
THE UNIVERSITY OF CHICAGO

LARGE-SCALE CLASSICAL SIMULATIONS FOR DEVELOPMENT OF QUANTUM

OPTIMIZATION ALGORITHMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES DIVISION

IN CANDIDACY FOR THE DEGREE OF

DOCTORAL

DEPARTMENT OF COMPUTER SCIENCE

BY

DANYLO LYKOV

CHICAGO, ILLINOIS

MAY 2024

Copyright © 2024 by Danylo Lykov

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Tensor networks introduction . 2

1.1.1 Tensors and quantum states . 2
1.1.2 Tensor networks . 4

1.2 Quantum computing introduction . 5
1.3 Structure . 7

2 PARALLEL COMPUTATION . 9
2.1 Introduction . 9
2.2 Related Work . 9
2.3 Methodology . 11

2.3.1 QAOA introduction . 11
2.3.2 Description of quantum circuits . 12

2.4 Overview of simulation algorithm . 13
2.4.1 Quantum circuit as tensor expression 13
2.4.2 Graph model of tensor expression . 14

2.5 Simulation of a single amplitude . 17
2.5.1 Ordering algorithm . 17

2.6 Parallelization algorithm . 19
2.6.1 Description of hardware and software 20
2.6.2 Single-node parallelization . 21
2.6.3 Multinode parallelization . 24
2.6.4 Step-dependent slicing . 27

2.7 Simulation of several amplitudes . 30
2.8 Results . 31
2.9 Conclusions . 32
2.10 Acknowledgements . 33

3 GPU ACCELERATION OF TENSOR NETWORK CONTRACTION 35
3.1 Introduction . 35
3.2 Methodology . 36

3.2.1 QAOA Overview . 36
3.2.2 Tensor Network Contractions . 38
3.2.3 Merged Indices Contraction . 39
3.2.4 CPU-GPU Hybrid Backend . 40
3.2.5 Datasets for Synthetic Benchmarks 41

iii

3.3 Results . 44
3.3.1 Single CPU-GPU Backends . 44
3.3.2 Merged Backend Results . 46
3.3.3 Mix CPU-GPU Backend Results . 47
3.3.4 Mixed Merged Backend Results . 48
3.3.5 Synthetic Benchmarks . 49

3.4 Conclusions . 53

4 MAXCUT QAOA PERFORMANCE STUDY . 56
4.1 Introduction . 56
4.2 Results and discussion . 59

4.2.1 Expected QAOA solution quality . 59
4.2.2 Classical solution quality and time to solution 61
4.2.3 Multi-shot QAOA . 61
4.2.4 Discussion . 66

4.3 Methods . 68
4.3.1 QAOA Methodology . 69
4.3.2 Classical Solvers . 70
4.3.3 QAOA performance . 72
4.3.4 QAOA Ensemble Estimates . 75
4.3.5 Single-shot QAOA Sampling . 78
4.3.6 Mult-shot QAOA Sampling . 81
4.3.7 Classical performance . 83
4.3.8 Performance of Gurobi Solver . 84
4.3.9 Performance of MQLib+BURER2002 and FLIP Algorithms 85

4.4 Acknowledgements . 85
4.5 Data availability . 86

5 DISTRIBUTED STATEVECTOR SIMULATION 87
5.1 Introduction . 87
5.2 Background . 89
5.3 Simulation of QAOA using QOKit . 90

5.3.1 Precomputation of the cost vector . 91
5.3.2 Mixing operator . 92
5.3.3 Distributed simulation . 93

5.4 Examples of use . 95
5.5 Performance of QOKit . 98

5.5.1 CPU and GPU simulation . 99
5.5.2 Distributed simulation . 102

5.6 Related work . 103
5.7 Conclusion . 106

6 CONCLUSIONS AND OUTLOOK . 107

iv

REFERENCES . 109

v

LIST OF FIGURES

2.1 Correspondence of quantum gates and graphical representation. 14
2.2 Graph representation of tensor expression of the circuit in Fig. ??. Every vertex

corresponds to a tensor index of a quantum gate. Indices are labeled right to
left: 0-3 are indices of the output statevector, and 32-25 are indices of the input
statevector. Self-loop edges are not shown (in particular Z2γ , which is diagonal). 15

2.3 Cost of contraction for every vertex for a circuit with 150 qubits. Inset shows the
peak magnified and the number of neighbors of the vertex contracted at a given
step (right y-axis). 16

2.4 Comparison of different ordering algorithms for single amplitude simulation of
QAOA ansatz state . 17

2.5 Illustration of our two-level tensor parallelization approach. On the multinode
level MPI parallelization we use slicing of a partially contracted full expression.
On the lower level of a single node, we use thread-based parallelization with a
shared resulting tensor. 22

2.6 Sketch of the parallel bucket elimination algorithm. Part (a) and steps b2–b4
depend only on the structure of a task and can be executed only once for the
QAOA algorithm. Steps b1 and b5 are performed serially. The outer loop of
the blue region performs the elimination of the remaining buckets; the inner loop
corresponds to processing a single bucket. The summation operation at the end
of the bucket processing is omitted for simplicity. 25

2.7 Step-based slicing algorithm. The blue boxes are evaluated for each graph node
and are the main contributions to time. 29

2.8 Simulation cost for a batch of amplitudes. The calculations are done for 5 random
instances of degree-3 random regular graphs and the mean value is plotted. The
three plots are calculated for different number of qubits: 100, 150 and 200. . . . 30

2.9 Experimental data of simulation time with respect to the number of Theta nodes.
The circuit is for 210 qubits and 1,785 gates. 31

2.10 Distribution of the contraction width (maximum number of neighbors) c for dif-
ferent numbers of parallel indices n. While variance of c is present, showing that
it is sensible to the parallelization index s, we are interested in the minimal value
of s, which, in turn, generally gets smaller for bigger n. 34

3.1 Breakdown of mean time to contract a single bucket by bucket width. The test is
performed for expectation value as described in 3.3.1. CPU backends are faster
for buckets of width ≤ 13 − 16, and GPU faster are better for larger buckets.
This picture also demonstrates that every contraction operation spends some
time on overhead which doesn’t depend on bucket width, and actual calculation
that scales exponentially with bucket width. 44

3.2 Distribution of bucket width in the contraction of QAOA full circuit simulation.
The y-axis is log scale; 82% of buckets have width ≤ 6, which have relatively
large overhead time. 45

vi

3.3 Breakdown of total time spent on bucket of each size in full QAOA expectation
value simulation. The y-value on this plot is effectively one in Figure 3.1 multi-
plied by one in Figure 3.2. This figure is very useful for analyzing the bottlenecks
of the simulation. It shows that most of the time for CPU backend is spent on
large buckets, but for GPU backends the large number of small buckets results
in a slowdown. 45

3.4 Breakdown of total contraction time by bucket width in full expectation value
simulation of problem size 30. Lines with the same color use the same type of
backends. The solid lines represent the merged version of backends, and the
dashed lines denote the baseline backends. The merged GPU backends are better
for buckets of width ≥ 20. 47

3.5 Breakdown of sum contraction time by bucket width for merged backends. CPU
backends are better for buckets of width ≤ 15, and GPU backends are better
for larger buckets. The hybrid backend’s GPU backend spends outperforms the
regular GPU backend for buckets of width ≥ 15. 50

3.6 FLOPs vs. the number of operations for all tasks on the CuPy backend. “circuit
unmerged" and “circuit merged" are results of expectation value of the full circuit
simulation of QAOA MaxCut problem on a 3-regular graph of size 30 with depth
p = 4. “tncontract random” tests on tensors of many indices where each index has
a small size. “tncontract fixed" uses the contraction sequence “abcd,bcdf−→acf”
for all contractions. “matmul" performs matrix multiplication on square matrices.
All groups use complex128 tensors in the operation. We use the triangles to
denote the data at ∼ 100 million operations, which is shown in Table 3.3. . . . 53

3.7 FLOPs vs. the number of operations for all tasks on NumPy backend. Same
problem setting as Fig. 3.6. “tncontract random" outperforms “tncontract fixed"
as the ops value increases. Merged backend does not have an advantage on CPU
compared to the unmerged backend. We use the triangles to denote the data at
∼ 100 million operations, which is shown in Table 3.3. 54

4.1 Locus of quantum advantage over classical algorithms. A particular classical
algorithm may return some solution to some ensemble of problems in time TC
(horizontal axis) with some quality CC (vertical axis). Similarly, a quantum
algorithm may return a different solution sampled in time TQ, which may be
faster (right) or slower (left) than classical, with a better (top) or worse (bottom)
quality than classical. If QAOA returns better solutions faster than the classical,
then there is clear advantage (top right), and conversely no advantage for worse
solutions slower than the classical (bottom left). 57

4.2 Time required for a single-shot QAOA to match classical MaxCut algorithms.
The blue line shows time for comparing with the Gurobi solver and using p = 11;
the yellow line shows comparison with the FLIP algorithm and p = 6. Each
quantum device that runs MaxCut QAOA can be represented on this plot as a
point, where the x-axis is the number of qubits and the y-axis is the time to
solution. For any QAOA depth p, the quantum device should return at least one
bitstring faster than the Y-value on this plot. 60

vii

4.3 Zero-time performance for graphs of different size N . The Y-value is the cut frac-
tion obtained by running corresponding algorithms for minimum possible time.
This corresponds to the Y-value of the star marker in Fig. 4.4. Dashed lines show
the expected QAOA performance for p = 11 (blue) and p = 6 (yellow). QAOA
can outperform the FLIP algorithm at depth p > 6, while for Gurobi it needs
p > 11. Note that in order to claim advantage, QAOA has to provide the zero-
time solutions in faster time than FLIP or Gurobi does. These times are shown
on Fig. 4.2. 62

