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Abstract

We study weak propositional proof systems as subsystems of sequent calcu-
lus. It is well known that allowing more formulas to participate in applications
of the cut rule, one gets a hierarchy of systems strictly increasing in strength.
We extend this hierarchy at the very bottom to show that even allowing only
propositional variables as cuts, one gets a super-polynomially more powerful
system. In more customary terms, we show a super-polynomial separation be-
tween cut-free sequent calculus and resolution. Furthermore, we identify two
new big clusters of proof complexity measures equivalent up to polynomial
and log n factors, in the vicinity of the first levels of the above hierarchy. The
first cluster contains, among others, the logarithm of tree-like resolution size,
regularized (that is, multiplied by the logarithm of proof length) clause and
monomial space, and clause space, both ordinary and regularized, in regular
and tree-like resolution. As a consequence, separating clause or monomial
space from the (logarithm of) tree-like resolution size is the same as showing
a strong trade-off between clause or monomial space and proof length, and is
the same as showing a super-critical trade-off between clause space and depth.
The second cluster contains width, Σ2 space (a generalization of clause space
to depth 2 Frege systems), both ordinary and regularized, as well as the loga-
rithm of tree-like size in the system R(log). As an application of some of these
simulations, we improve a known size-space trade-off for polynomial calculus
with resolution. In terms of separations between the measures above, to show
our super-polynomial separation of resolution and cut-free sequent calculus,
we show as a first step, a quadratic gap between resolution and cut-free se-
quent calculus width. This also allows us to get, for the first time, a quadratic
separation between resolution width and monomial space in polynomial cal-
culus with resolution. Furthermore, we show a quadratic lower bound on
tree-like resolution size for formulas refutable in clause space 4. We introduce
on our way yet another proof complexity measure intermediate between depth
and the logarithm of tree-like size in resolution that might be of independent
interest.
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1 Introduction

The aim of this paper is to present the results of the two reports [38, 37]. Both are
concerned with weak propositional proof systems, the relations among them and
between complexity measures within them.

The importance of studying weak propositional proof systems is two-fold. On
the one hand, they form a concrete basis for understanding lower bounds, the
required techniques and their limitations. It is a remarkable fact that many, if
not most, known lower bounds in propositional proof complexity rely, or can be
shown to rely, on resolution width lower bounds. On the other hand, practical SAT
solving, and the surprising success thereof, is based on weak propositional proof
systems, and an in depth understanding of these systems, stands as a task of great
significance.

One can naturally get weak proof systems as subsystems of the sequent calculus
by restricting the formulas allowed to participate in the cut rule. Among these,
the weakest is cut-free sequent calculus where no applications of the cut rule are
allowed. It has been an open problem whether cut-free sequent calculus can poly-
nomially simulate resolution, a sequent calculus system that only uses atomic cuts,
i.e. cuts on propositional variables. It is this problem [37] is occupied with.

The problem was first raised in [18], the paper which essentially established
proof complexity as an autonomous area in the computational complexity endeavor,
and iterated e.g. in the influential survey [47]. Cook and Reckhow [18] show that
in the tree-like case, there are examples where resolution can have exponentially
smaller proofs. Arai, Pitassi and Urquhart [3] point out that the answer may
heavily depend on how clauses are represented. A clause consisting of the literals,
say `1, `2, `3, `4, can be seen as either a single disjunction of arity four, or as a series
of applications of binary disjunctions, for example (`1 ∨ `2)∨ (`3 ∨ `4), and this can
have a profound impact on the complexity of sequent calculus proofs. The result
of Cook and Reckhow above applies in the case where clauses are seen as single
disjunctions of unbounded arity, or the case where the order in which the binary
disjunctions are applied is fixed. If we are free to choose the order, then tree-like
cut-free sequent calculus can quasi-polynomially simulate tree-like resolution, and
this is optimal [3]. In the DAG-like case, and if we are free to choose the order in
which binary disjunctions are applied, Reckhow [43] shows that cut-free sequent
calculus can polynomially simulate regular resolution, and Arai [2] shows that it can
polynomially simulate resolution for refuting k-CNF formulas, where k = O(log n).
However, the general question has remained unresolved.

We define the width of a sequent calculus proof as the maximum number of
formulas occurring in a sequent of the proof. This definition extends in a natural
way the concept of the width of a resolution proof to stronger proof systems.
Furthermore, it allows for a simple, abstract characterization of sequent calculus
width generalizing the characterization of Atserias and Dalmau for resolution width
[4]. Using this characterization, we show a quadratic gap between resolution width
and cut-free sequent calculus width. This says that including atomic cuts in cut-free
sequent calculus can shorten the width of proofs. Utilizing then this gap, we show
a super-polynomial separation between cut-free sequent calculus and resolution.
To put it in other words, atomic cuts can super-polynomially decrease the size of
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proofs. This result applies only when clauses are seen as disjunctions of unbounded
arity. There is a way to write the clauses in our examples using binary disjunctions,
so that the resulting formulas have linear size cut-free sequent calculus refutations.
Thus, as it was already known for the tree-like case, the complexity of sequent
calculus proofs can depend on how disjunctions are represented.

Towards [38], there is a rich landscape of relations between seemingly unrelated
measures of the complexity of proofs for weak proof systems. We already mentioned
width and hinted at its importance. Although used at early size lower bounds, its
crucial role was only made apparent by Ben-Sasson and Wigderson [11] who, relying
on the earlier work of Impagliazzo, Pudlák and Sgall [30] who showed an analogous
result for polynomial calculus, showed that width lower bounds directly imply size
lower bounds in resolution. Namely, for tree-like resolution proofs,

WR(F ` ⊥) ≤ logST,R(F ` ⊥) +W (F ), (1.1)

and for general resolution proofs,

WR(F ` ⊥) ≤ O
(√

n logSR(F ` ⊥)
)

+W (F ). (1.2)

Here WR(F ` ⊥), ST,R(F ` ⊥) and SR(F ` ⊥) stand for the minimum width,
tree-like size and DAG-like size respectively of refuting an unsatisfiable CNF F
in resolution; similar notation is employed throughout the paper. By W (F ), we
denote the maximum width of a clause in F itself.

In addition to providing size lower bounds, several notions of width have been
used to show space lower bounds in different proof systems, demonstrating a close
relationship between the two measures [7, 21, 4, 14, 15, 13, 12, 26, 38]. In particular,
Atserias and Dalmau [4] show that the minimum width, and the minimum clause
space needed to refute F in resolution, CSpace(F ` ⊥), satisfy

WR(F ` ⊥) ≤ CSpace(F ` ⊥) +W (F ), (1.3)

and Galesi, Ko lodziejczyk and Thapen [26] show a similar relation between reso-
lution width and the minimum monomial space needed to refute F in polynomial
calculus with resolution:

WR(F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+W (F ). (1.4)

It is worth noting that the relation (1.3) actually refines (1.1). This is due to a
result of Esteban and Torán [22] relating the minimum clause space and minimum
tree-like size for refuting F :

CSpace(F ` ⊥) ≤ logST,R(F ` ⊥). (1.5)

In this way, two sequential measures, tree-like size and width, are related with a
space measure as an intermediate. We will see more examples of such an interplay
in this paper.

Regularized versions µ∗ of space complexity measures are defined by multiplying
the measure in question µ by the logarithm of the proof length; these were con-
sidered e.g. by Ben-Sasson [6] and Razborov [42]. The latter paper also contains
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a suggestion that the “right” level of precision when comparing measures of this
kind are up to polynomial and log n factors;1 we will henceforth call two measures
equivalent if they simulate each other in this sense. The paper [42] identified a big
cluster of ordinary and regularized space complexity measures, including total and
variable space, that are all equivalent to proof depth in resolution. One notable
measure that defied this classification was (regularized) clause space.

We identify two other big clusters of equivalent complexity measures not covered
by the results in [42]. The cumulative picture combining both previously known
and new results is summarized in Figure 1. There, arrows are to be interpreted as

logSR

WR ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

MSpace

WLK−

CSpace

logST,R ≈ TCSpace ≈ RCSpace

≈ CSpace∗ ≈ MSpace∗

DP,R

DR ≈ TSpace ≈ TSpace∗ ≈ VSpace∗

VSpace

Figure 1: Simulations

inequalities, and ≈ as equality, both up to polynomial and log n factors. A solid
arrow from µ1 to µ2 indicates that a separation between µ1 and µ2 is known, that
is, it additionally indicates that there exists a sequence {Fn} of unsatisfiable CNFs
such that µ2(Fn ` ⊥) ≥ (µ1(Fn ` ⊥) + log n)ω(1). To improve readability, we have
omitted from Figure 1 the argument F ` ⊥. We have refrained from including
measures for cut-free sequent calculus apart from the cut free sequent calculus
width, denoted by WLK− , which is directly related to measures for resolution.

But let us explain this picture in more detail. The first new cluster is centered
around the logarithm of tree-like resolution size. Given the proof method of the

1Note that the size/length measures appear in this set-up under a logarithm. Hence this
corresponds to quasi-polynomial simulations in the Cook-Reckhow framework.
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simulation (1.5) in [22], it can be obviously strengthened in two directions: by
replacing the left-hand side with clause space in tree-like resolution or by replacing
it with regularized clause space. Tree-like clause space in resolution was shown to
be equivalent to the logarithm of tree-like size in the same paper [22, Corollary
5.1]; in other words, after this replacement in the left-hand side, the bound (1.5)
becomes tight, within the precision we are tolerating.

We show that the second variant, that is regularized clause space, is also equiv-
alent to the logarithm of tree-like resolution size, and this result extends to also
include regularized monomial space to the same cluster. Given that [22, Corollary
5.1] also holds for (ordinary) clause space in regular resolution [22, Corollary 4.2],
this means that all these space measures turn out to be equivalent to each other
and to the log of tree-like resolution size. We also remark (given the results above,
this readily follows from definitions) that regularized versions of the clause space in
tree-like or regular resolution are also in this cluster.

The question of whether (ordinary) clause space also belongs here is what we
consider to be a major, and most likely very difficult, open problem. But since it
has turned out to be closely related to several other threads in proof complexity,
we prefer to keep the momentum and defer further discussion to the concluding
Section 5.

Our second cluster is presided by resolution width. First, we introduce a nat-
ural analogue of clause space in DNF resolution or depth 2 Frege that we call Σ2

space. This can be seen as an extension of clause space to depth 2 systems; indeed,
the restriction of Σ2 space to depth 1 sequent calculus is precisely clause space,
and its restriction to k-DNF resolution, for constant k, coincides, up to a constant
factor, with the concept of space that has been studied before for such systems
(see e.g. [21, 10]). In our model, configurations are arbitrary sets of DNFs, and we
charge k for every individual k-DNF in the memory. Clearly, Σ2Space ≤ CSpace
and Σ2Space∗ ≤ CSpace∗. Then we strengthen the Atserias-Dalmau bound (1.3)
by replacing CSpace with Σ2Space and continue to show that both ordinary and
regularized versions of Σ2 space are actually equivalent to resolution width. Thus,
remarkably, the difficult open question on whether we have a strong trade-off be-
tween space and length for clause space gets a relatively easy negative solution for
a stronger proof system. We have also been able to locate in this cluster another
interesting size measure: the size of tree-like proofs in the system R(log), which
gives a somewhat unexpected generalization of (1.1). We have not been able to
retrieve the equivalence of width and tree-like size in R(log) from the literature in
exactly this form but it is implicit in Lauria [33] and, with a bit of effort, can be
traced back as far as Kraj́ıček [31].

It is worth noting that some of the simulations in this cluster work only in the
syntactical setting. This comes in contrast with what happens with the other two
clusters: all simulations involving clause, monomial, variable and total space, also
work in a purely semantic setting. For example, in case of monomial space we
can allow arbitrary Boolean functions of monomials as memory configurations and
allow any number of sound inferences to be performed at once in each step.

