) that support RoI encoding, and many

proposals in this space (e.g., Wang et al. (2017); Mnih et al. (2014)) use the the spatially

uneven distribution of DNN attention. Nonetheless, AccMPEG strikes a unique balance

among encoding/streaming delay, inference accuracy, and low compute overhead in advanced

vision tasks (e.g., object detection, segmentation). Our contribution is two-fold:

• A cheap quality selector that infers accuracy gradients (how sensitive a DNN’s output is to

the encoding quality at each macroblock) on each frame and selects encoding quality per

macroblock, with only a compute overhead on par with video encoding.

• Fast training (within several minutes) of the quality selector for any given final DNN, which

degrades gracefully when the final DNN changes.
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CHAPTER 2

MOTIVATION

We begin by motivating the three performance requirements that drive our design (low

accuracy, low encoding and streaming delay, and low camera-side compute overhead). We

then elaborate on why prior solutions struggle to simultaneously meet the three requirements.

2.1 Video encoding for edge video analytics

Distributed video analytics: As accurate analytics requires compute-intensive DNNs

that cheap video sensors cannot afford, the video frames are often compressed by a video

encoder and then sent to a remote server for accurate DNN-based analytics (Figure 2.1). We

refer to the server-side DNN as the final DNN. In this work, we focus on three video analytics

tasks: object detection (one labeled bounding box for each object), semantic segmentation

(one label for each pixel), and keypoint detection (17 keypoints such as hand and elbow on a

human body).

There are two types of video analytics. In live analytics, the video frames are continuously

encoded and sent to a remote server which runs the final DNN to analyze the video in an

online fashion Du et al. (2020); Liu et al. (2019); Zhang et al. (2015); Chen et al. (2015);

Li et al. (2020); Zhang et al. (2021, 2018); Kang et al. (2017a); Zhang et al. (2017). In

retrospective analytics, the encoded video is first stored locally on the camera, and an operator

can choose to fetch part of the video for DNN-based analytics Keahey et al. (2019); Kang

et al. (2018); Hsieh et al. (2018).

Performance requirements: In both live and retrospective analytics, a key component

is the video encoding algorithm. An ideal video encoding algorithm for distributed video

analytics should meet three goals:

• High accuracy: The encoded video must preserve enough information for the final DNN to

5
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Figure 2.1: Illustration of video encoding as part of the video analytics pipelines of three
tasks

return nearly identical inference results as if it runs on the original video frames.1

• Low delay: The delay of encoding the video (encoding delay) and streaming the video to

the server (streaming delay) should be low.

• Low camera cost: The encoding algorithm should be cheap enough to run at 30fps with

only marginal extra compute overhead compared to encoding videos using popular codecs

such as h.26x.

2.2 Limitations of previous work

Here, we categorize previous work in four general approaches and explain why they cannot

meet all performance requirements simultaneously.

Local frame-filtering schemes: One of the popular techniques is to let the camera

run a simple logic to identify which frames are irrelevant to the vision task and thus can

be discarded Li et al. (2020); Canel et al. (2019); Chen et al. (2015) or encoded in low

1. To calculate the accuracy of an inference result on a compressed frame, we obtain the “ground truth”
results by running the final DNN on the high-quality video frames (rather than using the human-annotated
labels). Thus, any inaccuracy will be due to the video stack (e.g., video compression, DNN distillation),
rather than errors made by the final DNN itself. This is consistent with recent work (e.g., Zhang et al. (2018,
2015, 2017); Keahey et al. (2019); Mullapudi et al. (2019); Kang et al. (2017a)).
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quality Zhang et al. (2018). This approach works well when the video content is relatively

stationary, where the incidents/objects of interest are rare and easy to detect; e.g., in wildlife

camera feeds, animals are rare and readily detectable since they are the only moving objects

on a static background. However, for frames that are not discarded, this approach encodes

the entire frames with uniform quality, which can be suboptimal, since the objects of interest

often occupy only a small fraction of each frame Du et al. (2020); Liu et al. (2019), leading

to higher streaming delays than necessary.2

Local heuristics to lower background quality: Since objects of interest often account

for a small fractions of each frame, some work (e.g., Zhang et al. (2015); Dai et al. (2021))

uses local heuristics to filter out (or lower the quality of) the background pixels and sends

the remaining object-related pixels in high quality to the server-side final DNN. However,

these local heuristics are constrained by the limited camera-side compute resources, giving

rise to false negatives—object-related pixels are treated as background and thus filtered

out or sent in low quality, causing the DNN to miss objects of interest. For instance, to

detect potential object-related regions, Vigil Zhang et al. (2015) relies on a low-accuracy

non-convolutional Haar-cascade-classifier-based object detector, and CiNet Dai et al. (2021)

uses a very shallow convolutional network (with only 2 convolutional layers, 1 average pooling

layer and 2 fully-connect layers) designed to handle only few objects per frame. There are also

deeper NNs such as MobileNet-SSD Howard et al. (2017) that run on resource-constrained

cameras, but they have to downsize frames to low resolutions (e.g., 300×300) for real-time

inference, thus prone to missing small objects.