4.4 Evolution of cut fraction value in the process of running the classical algorithms
solving 3-regular MaxCut with N=256. The shaded area shows 90-10 percentiles
interval, and the solid line shows the mean cut fraction over 100 graphs. The
dashed lines show the expectation value of single-shot QAOA for p = 6, 11, and
the dash-dotted lines show the expected performance for multishot QAOA given
a sampling rate of 5 kHz. Note that for this N = 256 the multi-shot QAOA with
p = 6 can compete with Gurobi at 50 milliseconds. However, the slope of the
multi-shot line will decrease for larger N , reducing the utility of the multi-shot
QAOA. 64

4.5 Sampling frequency required to achieve MaxCut advantage using QAOA p = 11.
The shaded area around the solid lines corresponds to 90-10 percentiles over 100
seeds for Gurobi and 20 seeds for BURER2002. The background shading repre-
sents comparison of a quantum computer with BURER2002 solver corresponding
to modes in Fig. 4.1. Each quantum device can be represented on this plot as
a point, where the x-axis is the number of qubits, and the y-axis is the time
to solution. Depending on the region where the point lands, there are different
results of comparisons. QAOA becomes inefficient for large N , when sampling
frequency starts to grow exponentially with N 65

4.6 p = 2 QAOA cut fraction guarantees under different assumptions. Dashed and
solid lines plot with high probability the lower and upper bounds on cut fractions,
respectively, assuming only graph theoretic typicality on the number of subgraphs.
Dotted plots are the ensemble median over an ensemble of 3-regular graphs; for
N ≤ 16 (dots); this includes all graphs, while for N > 16 this is an ensemble of
1,000 graphs for each size. We used 32 sizes between 16 and 256. Dark black
fill plots the variance in the cut fraction over the ensemble, and light black fill
plots the extremal values over the ensemble. The median serves as a proxy of
performance assuming QAOA typicality. Given a particular cut from a classical
solver, there may be different regions of advantage, shown by the four colors and
discussed in the text. 77

viii

4.7 Long-range antiferromagnetic correlation coefficient on the 3-regular Bethe lat-
tice, which is a proxy for an N →∞ typical 3-regular graph. Horizontal indexes
the distance between two vertices. QAOA is strictly local, which implies that no
correlations exist between vertices a distance > 2p away. As shown here, however,
these correlations are exponentially decaying with distance. This suggests that
even if the QAOA ‘sees the whole graph’, one can use the central limit theorem to
argue that the distribution of QAOA performance is Gaussian with the standard
deviation of ∝ 1/

√
N . 79

5.1 Overview of the simulator. Precomputing and storing the diagonal cost opera-
tor reduces the cost of both simulating the phase operator in QAOA as well as
evaluating the QAOA objective. 88

5.2 Runtime of end-to-end simulation of QAOA expectation value with p = 6 on
MaxCut problem on 3-regular graphs with commonly-used CPU simulators for
QAOA. They time plotted is the mean over 5 runs. 99

5.3 Time to apply a single layer of QAOA for the LABS problem with commonly-
used CPU and GPU simulators. QOKit simulator uses the precomputation which
is not included in current plot. The precomputation time is amortized, as shown
on Figure 5.4. QOKit can be configured to use cuStateVec for application of the
mixing operator, which provides the best results. 100

5.4 Total simulation time vs. number of layers in QAOA circuit for LABS problem
with n = 26. The GPU precomputation is fast enough to provide speedup over
the gate-based state-vector simulation (cuStateVec) even for a single evaluation
of the QAOA circuit. 101

5.5 Weak scaling results for simulation of 1 layer of LABS QAOA on Polaris su-
percomputer. We observe that cuStateVec backend has lower communication
overhead, leading to lower overall runtime. 102

ix

LIST OF TABLES

2.1 Comparison between different notations of quantum circuits 14
2.2 Hardware and software specifications . 21

3.1 Time for full QAOA expectation value simulation using backend that utilize GPUs or
CPUs. The expectation value is MaxCut on a 3-regular graph of size 30 and QAOA
depth p = 4. Speedup shows the overall runtime improvement compared with the
baseline CPU backend “NumPy". “Mixed" device means the backend uses both CPU
and GPU devices. 48

3.2 Time for full QAOA expectation value simulation using different Merged backends, as
described in Section 3.2.3. The expectation value is MaxCut on a 3-regular graph of
size 30 and QAOA depth p = 4. Speedup shows the overall runtime improvement
compared with the baseline CPU backend “NumPy". 49

3.3 Summary of GPU and CPU FLOPs for different tasks at around 100 million opera-
tions. Matrix Multiplication and Tensor Contraction tasks are described in Section
3.3.5. “Bucket Contraction" groups record the maximum number of FLOPs for a single
bucket. “Lightcone Contraction" groups contain the FLOPs data on a single lightcone
where the sum of operations is approximately 100 millions, small and large buckets
combined. 51

x

ABSTRACT

As quantum computing field is starting to reach the realm of advantage over classical al-

gorithms, simulating quantum circuits becomes increasingly challenging as we design and

evaluate more complex quantum algorithms. In this context, tensor networks, which have

become a standard method for simulations in various areas of physics, from many-body quan-

tum physics to quantum gravity, offer a natural approach. Despite the availability of efficient

tools for physics simulations, simulating quantum circuits presents unique challenges, which

I address in this work, specifically using the Quantum Approximate Optimization Algorithm

as an example.

The main results of this work span several steps of the problem. For the step of creating

a tensor network, I demonstrate that applying the diagonal representation of quantum gates

leads to a complexity reduction in tensor network contraction by one to four orders of

magnitude.

For large-scale contraction of tensor networks, I propose a step-dependent parallelization

approach which performs slicing of partially contracted tensor network. Finally, I study

tensor network contractions on GPU and propose an algorithm of contraction which uses

both CPU and GPU to reduce GPU overhead. In our benchmarks, this algorithm reduces

time to solution from 6 seconds to 1.5-2 seconds.

These improvements allow to predict the performance of Quantum Approximate Opti-

mization Algorithm (QAOA) on MaxCut problem without running the quantum optimiza-

tion. This predicted QAOA performance is then used to systematically compare to the

classical MaxCut solvers. It turns out that one needs to simulate a deep quantum circuit in

order to compete with classical solvers.

In search for provable speedups, I then turn to a different combinatorial optimization

problem, Low-Autocorrelation Binary Sequences (LABS). This study involves simulating

ground state overlap for deep circuits. This task is more suited for a state vector simulation,

xi

which requires advanced distributed algorithms when done at scale.

xii

CHAPTER 1

INTRODUCTION

The science of classically simulating quantum many-body physics involves exponential scaling

of memory resources. The fact that quantum many-body systems are hard to simulate

classically is the basis for the idea of quantum computing as first suggested by Richard

Feynman [Feynman, 1982].

Growing interest in quantum computing in recent years led to the increase of size and

capabilities of experimental quantum computers. Promising physical realizations of quan-

tum computing devices were implemented in recent years [Intel, 2018; IBM, 2018], which

bolsters the expectations that a long thought quantum supremacy will be reached [Harrow

and Montanaro, 2017; Boixo et al., 2018; Neill et al., 2018].

Quantum information science has a tremendous potential to speed up calculations of

certain problems over classical calculations [Alexeev et al., 2021; Shor, 1994]. To continue

the advances in this field, however, often requires classically simulating quantum circuits.

Such simulation is done by using classical simulation algorithms that replicate the behavior

of executing quantum circuits on classical hardware such as personal computers or high-

performance computing (HPC) systems. These algorithms play an important role and can

be used to (1) verify the correctness of quantum hardware, (2) help the development of hy-

brid classical-quantum algorithms, (3) find optimal circuit parameters for hybrid variational

quantum algorithms, (4) validate the design of new quantum circuits, and (5) verify quantum

supremacy and advantage claims.

Tensor networks are an invaluable tool for the classical simulation of both quantum

computers and general physical systems. For example, in the domain of molecular quantum

dynamics the Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) [Wang

and Thoss, 2003] algorithm, which is an extension of MCTDH [Meyer et al., 1990] algorithm,

achieved significant recognition. This algorithm uses tensor networks to represent quantum

1

states and then solve the underlying dynamics equations.

Moreover, tensor networks can be used to exactly calculate the partition function of

quantum many-body systems [Vanderstraeten et al., 2018]. The partition function can then

be used to extract useful information about the system, such as energy or specific heat

capacity.

1.1 Tensor networks introduction

1.1.1 Tensors and quantum states

A vector is an entity with magnitude and direction, often used to represent physical quantities

such as velocity or force. In contrast, a covector (or one-form) is a linear map from vectors to

scalars. Both can be represented as an array of numbers in a given basis, but when the basis

is changed they transform oppositely to ensure that all scalars are invariant, a key principle

in physics and geometry.

Expanding to two dimensions, we distinguish between bilinear forms and linear maps

from one vector space to another. A bilinear form takes two vectors as input and returns

a scalar. Interestingly, a linear map can also be viewed as a bilinear map taking a covector

and a vector as input, producing a scalar. Similarly to vectors and covectors, both bilinear

forms and linear maps can be represented as matrices, and special rules are used to change

the representation when changing the basis.