Finally, let us briefly summarize what is known (to the best of our knowledge)
in terms of separating the measures in Figure 1 and indicate the new results we
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show in that regard. Let us start with “true” separations, i.e. separations that
work modulo polynomial overheads and log n factors. From now on, for proof
complexity measures µ1, µ2 we will use the notation µ1 � µ2 to stand for µ1(F `
⊥) ≤ (µ2(F ` ⊥) log n)O(1) for any CNF F in n variables; µ1 ≈ µ2 is the same
as µ1 � µ2 ∧ µ2 � µ1. Clearly � is transitive, and this implies that ≈ is an
equivalence relation and � imposes a partial order on its equivalence classes.

Bonet and Galesi [16] prove that WR 6� logSR. More precisely, there are
constant width formulas F of sizeO(n3) such that SR(F ` ⊥) ≤ O(n3) andWR(F `
⊥) ≥ Ω(n). Ben-Sasson [6] prove that VSpace 6� CSpace, and after negating the
variables in his formulas, this works two more levels up on Figure 1. Namely, there
are constant-width formulas F of size O(n) such that VSpace(F ` ⊥) ≥ Ω(n/ log n)
while DP,R(F ` ⊥) ≤ O(1). DP,R stands for positive depth, and it is a one-sided
version of resolution depth DR. This also provides a separation between DP,R and
DR that, though, is much easier to prove directly [48, Theorem 4.6]. Without
negating the variables, it is easy to see that Ben-Sasson’s proof actually gives
DP,R(F ` ⊥) ≥ Ω(n/ log n), thus separating DP,R from logST,R and hence from
the whole middle cluster. Ben-Sasson, H̊astad and Nordström [36, 9, 10] separate
clause space from width; while it is believed that their formulas should also have
large monomial space complexity, the questions of separating clause space from
monomial space, as well as monomial space from width are widely open. Using
their formulas (or rather a small variation of them) however, and the fact that
MSpace∗ belongs to the same cluster as logST,R, we are able to get the following:

1. There are unsatisfiable CNFs F of size O(n) with SR(F ` ⊥) ≤ O(n),
WR(F ` ⊥) ≤ O(1) and MSpace∗(F ` ⊥) ≥ Ω(n/ log n) (Theorem 4.5).

This improves the previously known bounds MSpace∗(F ` ⊥) ≥ Ω(n2/11) [5],
MSpace∗(F ` ⊥) ≥ Ω(n1/4) [29] and MSpace∗(F ` ⊥) ≥ n1/2/(log n)O(1) [28].
Unlike these previous results, our proof is remarkably simple.

Separating space complexity measures from their own regularized versions ap-
pear to be a very daunting task in general. As follows from Figure 1, for variable
space this is equivalent to separating it from depth [48]. A quadratic separation
between VSpace and VSpace∗ was proved in [42, Section 6], with a disappointingly
elaborate proof. Nothing is known in terms of separating CSpace from (the cluster
of) CSpace∗. We prove that

2. there are unsatisfiable CNFs F of size O(n) with CSpace(F ` ⊥) = 4 and
ST,R(F ` ⊥) ≥ Ω(n2/ log n) (Theorem 4.8)

making some progress, admittedly rather modest, in that direction. It is for this
proof that we need and introduce the entry DP,R on Figure 1. We also remark
that the space bound in this result is optimal. More precisely, we make a relatively
simple observation (Theorem 4.6) that CSpace(F ` ⊥) ≤ 3 if and only if F is
“essentially Horn” in which case it will possess a linear size tree-like resolution
refutation.

Nothing seems to be known for CSpace vs. MSpace, and our structural picture
provides a good heuristic explanation of the difficulty of this question: a separation
between the two would also separate MSpace from MSpace∗. Specifically, not even
a separation between resolution width and monomial space is known; the techniques
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of [9, 10] in particular fail to generalize to the case of monomial space. We are able
to show a quadratic separation between the two. Namely, we show that

3. there are unsatisfiable CNFs F of size O(nn) with WR(F ` ⊥) = O(n) and
MSpace(F ` ⊥) = Ω(n2) (Theorem 3.2).

This result is obtained by adapting our separation between resolution width and
cut-free sequent calculus width to notions of width tailored for monomial space
lower bounds [14, 15].

The paper is organized as follows. After expounding the necessary notions,
definitions in Section 2, we first present our super-polynomial separation between
resolution and LK− in Section 3, and prove item 3 above. Then we begin Section 4
with refining (many simulations do not actually involve a polynomial overhead or
extra log n factors) and proving the relations of Figure 1. In Section 4.4 we prove
items 1 and 2 above. The paper is concluded with a few remarks and open problems
in Section 5.
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2 Basic notions

2.1 Sequent calculus

The sequent calculus was introduced by Gentzen [27] to formulate and prove his
famous cut-elimination theorem. Many authors describe it as the most elegant
proof system, and indeed, it illustrates the symmetries of logic at the level of
syntax, like no other system.

Sequent calculus’s version for classical logic is often denoted by LK. We shall
use LK to denote its propositional part. LK operates with sequents. A sequent is a
tuple of the form (Γ,∆), where Γ and ∆ are finite sets of formulas. Traditionally, a
sequent (Γ,∆) is written as Γ→ ∆. This is to remind us its semantic interpretation:
Γ→ ∆ is to be interpreted as “if all formulas in Γ are true, then at least one formula
in ∆ is true”. Note that either of the sets Γ,∆ can be empty. Then Γ → means
that not all formulas in Γ are true, → ∆ means that at least one of the formulas in
∆ is true, and → (i.e. both Γ and ∆ are empty) is a tautologically false statement.

Let us present the rules of the system. In what follows, A,B represent arbitrary
formulas, and Γ,∆,Γ′,∆′ represent finite sets of formulas. Sets are written in a
quite plain manner: We write Γ, A instead of Γ∪{A}, A instead of {A}, A,B instead
of {A,B} and so on. The axioms of LK are all sequents of the form A → A. Of
the inference rules, first we have a rule, which allows us to add formulas to the left
or right part of a sequent. This rule is called the thinning or weakening rule and
has the form

Γ→ ∆

Γ′ → ∆′
,

where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Next, we have rules for each connective. These come
in pairs; a connective is treated differently according to which side of its sequent
it appears. The rules for the connectives ∧, ∨ and ¬ are shown in Table 1. These

¬L :
Γ,¬A→ ∆, A

Γ,¬A→ ∆
¬R :

Γ, A→ ∆,¬A
Γ→ ∆,¬A

∧L1 :
Γ, A ∧B,A→ ∆

Γ, A ∧B → ∆

∧L2 :
Γ, A ∧B,B → ∆

Γ, A ∧B → ∆

∧R :
Γ→ ∆, A ∧B,A Γ→ ∆, A ∧B,B

Γ→ ∆, A ∧B

∨R1 :
Γ→ ∆, A ∨B,A

Γ→ ∆, A ∨B

∨R2 :
Γ→ ∆, A ∨B,B

Γ→ ∆, A ∨B

∨L :
Γ, A ∨B,A→ ∆ Γ, A ∨B,B → ∆

Γ, A ∨B → ∆

Table 1: The analytic LK rules

rules are called analytic, and they already form a complete proof system for proving
tautologies; we shall call this system cut-free LK or LK−. Finally, there is the cut

9



rule:

Γ, A→ ∆ Γ→ ∆, A

Γ→ ∆
. (2.1)

So, already having a proof of, say → B, we may use it to prove → A: → A can be
derived from B → A and → B via the cut rule, and now to prove → A, we need
to prove the weaker formula B → A. B can be anything. It doesn’t need to have
any intuitive relation to A, but even as such, it might be the case that a proof of
B → A is much shorter than a proof of → A. Gentzen’s cut elimination theorem
says that there is always an effective procedure of eliminating all applications of
the cut rule from a proof, making it purely analytic. We refer to the formula A in
applications of rule (2.1) as the formula being cut, or as the cut formula.

An LK proof of a sequent σ is a derivation of σ starting with the axioms and
applying the rules of LK. More formally, it is a sequence consisting of sequents that
ends with σ, in which every sequent is either an axiom, or results from previous
sequents by one of the LK rules. We may view proofs as DAGs, by drawing edges
from premises to conclusions in applications of the inference rules. If the DAG
corresponding to a proof is a tree, we shall refer to the proof as being tree-like.

We write ` σ if there is a proof of σ, indicating if necessary the underlying
proof system with a subscript to `. For example, `LK σ means that there is an LK
proof of σ and `LK− σ means that there is a cut-free LK proof of σ. For a set of
formulas S, we write S ` σ if there is a derivation of σ from S, that is a sequence
consisting of sequents that ends with σ, in which every sequent is either an axiom,
or is of the form → A for A ∈ S, or results from previous sequents by one of the
LK rules. It should be noted that whereas it is true that

`LK A1, . . . , Ak → B ⇐⇒ A1, . . . , Ak `LK→ B,

it is not true that

`LK− A1, . . . , Ak → B =⇒ A1, . . . , Ak `LK−→ B.

There is no way, without the cut rule, to combine proofs of the Ai’s, in order to
get a proof of B.

2.2 Sequent calculus as a satisfiability algorithm

It will be particularly convenient to consider the following view of LK. Following
Smullyan [45], let us write a sequent A1, . . . , Ak → B1, . . . , B` as

T A1, . . . , T Ak, F B1, . . . , F B`.

That is, we annotate the formulas appearing on the left side of a sequent by T , the
formulas appearining on its right side by F , and conjoin the two sides to form a
single set. T and F stand for true and false respectively —T A should be thought
of as asserting that A is true and F A as asserting that A is false.

Annotated formulas that are not annotated variables are naturally divided into
two groups: those of a conjunctive and those of a disjunctive type. Formulas of
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the form T A ∧B, F A ∨B, T ¬A or F ¬A belong to the former group, and those
of the form T A ∨ B or F A ∧ B to the latter. We use the letter “α” to stand for
an arbitrary annotated formula of conjunctive type, and the letter “β” to stand for
an arbitrary annotated formula of disjunctive type. We define the components αi
of a formula α and the components βi of a formula β as shown in Table 2.

α α1 α2 β β1 β2

T A ∧B T A T B F A ∧B F A F B
F A ∨B F A F B T A ∨B T A T B
T ¬A F A
F ¬A T A

Table 2: Smullyan’s notation

These provisions allow on the one hand for an extremely concise description of
the rules of Table 1; they can be written as:

S, α, α1

S, α
,

S, α, α2

S, α
,

S, β, β1 S, β, β2

S, β
.

More importantly, they reveal an algorithmic interpretation of LK. An LK proof,
seen from the top to the bottom, i.e. from the sequent σ := A1, . . . , Ak → B1, . . . , B`
it is proving to the axioms, describes the execution of an algorithm that tries to
find a truth assignment (or more generally a model) that falsifies σ. The algorithm
begins with σ written as T A1, . . . , T Ak, F B1, . . . , F B`, asserting that there is an
assignment that makes all Ai true and all Bi false, or equivalently, an assignment
that falsifies σ. Then it keeps expanding this set, by applying the LK rules in
reverse, that is from the conclusion to the premises. This expansion takes the form
of a tree (or a DAG if we identify nodes labelled by the same set). At any point, we
may choose a leaf labelled by S, α and add to it a single child labelled by S, α, αi,
as any assignment satisfying α must also satisfy every αi. Or we may choose a
leaf labelled by S, β and add to it two children, one labelled by S, β, β1 and the
other by S, β, β2, as any assignment satisfying β must either satisfy β1 or β2. The
thinning rule allows the algorithm to forget information: We may add to a leaf
labelled by S, a child labelled by a subset of S. Finally, the cut rule allows us to
add to a leaf labelled by S, two children, one labelled by T A and the other by
F A for any formula A, as every assignment must satisfy either A or ¬A. This may
greatly facilitate the search procedure. If at any point a set of the form T A,F A
is reached, then the search process may terminate at that particular branch, as no
assignment can set A to both true and false. Notice that the contradiction T A,F A
corresponds to the axiom A → A. A tree (or DAG) constructed this way, every
branch of which ends with a leaf labelled by a set of the form T A,F A, is an LK
proof of σ.