Server-driven compression: To overcome the camera-side resource constraints, another

approach Du et al. (2020); Liu et al. (2019); Zhang et al. (2021) leverages the abundant

server-side compute resources to generate feedback on how videos should be encoded. This

approach generally compresses videos efficiently while achieving high accuracy, but it suffers

2. Though CloudSeg Wang et al. (2019b) does not perform frame filtering at the camera side, it also share
the limitation since it compresses entire frames in same encoding quality.
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from a high inference delay. DDS Du et al. (2020), for instance, sends a low-quality video to

the server-side DNN which returns to the camera which regions must be encoded in high

quality, but under high network latency, getting such server-driven feedback can take at least

two network round-trip times before the camera can actually encode the video for final DNN

inference, causing high inference delay on each frame.

Local DNN compression: Instead of encoding videos on the camera, some proposals

also extract the final DNN’s feature maps on the camera and compress the feature maps

which might contain less information than the original raw frames Duan et al. (2020); Xia

et al. (2020); Emmons et al. (2019); Kang et al. (2017b); Matsubara et al. (2019). While

this approach has shown promise with classification or action recognition DNNs Kang et al.

(2017b); Emmons et al. (2019); Duan et al. (2020), these tasks do not require the spatial

locations of objects, allowing aggressive aggregation of feature maps over an entire frame. In

contrast, the vision tasks that we focus on (e.g., object detection, semantic segmentation)

are sensitive to object locations, making the intermediate feature maps much larger and

much more difficult to be compressed efficiently. For example, many state-of-the-art object

detectors (e.g., Detectron2) use expensive feature extractors such as ResNet101 He et al.

(2016), and if we feed a 720p (1280×720) frame through even parts (e.g., 90) of its convolution

layers, the feature map still contains 2 × 107 floating-point numbers per frame, 20x more

than the number of pixels in the original frame.

There are also proposals to train DNN autoencoders that compress video to a smaller

size than the popular video codecs do, but these DNNs are much more compute-intensive

than the video codecs and even the final DNN. For example, NLAM Liu et al. (2020) requires

performing expensive 3D convolutions on videos for more than 30 times, while an object

detector backbone (e.g., ResNet34 He et al. (2016)) only performs 2D convolution for 34

times.
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CHAPTER 3

OVERVIEW OF ACCMPEG

In this section, we present AccMPEG, a new video encoding algorithm that uses a cheap

camera-side model to decide which regions should be encoded in higher quality. Here, we

introduce AccMPEG’s workflow and its challenges, and then present the key idea that

addresses these challenges.

3.1 Workflow and challenges of AccMPEG

Figure 3.1 depicts the workflow of AccMPEG. When a video frame arrives, AccMPEG first

feeds it through a cheap quality selector model, called AccModel, to obtain a macroblock-level

quality selection—which macroblocks (16x16 blocks, which many modern video codecs Wie-

gand et al. (2003) use as the basic encoding unit) should be encoded in high quality and

which should be in low quality. The camera then encodes the video frames according to the

quality selection and sends the encoded video to the server for the final DNN inference. The

quality selector (AccModel) is trained for each final DNN offline, such that when the video

frames are encoded in its selected quality, the DNN can return accurate inference results. As

we will see in §5, the quality selector can also be re-used among DNNs of similar tasks with

only marginal performance penalty.

Quality 

assignment

Accuracy

gradient

Online encoding

Analyst
Camera

Input

video Quality

selector

Offline training

Video 

codec

Encoded

video

Streaming

Archiving

Figure 3.1: Overview of AccMPEG.
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Challenges: The key component of AccMPEG is the quality selector (AccModel) that selects

the encoding quality per macroblock. It has three challenges: (i) How to optimally assign

encoding quality at the fine spatial granularity of macroblocks to achieve better accuracy-

delay tradeoffs than baselines? (ii) How to minimize the per-frame compute overhead of

AccModel to allow real-time video encoding on the camera side? And (iii) how to quickly

train AccModel for each server-side DNN?

3.2 Key idea: Accuracy Gradient

The key idea to address these challenges of AccModel is to obtain the Accuracy Gradient

(hereinafter AccGrad) of each macroblock, which measures how much the encoding quality

at the macroblock can affect the DNN inference accuracy. Mathematically, the AccGrad of

macroblock B in a given frame is defined as:

AccGradB =
∑
i∈B

∥∥∥∥∂Acc
(
D(X);D(H))

∂Xi

∣∣∣∣
X=L

∥∥∥∥
1

· ∥Hi − Li∥1, (3.1)

where i, L, and H denote a pixel within B, the low-quality encoded frame, and the high-

quality encoded frame, respectively. D denotes the server-side DNN inference function, Acc

(D(X);D(H)) is the accuracy of inference result on X (i.e., its similarity with the inference

result on the high-quality frame D(H)), and ∥ · ∥1 is the L1-norm.

Intuitively, the encoding quality of the macroblocks with higher AccGrad values have

a greater influence on the DNN accuracy, so these macroblocks should be encoded in high

quality. We will present the AccGrad-based quality assignment logic in §4. Appendix A.1

gives the mathematical reasoning behind Equation 3.1.

AccGrad enables a series of system optimizations that help address the challenges in §3.1.