A tensor generalizes these ideas further. A tensor of rank n is a n-linear map from

a mix of n vectors and covectors to a scalar. To specify a tensor, one has to provide a

representation in some basis and the rules for changing the representation under a change

of basis. Examples of tensors in physics include the electromagnetic tensor Fµν and the

Levi-Civita tensor, among many others.

In the context of quantum computing and computer science, the basis is often fixed

2

forever, and a tensor is just a representation: an array of numbers that is indexed by several

indices. The number of indices is called order or sometimes rank or mode of a tensor and

the index is sometimes called the dimension. The number of values that an index can have

is usually called the size of the index. For instance, a scalar, is a single number is labeled

by zero indices, so a scalar is considered to be a 0th-order tensor. A vector is a tensor of

first order and a matrix is a tensor of second order. In the case of quantum physics, tensors

can be used for the representation of states. For example, a first-order tensor can be used

to represent the state vector of a spin-12 particle in some basis:

|ψ1⟩ = C0 |0⟩+ C1 |1⟩ =
∑
s=0,1

Cs |s⟩ . (1.1)

The |0⟩ and |1⟩ are basis vectors that correspond to, for instance, spin-up and spin-down

states. The vector Cs is a first-rank tensor that represents this state given the basis |0⟩, |1⟩.

This approach can be extended to a tensor of two particles:

|ψ2⟩ = C00 |00⟩+ C01 |01⟩+ C10 |10⟩+ C11 |11⟩ =
1∑

s1,s2=0

Cs1,s2 |s1s2⟩ , (1.2)

where a common notation is used |ab⟩ = |a⟩ |b⟩= |a⟩ ⊗ |b⟩.

In quantum physics, it is common to use a state vector with a dimension of size 4 to

represent a state of such a system. The difference in representing it as a second-order tensor

as above is just the way of labeling the numbers, but such notation is the first step towards

impressive advantages for classical simulation of tensor networks.

As a natural extension for a system of N spins, one can use the following representation

of the state:

|ψN ⟩ =
1∑

s1...sN=0

Cs1...sN |s1 . . . sN ⟩ . (1.3)

Similarly, the tensor Cs1...sN can be reshaped into a vector of size 2N . The above ex-

3

amples were for spin-12 systems, but the approach is the same for collections of quantum

systems with larger state space.

It is important to note that since the basis is fixed, there is no classification of indices

into covariant and contravariant, e.g. there is no distinction between indices for bra- and

ket-states, which is a common distinction in tensors used in physics.

1.1.2 Tensor networks

As described above it may seem that tensors are not more useful than just vectors, after all

the difference lies only in labeling the numbers. It is when tensors are combined with each

other into a tensor network, that the true usefulness appears. A tensor network is a product

of tensors, which can share indices between each other. For example, the expression AijBjk

is a tensor network. This tensor network can be viewed as a tensor itself, which is indexed

by indices ijk. Each value of the tensor is a product of two elements from tensors A and B:

Tijk = AijBjk. (1.4)

Tensor networks are widely used to represent a linear mathematical model of the studied

system. The fact that the model is linear means that the values of interest are a sum of

products of numbers, which are input parameters to the model. For example, when modeling

rotation of a solid, to obtain coordinates of the rotated geometry, one uses a linear map on a

2-D vector space. The first component of resulting coordinates will be u0 = A00v0 +A01v1,

and the second u1 = A10v0 + A11v1, where vi are the initial coordinates and Aij are the

rotation parameters. The initial vi and rotated ui vectors and the matrix Aij are all tensors,

so we can use a summation over a tensor network to represent such a linear model:

ui =
∑
j=0,1

Aijvj =
∑
j=0,1

Kij . (1.5)

4

The example in the Equation (1.4) can be used to represent a matrix multiplication:

Cik =
∑
j=0,1

Tijk =
∑
j=0,1

AijBjk. (1.6)

In order to compute the values for the tensor C it is not required to store all the elements

of tensor T in memory at the same time. Instead it is possible to evaluate each element

Cij by evaluating corresponding entries Tijk, then performing the summation, and finally

discarding the used entries, thus saving memory. The process of evaluating a sum is called

a contraction of a tensor network. For example, in equation (1.6) the tensor network is

contracted over index j.

More complex tensor networks can have summation over many indices and have hundreds

or thousands of tensors and indices. They can be used to represent more complex models,

such as hidden Markov chains [Gillman et al., 2020] or probabilistic graphical models [Miller

et al., 2021; Carrasquilla et al., 2019]. They are also remarkably efficient at representing

quantum circuits and states of many-body quantum systems. In addition to exact repre-

sentations, tensor networks are widely used in algorithms for approximately calculating

quantum many-body systems of large size or infinite size. The most popular algorithm is

known as Density Matrix Renormalization Group (DMRG) [Schollwöck, 2011] which uses

the representation of Matrix Product State (MPS) in case of a chain of a quantum system

to approximately calculate the ground state or arbitrary observables of the systems [Orús,

2014].

1.2 Quantum computing introduction

Quantum computers are physical systems that allow the implementation of arbitrary trans-

formations of a quantum state. A quantum computer consists of several qubits, which can

interact with each other. In a classical computer, computation is performed by taking input

5

information represented as bits of data, then applying some operations to it to calculate some

useful output data. The operations are composed of elementary logic gates that calculate

some output value from input bits. Examples of classical logic gates are NOT(b0) which flips

the input bit, and AND(b0, b1) which outputs a binary sum of input bits.

Each qubit in a quantum computer is conceptually similar to a bit in a classical computer.

Usually, it is a two-level quantum system, analogous to spin-12 particle. In order to describe

computation on a quantum computer, we use quantum gates. Each quantum gate acts on

one or several qubits and transforms the corresponding state. For example, when a one-qubit

gate is applied to a single qubit in the state |0⟩, the transformation is described as

Û |s⟩ = U0s |0⟩+ U1s |1⟩ = |ψ⟩ , (1.7)

where s is a binary variable that labels the qubit basis. Examples of quantum gates are

Pauli rotations σ̂x, σ̂y, and σ̂z. Another widely used gate is called Hadamard gate:

Ĥ =
1√
2

1 1

1 −1

 (1.8)

If a quantum gate is applied to i-th qubit in a quantum computer with N qubits, the

change of state is following:

Û i |0001 . . . si . . . 0N ⟩ = c0s |0001 . . . 0i . . . 0N ⟩+ c1s |0001 . . . 1i . . . 0N ⟩ = |ψ⟩ . (1.9)

Now we can apply the framework of tensor networks to describe such operation:

6

Û i
1∑

s1...sN=0

Cs1...sN |s1 . . . sN ⟩ =
1∑

s1...sN=0

Cs1...sN Û
i |s1 . . . sN ⟩ (1.10)

=
1∑

s1...sN=0

Cs1...sN

∑
sN+1

UsN+1si |s1 . . . sN ⟩ (1.11)

=
1∑

sm=0, m∈{1...N+1}, m̸=i

Ds1...sN+1 |s1 . . . sN ⟩ . (1.12)

The last summation is performed over all indices si for i = 1 . . . N + 1 except index

si which was contracted. We can omit the basis kets and the summation over those and

concentrate on just the tensors that represent the states.

∑
sj

UsN+1sjCs0s1...sj ...sN = Ds0s1...sN+1...sN . (1.13)

In a case of a two-qubit gate, we can represent the resulting state in a similar way, using

a 4-th order tensor instead

∑
ijik

WiN+2iN+1ijikCs0s1...sj ...sk...sN = Ds0s1...iN+2...iN+1...sN . (1.14)

1.3 Structure

In this work, I start with Chapter ?? on using tensor networks for the classical simulation of

quantum circuits. I describe how a quantum circuit may be converted to a tensor network

and how its contraction is used to obtain different properties of the quantum circuit. In

particular, this chapter describes an efficient method for simulating a batch probability

amplitudes in one tensor network contraction.

The conversion of quantum circuit to a tensor network may be tweaked to produce

significant reductions in tensor network complexity and its computational cost. In Chapter

7

?? I demonstrate a significant improvement when using the diagonal gates approach in

application to circuits for Quantum Approximate Optimization Algorithm (QAOA).

Next, in Chapter 2 I discuss how to efficiently contract a tensor network, given a set

of classical hardware resources. In particular, I explore various parallelization approaches

based on slicing the tensor networks that are crucial for large-scale simulations. In Chapter 3

I explore using GPU for tensor network contraction and propose an algorithm for dynamic

balancing of tensor contraction steps between CPU and GPU.

Finally, Chapter 6 summarizes the work in this thesis and provides possible avenues for

future research.

8

CHAPTER 2

PARALLEL COMPUTATION

This chapter is adapted from Lykov, Schutski, Galda, Vinokur, and Alexeev [2020b].

2.1 Introduction

In this chapter, we explore the limits of classical computing using a supercomputer to sim-

ulate large QAOA circuits, which in turn helps to define the requirements for a quantum

computer to beat existing classical computers.

Our main contribution is the development of a novel slicing algorithm and an ordering

algorithm. These improvements allowed us to increase the size of simulated circuits from

120 qubits to 210 qubits on a distributed computing system, while maintaining the same

time-to-solution.

In Section 5.6 we start by discussing related work. In Section 2.4 we describe tensor

networks and the bucket elimination algorithm. Simulations of a single amplitude of QAOA

ansatz state are described in Section 2.5. We introduce a novel approach step-dependent slic-

ing to finding the slicing variables, inspired by the tensor network structure. Our algorithm

allows simulating several amplitudes with little cost overhead, which is described in Section

2.7.