A depth-first implementation of the algorithm described above is shown as Algo-
rithm 1 below. Algorithm 1 is called on a sequent represented as a set of annotated
formulas. It will return false if there is an LK proof of that sequent and true other-
wise. The algorithm chooses at each recursive call non-deterministically what rule
to apply and which formula to apply it to. As presented, line 1, corresponding to
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Algorithm 1 The LK algorithm

procedure LK(S)
if S contains both T A and F A for some formula A then

return false
if for every α ∈ S, all αi ∈ S and for every β ∈ S, there is a βi ∈ S then

return true
go to either 1, 2 or 3
1. select an S′ ⊆ S and return LK(S′)
2. select an arbitrary formula A and return LK(S, T A) or LK(S, F A)
3. select an A ∈ S
if A = α then

select a component αi and return LK(S, αi)

if A = β then
return LK(S, β1) or LK(S, βk)

the thinning rule, is redundant. However, incorporating memoization, that is the
ability to stop the search when a set S has already been encountered in a previous
recursive call that has returned, effectively identifying nodes labelled by the same
set, this line makes it possible to greatly prune the search for a falsifying assign-
ment. In terms of proofs, DAG-like proofs may be shorter than tree-like proofs.
The key point in analyzing the correctness of that algorithm (or equivalently the
completeness of LK), is that when at the base case true is returned, we can create
an assignment consistent with S by setting for each formula A, A to true if T A ∈ S,
and false otherwise.

2.3 The width of sequent calculus proofs

We define the width of a sequent as the number of formulas it contains, and the
width of a sequent calculus proof as the maximum of the widths of the sequents
it contains. It is not hard to see that for any provable sequent S0, there is an LK
proof of S0 of width a constant plus the width of S0. The concept of the minimum
width needed to prove a sequent becomes non-trivial only if we restrict the class of
cut formulas we are allowed to use. We shall be mainly interested in the minimum
width over all LK− proofs of S0, which we denote by WLK−(` S0).

We are going to give a characterization of WLK−(` S0) in terms of the definition
below. In what follows, sequents are viewed as in the above section, viz. as sets of
annotated formulas.

Definition 2.1. Following the terminology of [45], let us call a sequent S0 analyt-
ically k-consistent if there is a set of sequents S containing S0 and such that for
each S ∈ S:

1. for any formula A, S does not contain both T A and F A;

2. S′ ⊆ S =⇒ S′ ∈ S;

3. |S| < k & α ∈ S =⇒ S, αi ∈ S for every component αi of α;
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4. |S| < k & β ∈ S =⇒ S, βi ∈ S for some component βi of β.

If the following condition is also satisfied, then we call S0 synthetically k-consistent
with respect to the set C:

5. |S| < k =⇒ S, T A ∈ S or S, F A ∈ S for any formula A ∈ C.

It is often helpful to see definitions such as the above, as describing a strat-
egy for the adversary, in a game between a prover and an adversary played on a
formula/sequent/set of formulas. In this case, the game is as follows: The config-
urations of the game are sequents. The initial configuration is S0. In every round,
the prover either deletes some formulas in the current sequent S, or selects an α-
formula in S and adds a component of it to S, or selects a β formula, in which
case the adversary adds a component of it to S. Allowing condition 5, the prover
may choose an arbitrary formula A ∈ C and the adversary must respond by adding
either T A or F A to S. The game ends with prover winning once S contains
T A and F A for some formula A. The prover can always win provided that S0 is
provable. The question is: given a bound k, can she win always maintaining that
the size of S is at most k? Definition 2.1 describes a strategy for the adversary,
permitting the prover from winning when she maintains that bound.

Theorem 2.1. Suppose that |S0| ≤ k. Then S0 is analytically k-consistent if and
only if WLK−(` S0) > k. It is synthetically k-consistent with respect to C if and
only if every LK proof of S0 in which every cut formula belongs to C has width
more than k.

Proof. Let us only show the former sentence. Suppose first that S0 is analytically
k-consistent, and let S be the set of sequents witnessing this. We will show that
in every tree-like LK− derivation (not necessarily beginning with axioms) τ of S0,
of width at most k, there is an initial sequent (i.e. one appearing as a leaf) in S.
From the first condition of Definition 2.1 that sequent is not an axiom, thus τ is
not a proof. It is enough to show this for tree-like derivations, since a DAG-like
derivation can be transformed into a tree-like one without increasing the width.

Base case. If τ contains just S0, then we are done since S0 ∈ S.

Inductive step. Take some initial sequents S1, . . . , Sr from which a sequent S is
derived via an inference rule ρ, and remove them to get the derivation τ ′. From
the induction hypothesis, there is an initial sequent in τ ′ that belongs to S. If that
sequent is not S, then it also appears in τ and we are done. Otherwise, we have
the following cases according to what rule ρ is:

Case 1. If it is the weakening rule, and thus r = 1 and S1 ⊆ S, then from the
second condition of Definition 2.1, S1 ∈ S.

Case 2. If ρ is the α-rule, and thus r = 1, α ∈ S and S1 = S, α1 for some αi,
then since τ has width at most k, |S| < k, and hence from the third condition of
Definition 2.1, S1 ∈ S.

Case 3. If ρ is the β-rule, and thus β ∈ S and each Si is of the form S, βi, then
again |S| < k, and from the fourth condition of Definition 2.1, some Si belongs to
S.
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Now suppose that WLK−(` S0) > k. Set

S := {S | |S| ≤ k & WLK−(` S) > k}.

Clearly S0 ∈ S. We will show that S satisfies the conditions 1–4 of Definition 2.1.
For each S ∈ S, first S cannot contain T A and F A for some A. This is so, because
such a sequent is a weakening of an axiom, and having size at most k, it has a proof
of width at most k. For the closure under subsets, if S′ ⊆ S, then WLK−(` S′) > k,
for otherwise WLK−(` S) ≤ k since S follows from S′ via the weakening rule. For
the α condition, if α ∈ S and |S| < k, then for each αi it must be that S, αi ∈ S,
for otherwise WLK−(` S) ≤ k since S follows from S, αi via the α-rule. Finally,
if β ∈ S and |S| < k, then there must be a βi such that S, βi ∈ S, otherwise
WLK−(` S) ≤ k, since S follows from all S, βi via the β-rule.

2.4 LK− for refuting CNF formulas, resolution and depth 2 Frege

A literal is a propositional variable x, or the negation of propositional variable ¬x.
We let x

def
= ¬x and ¬x def

= x. A clause is a disjunction of literals, and a term is
a conjunction of literals . A CNF formula is a conjunction of clauses and a DNF
formula is a disjunction of terms. The width, W (F ), of a CNF or DNF formula F
is the number of literals in the largest clause or term respectively of F .

Refuting a CNF formula F = C1 ∧ · · · ∧Cm means proving that the clauses Ci
cannot be simultanesouly satisfied, that is, it means proving C1, . . . , Cm →. LK−

for proving such sequents has the following form. Of the rules in Table 1, the only
one that is relevant is ∨L, which now, seeing clauses as disjunctions of unbounded
arity, has as many premises as the number of literals in the clause it is deriving.
Moreover, in such a proof, there is no reason to always carry the clauses Ci in
sequents. We may as well delete them from every sequent, but keep in our mind
that they are implicitly there. What remains are sequents of the form `1, . . . , `r →,
where the `i’s are literals, and such sequents are nothing other than clauses. To be
explicit, the axioms of the resulting system are clauses of the form x∨¬x, and the
inference rules are the weakening rule

C

C ∨D

and

C ∨ `1 · · · C ∨ `r
C

, (2.2)

where C and D are clauses and `1∨· · ·∨`r is a clause of the formula we are refuting.
A proof of C1, . . . , Cm →, in other words a refutation of F = C1 ∧ · · · ∧ Cm, in
LK−, is a derivation of the empty clause using the above rules. The size of such a
refutation is the number of clauses it contains, and its width is the size of the largest
clause occurring in it. We shall denote by SLK−(` F →) and WLK−(` F →) and
the minimum size and the minimum width respectively over all LK− refutations of
F .

14



Resolution is the system we get by adding to the above system the cut rule (2.1),
where the cut formula A is restricted to be a propositional variable. Usually the
thinning rule is incorporated into this rule, writing it as

C ∨ x D ∨ ¬x
C ∨D

. (2.3)

We may make a resolution proof “cut-only”, by pushing all applications of the
rule (2.2) at the bottom levels. Namely, we can simulate rule (2.2) by (2.3) as
follows: Start with `1 ∨ · · · ∨ `r, derive from it and C ∨ `1, C ∨ `2 ∨ · · · ∨ `r,
then derive from C ∨ `2 ∨ · · · ∨ `r and C ∨ `2, C ∨ `3 ∨ · · · ∨ `r, and so on, until
C is derived (see Figure 2). Now the leaves contain clauses of F and these can

C ∨ `1
C ∨ `2

C ∨ `r `1 ∨ . . . ∨ `r
C ∨ `1 ∨ . . . ∨ `r−1

...
C ∨ `1 ∨ `2

C ∨ `1
C

Figure 2: A simulation of (2.2) by the resolution rule

be derived from axioms by (2.2). Deleting all axioms from such a proof we get
the usual presentation of resolution, deriving not C1, . . . , Cm →, but the empty
sequent (or clause) from C1, . . . , Cm: A resolution refutation of a CNF formula F
is a derivation of the empty clause from the clauses of F , using only the rule (2.3).
As before, the width of such a derivation is the number of literals in the largest
clause occurring in it, and its size is the number of clauses it contains. Its depth is
the length of the longest root-to-leaf path in its underlying DAG, and its positive
depth the maximum number of negative literals introduced along a root-to-leaf
path. We shall denote by WR(F ` ⊥), SR(F ` ⊥), DR(F ` ⊥) and DP,R(F ` ⊥)
the minimum width, minimum size, minimum depth and minimum positive depth
respectively, over all resolution refutations of F . It will be convenient to count
the size of a tree-like resolution derivation F ` ⊥ as the number of the leaves in
the derivation instead of the number of all the nodes. This can only decrease size
by a factor of 2. We denote by ST,R(F ` ⊥) the minimum size, over all tree-like
resolution refutations of F .

Notice simulating all applications of (2.2) with (2.3), going from ` C1, . . . , Cm →
to C1, . . . , Cm ` ⊥, the size of the proof is increased by at most a factor of 2, and
width is increased by an additive factor of W (F ). That is, we have

SR(F ` ⊥) ≤ 2SLK−(` F →)

and
WR(F ` ⊥) ≤WLK−(` F →) +W (F ).

Allowing as cuts formulas of depth 1, that is conjunctions or disjunctions of un-
bounded arity consisting of literlas, we get a system that is known in the literature
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with several names: depth 1 Frege, depth 2 Frege, DNF resolution or LK1. As was
the case for resolution, for refuting CNF formulas, because we have the cut rule,
` C1, . . . , Cm → is the same as C1, . . . , Cm ` ⊥. As we did for LK− and resolution,
for refuting CNF formulas, we may write sequents as disjunctions. The resulting
system will operate on DNF formulas; it has as axioms all formulas x∨¬x and its
inference rules become:

G

G ∨H
,

G ∨ t1 H ∨ t2
G ∨H ∨ (t1 ∧ t2)

,
G ∨ t H ∨ t

G ∨H
, (2.4)

where G and H are DNF formulas and t, t1, t2 and t1 ∧ t2 are terms.
For a non-decreasing function f : N → N, R(f) is the subsystem of depth 2

Frege where each DNF in a proof of size s is required to have width at most f(s).
R(k) for k a constant is usually denoted by Res(k) (thus, resolution is Res(1)).
R(f) was first introduced in [32]. The system R(log) is also known as LK1/2. We
will be interested in the minimum size over all (tree-like) derivations F ` ⊥, which
we, as usual, denote as SR(f)(F ` ⊥) (ST,R(f)(F ` ⊥) respectively).