Better accuracy-delay tradeoffs via finer-grained quality assignments: We begin

with the benefit of AccGrad-based quality selection over the traditional region-based quality

selection Du et al. (2020); Liu et al. (2019); Zhang et al. (2021), which identifies regions with

10



greater impact on DNN inference (e.g., via region proposals Ren et al. (2015)) and then use

high quality to encode some region proposals in their entirety and low quality to encode the

whole background. These coarse-grained encoding schemes can be inefficient. On one hand,

some surrounding pixels of the object bounding boxes can still be crucial for the final DNN

to accurately detect/classify objects and demarcate their boundaries from the background.

For instance, to detect the car in Figure 3.2(a), one must encode not only its bounding box

in high quality but also some neighboring macroblocks too. On the other hand, some pixels

inside an object’s bounding box (e.g., the smooth surface of a car in Figure 3.2(b)) have

similar RGB values regardless of the encoding quality, so it is safe to compress them in low

quality without hurting inference accuracy.

In contrast, AccGrad by definition can capture such fine distinction among macroblocks.

For instance, the macroblocks surrounding the car’s bounding box (Figure 3.2(a)) will have

high AccGrad values in Equation 3.1, because Acc
(
D(L);D(H)) will have a high derivative

with respect to the pixels in these macroblocks. Similarly, the smooth surface of the car in

Figure 3.2(b) is likely to have low AccGrad (despite being part of the car object), because

∥Hi − Li∥1 will be small on the pixels i in these macroblocks.1

AccModel might not be compute-intensive: AccModel can be seen as a segmentation

problem, but unlike normal segmentation models that are compute-intensive, a cheaper model

might suffice for AccModel for three reasons.

First, unlike traditional image segmentation that gives one label per pixel, AccModel

returns one label per 16x16 macroblock (i.e., all pixels in a macroblock share the same DNN

output). Therefore, unlike traditional convolutional operations which scan the image pixel

by pixel, AccModel only needs to scan the image macroblock by macroblock (saving upto

162 = 256x on convolutional operations).

1. AccGrad may look similar to the saliency maps in computer vision, but there is a key distinction. While
saliency captures which pixel values have more influence on the DNN output, AccGrad captures how much
changing a macroblock’s encoding quality changes the DNN inference accuracy.
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Figure 3.2: Examples of inefficiencies of object-based encoding (high quality in the object
bounding box): (a) Objects not detected unless nearby pixels are in high quality; and (b)
Objects still detected even if just parts are in high quality.

Second, AccModel only needs to do a binary classification on each macroblock (either

high quality or low quality), rather than multi-class segmentation, which further reduces the

complexity of AccModel.

Third, while accurate segmentation must minimize both false positives (e.g., pixels mis-

classified as objects) and false negatives (e.g., pixels misclassified as background), AccMPEG

has more tolerance towards false positives (e.g., macroblocks mislabeled with high AccGrad).

Encoding a few more macroblocks in high quality has marginal impact on the delay-accuracy

tradeoff, because the intra-frame encoding commonly used in video codecs makes the com-

pressed video size to grow only sublinearly with more high-quality regions. Appendix A.4

provides the empirical evidence.

Fast training of AccModel: Training AccModel naively can be prohibitively expensive,

because it requires running numerous forward/backward propagations on the final DNN

to calculate losses and obtain gradients. Fortunately, AccGrad can be directly derived

from the final DNN (Equation 3.1) using only two forward propagations and one backward

propagation. As we will see in §5, this allows us to separate the compute-intensive final DNN

from AccModel training. This can save 10× overhead, as AccMPEG trains AccGrad for 15

epochs (see §5 for details), each requiring only three propagations through the final DNN.
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CHAPTER 4

ONLINE ENCODING

We now describe AccMPEG’s online encoding process, including the architecture of AccModel

and how AccMPEG assigns encoding quality to each macroblock.

Architecture of AccModel: We leverage the pretrained MobileNet-SSD feature extrac-

tor Howard et al. (2017), a widely-used feature extractor for cheap edge devices, as the feature

extractor of AccModel. We resize these features so that one macroblock corresponds to one

feature vector, and append three convolution layers to classify which macroblock should be

in high quality.

Compute cost of AccModel: Our model is much more compact than other commonly-used

feature extractors. To put it into perspective, our AccModel uses 12 GFLOPs, about 3×

less than a typical cheap convolutional model such as ResNet18 which uses 33 GFLOPs.

In addition, since the architecture consists only of convolutional layers (except for batch

normalization and activation), its computational overhead is proportional to the size of the

input frame (e.g., 4× faster when the frame size halved in both dimensions).

AccGrad-based quality assignment: Given macroblock-level AccGrad of a frame, AccM-

PEG then uses a threshold α to determine which macroblocks should be in high quality—all

blocks B with AccGradB ≥ α will be encoded in high quality. After a set of blocks are

selected, AccMPEG then expands these selected blocks to each direction by γ (by default 5)

blocks (if they are not already selected). Intuitively, a lower α increases the accuracy at the

expense of encoding more macroblocks with high AccGrad.