We then show the experimental results of our algorithm running on 64-1,024 nodes of

Argonne’s Theta supercomputer. All these results are described in Section 4.2. In Section

2.9 we summarize our results and draw conclusions.

2.2 Related Work

In recent years, much progress has been made in parallelizing state vector [Häner and Steiger,

2017; Smelyanskiy et al., 2016; Wu et al., 2019] and linear algebra simulators [Otten, 2020].

9

Very large quantum circuit simulations were performed on the most powerful supercomputers

in the world, such as Summit [Villalonga et al., 2020], Cori [Häner and Steiger, 2017], Theta

[Wu et al., 2019], and Sunway Taihulight [Li et al., 2018]. All these simulators have various

advantages and disadvantages. Some of them are general-purpose simulators, while others

are more geared toward short-depth circuits.

One of the most promising types of simulators is based on the tensor network contraction

technique. This idea was introduced by Markov and Shi [2008] and was later developed

by Boixo et al. [2017] and other authors [Schutski et al., 2020]. Our simulator is based on

representing quantum circuits as tensor networks.

Boixo et al. [2017] proposed using the line graphs of the classical tensor networks, an

approach that has multiple benefits. First, it establishes the connection of quantum circuits

with probabilistic graphical models, allowing knowledge transfer between the fields. Sec-

ond, these graphical models avoid the overhead of traditional diagrams for diagonal tensors.

Third, the treewidth is shown to be a universal measure of complexity for these models. It

links the complexity of quantum states to the well-studied problems in graph theory, a topic

we hope to explore in future works. Fourth, straightforward parallelization of the simulator

is possible, as demonstrated in the work of Chen et al. [Chen et al., 2018b]. The only disad-

vantage of the line graph approach is that it has limited usability to simulate subtensors of

amplitudes, which was resolved in the work by Schutski et al. [Schutski et al., 2020]. The

approach has been studied in numerous efficient parallel simulations relevant to this work

[Chen et al., 2018b; Li et al., 2018; Pednault et al., 2017; Schutski et al., 2020].

10

2.3 Methodology

2.3.1 QAOA introduction

The combinatorial optimization algorithms aim at solving a number of important problems.

The solution is represented by an N -bit binary string z = z1. . . zN . The goal is to determine

a string that maximizes a given classical objective function C(z) : {+1,−1}N . The QAOA

goal is to find a string z that achieves the desired approximation ratio:

C(z)

Cmax
≥ r

where Cmax = maxzC(z).

To solve such problems, QAOA was originally developed by Farhi et al. [2014]. In this

paper, QAOA has been applied to solve MaxCut problem. It was done by reformulating

the classical objective function to quantum problem with replacing binary variables z by

quantum spin σz resulting in the problem Hamiltonian HC :

HC = C(σz1 , σ
z
2 , . . .), σ

z
N

After initialization of a quantum state |ψ0⟩, the HC and a mixing Hamiltonian HB :

HB =
N∑
j=1

σ
j
x

is then used as to evolve the initial state p times. It results in the variational wavefunction,

which is parametirized by 2p variational parameters β and γ. The ansatz state obtained after

p layers of the QAOA is:

|ψp(β, γ)⟩ =
p∏

k=1

e−iβpHBe−iγpHC |ψ0⟩

11

To compute the best possible QAOA solution corresponding to the best objective function

value, we need to sample the probability distribution of 2N measurement outcomes in state

|γβ⟩. The noise in actual quantum computers hinders the accuracy of sampling, resulting

in the need of even a larger number of measurements. At the same time, sampling is an

expensive process that needs to be controlled. Only a targeted subset of amplitudes need

to be computed because sampling all amplitudes will be very computationally expensive

and memory footprint prohibitive. As a result, the ability of a simulator like QTensor to

effectively sample certain amplitudes is a key advantage over other simulators.

The important conclusion by Farhi et al. [2014] was that to compute an expectation

value, the complexity of the problem depends on the number of iterations p rather than the

size of the graph. This is a result of what is known as lightcone optimization. It has a major

implication to the speed of a quantum simulator computing QAOA energy, but this type of

optimizaiton is not applicable for simulating ansatz state, which is the type of simulation we

focus in this paper. A more detailed MaxCut formulation for QAOA was provided by Wang

et al.[Wang et al., 2018]. It is worth mentioning that there is a direct relationship between

QAOA and adiabatic quantum computing, meaning that QAOA is a Trotterized adiabatic

quantum algorithm. As a result, for large p both approaches are the same.

2.3.2 Description of quantum circuits

A classical application of QAOA for benchmarking and code development is to apply it to

Max-Cut problem for random 3-regular graphs. A representative circuit for a single-depth

QAOA circuit for a fully connected graph with 4 nodes, is shown in Fig. ??. The generated

circuit were converted to tensor networks as described in Section 2.4.1. The resulting tensor

network for the circuit in ?? is shown in Fig. 2.2. Every vertex corresponds to an index of

a tensor of the quantum gate. Indices are labeled right to left: 0 − 3 are indices of output

statevector, and 32 − 25 are indices of input statevector. Self-loop edges are not shown

12

(in particular Z2γ , which is diagonal). We simulated one amplitude of state |γ⃗, β⃗⟩ from

the QAOA algorithm with depth p = 1, which is used to compute the energy function.

The full energy function is defined by ⟨γ⃗, β⃗| Ĉ |γ⃗, β⃗⟩ and is essentially a duplicated tensor

expression with a few additional gates from Ĉ. The full energy computation corresponds to

the simulation of a single amplitude of such duplicated tensor expression.

2.4 Overview of simulation algorithm

In this section, we briefly introduce the reader to the tensor network contraction algorithm.

It is described in much more detail in the paper by Boixo et al. Boixo et al. [2017], and

the interested reader can refer to work by Detcher et al. [Dechter, 2013] and Marsland et

al. [Marsland, 2011] to gain an understanding of this algorithm in the original context of

probabilistic models.

2.4.1 Quantum circuit as tensor expression

A quantum circuit is a set of gates that operate on qubits. Each gate acts as a linear operator

that is usually applied to a small subspace of the full space of states of the system. State

vector |ψ⟩ of a system contains probability amplitudes for every possible configuration of the

system. A system that consists of n two-state systems will have 2n possible states and is

usually represented by a vector from C2n .

However, when simulating action of local operators on large systems, it is more useful

to represent state as a tensor from (C2)⊗n In tensor notation, an operator is represented

as a tensor with input and output indices for each qubit it acts upon.. The input indices

are equated with output indices of previous operator. The resulting state is computed by

summation over all joined indices. The comparison between Tensor Network notation and

Dirac notation is shown in Table 2.1.

Following tensor notations we drop the summation sign over any repeated indices, that

13

|i⟩ U |i⟩ i

|i1⟩
U

|i1⟩
|i2⟩ |i2⟩ i1

i2

(a) Diagonal gates

|i⟩ U |j⟩ i j

|i1⟩
U

|j1⟩
|i2⟩ |j2⟩

i1 i2

j1

j2

(b) Non-diagonal gates

Figure 2.1: Correspondence of quantum gates and graphical representation.

is, aibij =
∑

i aibij . For more details on tensor expressions, see [Cichocki et al., 2016].

2.4.2 Graph model of tensor expression

Evaluation of a tensor expression depends heavily on the order in which one picks indices to

sum over [Schutski et al., 2020; Markov and Shi, 2008]. The most widely used representation

of a tensor expression is a “tensor network,”, where vertices stand for tensors and tensor

indices stand for edges. For finding the best order of contraction for the expression, we use

a line graph representation of a tensor network. In this notation, we use vertices to denote

unique indices, and we denote tensors by cliques (fully connected subgraphs). Note that

tensors, which are diagonal along some of the axes and hence can be indexed with fewer

indices, are depicted by cliques that are smaller than the dimension of the corresponding

tensor. For a special case of vectors or diagonal matrices, self-loop edges are used. Figure 2.1

shows the notation for the gates used in this work. For a more detailed description of graph

representation, see [Schutski et al., 2020].

Dirac notation Tensor notation
general |ϕ⟩ = X̂0 ⊗ Î1 |ψ⟩ ϕi′j = Xi′iψij

product state |ψ⟩ = |a⟩ |b⟩ ψij = aiaj
with Bell state |ϕ⟩ = X̂0 ⊗ Î1(|00⟩+ |11⟩) ϕi′j = Xi′iδij

Table 2.1: Comparison between different notations of quantum circuits

14

0

4

1

5

2

6

3

7

14

12

10
8

9

11
16

17
13

18

19
20

2115 26

22
23

24
25

27

28

31

30

29

32

33

34

35

Figure 2.2: Graph representation of tensor expression of the circuit in Fig. ??. Every vertex
corresponds to a tensor index of a quantum gate. Indices are labeled right to left: 0-3 are
indices of the output statevector, and 32-25 are indices of the input statevector. Self-loop
edges are not shown (in particular Z2γ , which is diagonal).

Having built this representation, one has to determine the index elimination order. The

tensor network is contracted by sequential elimination of its indices.

The tensor after each index elimination will be indexed by a union of sets of indices of ten-

sors in the contraction operation. In the line graph representation, the index contraction re-

moves the corresponding vertices from the graph. Adding the intermediate tensor afterwards

corresponds to adding a clique to all neighbors of index i. We call this step elimination of ver-

tex (index) i. An interactive demo of this process can be found at https://lykov.tech/qg

(works for cZ_v2 circuits from “Files to use”— link).