2.5 Width and the space of proofs

Adapting Definition 2.1 for resolution we get the characterization of [4] for resolu-
tion width. Adapting it for LK− restricted to refuting CNF formulas, we get the
definition of dynamic satisfiability from [21]. Namely, let us call sets of literals that
do not contain contradictory literals partial assignments. We think of the assign-
ment, say {x,¬y, z}, as making x true, y false and z true. A partial assignment
satisfies a clause C, if it contains a literal of C. It falsifies C if it contains ` for
every ` in C. We get:

Definition 2.2 [21]. Let F be a CNF formula, and let k be a natural number.
F is said to be k-dynamically satisfiable is there is a non-empty set A of partial
assignments to its variables such that for every assignment α ∈ A,

1. if α′ ⊆ α then α′ ∈ A;

2. if |α| < k and C is a clause of F , then there is an α′ ⊇ α in A that satisfies
C.

Theorem 2.1 in particular, becomes:

Theorem 2.2. A CNF formula F is k-dynamically satisfiable if and only if WLK−(`
F →) > k.

In the game corresponding to Definition 2.2, prover chooses in each round a
clause of F , and the adversary responds by choosing a literal in that clause, which
adds to the current assignment. Again, the closure under subsets condition corre-
sponds to the ability of the prover to delete at any round literals from the current
assignment. The prover wins once the current assignment falsifies a clause of F .

We get a characterization of resolution width by having the prover selecting
variables instead of clauses, and the adversary responding by giving values to them.
More specifically, in every round the prover selects a variable x of F . Then the
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adversary selects either x or ¬x, and the prover updates the current assignment α
by deleting (if she wants) literals and adding the choice of the adversary. Again the
prover wins once α falsifies a clause of F . She can win always maintaining |α| < k
if and only if WR(F ` ⊥) ≤ k [4].

Notice that, if W (F ) is small, the prover in the second game is more powerful.
Namely, we have

WR(F ` ⊥) ≤WLK−(` F →) +W (F )− 1.

We already saw this when we explained how the resolution rule can simulate (2.2).
In terms of games, the argument goes as follows: When the prover in the first game
selects a clause C, the prover in the second game can start selecting, one by one the
variables of C. If the game does not end, then the current assignment satisfies C,
and then the prover can delete literals to match the assignments in the two games.

Definition 2.2 was introduced in [21] as a tool for proving space lower bounds
in resolution and R(k). The following definition is from [22, 1]. A memory config-
uration in resolution, is a set of clauses. A resolution refutation of a CNF formula
F , in configurational form, is a sequence M1, . . . ,Mt of configurations where M1

is empty, Mt contains the empty clause and for i > 1, Mi is obtained from Mi−1

by one of the following rules:

Axiom download: Mi =Mi−1 ∪ {C}, where C is a clause of F .

Inference: Mi = Mi−1 ∪ {C}, where C is derived from clauses in Mi−1 by the
resolution rule.

Erasure: Mi ⊆Mi−1.

The clause space of such a refutation is max1≤i≤t |Mi|. The clause space of a CNF
formula F , denoted by CSpace(F ` ⊥), is the minimum clause space, over all refu-
tations, in configurational form, of F . We shall be interested also in the minimum
space in subsystems of resolution: TCSpace(F ` ⊥) stands for the minimum tree-
like configurational resolution refutation of F , i.e. one in which once whenever a
formula is used as a premise in an inference rule, it is immediately erased from the
memory. RCSpace(F ` ⊥) stands for the clause space in regular resolution, i.e.
the subsystem of resolution where we require that a variable cannot be resolved
more than once on any path in (the DAG resulting from the expansion of) the
configurational proof π.

Theorem 2.3 [21]. If F is k-dynamically satisfiable, then CSpace(F ` ⊥) ≥ k.

We thus have

WR(F ` ⊥)−W (F ) + 1 ≤WLK−(` F →) ≤ CSpace(F ` ⊥). (2.5)

It is shown in [9] that there are 6-CNF formulas F of size O(n) such that WR(F `
⊥) = O(1) and CSpace(F ` ⊥) = Ω(n/ log n). It is easy to show that WLK−(`
F →) = O(1), thus these formulas in fact provide a gap between WLK−(`→) and
CSpace(F ` ⊥). The question of whether there is a gap between WR(F ` ⊥) and
WLK−(` F →) has not been addressed, and it is what we will deal in the next
section.
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A generalization of clause space introduced in [1], is monomial space. While
configurations in the case of clause space are sets of clauses, for monomial space,
arbitrary linear combinations, over a field F, of clauses are allowed as the contents of
a configuration, where such a linear combination P is interpreted as the asserting
that P = 0. As a matter of fact, all known lower bounds for monomial space
even hold in the case where arbitrary Boolean functions of clauses are allowed.
The term monomial space comes from the fact that this concept captures space in
proof systems employing algebraic reasoning.

Namely, seeing clauses as monomials — a clause `1 ∨ · · · ∨ `r is seen as the
monomial `1 . . . `r — the question of whether a set of clauses over the variables
x1, . . . , xn is unsatisfiable, becomes the question of whether the polynomial 1 be-
longs to the ideal generated by those clauses and the clauses x2

i −xi and xi+xi−1
in F[x1, . . . , xn, x1, . . . , xn]. A systematic way of generating this ideal, in a space
oriented model, is the following [1]. Configurations are sets of polynomials over
F[x1, . . . , xn, x1, . . . , xn]. A refutation of a CNF formula F , in configurational form,
is a sequence M1, . . . ,Mt of configurations where M1 is empty, Mt contains the
empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following
rules:

Axiom download: Mi = Mi−1 ∪ {C}, where C is either a clause of F , x2
i − x,

or xi + xi − 1.

Inference: Mi =Mi−1 ∪ {P}, where P is either a linear combination of polyno-
mials in Mi−1 or a literal multiplied by some polynomial in Mi−1.

Erasure: Mi ⊆Mi−1.

The monomial space of such a refutation is the the maximum number of distinct
monomials occurring in a configuration. The monomial space, MSpace(F ` ⊥), of
F , is the mimimum monomial space over all refutations of F .

Both clause and monomial space deal with clauses. Clause space intends to
capture the notion space in resolution, and monomial space does the same for
algebraic proof systems. We introduce a notion of space in depth 2 Frege system,
which we call Σ2 space. A configuration now is a set of DNF formulas, and the Σ2

space of a configuration M = {G1, . . . , Gs} is defined as the sum of the widths in

it: Σ2Space(M)
def
= W (G1) + . . .+W (Gs). As above, we see the a refutation from

the clauses of a CNF formula F , as a sequence of configurations, where we can
download either clauses of F , axioms x ∨ ¬x, and infer new DNF formulas from
the rules of depth 2 Frege (2.4), and define Σ2Space(F ` ⊥) as the mimimum Σ2

space over all refutations of F .

18



3 Resolution and LK−

We saw that resolution can polynomially simulate cut-free LK for refuting CNF
formulas. The aim of this section is to show that the opposite simulation is impos-
sible. We first show a width separation in the two systems, which we then exploit
to show a super-polynomial size separation.

3.1 A quadratic gap between LK− and resolution width

Let F =
∧s
i=1Ci and G =

∧t
i=1Di be unsatisfiable CNF formulas. We define

F ×G def
=

s∧
i=1

t∧
j=1

(Ci ∨Dj).

F ×G is the CNF expansion of the formula F ∨G, which is also unsatisfiable.
Remarkably, LK− width and resolution width exhibit a different behavior with

respect to this construction. This disparity ultimately relies on the fact that the
cut rule gives us the ability to combine given proofs into a more complicated proof.

On one hand, we have:

Lemma 3.1. If F and G are over disjoint sets of variables, then

WLK−(` F ×G→) ≥WLK−(` F →) +WLK−(` G→)− 1.

Proof. Suppose that F is k-dynamically satisfiable, G is `-dynamically satisfiable,
and let A and B respectively be sets witnessing this. We need to show that F×G is
(k+`)-dynamically satisfiable, that is we need to find a set satisfying the conditions
of Definition 2.2 for the parameter k + `. We claim that

C := {α ∪ β | α ∈ A & β ∈ B}

is such a set. Closure under subsets immediately follows from the fact that A and B
are closed under subsets. For the second condition, suppose that γ ∈ C, |γ| < k+`,
and let Ci ∨Dj be a clause of F ×G, where Ci is a clause of F and Dj is a clause
of G. Since γ ∈ C, there is an α ∈ A and a β ∈ B such that γ = α ∪ β. Moreover,
since |γ| < k and F and G do not share variables, either |α| < k or |β| < `. In the
first case there is an α′ ⊇ α in A satisfying Ci, and thus α′ ∪ β is an assignment in
C satisfying Ci ∨Dj . In the second case there is a β′ ⊇ β in B satisfying Dj , and
thus α ∪ β′ is an assignment in C satisfying Ci ∨Dj .

For resolution on the other hand, we have:

Lemma 3.2. WR(F ×G ` ⊥) ≤ max{WR(F ` ⊥) +W (G),WR(G ` ⊥)}.

Proof. Let π and ρ be resolution refutations of F and G respectively, both of
minimum width. Replacing every clause C in π with C ∨ Di we get a resolution
proof πi of Di from F ×G. πi has width at most WR(F ` ⊥) +W (F ). Replacing
then every clause Di in ρ with πi we get a resolution refutation of F ×G with the
stated width.

Choosing an appropriate seed and iterating, we get our result.
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Theorem 3.1. There are CNF formulas G with n2 variables, size O(n)n, and such
that WR(G ` ⊥) = O(n) and WLK−(` G→) = Ω(n2).

Proof. Let F be a formula with constant width, n variables, size Θ(n), and such
that WR(F ` ⊥) = Θ(n). Such formulas exist from e.g. [11]. Consider the formula

Fn := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables. From
Lemma 3.2, WR(Fn ` ⊥) = O(n). On the other hand WLK−(` F →) = Ω(n)
from (2.5), and hence from Lemma 3.1, WLK−(` Fn →) = Ω(n2).

3.2 Separating resolution width from monomial space

The gap shown in the previous section can be extended to stronger versions of
dynamic satisfiability that have been used to show monomial space lower bounds,
thus showing a gap between resolution width and monomial space. The configu-
rations in those are not assignments anymore, but sets of assignments. They will
not be arbitrary sets however; they will have a certain structure. Namely, we call
a set H of assignments admissible, if it is of the form

H = H1 × · · · ×Hr
def
= {α1 ∪ · · · ∪ αr | αi ∈ Hi},

where each Hi is a non-empty set of non-empty assignments, for any two assign-
ments αi ∈ Hi and αj ∈ Hj for i 6= j, the domains of αi and αj do not intersect,
and moreover, if an assignment α ∈ Hi gives the value ε to a variable x, then there
is also an assignment α′ ∈ Hi giving to x the value 1− ε. The Hi’s are called the
factors of H; we write ‖H‖ for their number. We write H ′ v H if every factor of
H ′ is a factor of H.

Definition 3.1 [14, 15]. Let F be a CNF formula and let k be a natural number.
We say that F is k-extendible if there is a non-empty set of admissible configurations
H such that for each H ∈ H,

1. if H ′ v H, then H ′ ∈ H;

2. if ‖H‖ < k and C is a clause of F , then there is an H ′ w H in H, such that
every α ∈ H ′ satisfies C.

Theorem 3.2 [14, 15]. If F is k-extendible, then MSpace(F ` ⊥) ≥ bk/4c.

Lemma 3.1 with the same proof applies here as well.

Lemma 3.3. Let F and G be CNF formulas over disjoint sets of variables. If F
is k-extendible and G is `-extendible, then F ×G is (k + `)-extendible.

Proof. Let H and I be sets of admissible configurations witnessing the k and `-
extendibility of F and G. Since F and G are over disjoint sets of variables, we may
assume that the domains for any of two assignments in H and I do not intersect.
Set

J := {H × I | H ∈ H & I ∈ I}.
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Clearly, J is a set of admissible configurations. We claim that it satisfies the
conditions of Definition 3.1 for the parameter k+ `. Closure under v immediately
follows from the fact that H and I are closed under v. For the second condition,
suppose that J = H × I ∈ J , ‖J‖ < k + `, and let Ci ∨Dj be a clause of F ×G,
where Ci is a clause of F and Dj is a clause of G. Since ‖J‖ < k+`, either ‖H‖ < k
or ‖I‖ < `. In the first case, there is an H ′ w H in H such that all assignments
in H ′ satisfy Ci. Then H ′ × I is an admissible configuration in J such that all
assignments in it satisfy Ci ∨Dj . The second case is analogous.