Frame sampling for cheap inference: We further reduce AccModel’s compute overhead

by running it once every k frames and using its output to encode the next k frames (by default,

k = 10). Empirically, it significantly reduces the camera-side overhead (Figure 6.3) without

much impact on accuracy. The intuition is that although the AccGrad of a macroblock

fluctuates over time, its value will not shift dramatically across consecutive frames to change its

13



quality selection. We have also empirically examined this intuition on the quality assignment

generated from the dashcam dataset (see §6 for the detail of our dataset) by AccModel

pretrained from FasterRCNNRen et al. (2015): the encoding quality selection of at least 84%

of macroblocks remains unchanged between one frame and the ninth frame after it.
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CHAPTER 5

OFFLINE TRAINING

AccModel customizes the video encoding for near-optimal accuracy-delay tradeoffs of a given

final DNN model. So a natural question is how to quickly create the AccModel for a new

DNN. Here, we describe how we speed up the training of AccModel by separating the final

DNN from the training process, and then explain why reusing AccModel may also lead to

decent performance.

Conventional training process: Before describing how AccMPEG trains AccModel, we

first explain the straightforward approach to training AccModel (depicted in Figure 5.1a)

which sets up the entire pipeline of encoding and inference and minimizes the end-to-end loss

(we will define the training loss soon). For each input image, it first feeds the high-quality

version H through the AccModel to get the AccGrad matrix M = AccModel(H), creates

the encoded image X = M×H+ (1−M)×L by linearly combining the low-quality version

L and H using M1, feeds it through the final DNN to get result D(X), and finally calculates

the accuracy (loss) of D(X) with D(H) as the ground truth using Acc. This training process

is actually widely used in computer vision (e.g., Goodfellow et al. (2014); Johnson et al.

(2016); Ledig et al. (2017)) and video analytic systems Wang et al. (2019b). However, it

is prohibitively expensive: each forward or backward propagation of the pipeline must run

the expensive D, in addition to AccModel and Acc each once. Thus, the compute overhead

of AccModel training is dominated by running the forward/backward propagations on D

(Caching AccModel results does not help, since the AccModel output changes after each

update).

Separating final DNNs from training via AccGrads: In contrast, AccMPEG calculates

the AccGrads on each training image first (using Equation 3.1), which requires only one

1. We make the elements in M to be between 0 and 1 by applying a softmax filter on the output of
AccModel.
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(a) Conventional training pipeline
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(b) Decoupling the final DNN from training using AccGrad

Figure 5.1: Contrasting the conventional approach to AccModel training with AccMPEG.
We separates the final DNN from training by first generating the ground-truth AccGrad
from the final DNN, and then training AccModel to minimize the loss with the ground-truth
AccGrad, which significantly speeds up the training.

forward and backward propagation of D on the high-quality version of the image. Once

the AccGrads of each training image is generated, the training can be reformulated as

minAccModel CrossEntropy
(
AccModel(H),M∗), where M∗ is the “ground truth” AccGrad

matrix of size w · h generated by Equation 3.1 (not to be confused with the ground-truth

inference output of a final DNN) and the cross-entropy loss (with 4x weight on those blocks

that should be in high quality) commonly used in deep learning to measure the discrepancies

between two vectors. Training AccModel thus requires only one forward and one backward

propagation on AccModel. Thus, by generating the ground truth first and then training

AccModel, we can train the AccModel within 8 minutes using 8 GPUs (§6.4).

Using pre-trained models: Instead of training AccModel from scratch, we initialize

AccModel with a pretrained MobileNet-SSD backbone and then fine-tune the model. It has

the similar benefit of model fine-tuning widely used in industry: the training can converge

with fewer training epochs on fewer training images Gao et al. (2021). Specifically, we train

AccModel on a 10× randomly downsampled training set of the final DNN model (e.g., COCO
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dataset) for 15 training epochs and pick the model with lowest loss on cross validation set as

our final AccModel. The total training time of AccGrad is about 8 minutes (§6.4).

Reusing AccModel: Ideally, any new server-side final DNN requires a (slightly) different

AccModel. However, when the new final DNN is trained on the same dataset (same images

and same labels) as another final DNN (whose AccModel is already trained), it is possible to

reuse the AccModel. This is because the macroblocks with high AccGrads are typically those

related to small, partially occluded, or darkly lit objects in the dataset. Thus, training the

new AccModel based on the AccGrads of the old final DNN on the same dataset would likely

yield a similar AccModel. Since DNN models are sometimes trained on popular datasets

(such as the COCO dataset COCO (2017)), AccModel can sometimes be re-used among

different final DNNs (we will empirically evaluate it in Figure 6.5).
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CHAPTER 6

EVALUATION

Finally, our evaluation of AccMPEG shows that:

• AccMPEG achieves better accuracy-delay tradeoffs: 10-43% lower delay while maintaining

comparable accuracy as the baselines. The improvement remains similar on three vision

tasks and five final DNN models with a variety of architectures and backbones (§6.2).

• AccMPEG has the lowest camera-side overhead compared to all the baselines that deploy

customize logic at the camera side and achieve comparable accuracy, and the extra compute

overhead due to AccModel is less than the popular video codecs (§6.3).

• Given a final DNN, an AccModel can be created within 8 minutes using 8 GPUs. Even

if a final DNN changes without updating the AccModel, AccMPEG still achieves better

accuracy-delay tradeoffs if the new vision model is trained on the same dataset as the

previous one (§6.4).

6.1 Setup

Dataset: Table 6.1 summarizes the 3 video datasets we used to evaluate AccMPEG: 5

driving videos and 7 dashcam videos for object detection, and 6 surfing videos for keypoint

detection and semantic segmentation. All videos are obtained by searching on YouTube. We

search keywords (such as “highway dashcam hd”) in incognito mode to avoid customization

bias. All videos and collection details are available in this anonymous link AccMPEG.