The memory and time required for the new tensor after elimination of a vertex v from

G depends exponentially on the number of its neighbors NG(v). Figure 2.3 shows the

dependence of the elimination cost with respect to the number of vertices (steps) of a typical

QAOA quantum circuit. The inset also shows for comparison the number of neighbors for

every vertex at the elimination step.

15

https://lykov.tech/qg

0 200 400 600 800 1000 1200 1400
Elimination step

102

104

106

108

1010

St
ep

 c
os

t

Memory
FLOP

1250 1275 1300 1325 1350

103

106

109

0

20

40

60

Number of neighbours

Figure 2.3: Cost of contraction for every vertex for a circuit with 150 qubits. Inset shows
the peak magnified and the number of neighbors of the vertex contracted at a given step
(right y-axis).

Note that the majority of contraction is very cheap, which corresponds to the low-degree

nodes from Figure 2.2. This observation serves as a basis for our step-dependent slicing

algorithm.

The main factor that determines the computation cost is the maximumNG(v) throughout

the process of sequential elimination of vertices. In other words, for the computation cost C

the following is true:

C ∝ 2c; c ≡ max
i=1...N

NGi
(vi),

where Gi is obtained by contracting i − 1 vertices and c is referred to as the contraction

width. We later use shorter notation for the number of neighbors Ni(v) ≡ NGi(vi)
.

The problem of finding a path of graph vertex elimination that minimizes c is connected

to finding the tree decomposition. In fact, the treewidth of the expression graph is equal to

c − 1. Tree decomposition is NP-hard for general graphs [Bodlaender, 1994], and a similar

hardness result is known for the optimal tensor contraction problem [Chi-Chung et al., 1997].

However, several exact and approximate algorithms for tree decomposition were developed

16

Figure 2.4: Comparison of different ordering algorithms for single amplitude simulation of
QAOA ansatz state

in graph theory literature; for references, see [Gogate and Dechter, 2004; Bodlaender et al.,

2006; Kloks, 1994; Bodlaender, 1994; Kloks et al., 1993].

2.5 Simulation of a single amplitude

The simulation of a single amplitude is a simple benchmark to use to evaluate the complexity

of quantum circuits and simulation performance. We start with N -qubit zero state |0⊗N ⟩

and calculate a probability to measure the same state.

σ = ⟨0⊗N | Û |0⊗N ⟩ = ⟨0⊗N |γ⃗, β⃗⟩

2.5.1 Ordering algorithm

The ordering algorithm is a dominating part of efficient tensor network contraction. Linear

improvement in contraction width results in an exponential speedup of contraction.

17

There are several ordering algorithms that we use in our simulations. The major criterion

to choose one is to maintain a balance between ordering improvement and run time of the

algorithm itself.

Greedy algorithm

The greedy algorithm contracts the lowest-degree vertex in the graph. This algorithm is

commonly used as a baseline since it provides a reasonable result given a short run-time

budget.

Randomized greedy algorithm

The contraction width is very sensitive to small changes in the contraction order. Gray

and Kourtis [2020] used this fact in a randomized ordering algorithm, which provided con-

traction width improvement without prolonging the run time. We use a similar approach

in the rgreedy algorithm. Instead of choosing the smallest-degree vertex, rgreedy assigns

probabilities for each vertex using Boltzmann’s distribution:

p(v) = exp(−1

τ
NG(v))

The contraction is then repeated q times, and the best ordering is selected. The τ and q

parameters are specified after the name of the rgreedy algorithm.

Heuristic solvers

The attempt to use some global information in the ordering problem gives rise to several

heuristic algorithms.

QuickBB [Gogate and Dechter, 2004] is a widely-used branch-and-bound algorithm. We

found that it does not provide significant improvement in the contraction width in addition

18

to being much slower than greedy algorithms.

Tamaki’s heuristic solver [Tamaki, 2017] is a dynamic programming approach that pro-

vides great results. This is also an “anytime“ algorithm, meaning that it provides a solution

after it is stopped at any time. The improvements from this algorithm are noticeable when it

runs from tens of seconds to minutes. We denote time (in seconds) allocated to this ordering

algorithm after its name.

2.6 Parallelization algorithm

We use a two-level parallelization architecture to couple the simulation structure and hard-

ware constraints. Our approach is shown at Fig. 2.5. Multinode-level parallelization uses

MPI to share tasks. We slice the partially contracted full expression over n indexes and dis-

tribute the slices to 2n MPI ranks. We use a novel algorithm for determining the slice vertex

and step at which to perform slicing, which results in massive expression simplification. This

is described in Section 2.6.3. A high-level picture of our algorithm is shown in Fig. 2.6.

Node-level parallelisation over CPU cores uses system threads. For every tensor multi-

plication and summation we slice the input and output tensors over t indices. Contraction

is then performed by 2t threads writing results to a shared result tensor. This process is

described in Section 2.6.2.

To illustrate the two approaches used, we consider a simple expression Ci = AijBj .

There are two obvious ways of parallelization:

1. Parallelization over elements of sum, index j. Every worker computes its version of Ci

for some value of j, and the results then are summed.

2. Parallelization over the indices of the result, i. Every worker computes part of the

result, Ci, for some value of i.

These two options are intrinsically similar: every worker is assigned a simplified version of

19

the expression, which is obtained by applying a slicing operation over some indices to every

tensor. The difference between the two is that while performing computation using the first

option, one must store copies of the result for every worker, which results in higher memory

usage that scales linearly with the number of workers. This is not an issue in the second

option, where different workers write to different parts of the shared result. The second

option is less flexible, however. Usually one has a complex expression on the right-hand side,

and the result has a smaller number of dimensions. The crucial part is that one can reduce

treewidth of a complex expression using parallelization, which is discussed in Section 2.6.3.

2.6.1 Description of hardware and software

The benchmarks reported in this paper were performed on the Intel Xeon Phi HPC systems

in the Joint Laboratory for System Evaluation (JLSE) and the Theta supercomputer at the

Argonne Leadership Computing Facility (ALCF) [alc, 2017]. Theta is an 12-petaflop Cray

XC40 supercomputer consisting of 4,392 Intel Xeon Phi 7230 processors. Hardware details

for the JLSE and Theta HPC systems are shown in Table 2.2.

The Intel Xeon Phi processors used in this work have 64 cores. The cores operate at 1.3

GHz frequency. Besides the L1 and L2 caches, all the cores in the Intel Xeon Phi processors

share 16 GBytes of MCDRAM (another name is High Bandwidth Memory) and 192 GBytes

of DDR4 memory. The bandwidth of MCDRAM is approximately 400 GBytes/s, while the

bandwidth of DDR4 is approximately 100 GBytes/s.

The memory on Xeon Phi processors can be configured in the following modes: flat mode,

cache mode, and hybrid mode. In the flat mode, the two levels of memory are treated as

separate entities. One can run entirely in MCDRAM or entirely in DDR4 memory. In the

cache mode, the MCDRAM is treated as a direct-mapped L3 cache to the DDR4 layer. In

the hybrid mode, a part of the MCDRAM is L3 cache and the rest is directly addressable

fast MCDRAM, but it does not become part of the (lower bandwidth) DDR4 memory.

20

Table 2.2: Hardware and software specifications

Intel Xeon Phi node characteristics

Intel Xeon Phi models 7210 and 7230 (64 cores, 1.3 GHz, 2,622
GFLOPs)

Memory per node 16 GB MCDRAM,
192 GB DDR4 RAM

JLSE Xeon Phi cluster (26.2 TFLOPS peak)

of Intel Xeon Phi nodes 10
Interconnect type Intel Omni-PathTM

Theta supercomputer (11.69 PFLOPS peak)

of Intel Xeon Phi nodes 4,392
Interconnect type Aries interconnect with

Dragonfly topology
Cray environment loaded modules PrgEnv-intel/ 6.0.5, intel/ 19.0.5.281, cray-

mpich/ 7.7.10

Besides memory modes, the Intel Xeon Phi processors support five cluster modes: all-to-

all, quadrant/hemisphere, and sub-NUMA cluster SNC-4/SNC-2 modes of cache operation.

The main idea behind these modes is how to optimally maintain cache coherency depending

on data locality.

For the types of problems we are computing here, there is not much difference between

various memory configurations [Mironov et al., 2017]. In the calculations presented in this

paper, we used the quadrant clustering mode for all quantum circuit simulations on Intel

Xeon Phi nodes. We explored the use of different affinity modes and found that there is not

much difference in performance between them. For our benchmarks, we used the default

affinity, which is set to scatter.

2.6.2 Single-node parallelization

Simulation of quantum circuits is an example of a memory-bound task: the main bottleneck

of simulation is the storage of intermediate results of a simulation. In a simplistic approach

21

Full	expression

Node	2

Node	2n

Sliced expressions

i	=	0
j	=	0
...

n

i	=	0
j	=	1
...

i	=	1
j	=	1
...

i	=	0

i	=	1

k	=	0 k	=	1

An	intermediate	tensor

thread	0 thread	1

thread	2 therad	2k -	1

Figure 2.5: Illustration of our two-level tensor parallelization approach. On the multinode
level MPI parallelization we use slicing of a partially contracted full expression. On the lower
level of a single node, we use thread-based parallelization with a shared resulting tensor.

called the state-vector evolution scheme, the full vector of size 2n is stored in memory.