Therefore, we get:

Theorem 3.3. There are CNF formulas G with n2 variables, size O(n)n, and such
that WR(G ` ⊥) = O(n) and MSpace(G ` ⊥) = Ω(n2).

Proof. Again, let F be a CNF with constant width, n variables and size Θ(n), that
is Ω(n)-extendible. Such formulas exist, see [14, 24, 15, 12]. The formulas

Fn := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables, have res-
olution width O(n), and from Lemma 3.3 they are Ω(n2)-extendible, thus from
Theorem 3.2 require Ω(n2) monomial space.

3.3 A super-polynomial separation between resolution and LK−

size

Many of the relations in resolution involving width, can be as well stated for LK−.
In fact, they seem to be better suited for LK−; there, the additive W (F ) factor
that naturally comes with resolution width disappears. We have already seen that
WLK−(` F →) ≤ CSpace(F ` ⊥), refining the relation between clause space and
width of [4]. But let us give an alternative, constructive proof, here. For sets S and
T of formulas, we write S |= T if every total assignment satisfying every formula
in S, also satisfies every formula in T .

Theorem 3.4. For any unsatisfiable CNF formula F ,

WLK−(` F →) ≤ CSpace(F ` ⊥).

Proof. LetM1, . . . ,Mt be a refutation of F , of clause space s. We shall construct
a sequence T1, . . . ,Tt of trees, the vertices of which are labelled by sets of literals,
such that for every set S labelling a leaf of Ti, S |=Mi and |S| ≤ |Mi|.

We set T1 to be a tree with one vertex labelled by the empty set. Now, suppose
we have constructed Ti−1. If Mi results from Mi−1 via an inference step, we set
Ti := Ti−1. If Mi ⊆ Mi−1, then we add to every leaf of Ti−1 labelled by a
satisfiable set S, a child labelled by a subset S′ ⊆ S such that |S′| ≤ |Mi| and
S′ |=Mi. Finally, ifMi =Mi−1 ∪{C}, for a clause C = `1 ∨ · · · ∨ `r of F , we add
to every child of Ti labelled by a satisfiable set S, r children labelled by the sets
S ∪ {`j}.

Replacing each set {`1, . . . , `k} occurring in Tt, by the clause `1 ∨ · · · ∨ `k, we
get an LK− refutation of F of width at most s. It is clear from the construction
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of Tt that every clause has width at most s and every clause not at a leaf, results
from the clauses at its children via either the weakening or the ∨L rule. Moreover,
since Mt is unsatisfiable, no set labelling a leaf of Ti is satisfiable, that is sets at
the leaves become weakenings of axioms.

Let us note that Theorem 3.4 is generalized in [38] to show that WLK(F ` ⊥) is
equal, up to a constant factor, to the minimum Σ2 space, a natural analogue of
clause space for depth 2 Frege systems, needed to refute F .

Next, we have the size-width relations of [11]. Here the proofs are the same
as those in [11]. We shall need the following lemma, saying that LK− proofs are
closed under taking restrictions. For a partial assignment α and an LK− refutation
π of a CNF formula F , the restriction π|α of π to α is obtained from π by deleting
all clauses that become true by α, and deleting from all clauses the literals that
become false by α.

Lemma 3.4. π|α is an LK− refutation of F |α.

Lemma 3.4 also holds for resolution as long as we add the weakening rule [11].

Theorem 3.5. For any unsatisfiable CNF formula F ,

WLK−(` F →) ≤ logSTR(F ` ⊥) + 1.

Proof. This is in fact a weakened version of Theorem 3.4, as CSpace(F ` ⊥) ≤
logSTR(F ` ⊥) + 1 [22]. But let us give a direct construction instead. We shall
construct, by induction on s, for every tree-like resolution refutation T of F of size
s, an LK− refutation of F of width at most log s+ 1.

Base cases. If T has size 1, then it has width 0; if it has size 3 then it has width 2.

Inductive step. Suppose that T has size s > 3. Let T1 and T2 be the subproofs
of T, deriving ¬x and x respectively for some variable x. One of T1 and T2, say
T1, must have size at most s/2. T1|x is a refutation of F |x of size at most s/2,
and T2|x is a refutation of F |x of size less than s. From the induction hypothesis,
there are LK− refutations π1 and π2 of F |x and F |x of width log s and log s + 1
respectively. Start with π2. To every application of the rule

C ∨ `1 · · · C ∨ `r
C

,

where `1 ∨ · · · ∨ `r ∨ x is a clause of F , add the extra premise C ∨ x. But x can
be derived from π1, and hence all those C ∨ x can be derived via the weakening
rule from x: We can do the same to π1, now adding C ∨ x as the extra premise,
and moreover add to every clause the variable x. The refutation obtained when we
combine π1 and π2 is a valid LK− refutation of F of width at most log s+ 1.

Theorem 3.6. For any unsatisfiable CNF formula F over n variables,

WLK−(` F →) = O

(√
n logSLK−(` F →)

)
.
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Proof. The construction will be the same as that of Theorem 3.5. The problem
here is that it is not clear what variable to choose to recurse on. The trick is to
choose the variable that appears more often in the clauses of the proof.

For an LK− refutation π of a CNF and a d ≥ 0, let π∗ be the set of clauses in
π of width greater than d. We call the clauses in π∗ the fat clauses of π. We show,
by induction on n, that for any CNF F in n variables, any LK− refutation π of F
and any integers d, b ≥ 0,

|π∗| < ab =⇒ WLK−(` F →) ≤ d+ b,

where

a =

(
1− d

2n

)−1

.

The theorem follows taking π to be of minimum size and d :=
⌈√

n logS(π)
⌉
.

Base case. If n = 1, then there is an LK− refutation of F of width 2, and in the
case that b+ d < 2 the implication becomes trivially true.

Inductive step. Suppose that n > 1, let d, b ≥ 0, and let π be an LK− refutation
of F with |π∗| < ab. If b = 0, then π itself is a refutation of width at most d + b.
Suppose b > 0. There are 2n literals, so there must be some literal, say the variable
x, appearing in at least d|π∗|/(2n) clauses in π∗. π|x is an LK− refutation of F |x
with at most

|π∗|
(

1− d

2n

)
< ab−1

fat clauses, so by the induction hypothesis (notice that a is a decreasing function of
n), there is an LK− refutation π′ of F |x of width at most d+b−1. Furthermore, π|x
is an LK− refutation of F |x with less than ab clauses, so by the induction hypothesis,
there is an LK− refutation π′′ of F |x of width at most d+ b. Combining π′ and π′′

as in the proof of Theorem 3.5, we get an LK− refutation of F of width at most
d+ b.

Notice that in Theorems 3.4 and 3.5, we have LK− in the left hand side and
resolution in the right hand side. That is to say, cuts are eliminated when con-
structing the small width proofs. It is tempting to speculate on whether the same
is also true for Theorem 3.6, that is whether we can replace SLK−(` F →) with
SR(F ` ⊥). After all, the only place where we need LK− in the right hand side is
the case b = 0. Theorem 3.1 says that this cannot be true. In fact, the formulas of
Theorem 3.1 give the main theorem of this section, which is:

Theorem 3.7. There is a CNF formula F with n2 variables and size O(n)n, such
that SR(F ` ⊥) = O(n)n but SLK−(` F →) ≥ exp(Ω(n2)).

Proof. The formulas of Theorem 3.1 are such. The upper bound SR(F ` ⊥) =
O(n)n follows from the construction of Lemma 3.2. The lower bound follows from
the fact that WLK−(` F →) = Ω(n2) and Theorem 3.6. Namely, Theorem 3.6 gives

SLK−(` F →) ≥ exp

(
Ω

(
(WLK−(` F →))2

n2

))
= exp

(
Ω
(
n2
))
.
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It is important to note that the exp
(
Ω
(
n2
))

lower bound in Theorem 3.7 holds
for the version of LK− operating on clauses, where the clauses of the CNF formula
F to be refuted are viewed as disjunctions of unbounded arity. It does not hold
when the clauses of F are made up from binary disjunctions and moreover we are
free to choose the order in which they are applied. If ∨ in the definition

F ×G def
=

s∧
i=1

t∧
j=1

(Ci ∨Dj)

of F × G, is seen as a binary disjunction, then having derived C1, . . . , Cn → and
D1, . . . , Dt →, it is easy to see that we may derive from these sequents in s · t steps,
C1∨D1, . . . , C1∨Dt, . . . , Cs∨D1, . . . , Cs∨Dt →, and in this case Fn in Theorem 3.7
has an LK− refutation of size nO(n). An analogous situation occurs between the
tree-like versions of LK− and resolution [3]. But let us notice, concluding, that with
binary disjunctions, LK− cannot be seen as a system operating on clauses, and it
becomes rather unnatural to compare it with resolution — it is not even clear, in
this case, whether resolution can polynomially simulate LK−. LK− for clauses
consisting of binary disjunctions is closer to resolution with limited extension, in
which case resolution does polynomially simulate it [46].
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4 Space characterizations of complexity measures and
size-space trade-offs

The aim of this is section to state and prove all new non-trivial simulations of
Figure 1. We start with the simulations in the middle cluster.

4.1 Tree-like resolution size and regularized monomial space

We show that logST,R, TCSpace, RCSpace, CSpace∗ and MSpace∗, are all equal
up to polynomial and log n factors. Recall that for a space measure µ on configura-
tional proofs, we define its regularized version µ∗ as µ∗(F ` ⊥)

def
= minπ(µ(π) log |π|),

where |π| is the number of configurations in π. Our main new contribution is the
following simulation. (The second item is included since it allows us to shave off the
log n factor with little additional work, and this will give a slightly better bound
in Theorem 4.5.)

Theorem 4.1. For any unsatisfiable CNF formula F over n variables,

logST,R(F ` ⊥) ≤ 2MSpace∗(F ` ⊥) log(n+ 1),

TCSpace(F ` ⊥) ≤ 2 (MSpace∗(F ` ⊥) + 1) .

Proof. The proof is analogous to the construction in [42] showing that depth is
upper bounded by regularized variable space. Let M1, . . . ,Mt be a refutation of
F in configurational form, of monomial space s. We show, by induction on d, that
for every interval [i..j] ⊆ [1..t] with j > i, j − i ≤ 2d, and for every clause D
such that αD |=Mi and αD |= ¬Mj , it holds that ST,R(F ` D) ≤ (n + 1)ds and,
moreover, the assumed tree-like resolution proof can be carried out in clause space
at most ds + 2. The theorem follows by taking [i..j] := [1..t], d := dlog te and
D := ⊥.

Base case. Suppose that d = 0, so that j = i+ 1. The statement is vacuously true
except when the step consists in downloading an axiom C from F , simply because
in all other cases we have Mi |=Mi+1 and hence D with the specified properties
does not even exist. Let D be a clause for which αD |=Mi and αD |= ¬(Mi∪{C}).
Then we necessarily must have αD |= ¬C, which is equivalent to saying that D is
a weakening of C.

Inductive step. Suppose that d > 0, let [i..j] ⊆ [1..t] be any interval with j−i ≤ 2d,
j > i + 1, and let D be a clause such that αD |= Mi and αD |= ¬Mj . Set k :=
i+d(j−i)/2e, so that k−i ≤ 2d−1 and j−k ≤ 2d−1. Let the list m1, . . . ,ms contain
all monomials occurring in Mk. For a clause A and a monomial m = `1 . . . `r,
consider the tree shown in Figure 3 designating a derivation of A in resolution;
it is obtained from the obvious decision tree deciding m by reversing edges and
weakening the result by A. Denote this tree by TA;m.