Device setting: We create a 30fps video source where different methods can read raw

Name Vision task # Videos # Frames

Driving object detection 5 9000

Dashcam object detection 7 12600

Surf semantic segmentation
keypoint detection

6 6598

Table 6.1: Summary of our datasets.
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(1280×720) frames one by one. To achieve real-time video streaming, we let the camera

stream out the video in the form of short video chunks (this aligns with previous work Du et al.

(2020); Zhang et al. (2018)), each consisting of 10 frames. To fairly compare the encoding

delay of different methods, we benchmark the encoding delay on one Intel Xeon Silver 4100

CPU and run the encoding of AccMPEG and baselines everytime the camera reads 10 frames

for its current video chunk (we also benchmark the performance of AccMPEG on baselines

on Jetson Nano, a cheap GPU device (with one 128-core Maxwell GPU, one Quad-core

ARM A57 CPU and 4GB memory ChameleonHardware (2021)))1 provided in the Chameleon

testbed Keahey et al. (2020)). We use openVINO to accelerate2 all camera-side DNNs on

CPUs. We also make minor modification to the H.264 codec to enable macroblock-level

region-of-interest encoding.

Server: We train AccModel offline on the server with 8 GeForce RTX 2080 SUPER GPU.

In the online encoding phase, we run the decoding on Intel Xeon Silver 4100 CPU and run

the inference on GeForce RTX 2080 SUPER GPU.

Video analytics tasks and DNNs: We test AccMPEG on three tasks: object detection,

semantic segmentation and keypoint detection. Here we list the DNNs we use for these tasks

(We use italic to show the DNN that we use to deliver AccModel for that vision task. All

DNNs are pretrained from COCO dataset COCO (2017)). We pick three object detection

models that represent three types of different architectures: FasterRCNN Ren et al. (2015) (a

two-stage detector with features from different resolutions Lin et al. (2017a)), YoLov5 Redmon

& Farhadi (2017) (a single-stage detector), and EfficientDet Tan et al. (2020) (a detector

with machine-optimized architecture Zoph & Le (2016)). We FCN-ResNet50 PyTorch for

semantic segmentation. We also pick two keypoint detection models: Keypoint-ResNext101 He

et al. (2017); Xie et al. (2017) and Keypoint-ResNet50 He et al. (2017),

1. A Jetson nano developer board is only 60$ Amazon.

2. This acceleration will not reduce floating point precision, and thus will not alter the inference result of
AccMPEG.
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Figure 6.1: The delay vs. inference accuracy of AccMPEG and several baselines on various
video datasets (in parentheses) and different DNN models (the three object detection models
use different backbones). AccMPEG achieves high accuracy with 10-43% delay reduction on
object detection and 17% on keypoint detection. Ellipses show the 1-σ range of results.

Setting of AccMPEG: For the encoding quality, we use (30, 40) as the QP value for high

quality and low quality for object detection and (30, 51) for keypoint detection. By default,

we use α = 0.2 as the AccGrad threshold.

Baselines: We use baselines from five categories:

• Uniform quality: AWStream Zhang et al. (2018) tunes the encoding parameters of the

underlying codec (resolution, QP, and frame rate), though unlike AccMPEG, they use

the same configuration for all frames in each time window (on the timescale of minutes)3.

(VStore Xu et al. (2019) shares a similar idea.) To show their limitation, we use an

“idealized” version where the parameters are set such that the size reduction is maximized

while its accuracy is almost same to AccMPEG.

• Server-driven approach: DDS Du et al. (2020) and EAAR Liu et al. (2019) belong to this

type and they share the idea of encoding different regions with different quality levels. By

3. We assume that AWStream can obtain the accuracy-delay profile without extra cost, which makes
AWStream strictly better.
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default, we use QP = (40, 30) as the low quality and high quality settings.4

• Frame filtering: We choose Reducto Li et al. (2020), one of the most recent proposals along

this line. We use the implementation from Github (b).

• Autoencoder: We pick a pre-trained autoencoder Github (a) (introduced in Theis et al.

(2017)).

We do not include CloudSeg Wang et al. (2019b) in our evaluation, because it augments the

server-side DNN by a super-resolution model, which is complementary to the camera-side

video encoding schemes above.

Metrics: Following the definitions in §2.2, we compare different techniques along three key

metrics: delay, inference accuracy, and camera-side compute cost (the cost is measured by

camera-side encoding delay and overheads). In particular, we use F1 score as the accuracy

metric in object detection, IoU in semantic segmentation, and distance-based accuracy in

keypoint detection. These metrics all values in [0,1], with higher values the better. We

calculate the camera-side delay on one Intel Xeon Silver 4110 CPU. We assume there are 5

video streams sharing a network link with 2.5mbps bandwidth upload speed (the average

upload speed of Sprint LTE connection OpenSignal (2018)) and 100ms latency Wang et al.

(2019a). We do not include the server-side inference delay, since AccMPEG does not put

extra compute cost on the server side, and the optimization of server-side delay is not our

contribution either.

6.2 Better accuracy-delay tradeoffs

Figure 6.1 compares AccMPEG’s performance distributions with those of the baselines on

the three tasks (on their perspective default full DNNs) and various datasets5. We can see

4. Instead of letting EAAR predict the region proposal on new incoming frames through tracking, we
directly let EAAR obtain the new region proposal, which makes EAAR strictly better.