Thus a circuit containing only 300 qubits will require more memory than there are atoms in

the universe. A much more efficient algorithm is the tensor network contraction algorithm

described here. But as we show below, it requires use of a complicated parallelization scheme

compared with the straightforward linear algebra parallelization scheme used in the state-

vector simulators.

Modern high-performance computing (HPC) systems have nodes with a large number

of CPU cores. An efficient calculation has to utilize all available CPU cores, using many

threads to execute code. The major problem in using MPI-only code is that all of the data

structures are replicated across MPI ranks, which results in increased memory usage linearly

with respect to the number of MPI ranks. The largest data object in our simulation is the

tensor, which is a result of the contraction step. Memory requirements to store such tensor

are exponential with respect to its size.

Moreover, every code will inevitably have a part that can be executed only serially. As

the number of OpenMP threads or MPI increases, the parallelization becomes less efficient

according to Amdahl’s law. Thus, following this logic, smaller computations require less

time, and the portion of the program that benefits from parallelization will be smaller for

22

small tensors. As a result, according to Amdahl’s law, this means that for small tensors, we

need to use fewer threads.

To address these problems, we share the resulting tensor between 2t threads. We also use

an adaptive thread count determined from task size (Eq. 2.1). A usual approach of splitting

matrices in the code is to split into 2t rows, or columns. This approach is not applicable in

our case since tensors have size 2 over each dimension, and it would require reshaping the

tensor, so it would be indexed with a multi-index. We choose a similar but more elegant

approach. To slice into 2t parts, we first choose indices that will be our slice dimensions.

The slicing operation fixes the value of the index and reduces the number of dimensions by

one. We then use a binary form of the thread index (the id of the thread) as a point in space

{0, 1}⊗t that defines the slice index values.

Every contraction in the bucket elimination step can be represented by the permutation

of indices as

Cijk = AijBik

,

where index i contains indices that A and B have in common and j, k contain indices

specific to A,B, respectively. For our simulation, we slice the tensor over the first t indexes

of the resulting tensor because this approach results in consistent blocks of resulting tensors

assigned to each thread, thereby reducing the memory access time. This part of the algorithm

is shown in green in Fig 2.6.

To determine an optimal number of threads to use, we run a series of experiments to

estimate the overhead time. We use these experimental results as the basis for an empirical

formula for optimal thread count:

t = max(⌊r − 22

2
⌋, 1), (2.1)

23

where r is rank of the resulting tensor.

2.6.3 Multinode parallelization

Every computational node has RAM and a pool of CPU cores. Parallelization over nodes

(compared with threads) increases the size of aggregated distributed memory. Thus storing

duplicates of tensors is not an issue. For this reason, we use every node to compute a version

of a tensor expression evaluated at some values of the tensor indices.

In graph representation, the contraction of the full expression is done by consecutive

elimination of graph vertices. The elimination of a vertex removes it from the graph and

connects all neighbors. An interactive demo of this process can be found at %link to personal

webapp, hidden for double-blind review, will be displayed in the final article% (works for

cZ_v2 circuits from “Files to use”— link).

The slice of a tensor over an index can be viewed as the function of many variables

evaluated at some value of one variable

f(x1, x2, . . . xn)|x1=a = f̃(x2, . . . xn)

, where variables can have integer values vi ∈ [0, d−1]. Slicing reduces the number of indices

of the tensor by one, Moreover, in graph representation, this operation results in the removal

of the corresponding vertex from the expression graph. Since all sizes of indices we use are

equal to 2, removal of n vertices allows us to split the expression into 2n parts.

This operation is equivalent to decomposition of the full expression into the following

form: ∑
m1...mn

(
∑

V \{mi}
T 1T 2 . . . TN), (2.2)

where mi are indices that we slice over and the parts of the expression correspond to the

expression in parentheses.

24

1. Generate circuit graph
2. Find elimination order
3. Find optimal parallelization index s
4. Form buckets

1. Simulate first s buckets
2. Find optimal parallelization vertices
3. Remove vertices
4. Find new elimination order
5. Slice remaining buckets

For every remaining
bucket B

For every tensor
T in B[1:]

R	=	B[0]

rank r higher
 than 22?

R	=	R*T

No

No

Put R into appropriate
remaining bucket

n nodes

Q = shared_tensor()Yes

R	=	Q

Slice(Q) =
Slice(R)*Slice(T)

t = (r-22)/2 threads

Finished
bucket?

Return R

No buckets left

(a)

(b)

Figure 2.6: Sketch of the parallel bucket elimination algorithm. Part (a) and steps b2–
b4 depend only on the structure of a task and can be executed only once for the QAOA
algorithm. Steps b1 and b5 are performed serially.
The outer loop of the blue region performs the elimination of the remaining buckets; the
inner loop corresponds to processing a single bucket. The summation operation at the end
of the bucket processing is omitted for simplicity.

25

Each part is represented by a graph with lower connectivity than the original one. This

dramatically affects optimal elimination path and, respectively, the cost of contraction. De-

pending on the expression, we observed that using only two computational nodes can allow

for speedups of an order of 25.

The QAOA circuit tensor expression results in a graph that has many low-degree vertices,

as demonstrated in Fig. 2.2 for a small circuit. As can be seen in Fig. 2.3, most contraction

steps are computationally cheap, and connectivity of a graph is low. Vertices can be removed

at any step of contraction, giving rise to a completely new problem of finding an optimal step

for slicing the expression. We use a simple brute-force algorithm to determine the optimal

step at which to perform parallelization. First, we find the ordering for the full graph and

analyze the number of neighbors in the contraction path at each step. Any step after the

step with the peak number of neighbors is out of consideration since our goal is to lower this

peak, and we have to contract the initial expression before parallelizing. For every step of

K steps before the peak, we remove from the graph n vertices with the biggest number of

neighbors and rerun the ordering algorithm to determine the new contraction width. The

vertices could be any vertices in the graph, including “free” (nonrepeated) indices. Since the

removed vertices have the biggest number of neighbors, they usually index several tensors,

and the expression includes a sum over them. We found that this new width can be lower

than the original by more than n, providing freedom for massive reduction in the contraction

cost, as discussed in Section 2.8. Step s at which the width is minimal is to be used in the

main run of the simulation.

To the best of our knowledge, this approach of late parallelization was never described

in previous work of this field.

In the first part of the full simulation, labeled (a) in Figure 2.6, we read the circuit, create

the expression graph, find the elimination order, and form buckets. We also find the best

parallelization step s and the corresponding index used in the parallel bucket elimination.

26

The simulation starts with contracting the first s buckets, which is computationally cheap.

After this we have some other tensor expression network, which also is represented by a

partially contracted graph. This expression is conceptually no different from the one we

started with; however, its graph representation has much higher connectivity.

The pseudo-code for the next stage, parallel bucket elimination, is listed in Algorithm 1.

We first select n vertices with the most number of neighbors and use corresponding indices

to slice the remaining expression over. To determine values for slices, we use the binary

representation of the MPI rank of the current node. We find a new ordering for the sliced

expression to identify a better elimination path with removed vertices taken into account.

After reordering the sliced buckets, we run our bucket elimination algorithm with parallel

tensor contraction. For every pair of tensors in the bucket, we determine the size of the

resulting tensor as a union of the set of indices of both tensors. We then determine whether

it is reasonable to use parallel contraction by checking that t calculated by Eq. 2.1 is greater

than 0. To run multiplication or summation in parallel, we first allocate a shared tensor,

then perform the computation for slices of input and output tensors. The final result is

obtained by summing the results from different nodes.

2.6.4 Step-dependent slicing

The QAOA circuit tensor expression results in a graph that has many low-degree vertices,

as demonstrated in Fig. 2.2 for a small circuit. As can be seen in Fig. 2.3, most contraction

steps are computationally cheap, and the connectivity of a graph is low.

Each partially-contracted tensor network is a perfectly valid tensor network and can be

sliced as well. From a line graph representation perspective, vertices can be removed at any

step of contraction, giving rise to a completely new problem of finding an optimal step for

slicing the expression. We propose a step-dependent slicing algorithm that uses this fact and

determines the best index to perform slicing operation, shown in Fig. 2.7.

27

Algorithm 1 Parallel bucket elimination
Input: Ordered buckets Bi containing tensors, parallelization step s, number of parallel

vertices n vertex ordering π : V → N , π = {(vi, i)}
|V |
i=1

Output:

1: contract_first(s, Bi) ▷ Serial part: contract first s buckets
2: for i = 0, n do ▷ Find best index to slice along
3: pi = max_degree_vertex(G)
4: remove_vertex(G, pi)
5: end for
6: v⃗ ← binary_repr(mpi_get_rank())
7: for j = 0, n do ▷ Slice the expression
8: Bi ← Bi|pj=vj
9: end for

10: for i = s, |V | do
11: v ← π−1(i)
12: R← Bi[0]
13: for T ∈ Bi[1 :] do ▷ Process next bucket
14: r ← |T.indexes ∪R.indexes| ▷ Determine resulting size
15: t← floor(r−222)
16: if t>0 then ▷ Contract in thread pool
17: Q← shared_tensor(r)
18: w⃗ ← binary_repr(get_thread_num())

19: k⃗ ← indices_of(Q)[: t]
20: Qv...|kj=wj

← (Qv...Tv...)|kj=wj
21: R← Q ▷ R now points to shared memory tensor
22: else
23: R← RT
24: end if
25: end for
26: R←

∑
v R ▷ Parallel sum can be implemented in same fashion as contraction above

27: if R is scalar then
28: result← result ·R
29: else
30: k = π(w), w is the earliest index of R w.r.t π
31: Bk ← Bk ∪R
32: end if
33: end for
34: result ← mpi_reduce_sum(result) ▷ Gather the results
35: return result

28

Figure 2.7: Step-based slicing algorithm. The blue boxes are evaluated for each graph node
and are the main contributions to time.