Let us now describe the required tree-like resolution proof of D. Start with
TD;m1 . To every leaf of TD;m1 labelled by a clause D′, append the tree TD′;m2 .
Continue this process for all m1, . . . ,ms. If at any point during this construction, a
forbidden disjunction containing a variable and its negation occurs, then we delete
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A

A ∨ `1 A ∨ `1

A ∨ `2 A ∨ `1 ∨ `2
...

A ∨ `1 ∨ · · · ∨ `r−1

A ∨ `r A ∨ `1 ∨ · · · ∨ `r

Figure 3: The tree TA;m

that node and contract at its parent. The resulting tree T has at most (n + 1)s

leaves, and each of its leaves is labelled by a clause E such that αE |= Mk or
αE |= ¬Mk. From the induction hypothesis, there are tree-like resolution proofs
of all those clauses from F , of size (n + 1)(d−1)s. Therefore, there is a tree-like
resolution proof of D from F of size (n+ 1)ds.

To see that this proof can be carried out in clause space at most ds+ 2, notice
that the proof designated by T can be carried out in clause space s+2. Proceed with
this proof, and whenever a clause at its leaves is downloaded, keep all current clauses
in memory (there are at most s of them — the maximum clause space is hit when
the parent of two leaves is brought to memory), and derive it in clause space at most
(d− 1)s+ 2. The fact that such a derivation exists is guaranteed by the induction
hypothesis. The resulting proof has clause space at most s+(d−1)s+2 = ds+2.

Remark 4.1. As we already remarked in the introduction, the above construction
works for any sound system whose configurations are Boolean functions of mono-
mials. In particular, it works for the purely semantic system called functional
calculus [1]. Even more generally, it works for any proof system in which small
configurations have low decision tree complexity.

For the rest of the relations, we claim that for an unsatisfiable CNF formula F
over n variables, we have

RCSpace(F ` ⊥) ≤ TCSpace(F ` ⊥)

≤ logST,R(F ` ⊥) + 2

≤ 2 (MSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (CSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (RCSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2
(

(RCSpace(F ` ⊥))2 log(n+ 1) log(2n) + 1
)
.

The first inequality follows from the observation that every tree-like refutation can
be pruned to the regular form, and this operation does not increase its space. The
second inequality is [22, Theorem 2.1], and the third is Theorem 4.1. The fourth
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and the fifth inequalities are obvious. Finally, the last inequality follows from
[22, Corollary 4.2]. Namely, Esteban and Torán showed that if π is a resolution
refutation, in configurational form, of clause space s and depth d, then

|π| ≤
(
d+ s

s

)
. (4.1)

Taking π to be a regular resolution refutation of minimum clause space, we get,
since a regular refutation must have depth at most n,

RCSpace∗(F ` ⊥) ≤ (RCSpace(F ` ⊥))2 log(2n).

As a byproduct, we get that TCSpace ≈ RCSpace. This comes in sharp contrast
with the situation for size, where there is an exponential separation between tree-
like and regular resolution [8].

We also see that, somewhat surprisingly, instead of regularizing clause space by
multiplying it by the logarithm of size, we could have as well used a much weaker
regularization by multiplying by the logarithm (!) of depth, and the resulting
measure would still be in this cluster. This allows us to re-cast the main open
problem of whether CSpace ≈ CSpace∗ in terms of the existence of a super-critical
(in the sense of [41]) trade-off between clause space and depth.

The remaining (non-trivial) simulation on Figure 1 involving this cluster is:

Theorem 4.2. For any unsatisfiable CNF formula F ,

TCSpace(F ` ⊥) ≤ DP,R(F ` ⊥) + 2.

Proof. The argument is a refinement of the argument in [22] showing that tree-like
clause space is bounded by depth. We show, by induction on T, that if T is a
tree-like resolution proof of a clause E from F of positive depth d, then there is a
tree-like resolution proof, in configurational form, of E from F of clause space at
most d+ 2.

If T has size at most 2, then d ≤ 1, and TCSpace(F ` ⊥) ≤ 3. Otherwise, let
T1 and T2 be the subproofs of T proving the two clauses E1 and E2 respectively
from which E is derived via an application of the resolution rule and possibly
applications of the weakening rule. One of T1 and T2, say T1, must have positive
depth at most d− 1. From the induction hypothesis, there is a tree-like proof π1 of
E1 of clause space at most d+ 1, and a tree-like proof π2 of E2 of clause space at
most d+ 2. Deriving first E2 using π2, and then, keeping E2 in memory, deriving
E1 using π1, we get a proof of E of clause space at most d+ 2.

4.2 Resolution width and Σ2 space

The simulations for our second cluster will depend upon the following “locality”
property of depth 2 Frege.

Lemma 4.1. Let α be a partial assignment. For each of the inference rules of
depth 2 Frege, if both premises contain a term satisfied by α, then α satisfies some
term in the conclusion.
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The main theorem of this section says that as long as we transition from depth
1 Frege to depth 2 Frege, then not only width continues to be smaller than space,
but in fact it becomes (almost) equal to it. As a historical remark, an extension
of the Atserias-Dalmau bound (1.3) for the case of Res(k) is sketched in [25], and,
although it is not stated explicitly, it is also apparent in [21].

Theorem 4.3. For any unsatisfiable CNF formula F ,

1

5
Σ2Space(F ` ⊥) ≤WR(` F →) ≤ Σ2Space(F ` ⊥).

Proof. LetM1, . . . ,Mt be a depth 2 Frege refutation of F , of Σ2 space s. We will
construct an increasing sequence T1, . . . ,Tt of derivations in the system “resolution
plus the rule (2.2)”. The property we are going to maintain is that for every clause
D labelling a leaf of Ti, either D is a weakening of a clause C in F (call such a leaf
an axiom leaf) or the following holds:

1. for every G ∈Mi, αD satisfies some term of G;

2. W (D) ≤ Σ2Space(Mi).

T1 has one vertex labelled by the empty clause. Now suppose we have con-
structed Ti−1 such that 1 and 2 hold for all non-axiom leaves. For every such leaf
v labelled by a clause D, do the following.

Axiom Download : Suppose thatMi =Mi−1∪{C}, where C = `1∨· · ·∨`r is either
a clause of F (viewed as a 1-DNF) or a logical axiom x ∨ x. If C and D contain
conflicting literals, then item 1 is automatically satisfied and we do nothing at this
leaf. Next, C ⊆ D would have implied that C is a clause of F which is impossible
since we have assumed that the leaf is non-axiom. Thus, there exists at least one
j ∈ [r] such that `j 6∈ D, and for any such j we add to v a child labelled by D ∨ `j .
This will be an application of the rule (2.2) if C is a clause or of the resolution rule
if C is x ∨ x.

Erasure: Suppose that Mi ⊆ Mi−1. Then add to v a single child labelled by a
clause E ⊆ D such that W (E) ≤ Σ2Space(Mi) and for every G ∈Mi, αE satisfies
some term of G.

Inference is immediately taken care of by Lemma 4.1, D does not change.

Since ⊥ ∈ Mt, Tt may not contain any non-axiom leaves and hence defines a
refutation. Also, it is clear from the construction and property 2 above that any
clause D appearing in it must satisfy W (D) ≤ max1≤i≤t Σ2Space(Mi) = s. Hence
W (`F ⊥) ≤ s.

For the converse inequality, suppose that C1, . . . , Ct is a refutation in the system
“resolution plus rule’ (2.2)”, of width w. For every i ∈ [t], set

Gi :=

i∨
j=1

Cj .
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Each Gi is a w-DNF. For our small space refutation, we will first derive Gt and
Gt−1 ∨Ct, then cutting on Ct derive from these formulas Gt−1, then derive Gt−2 ∨
Ct−1, and continue this way until we get the empty clause. Notice that Gi−1 ∨ Ci
is either a tautology with an obvious derivation in depth 2 Frege, or Ci is a clause
of F . In the latter case, we can immediately derive Gi−1 ∨ Ci. Otherwise, Ci will
be the result of applying either the resolution rule or the weakening rule or rule
(2.2) to some clauses among C1, . . . , Ci−1. In either case, it can be checked that
Gi−1 ∨ Ci has a tree-like proof of Σ2 space at most 3w, and therefore the proof
above can be carried in Σ2 space at most 5w.

Remark 4.2. The second part of this proof implies that a posteriori, DNF resolu-
tion will retain its power in terms of space even if we restrict the formula space
(the maximum number of DNFs in a configuration) to a constant. This in turn
immediately implies, also a posteriori, that we can balance our definition of Σ2

space replacing in it W (G1) + . . .+W (Gs) with s ·max(W (G1), . . . ,W (Gs)), and
the resulting measure will still be equivalent to Σ2 space. We are not aware of a
direct proof of this simulation by-passing width.

Next, we show how to control the length of a proof, ruling out for DNF resolu-
tion strong length-space trade-offs conjectured for variable, clause and monomial
space.

Corollary 4.1. For any unsatisfiable CNF formula F with n variables,

Σ2Space∗(F ` ⊥) ≤ O
(

(Σ2Space(F ` ⊥))2 log n
)
.

Proof. Let s := Σ2Space(F ` ⊥). By the first part of Theorem 4.3, F has a
width O(s) resolution refutation with the additional rule (2.2). We apply to this
refutation the construction from the second part of Theorem 4.3 in which we can
clearly assume t ≤ nO(s) (since all clauses in the sequence can be assumed to be
different). By an easy inspection, the length of the resulting refutation will still be
nO(s). Therefore,

Σ2Space∗(F ` ⊥) ≤ O(s2 log n).

The following is known for space in regular or tree-like resolution (see [23]
or Section 4.1 above), is trivial for variable or total space and is wide open for
clause and monomial space (again, see Section 5 for a more thorough discussion).
Remarkably, Corollary 4.2 is about a measure that is below (smaller than) clause
space unlike the known cases mentioned above.

Corollary 4.2. If F has a constant Σ2 space refutation, then it has a refutation
of constant Σ2 space and polynomial length.

Proof. The refutation constructed in the proof of Corollary 4.1 will in our case also
have constant Σ2 space.

Let us finally deal with the remaining measure, tree-like proofs in R(log). (Re-
call that an R(log) refutation of a formula F is a depth 2 Frege refutation of size
s in which every term has width at most log s.)
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Theorem 4.4. Let F be an unsatisfiable CNF formula over n variables. Then

Σ2Space(F ` ⊥)1/2 ≤ logST,R(log)(F ` ⊥) ≤ O(WR(` F →) log n).

Proof. For the upper bound, let π be a resolution refutation of F of width w :=
WR(` F →). Apply to it the construction in the second part of the proof of The-
orem 4.3 once again. By inspection (cf. the proof of Corollary 4.1), this refutation
is tree-like, has size nO(w) and every term occurring in it has width at most w.
Padding it with dummy formulas if necessary, we can assume that it has size ≥ 2w

which makes it into a tree-like R(log) refutation of the required size.
For the lower bound, the argument is an adaptation of the argument in [22]

showing (1.5). Namely, by pebbling, a tree-like proof T of size s > 1 can be turned
into a proof in configurational form, where each configuration contains at most log s
formulas occurring in T. If T is a refutation in R(log), then all terms occuring in
T have width at most log s, so the resulting refutation has Σ2 space (log s)2.

4.3 A lower bound on regularized monomial space

One application of the results of the previous section is that they easily allow us
to show lower bounds on regularized clause.

It is known [29, 28] that there are formulas F of size Θ(n) that have a resolution
refutation of size O(n), but

MSpace∗(F ` ⊥) ≥ n1/2/(log n)O(1).

Theorem 4.1 immediately gives the following improvement.

Theorem 4.5. For every n ≥ 0, there is a formula F of size Θ(n) that has a
resolution refutation of size O(n), width O(1), and such that

MSpace∗(F ` ⊥) ≥ Ω (n/ log n) .

Proof. [8] demonstrates the existence of an O(1)-CNF F that has resolution refu-
tations of size O(n), width O(1), and such that logST,R(F ` ⊥) ≥ Ω(n/ log n). In
fact, [8] shows that Ω(n/ log n) is also the lower bound on the number of points
the Delayer can score in the Prover-Delayer game of [40] played on F . Now, it is
proved in [23] that this number of points is precisely equal to TCSpace(F ` ⊥) and
then the result immediately follows from the second inequality in Theorem 4.1.