5. We do not evaluate region-proposal-based approach like EAAR and DDS on EfficientDet and Yolo
since these DNNs have no region proposal (except that we evaluate DDS on Yolo since DDS develops specific
heuristics to handle Yolo).
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that AccMPEG outperforms the baselines: in terms of delay, AccMPEG has 10-43% smaller

encoding delay than the best baselines with comparable accuracy. Vigil has lower streaming

delay than AccMPEG, but it has low accuracy (many small objects are missed). AccMPEG

is also 0.5-2% more accurate when compared to the non-server-driven baselines with lower

streaming delay. Though some server-driven techniques have higher accuracy than AccMPEG

on region-proposal-based DNNs like FasterRCNN, they are not applicable to DNNs that lack

explicit region proposals like Yolo and EfficientDet.

We also evaluate AccMPEG’s performance on semantic segmentation with FCN PyTorch

as the final DNN. We find that AccMPEG has 20% higher accuracy than Reducto with

lower streaming delay, or 5% lower streaming delay while maintaining higher accuracy than

AWStream. This improvement may seem marginal, but the actual improvement of AccMPEG

will be higher, since AWStream streams the highest-quality video whenever bandwidth permit

to the server to identify the best video encoding decision, which can incur a high delay.

We also compare AccMPEG to the autoencoder Theis et al. (2017) for object detection on

the highway dashcam videos. AccMPEG achieves an accuracy of 85%, but the autoencoder

only achieves 62%. Moreover, the encoded frame size of AccMPEG is about 7KB, much less

than that of autoencoder (240KB Github (a) per frame). As a result, the streaming delay of

autoencoder is over 38 seconds. Thus, AccMPEG has a much better accuracy-delay tradeoff.

While AccMPEG improves performance in most cases, AccMPEG still has marginal

or negative improve in some settings. For instance, AccMPEG cuts the delay of running

AccModel by running it once every k = 10 frames (§4), but when objects are moving very

quickly (e.g., monitoring camera feeds from a race car), this optimization can hurt accuracy.

Moreover, because AccModel uses the architecture of MobileNet-SSD Sandler et al. (2018)

which works well on medium to large sized objects, it can perform poorly with with tiny

objects (like the distant vehicles in drone videos).
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Figure 6.2: Delay breakdowns of AccMPEG and baselines. AccMPEG achieves minimum
streaming delay and has marginally higher encoding delay than codec encoding (used in
AWStream, EAAR).

6.3 Encoding and streaming delays

Delay breakdown: Figure 6.2 shows the video codec encoding delay, camera-side extra

compute delay, and the streaming delay of AccMPEG and those of the baselines based on

the settings of Figure 6.1e (other settings have similar delay comparisons). We can see that

AccMPEG has the lowest end-to-end delay on both camera-side hardware settings compared

to all baselines except Vigi (whose accuracy is much lower than AccMPEG in Figure 6.1).

Camera-side compute cost: We then zoom in on the camera-side compute cost, which

consists of encoding delay and the camera-side overhead delay. Figure 6.2 shows that

AccMPEG’s camera-side AccModel is cheaper than H264-based video encoding on the CPU,

and is 20x cheaper than encoding on Jetson Nano. Moreover, AccMPEG’s camera-side

compute cost is lower than existing camera-side heuristics, such as Vigil and Reducto.

Compared to Vigil, AccMPEG has lower compute cost, because it only runs the camera-side

AccModel inference once every 10 frames, whereas Vigil performs camera-side inference on

every frame. Compared to Reducto, AccMPEG does have higher encoding delay (since

Reducto discards some frames and only encodes the remaining ones), but Reducto runs

expensive camera-side logic on every frame6 and thus has a much higher camera-side overhead

than AccMPEG.

As a reference point, we also test the camera-side overhead of running the expensive DNN

6. Reducto performs Harris feature extraction, which contains several convolution filters and per-pixel
eigen value decomposition and contributes 70% of the camera-side ovehead.
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Figure 6.4: The delays of AccMPEG and baselines under varying network bandwidth.

on the camera: the camera-side delay is almost 7 seconds on CPU, and the expensive DNN

cannot fit into the GPU memory of Jetson Nano.

Delay vs. bandwidth: Next, we benchmark the impact of network bandwidth on the

video-analytics delay, we calculate the delay of AccMPEG and various baselines (except for

Vigil, which has accuracy lower than 80% for most of the cases) under increasing network

bandwidth. From Figure 6.4, we see that AccMPEG consistently achieves the lowest delay

under different network bandwidth, though with more gains under low bandwidth.

Delay optimizations of AccMPEG: AccMPEG uses two techniques to speed up its

AccGrad-based encoding: (1) using region-of-interest encoding to encode the video (rather

than encoding video twice as in DDS Du et al. (2020)), and (2) running the AccModel

model once per 10 frames. Figure 6.3 shows their incremental reductions on AccMPEG’s

camera-side delay. The figure breaks down the encoding delay of AccMPEG into AccGrad

prediction (AccModel) and the actual codec encoding, and as a reference point, it also shows

the encoding delay of H.264, DDS and VP97. As AccMPEG uses the AccModel (a shallow

7. We use the real-time encoding option of VP9.
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Figure 6.5: Even if we reuse the AccModel trained for a different final DNN, AccMPEG still
offers decent performance gain over the best H.264 encoding scheme. DNN A → DNN B
means the AccModel trained for A is reused to encode videos for B.