We start with finding the ordering for the full graph. Our algorithm then selects con-

sideration only those steps that come before the peak. For every such contraction step s,

we remove r vertices with the biggest number of neighbors from the graph and re-run the

ordering algorithm to determine the contraction after slicing. The distribution of contraction

width is shown on Fig. 2.10.

The step s at which slicing produces best contraction width and contraction order before

that is then added to a contraction schedule. This process can be repeated several times until

n indices in total are selected - each r of them having their optimal step s. This algorithm

requires n
2rN runs of an ordering algorithm, where N is the number of nodes in the graph,

which is usually of the order of 1000. Only greedy algorithms are used in this procedure due

to its short run time.

The value of r can be used to slightly tweak the quality of the results. If r = n, all the

n variables are sliced at a single step. If r = 1, each slice variable can have has its own slice

29

Figure 2.8: Simulation cost for a batch of amplitudes. The calculations are done for 5 random
instances of degree-3 random regular graphs and the mean value is plotted. The three plots
are calculated for different number of qubits: 100, 150 and 200.

step s, which gives better results for larger n.

We observed that using n = 1 already provides contraction width reduction by 3, which

converts to 8x speedup in simulation.

To the best of our knowledge, this approach of step-dependent parallelization was never

described in previous work in this field.

2.7 Simulation of several amplitudes

The QAOA algorithm in its quantum part requires sampling of bit-strings that are potential

solutions to a Max-Cut problem. It is possible to emulate sampling on a classical computer

without calculating all the probability amplitudes. To obtain such samples, one can use frugal

rejection sampling [Villalonga et al., 2019] which requires calculating several amplitudes.

Our tensor network approach can be extended to simulate a batch of variables. If we

contract all indices of a tensor network, the result will be scalar - a probability amplitude.

If we decide to leave out some indices, the result will be a tensor indexed by those indices.

This tensor corresponds to a clique on left-out indices. If a graph contains a clique of size

30

26 27 28 29 210

Nodes count

25

26

27
Ti

m
e

of
 si

m
ul

at
io

n,
 se

co
nd

s

parallel part time
simulation time

Figure 2.9: Experimental data of simulation time with respect to the number of Theta nodes.
The circuit is for 210 qubits and 1,785 gates.

a, its treewidth is not smaller than a. And if we found a contraction order with contraction

width c, during the contraction procedure we will have a clique of size c. If a < c then

adding a clique to the original graph does not increase contraction width . This opens a

possibility to simulate a batch of 2a amplitudes for the same cost as a single amplitude. This

is discussed in great detail in [Schutski et al., 2020].

Figure 2.8 shows contraction width for simulation of batch of amplitudes for different

values of a, ordering algorithms and graph sizes.

2.8 Results

We used the Argonne’s Cray XC40 supercomputer called Theta that consists of 4,392 compu-

tational nodes. Each node has 64 Intel Xeon Phi cores and 208 GB of RAM. The combined

computational power of this supercomputer is about 12 PFLOP/sec. The aggregated amount

of RAM across nodes is approximately 900,000 GB.

For our main test case, a circuit with 210 qubits, the initial contraction was calculated

31

using a greedy algorithm and resulted in contraction width 44. This means that the cost

of simulation would be ≥70 TFLOPS and 281 TB, respectively. Using our step-dependent

slicing algorithm with r = n on 64 computational nodes allows us to remove 6 vertices and

split the expression into smaller parts that have a contraction width of 32, which easily fits

into RAM of one node. The whole simulation, in this case, uses 60% of 13 TB cumulative

memory of 64 nodes, more than 35x less than a serial approach uses.

Figure 2.10 shows how the contraction width c of the sliced tensor expression depends

on step s for several values of numbers of sliced indices n. The notable feature is the high

variance of c with respect to s—the difference between the smallest and the largest values

goes up to 9, which translates to a 512x cost difference. However, the general pattern for

different QAOA circuits remains similar: increasing n by one reduces mins(c(s)) by one.

Computational speedup provided by 64 nodes is on the order of 4096 = 244−32 which is

more than the theoretical limit of 64x for any kind of straightforward parallelization. Using

512 nodes drops the contraction width to 29 and reduces the simulation time 3x compared

with that when using 64 nodes.

The experimental results for 64–1,024 nodes are shown in Fig. 2.9. Simulation time

includes serial simulation of the first small steps before step s, which takes 40 s for a 210-

qubit circuit, or 25–50% of total simulation time, depending on the number of nodes.

2.9 Conclusions

We have presented a novel approach for simulating large-scale quantum circuits represented

by tensor network expressions. It allowed us to simulate large QAOA quantum circuits up

to 210 qubit circuits with a depth of 1,785 gates on 1,024 nodes and 213 TB of memory on

the Theta supercomputer.

As a demonstration, we applied our algorithm to simulate quantum circuits for QAOA

ansatz state with p = 1, but our algorithm also works for higher p also. To reduce memory

32

footprint, we developed a step-dependent slicing algorithm that contracts part of an expres-

sion in advance and reduces the expensive task of finding an elimination order. Using this

approach, we found an ordering that produces speedups up to 512x, when compared with

other parallelization steps s for the same expression.

The unmodified tensor network contraction algorithm is able to simulate 120-140 qubit

circuits, depending on the problem graph. By using a randomized greedy ordering algorithm,

we were able to raise this number to 175 qubits. Furthermore, using a parallelization based on

step-dependent slicing allows us to simulate 210 qubits on the supercomputer Theta. Another

way to obtain samples from the QAOA ansatz state is to use density matrix simulation, but

it is prohibitively computationally expensive and memory demanding. The largest density

matrix simulators known to us can compute 100 qubit problems [Fried et al., 2018] and 120

qubit problems [Zhao et al., 2020] using high-performance computing.

The important feature of our algorithm is applicability to the QAOA algorithm: the

contraction order has to be generated only once and then can be reused for additional

simulations with different circuit parameters. As a result, it can be used to simulate a large

variety of QAOA circuits.

We conclude that this work presents a significant development in the field of quantum

simulators. To the best of our knowledge, the presented results are the largest QAOA

quantum circuit simulations reported to date.

2.10 Acknowledgements

This research used the resources of the Argonne Leadership Computing Facility, which is

a U.S. Department of Energy (DOE) Office of Science User Facility supported under Con-

tract DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided

and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National

Laboratory. This research was also supported by the U.S. Department of Energy, Office of

33

30 32 34 36 38 40
Maximum number of neighbours, c

0

5

10

15

20

25

Distribution of c over steps s
n = 5 parallel indices
n = 6 parallel indices
n = 7 parallel indices

Figure 2.10: Distribution of the contraction width (maximum number of neighbors) c for
different numbers of parallel indices n. While variance of c is present, showing that it is
sensible to the parallelization index s, we are interested in the minimal value of s, which, in
turn, generally gets smaller for bigger n.

Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Ex-

ascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s

Office of Science and National Nuclear Security Administration, responsible for delivering

a capable exascale ecosystem, including software, applications, and hardware technology, to

support the nation’s exascale computing imperative.

34

CHAPTER 3

GPU ACCELERATION OF TENSOR NETWORK

CONTRACTION

This chapter is adapted from Lykov, Chen, Chen, Keipert, Zhang, Gibbs, and Alexeev [2021].

3.1 Introduction

Quantum information science (QIS) has a great potential to speed up certain computing

problems such as combinatorial optimization and quantum simulations [Alexeev et al., 2021].

The development of fast and resource-efficient quantum simulators to classically simulate

quantum circuits is the key to the advancement of the QIS field. For example, simulators

allow researchers to evaluate the complexity of new quantum algorithms and to develop and

validate the design of new quantum circuits. Another important application is to validate

quantum supremacy and advantage claims.

One can simulate quantum circuits on classical computers in many ways. The major

types of simulation approaches are full amplitude-vector evolution [De Raedt et al., 2007;

Smelyanskiy et al., 2016; Häner and Steiger, 2017; Wu et al., 2019], the Feynman paths

approach [Bernstein and Vazirani, 1997], linear algebra open system simulation [Otten, 2020],

and tensor network contractions [Markov and Shi, 2008; Pednault et al., 2017; Boixo et al.,

2017]. These techniques have advantages and disadvantages. Some are better suited for small

numbers of qubits and high-depth quantum circuits, while others are better for circuits with

a large number of qubits but small depth. Some are also tailored toward the accuracy of

simulation of noise in quantum computers.

For shallow quantum circuits the state-of-the-art technique to simulate quantum circuits

is currently arguably the tensor network contraction method because of the memory effi-

ciency for the method relative to state vector methods that scale by 2N , where N is the

35

number of qubits. This effectively limits the state vector methods to quantum circuits with

less than 50 qubits. The challenge with the tensor network methods is determining the op-

timal contraction order, which is known to be an NP-complete problem [Markov and Shi,

2008]. We choose to focus on the simulation of the Quantum Approximate Optimization Al-

gorithm (QAOA) [Farhi and Harrow, 2016] given its importance to machine learning and its

suitability for the current state of the art with noisy intermediate state quantum computers

that generally work with circuits of short depth.