Echoing remarks made in [29, Section 1.2], we do not know of any non-trivial
upper or lower bounds on the monomial (or, for that matter, clause) space of the
formulas from [8].

4.4 Trade-offs between positive depth and tree-like size for Horn
formulas and tree-like size lower bounds

We would like next to focus on tree-like size lower bounds for resolution attained for
formulas with small clause space. We will show that a tree-like resolution refutation
of a Horn formula actually describes a pebbling strategy, the space and time of the
strategy being the positive depth and size respectively of the proof. This gives
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a more transparent version of the result of [8] used in the proof of Theorem 4.5,
which moreover has a natural generalization allowing us to prove some tree-like
lower bounds for formulas of small clause space.

4.4.1 Horn formulas — basics

Horn formulas, that include pebbling formulas, have seen a plethora of applications
in proof complexity over the past two decades, including separating resolution size
from tree-like resolution size [8], separating width from variable space and clause
space [6, 9, 10], separating depth from tree-like clause space [48], and giving trade-
offs [6, 10, 29, 5], to name a few.

A CNF formula is called Horn if every clause in it has at most one non-negated
variable. Equivalently, it is a set of atomic sequents, i.e. sequents containing vari-
ables, with at most one variable at the right hand side of each sequent.

The following result states that Horn formulas make up, in a certain sense, the
easiest class of formulas for proof complexity. For its purposes, it is convenient
to define a slightly modified version CSpace(` F →) of clause space. Namely, we
replace the three standard rules with the following

Three-in-one rule: from a configuration M, infer any configuration M∗ ⊆M∪
F ∪ {C}, where C is obtained from clauses in M, F via the resolution or
weakening rule.

Theorem 4.6. Let F be a CNF formula. The following are equivalent:

1. F contains an unsatisfiable CNF sub-formula resulting from a Horn formula
by negating some of its variables;

2. CSpace(F ` ⊥) ≤ 3;

3. CSpace(` F →) ≤ 1;

4. WR(` F →) ≤ 1.

Proof. For 1 =⇒ 2, we can w.l.o.g. assume that F itself is an unsatisfiable Horn
formula. We show, by induction on the number of variables n, that it can be refuted
in clause space 3. The base case is trivial. Now, suppose that n > 0, and let y be
a variable such that F contains the clause → y. Such a clause must exist, for if
every clause contained a negated variable, then we could satisfy F by setting every
variable to false. Setting y := 1, we get an unsatisfiable Horn formula F |y:=1 with
n− 1 variables. From the induction hypothesis, there is a clause space 3 refutation
of F |y=1. Weakening every clause in it by y gives us a space 3 proof of y from F .
Now we only have to download y and infer ⊥.

For 2 =⇒ 3, let M1, . . . ,Mt be a space 3 refutation of the formula F ; we
can assume w.l.o.g. that it does not contain weakening rules. Consider a path in
the corresponding refutation tree of maximum possible length, say Ci ∈ Mti (0 ≤
i ≤ h) are such that t0 < . . . < th = t, C0 is an axiom, Ch = ⊥ and for i ≥ 1,
Ci is obtained by resolving Ci−1 with some Di−1 ∈ Mti−1. It remains to show
that Di−1 is actually an axiom for any i ≥ 1. For i = 1 this follows from the
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maximality of the chosen path. For i ≥ 2, we have Mti−1 = {Ci−2, Di−2, Ci−1}.
Therefore Ci−1 is consistent (and hence not resolvable) with the two other clauses
in Mti−1 . All clauses that may have been inferred in Mti−1+1, . . . ,Mti must have
Ci−1 as one of their premises and, as a consequence, are also not resolvable with
Ci−1. Hence the only clauses in those configurations that may be resolvable with
Ci−1 (in particular, Di−2) are the axioms.

The implication 3 =⇒ 4 is proven by an argument similar to the first part
of the proof of Theorem 4.3. Namely, a space 1 refutation of minimum length in
the three-in-one model must necessarily be a sequence {C1}, . . . , {Ct}, where C1 is
obtained by resolving two clauses in F and Ci+1 is obtained by resolving Ci with
a clause in F . The non-axiom leaves of the tree Ti will simply be all those literals
among `i1, . . . , `i,ri , where Ci = `i1 ∨ . . . ∨ `iri that are not axioms of F . It is
routinely to check that, as in the proof of Theorem 4.3, Ti is a resolution derivation
using the rule (2.2).

Finally, for 4 =⇒ 1, we again proceed by induction on the number of variables
n of F . The base case is trivial. Suppose that n > 0. The fact that there is a
width 1 refutation of F , forces F to have a one literal clause (since the refutation
must start somewhere), say `. Setting ` := 1, we get a width 1 refutation of F |`:=1.
From the induction hypothesis, a sub-formula G of F |`:=1 is unsatisfiable Horn up
to negating some variables. Let Ĝ be the corresponding sub-formula of F ; Ĝ is
obtained from G by restoring ` to some of its clauses. Then Ĝ∧` is an unsatisfiable
Horn sub-formula of F .

4.4.2 Tree-like resolution proofs as pebbling strategies

The paper [6] shows that a configurational resolution refutation π of the so-called
pebbling contradiction PebG on a graph G defines a pebbling strategy on G, of time
at most |π| and space equal to the variable space VSpace(π). These are strategies
in the so-called black-white game of [19]. We shall show that a tree-like resolution
proof T of any Horn formula H defines a pebbling strategy of time equal to the size
of T and space essentially equal to the positive depth of T. These are strategies in
the more basic black-only pebbling game that in the case H = PebG corresponds
to the black-only pebbling game on G. They were considered by Urquhart [48] who
showed how to relate them to ordinary depth. Thus, in a sense, our Proposition
4.1 below can be viewed as a (far-reaching) refinement of his result.

The rules of the black-only pebbling game, played on a Horn formula H, are as
follows. There is a limited amount of pebbles. Pebbles are placed on the variables
of H according to the rules:

1. A pebble can be placed on a variable y if x1, . . . , xk → y is a clause of H, and
all x1, . . . , xk have pebbles on them. In particular, a pebble can be always
placed on any variable y such that → y is a clause of H.

2. A pebble can be removed from a variable at any time.

A configuration of the pebbling game is a set of the variables of H. A pebbling
strategy is a sequence of configurations, each resulting from the previous one by
one of the rules above. We say that a pebbling strategy refutes H if it ends with a
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configuration where for some clause x1, . . . , xk → of H, all variables x1, . . . , xk are
pebbled. Note that if H is unsatisfiable, then such a clause must exist.

Proposition 4.1. Let H be an unsatisfiable Horn formula. A tree-like resolution
refutation T of H of size s and positive depth d can be converted into a pebbling
strategy that, starting with the empty configuration, refutes H in at most s steps
and using at most d+ 1 pebbles.

Proof. We begin with a slight modification of our refutation. Namely, viewing T
as a decision tree, its nodes naturally correspond to partial assignments, and for
the clause C sitting at the node α, we have α |= ¬C. Let us replace C with the
maximal clause satisfying this property. This will give us a refutation, of the same
size and positive depth, in which the resolution rule (2.3) is reduced to

C ∨ x C ∨ x
C

(4.2)

and leaves are labelled by weakenings of axioms in H.
This refutation need not necessarily consist of Horn formulas even if the original

one did so. Nonetheless we will still represent clauses in the sequential form S → T ,
where S, T are disjoint sets of variables, like at the beginning of Section 4.4.1. Note
that |S| ≤ d for any clause S → T appearing in T.

We shall now show by induction that every subtree of T deriving a clause
S → T , leads to a pebbling strategy that, starting with pebbles on all variables of
S and using at most d+ 1 pebbles, either refutes H, or ends with a configuration
which has pebbles on all variables of S and on one variable of T . Thus, if T is
empty then the former must occur and, in particular, the strategy corresponding
to the empty sequent → will start with no pebbles on the variables of H and will
refute H.

Suppose that S → T is at a leaf. If there are variables x1, . . . , xk in S such
that x1, . . . , xk → is a clause of H, then that leaf describes a strategy that, starting
with pebbles on all variables in S, immediately refutes H. Otherwise, there must
be variables x1, . . . , xk in S and a variable y in T such that x1, . . . , xk → y is a
clause of H. Then the strategy of that leaf is to put a pebble on y. Since |S| ≤ d,
the number of pebbles used is at most d+ 1, as required.

If S → T is not at a leaf, then consider its left and right subtrees T1 and T2

proving S, x→ T and S → T, x respectively (cf. (4.2)). The strategy corresponding
to S → T is defined as follows. First follow T2’s strategy. If that strategy either
refutes H or places a pebble on one of T ’s variables, then we are done. Otherwise,
when the strategy of T2 is concluded, there are pebbles on S and x. Remove all
other pebbles and follow the strategy of T1. The bound d + 1 on the number of
pebbles used at any moment follows from the same bound for T1 and T2.

Clearly, the number of steps of the pebbling strategy corresponding to → is at
most the size of T, and the required bound on the number of pebbles was already
noticed.

Remark 4.3. The proof of Proposition 4.1 relies on an intuitionistic interpretation
of the resolution rule. In the intuitionistic tradition, the denotational view of
assigning truth values is, philosophically, nonsense. A proposition is “true” if it is
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provable, and a proof of e.g. a formula S → T is a construction that given proofs of
all the elements of S produces a proof of some element in T . What Proposition 4.1
says is that a tree-like resolution derivation of S → T precisely describes such a
construction, assuming that proofs of all the clauses of H are known. Moreover
this construction will be economical in the number of steps and memory if the size
and the positive depth respectively of the proof are small.

Let us further notice, that although Proposition 4.1 is stated for Horn formulas,
it really is general. A tree-like resolution derivation T of S → T from clauses
S1 → T1, . . . , Sm → Tm describes, in the same way as in the proof of Proposition 4.1,
a construction that given proofs for all elements of S, produces a proof of some
element in T . Which of the elements in T will a proof be given for, or for that
matter the construction itself, will now not be uniquely determined; it will depend
on which of the elements of the sets Ti’s were proofs given for at the leaves. T
describes at the same time constructions for any of these choices.

4.4.3 Tree-like size lower bounds

The following theorem turns pebbling time-space trade-offs for a Horn formula H
into tree-like size lower bounds for its substituted version H[∨2]. We formulate it
in a somewhat general form, to account for various kinds of pebbling trade-offs in
the literature.

Recall that the substituted version F [∨2] of a CNF F (x1, . . . , xn) is defined by
replacing xi with yi∨ zi for mutually distinct variables {y1, z1, . . . , yn, zn}, followed
by converting the result back to the CNF form in the straightforward way.

Theorem 4.7. Let H be an unsatisfiable Horn formula on n variables. Suppose
that every pebbling strategy that refutes H in s steps and using d pebbles, starting
with no pebbles on its variables, satisfies

(d− 1) · f(s) ≥ g(n)

for non-decreasing positive functions f, g. Then

f(t) log t ≥ g(n),

where t
def
= ST,R(H[∨2] ` 0).

Proof. Create a probability space of partial assignments by choosing independently
for every variable x of H, which was substituted by y ∨ z, one of y and z with
probability 1/2 and setting it to zero. Note that for any α from this space, H[∨2]|α
is identical to H up to renaming its variables and hence T|α is a refutation of
H, again up to renaming variables. Let T be an arbitrary tree-like resolution
refutation of H[∨2] of size t represented as in the proof of Proposition 4.1, that
is with weakenings at the leaves only. Let σ1, . . . , σk be all clauses S → T with
|S| ≥ g(n)/f(t) occurring as a leaf in T. We have that

P

[
k∨
i=1

(σi|α 6= 1)

]
≤

k∑
i=1

P [σi|α 6= 1] ≤ k2−g(n)/f(t) ≤ t2−g(n)/f(t).
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If f(t) log t < g(n), then the above probability is smaller than 1, which means
that there is a point α in our sample space such that T|α is a tree-like resolution
refutation of size at most t and positive depth ≤ g(n)/f(t). This, from Proposi-
tion 4.1, gives a pebbling strategy that refutes H in t steps using d pebbles, where
(d− 1) · f(t) < g(n).