DNN) for its accuracy gradient model, the delay of accuracy gradient prediction is much

smaller than prior work such as DDS which needs to actually run the final DNN. That said, it

is sizable compared with the encoding delay. AccMPEG further reduces the delay by running

AccModel on one frame every 10 frames, which allows AccMPEG to encode frames at 30fps

on one Intel Xeon Silver 4100 CPU.

6.4 Fast AccModel training and reusing

Efficacy of reusing AccModel: From Figure 6.5, we see that in object detection, the

AccModel trained on FasterRCNN also provides performance benefit on YoLo and EfficientDet

across two different datasets. Similarly, in keypoint detection, the AccModel trained on

KeypointRCNN-ResNet101 also generalizes to KeypointRCNN-ResNet50 on the surfing
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Basic training pipeline (Fig-
ure 5.1(a))

453 min-
utes

After decoupling final DNN from
training (Figure 5.1(b))

74.0 min-
utes

After 10× training data down-
sampling

7.40 min-
utes

Table 6.2: The training time of AccMPEG on 8 GPUs.

dataset. This demonstrates that AccMPEG can generalize to different vision models and

provide better accuracy-delay trade-off, as long as the models are trained on the same dataset

(as explained in §5).

Fast training: To benchmark the training speed, we train AccModel for FasterRCNN Ren

et al. (2015) on 10x-downsampled COCO dataset COCO (2017). The training takes less than

8 minutes in total on 8 RTX 2080 Super GPU. From Table 6.2, we see that downsampling

and the AccGrad abstraction reduce the overall training time by 60x.

6.5 Related work

Video analytics pipelines: There are many proposals to balance video analytics accuracy

and its costs, including computing cost (e.g., Zhang et al. (2017); Keahey et al. (2019); Xu et al.

(2019); Canel et al. (2019); Xu et al. (2018)) as well as compression efficiency (e.g., Du et al.

(2020); Zhang et al. (2018); Liu et al. (2019); Zhang et al. (2015)). Besides those elaborated

elsewhere in the paper, other techniques also try to discard unimportant frames Shen et al.

(2017); Chen et al. (2015); Apicharttrisorn et al. (2019); Canel et al. (2019); Hsieh et al.

(2018) or downsize the quality/framerate of an entire video segment Xu et al. (2019); Keahey

et al. (2019); Zhang et al. (2017); Haris et al. (2018), offload inference of RoI bounding

boxes Zhang et al. (2021) to remote servers, and raise bitrate in regions found by feeding

DNN through the final DNN Galteri et al. (2018); Choi & Bajic (2018). Again, AccMPEG

differs in that it introduces a cheap DNN-aware module to perform macroblock-level (rather

than object-based) quality optimization and can quickly customize for any given final DNN.

Vision feature encoding: Other video encoders extract vision feature maps from the

video and then compress the features (e.g., Duan et al. (2020); Xia et al. (2020); Emmons
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et al. (2019); Kang et al. (2017b); Matsubara et al. (2019)), with some efforts to standardize

this approach Gao et al. (2021); VCM; CDV. Some also optimize for both vision accuracies

and human visual quality (e.g., Hu et al. (2020)). These video codecs explore a different

design point than AccMPEG: (1) they assume that all video analytics DNNs share the same

feature extractor (instead, AccMPEG treats each final DNN as just a blackbox); (2) they

redesign both the encoder and the decoder (instead, AccMPEG run on any standard video

codec); and (3) Their target vision tasks (e.g., classification or action recognition) have more

error tolerance when compressing feature maps (instead, AccMPEG handles more expensive

tasks, like object detection, where any distortion on the feature maps matters).

Deep learning-based video compression: Some parallel efforts also replace the video

codec by autoencoders (e.g., Lu et al. (2019); Habibian et al. (2019); Agustsson et al. (2020);

Rippel et al. (2019); Wu et al. (2018)). In a similar spirit, recent work trains differentiable

video encoders to improve inference accuracy on the decompressed videos (e.g., Chamain et al.

(2021)). These DNN-based autoencoders do not directly apply, since these autoencoders are

orders of magnitude more expensive than the standard video codes (used in AccMPEG): the

fastest autoencoder runs at similar speed on GPU as H264 on CPU Rippel et al. (2019).

Adapting spatial scales in computer vision: The computer vision community also uses

adaptive image sizing or partitioning to improve inference accuracy; e.g., feature pyramid

networks (FPN) Lin et al. (2017b) and BiFPN Tan et al. (2020) extract feature maps from

multiple resolutions to detect small objects. Others use attention mechanisms to focus

computation on regions with potential objects Wang et al. (2017); Ozge Unel et al. (2019);

Ržička & Franchetti (2018); Fan et al. (2019). While AccMPEG shares similar insights, it

optimizes the video compression efficiency, rather than computation complexity.
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CHAPTER 7

CONCLUSION

In this work, we present AccMPEG, a new video codec for video analytics that improves the

tradeoffs between inference accuracy and compression efficiency for a variety of computer

vision tasks. It does so by treating any vision DNN as a differentiable black box and infers

the accuracy gradients to identify where in the frame the DNN’s inference result is highly

sensitive to the encoding quality level and thus needs to be encoded with high quality. Our

evaluation of AccMPEG over three vision tasks shows that compared with the state-of-the-art

baselines, AccMPEG reduces upto 43% of the delay while increasing accuracy by upto 3% at

the same time. Moreover, AccMPEG’s camera-side overhead is almost the same as those of

the traditional codecs.
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APPENDIX A

APPENDIX

A.1 Optimal quality assignment analysis

We formalize the spatial quality assignments in this section and derive the near-optimal

solution through AccGrad.