Recall that for a DAG G, the pebbling contradiction PebG is defined as the
Horn formula consisting of all clauses S → x, where x ∈ V (G) and S is the set of
all its immediate predecessors, as well as the clauses x→ for any sink x. Plugging
into Theorem 4.7 various DAGs from the literature with known bounds on their
pebbling complexity and various functions f , we can get several corollaries.

The first is a simplified proof of the separation by Ben-Sasson et al.

Corollary 4.3 [8]. There are formulas of size O(n) having DAG-like resolution
refutations of size O(n), every tree-like resolution refutation of which requires size
exp(Ω(n/ log n)).

Proof. This is by setting f := 1 in Theorem 4.7, and using the graphs of [39] having
constant in-degree and requiring Ω(n/ log n) pebbles to pebble.

The next result was promised in the introduction. It should be compared with
Theorem 4.6.

Theorem 4.8. There are formulas of size O(n) having tree-like resolution refu-
tations of clause space 4, every tree-like resolution refutation of which has size
Ω(n2/ log n).

Proof. This is by setting f(t) := t in Theorem 4.7, and using the graphs of
[34, Theorem 2.3.2] having linear size and exhibiting a dt ≥ Ω(n2) trade-off.
These graphs can be pebbled using 3 pebbles, and that immediately gives that
CSpace(PebGn [∨2] ` ⊥) ≤ O(1). By being more careful, however, we can bring
the space down to the minimum possible value, namely 4, for which a super-linear
lower bound on tree-like resolution size is possible.

More precisely, the above graphs have the following form. They contain two
directed vertex-disjoint paths, let us call them U and L, and there are additional
edges from vertices of U to vertices of L (see Figure 4). Moreover, the indegree
of any vertex in D is two, that is, there are no two vertices in U both with edges
to the same vertex in D. Let G be such a graph, and let H

def
= PebG be the

u1 u2 u3 u4 u5
· · ·

un−1 un

v1 v2 v3 v4 v5

· · ·
vn−1 vn

Figure 4: The form of the graphs giving the trade-off in Theorem 4.8

corresponding Horn formula. Call the variables of the path U , u1, . . . , un and the
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variables of L, v1, . . . , vn as in Figure 4, and suppose that to obtain H[∨2], ui is
substituted by xi∨ yi and vi by zi∨wi. We first note that any clause xi∨ yi can be
derived in clause space 3. This is because the formula resulting by negating all the
variables of PebU [∨2] is Horn, so by Theorem 4.6, CSpace(PebG[∨2] ` xi ∨ yi) ≤ 3.
Notice that the derivations provided by Theorem 4.6 are tree-like. To show the
bound CSpace(H[∨2] ` ⊥) ≤ 4, we need to show, having derived zi−1∨wi−1, how to
derive zi∨wi. Suppose that uj∨vi−1∨vj is a clause of H, so that xj∨zi−1∨zi∨wi,
xj ∨wi−1 ∨ zi ∨wi, yj ∨ zi−1 ∨ zi ∨wi and yj ∨wi−1 ∨ zi ∨wi are clauses of H[∨2].
Notice that

CSpace


(zi−1 ∨ wi−1) ∧

(xj ∨ yj) ∧
(xj ∨ zi−1 ∨ zi ∨ wi) ∧
(yj ∨ zi−1 ∨ zi ∨ wi)

` wi−1 ∨ zi ∨ wi

 ≤ 4.

In this derivation, all premises are immediately removed from memory after they
are used as premises in an inference. Similarly, we have

CSpace


(wi−1 ∨ zi ∨ wi) ∧

(xj ∨ yj) ∧
(xj ∨ wi−1 ∨ zi ∨ wi) ∧
(yj ∨ wi−1 ∨ zi ∨ wi)

` zi ∨ wi

 ≤ 4.

Running the first derivation, deleting everything from memory except zi−1∨zi∨wi
and then running the second derivation, deriving xj ∨yj in clause space 3 whenever
it is downloaded in these derivations, we get the desired clause space 4 derivation
of zi ∨ wi.

By using the construction from [34, Theorem 4.2.6] and the superconcentra-
tor graphs of [20], Theorem 4.8 can be further generalized to a lower bound
(n/ log n)Ω(k) on the tree-like resolution size of refuting formulas with clause space
k. We skip the details as they are straightforward but the result still falls very short
of the ultimate goal. Let us further notice that the fact that the space 4 refutation
in Theorem 4.8 is tree-like might be interesting, as typically tree-like resolution size
lower bounds have been proven in the literature based on the prover-delayer game
of [40], which also gives a lower bound for the clause space of tree-like resolution
refutations (cf. Theorem 4.5).
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5 Conclusion

We showed a quadratic gap between resolution and cut-free sequent calculus width.
In terms of the sequent calculus, this says that atomic cuts can shorten the width of
proofs. It is well known that cuts can make proofs exponentially shorter. Allowing
arbitrary cuts we get a system polynomially equivalent with any Frege system.
These are very powerful; proving non-trivial lower bounds for them is completely
out of reach of current methods. But even allowing cuts of depth d + 1 in an
LK system that has cuts of depth d for any constant d ≥ 0, gives exponentially
shorter proofs [31]. And this goes lower: For any constant k ≥ 0, allowing as cut
formulas conjunctions and disjunctions of size k+1 in an LK system that has as cuts
conjunctions and disjunctions of size at most k, again gives exponentially shorter
proofs [44]. We show in this paper that even allowing propositional variables as
cuts, gives super-polynomially shorter proofs.

Cut-free sequent width for refuting CNF formulas naturally compares to well
studied complexity measures related to resolution: it sits between resolution width
and clause space. Our quadratic gap in particular, provides a separation between
resolution width and clause space. Stronger such separations are known [9, 10].
Nontheless, our basic construction extends to provide a quadratic gap between
resolution width and monomial space. This is to be seen in conjunction with the
result of Galesi et al. [26] showing that monomial space provides an upper bound
to resolution width:

WR(F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+W (F ). (5.1)

Several questions remain open:

• Can cut-free sequent calculus width for refuting CNF formulas be bounded
in terms of resolution width? Given the similarity between the two measures,
the combination of Lemmas 3.1 and 3.2 giving a quadratic separation might
come as a surprise. Can this separation be improved? A strong separation
in particular, would give an exponential separation between resolution and
cut-free sequent calculus.

• Our super-polynomial separation of resolution and cut-free sequent calcu-
lus on the one hand applies only when clauses are seen as disjunctions of
unbounded arity. On the other hand, it concerns formulas whose size grows
exponentially on the number of variables. Can there be a separation indepen-
dent of the representation of clauses? Can there be a separation for formulas
of size polynomial to the number of variables?

• Cut-free sequent calculus width is bounded by clause space. Can it be
bounded in terms of monomial space in a relation similar to (5.1)? This
is a good point to also mention that whether (5.1) can be improved to a
linear inequality or there are examples where it is tight is unknown as well,
and there do not seem to be strong indications for which case is true.

• We show that resolution width and monomial space cannot coincide. Whether
they coincide up to polynomial factors however remains open, although it is
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speculated (cf. [29]) that this is not the case, and moreover, as it is the case
for resolution width and clause space [9, 10], there is an O(1) vs Ω(n/ log n)
separation.

We showed that logST,R, CSpace∗ and MSpace∗ are equivalent up to polyno-
mial and log n factors, demonstrating a picture perfectly analogous to the picture
involving DR, VSpace∗ and TSpace∗ in [42]. The most important question remains
(widely) open:

Problem 5.1. Is it true that CSpace ≈ logST,R or MSpace ≈ logST,R? Recall for
comparison that logST,R ≈ CSpace∗ ≈ MSpace∗.

Equivalently, do there exist strong trade-offs between clause (or monomial) space
and length? It should be contrasted with trade-offs results in e.g. [10, 5], and it is a
perfect analogue of Urquhart’s question [48] about variable space vs. depth studied
in [42, Section 6]. Let us make a few more remarks about this problem.

Firstly, for very small space essentially this question was already asked in the
literature before. Namely (see e.g. [35, Open Problem 16]), are there formulas
having constant clause space refutations and with the property that any such refu-
tation must necessarily have super-polynomial length? Suitably adjusting it to our
framework:

Problem 5.2 (small space variant). Are there formulas that have (log n)O(1) clause
or monomial space refutations and with the property that any such refutation must
be of super-quasi-polynomial length exp((log n)ω(1))? Equivalently, any tree-like
resolution refutation must have super-quasi-polynomial length.

In terms of the perceived difficulty, we do not discern too much of a difference
between Problems 5.1, 5.2 and Nordström’s question. In fact, we would like to
cautiously conjecture that there are formulas F with CSpace(F ` ⊥) ≤ 5 and
CSpace∗(F ` ⊥) ≥ exp

(
nΩ(1)

)
. But the only result we were able to prove in that

direction is the rather weak Theorem 4.8.

Secondly, as suggested by Figure 1, any strong separation between monomial
space and clause space would immediately solve Problem 5.1 for monomial space.
As we consider the latter to be most likely very difficult, we take it as a good
heuristic explanation of why we have not seen any progress on the former problem
as well. But let us ask this, and one obviously relevant question, explicitly anyway:

Problem 5.3. Is it true that CSpace ≈ MSpace? Is it true that MSpace ≈WR?

We note that by the result from [36, 9], at least one of these must be false. A
quadratic separation between width and monomial space has been recently proved
by the first author (manuscript in preparation). For a discussion on related topics,
see also [17, Section 7.5.5].

Finally, while all these conjectured trade-offs are very strong, they are still not
super-critical in the sense of [41] (the required lower bound on length never exceeds
2n). The inequality (4.1), however, implies that in all these questions refutation
length can be replaced with depth. Since the depth, as a stand-alone measure, is
always bounded by n, these actually are questions about the existence of a super-
critical trade-off between clause space and depth.
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WR ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

CSpace

logST,R ≈ CSpace∗ ≈ MSpace∗ ≈ · · ·

Res(2)Space

Res(3)Space

logST,R(2) ≈ Res(2)Space∗

logST,R(3) ≈ Res(3)Space∗

...

MSpace

. .
.

Figure 5: Σ2 space and tree-like size for subsystems of depth 2 Frege

We have (somewhat surprisingly) proved that depth 2 Frege behaves very differ-
ently from resolution with respect to space. Intermediate systems based on Res(k)
for a constant k were studied in a similar context before, and it is very natural to
wonder what is the situation for those systems.

Let us first remark that for Res(k)-refutations, the definition of space from
[21, 10] (formula space) coincides with ours up to a constant factor so we need not
distinguish between the two. Then Theorem 4.1 readily generalizes to this regime
and gives

logST,Res(k) ≈ Res(k)Space∗,

extending the bottom half of Figure 1 as shown in Figure 5. The proof of Corol-
lary 4.1, however, fails for a constant k as badly as it fails for k = 1. Hence we
have one more question to ask:

Problem 5.4 (Res(k)-variant). Is there a constant k > 0 such that logST,Res(k)

≈ Res(k)Space or at least logST,Res(k) � CSpace?

Let us also mention that as k increases, both hierarchies, logST,Res(k) (and,
hence, also Res(k)Space∗) and Res(k)Space are proper ([21] and [10] respectively),
and this holds even for k up to (log n)c where n is the number of variables. Notice
that the above excludes the dual version of Remark 4.2: while the formula space
of depth 2 Frege refutations can be reduced to constant, this is not true for the
widths of individual formulas in the memory.

The relation between VSpace and CSpace is also unknown in one direction (the
opposite one is taken care of by [6]). Let us re-iterate the problem posed e.g. in
[42]:
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Problem 5.5. Is it true that CSpace � VSpace?

Just as with the questions of similar nature discussed above, a negative answer
would also imply a separation between VSpace and VSpace∗, hence we can expect
it to be very difficult.
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