A.2 Formalize quality assignment

To make the discussion more concrete, we split each W ·H frame into w · h grids of 16x16

blocks (W = 16w,H = 16h) and assign each block either a high quality or a low quality. We

now consider this problem: what is the best quality assignment for these 16x16 blocks that

maximizes the accuracy subject to no more than c blocks encoded in high quality. Formally,

it searches for a binary mask M of size w · h (Mx,y = 1 means block x, y is in high quality),

such that

max Acc (D(M×H+ (1−M)× L), D(H)) (A.1)

s.t. ∥M∥ ≤ c (A.2)

where H and L are the high-quality encoding and the low-quality encoding of each frame1,

D : I 7→ O returns the DNN inference result (I and O are the spaces of input frames and

DNN output), and Acc : O×O 7→ R returns the accuracy of D’s output on a compressed

frame by comparing its similarity with D’s output on the high quality image D(H).

This formulation involves two simplifying assumptions: the 16x16 blocks may be subop-

timal boundaries between quality levels, and it restricts the encoding to only two quality

levels. That being said, we believe that analyzing this formulation is still valuable for two

1. The dimension of a frame is the same for different QP values, so H and L have the same dimension.
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reasons. First, the block granularity of 16x16 is on par with the block sizes employed in

H.264 and H.265, which means more fine-grained blocks will not have much impact on the

encoded video size. Second, the use of two quality levels does subsume many recent solutions

(e.g., Zhang et al. (2015); Du et al. (2020); Zhang et al. (2018); Chen et al. (2015); Li et al.

(2020)) which use two or fewer quality levels.

A.3 Deriving near-optimal solution through AccGrad

In this section, we “derive” the quality assignment from the pixel values of a frame. To this

end, we first rewrite the objective of the idealized algorithm in Eq (A.1) in a differentiable

form as follows. We notice that max Acc(D(X), D(H)) (where X = M×H+ (1−M)×L)

is equivalent to the following (note that the first term of Eq A.3 a constant to M):

min Acc(D(1×H), D(H))−Acc(D(X), D(H)) (A.3)

=

〈
∂Acc(D(X′), D(H))

∂X′ , (1×H−X)

〉
F

(A.4)

≈
〈
∂Acc(D(L), D(H))

∂L
, (1×H−X)

〉
F

(A.5)

=

〈
∂Acc(D(L), D(H))

∂L
, (1−M)× (H− L)

〉
F

, (A.6)

where ⟨·, ·⟩F is the Frobenius inner product. Eq (A.4) uses Lagrange’s Mean Value Theorem,

where X′ lies between H and X. In Equation (A.6), since the value of M is identical inside

each block, each block (x, y) contributes the following value to Eq (A.6):

(1−MB)
∑
i∈B

∂Acc(D(L), D(H))

∂L

∣∣∣∣
i

· (Hi−i)

≤δ · (1−MB) ·
∑
i∈B

∥∥∥∥∂Acc(D(L), D(H))

∂L

∣∣∣∣
i

∥∥∥∥
2

, (A.7)

where δ denotes the maximum element in Hi,j − Li,j . This upper bound holds when the

gradient of Acc(D(X), D(H)) at X is non-negative at all pixels in the block, which is a

reasonable assumption since changing pixel values closer to the high quality encoding will
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(a) Traditional loss (y-axis) used to train
segmentation models.
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(b) The loss function (y-axis) used to train AccModel.

Figure A.1: Comparing the training curve of a traditional segmentation model and that of
AccModel: with more DNN layers (higher DNN compute cost), the traditional segmentation
loss drops slowly, whereas the loss function of AccModel (i.e., low-dimensional binary
segmentation with a higher tolerance to false positives) drops very quickly, which indirectly
suggests that a cheap model might suffice to train an accurate enough AccModel.

likely make the inference result more similar to D(X).

A.4 Empirical evidence on how false-positive-tolerance reduces

the cost of AccModel

To empirically support that false positive tolerance can reduce the compute demand of

segmentation task, we train a series of DNNs with compute power [1,2,4,6,8]x on the same

dataset with two different losses: traditional segmentation loss and false-positive-tolerant

segmentation loss that applies only 1/4 penalty to false positives than to false negatives. From

Figure A.1, we see that the loss of the 4x DNN is much higher than the loss of the 8x one

under traditional segmentation loss (see Figure A.1a), but the 4x DNN can achieve similar

loss as the 8x DNN under false-positive-tolerant loss (see Figure A.1b). This indicates that

false-positive-tolerant loss can efficiently reduce the compute demand of the segmentation

task so that even a cheap DNN can achieve similar performance as an expensive DNN.
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