In this work we ported and optimized the tensor network quantum simulator QTensor

to run efficiently on GPUs, with the eventual goal to simulate large quantum circuits on

the modern and upcoming supercomputers. In particular, we benchmarked QTensor on a

NVIDIA DGX-2 server with a V100 accelerator using the CUDA version 11.0. The perfor-

mance is shown for the full expectation value simulation of the QAOA MaxCut problem on

a 3-regular graph of size 30 with depth p = 4.

3.2 Methodology

3.2.1 QAOA Overview

The Quantum Approximate Optimization Algorithm is a variational quantum algorithm that

combines a parameterized ansatz state preparation with a classical outer-loop algorithm

that optimizes the ansatz parameters. QAOA is used for approximate solution of binary

optimization problems [Farhi et al., 2014]. A solution to the optimization problem is obtained

by measuring the ansatz state on a quantum device. The quality of the QAOA solution

depends on the depth of the quantum circuit that generated the ansatz and the quality of

parameters for the ansatz state.

A binary combinatorial optimization problem is defined on a space of binary strings of

length N and has m clauses. Each clause is a constraint satisfied by some assignment of

36

the bit string. QAOA maps the combinatorial optimization problem onto a 2N -dimensional

Hilbert space with computational basis vectors |z⟩ and encodes C(z) as a quantum operator Ĉ

diagonal in the computational basis. One of the most widely used benchmark combinatorial

optimization problems is MaxCut, which is defined on an undirected unweighted graph.

The goal of the MaxCut problem is to find a partition of the graph’s vertices into two

complementary sets such that the number of edges between the sets is maximized. It has

been shown in [Farhi et al., 2014] that on a 3-regular graph, QAOA with p = 1 produces a

solution with an approximation ratio of at least 0.6924.

A graph G = (V,E) of N = |V | vertices and m = |E| edges can be encoded into a

MaxCut cost operator over N qubits by using m two-qubit gates.

Ĉ =
1

2

∑
(ij)∈E

1− σ̂ziσ̂zj (3.1)

The QAOA ansatz state |γ⃗, β⃗⟩ is prepared by applying p layers of evolution unitaries that

correspond to the cost operator Ĉ and a mixing operator B̂ =
∑

i∈V σ̂
x
i . The initial state is

the equally weighted superposition state and maximal eigenstate of B̂.

|γ⃗, β⃗⟩p =

p∏
k=1

e−iβkB̂e−iγkĈ |+⟩ (3.2)

The parameterized quantum circuit (3.2) is called the QAOA ansatz. We refer to the number

of alternating operator pairs p as the QAOA depth.

The solution to the combinatorial optimization problem is obtained by measuring the

QAOA ansatz. The expected quality of this solution is an expectation value of the cost

operator in this state.

⟨C⟩p = ⟨γ⃗, β⃗|pC |γ⃗, β⃗⟩p

37

The expectation value can be minimized with respect to parameters γ⃗, β⃗. The optimization

of γ⃗, β⃗ can be performed by using classical computation or by varying the parameters and

sampling many bitstrings from a quantum computer to estimate the expectation value. Ac-

celeration of the optimal parameters search for a given QAOA depth p is the focus of many

approaches aimed at demonstrating the quantum advantage. Examples include such methods

as warm- and multistart optimization [Egger et al., 2021; Shaydulin et al., 2019a], problem

decomposition [Shaydulin et al., 2019b], instance structure analysis [Shaydulin et al., 2020],

and parameter learning [Khairy et al., 2020].

In this paper we focus on application of a classical quantum circuit simulator QTensor

to the problem of finding the expectation value ⟨C⟩p.

3.2.2 Tensor Network Contractions

Calculation of an expectation value of some observable in a given state generated by some

quantum circuit can be done efficiently by using a tensor network approach. In contrast

to state vector simulators, which store the full state vector of size 2N , QTensor maps a

quantum circuit to a tensor network. Each quantum gate of the circuit is converted to a

tensor. An expectation value ⟨ϕ|Ĉ|ϕ⟩ = ⟨ψ|Û†ĈÛ |ψ⟩ is then simulated by contracting the

corresponding tensor network. For more details on how a quantum circuit is converted to a

tensor network, see [Schutski et al., 2020; Lykov et al., 2020a].

A tensor network is a collection of tensors, which in turn have a collection of indices,

where tensors share some indices with each other. To contract a tensor network, we create

an ordered list of tensor buckets. Each bucket (a collection of tensors) corresponds to a tensor

index, which is called bucket index. Buckets are then contracted one by one. The contraction

of a bucket is performed by summing over the bucket index, and the resulting tensor is then

appended to the appropriate bucket. The number of unique indices in aggregate indices of all

bucket tensors is called a bucket width. The memory and computational resources of a bucket

38

contraction scale exponentially with the associated bucket width. For more information on

tensor network contraction, see [Lykov and Alexeev, 2021; Lykov et al., 2020b; Schutski

et al., 2020]. If some observable Σ̂ acts on a small subset of qubits, most of the gates in

the quantum circuit Û cancel out when evaluating the expectation value. The cost QAOA

operator Ĉ is a sum of m such terms, each of which could be viewed as a separate observable.

Each term generates a lightcone—a subset of the problem that generates a tensor network

representing the contribution to the cost expectation value.

The expectation value of the cost for the graph G and MaxCut QAOA depth p is then

⟨C⟩p (γ⃗, β⃗) = ⟨γ⃗, β⃗|Ĉ|γ⃗, β⃗⟩

= ⟨γ⃗, β⃗|
∑
jk∈E

1

2
(1− σ̂zj σ̂zk)|γ⃗, β⃗⟩

=
|E|
2
− 1

2

∑
jk∈E

⟨γ⃗, β⃗|σ̂zj σ̂zk|γ⃗, β⃗⟩

≡ |E|
2
− 1

2

∑
jk∈E

ejk(γ⃗, β⃗),

where ejk is an individual edge contribution to the total cost function. Note that the

observable in the definition of ejk is local to only two qubits; therefore most of the gates in

the circuit that generates the state |γ⃗, β⃗⟩ cancel out. The circuit after the cancellation is

equivalent to calculating σ̂zj σ̂zk on a subgraph S of the original graph G. These subgraphs

can be obtained by taking only the edges that are incident from vertices at a distance p− 1

from the vertices j and k. The full calculation of EG(γ⃗, β⃗) requires evaluation of |E| tensor

networks, each representing the value ejk(γ⃗, β⃗) for jk ∈ E.

3.2.3 Merged Indices Contraction

Since the contraction in the bucket elimination algorithm is executed one index at a time, the

ratio of computational operations to memory read/write operations is small. This ratio is

39

also called the operational intensity or arithmetic intensity. Having small arithmetic intensity

hurts the performance in terms of FLOPs: for each floating-point operation calculated there

are relatively many I/O operations, which are usually slower. For example, to calculate one

element of the resulting matrix in a matrix multiplication problem, one needs to read 2N

elements and perform 4N operations. The size of the resulting matrix is similar to the input

matrices. In contrast, when calculating an outer product of two vectors, the size of the

resulting matrix is much larger than the combined size of the input vectors; each element

requires two reads and only one floating-point operation.

To mitigate this limitation, we develop an approach for increasing the arithmetic intensity,

which we call merged indices. The essence of the approach is to combine several buckets

and contract their corresponding indices at once, thus having smaller output size and larger

arithmetic intensity. We have a group of circuit contraction backends that all use this

approach.

For the merged backend group, we order the buckets first and then find the mergeable

indices before performing the contraction. We list the set of indices of tensors in each bucket

and then merge the buckets if the set of indices of one bucket is a subset of the other. We

benchmark the sum of the total time needed for the merged indices contraction and compare

it with the unmerged baseline results. We call this group the “merged” group and the baseline

the “unmerged” group.

3.2.4 CPU-GPU Hybrid Backend

The initial tensor network contains only very small tensors of at most 16 elements (4 di-

mensions of size 2). We observe that the contraction sequence obtained by our ordering

algorithm results in buckets of small width for first 80% of contraction steps. Only after all

small buckets are contracted, sequence we start to contract large buckets. The GPUs usually

perform much better when processing large amount of data. We observe this behaviour in

40

our benchmarks on Figure 3.1. We therefore implement a mix backend which uses both CPU

and GPU. It combines a CPU backend and a GPU backend by dispatching the contraction

procedure to appropriate backend.

The mix or the hybrid backend uses the bucket width, which is determined by the number

of unique indices in a bucket, to allocate the correct device for such a bucket to be computed.

The threshold between the CPU backend and the GPU backend is determined by a trial

program. This program runs a small circuit, which is used for all backends for testing,

separately on a GPU backend and a CPU backend. After the testing is complete, it iterates

through all bucket widths and checks whether at this bucket width the GPU takes less time

or not. If it finds the bucket width at which the GPU is faster, it will output that bucket

width, and the user can use this width when creating the hybrid backend in the actual

simulation. In the actual simulation, if the bucket width is smaller than the threshold, the

hybrid backend will allocate this bucket to the CPU and will allocate it to the GPU if the

width is greater.

Since we don’t contract buckets of large width on CPU, the resulting tensors are rather

small, on the order of 1,000s of bytes. The time for data transfer in this case is consid-

ered negligible and is not measured in our code. The large tensors start to appear from

contractions that combine these small tensors after all the data is moved to GPU.

3.2.5 Datasets for Synthetic Benchmarks

Tensor network contraction is a complex procedure that involves many inhomogeneous op-

erations. Since we are interested in achieving the maximum performance of the simulations,

it is beneficial to compare the FLOPs performance to several more relevant benchmarking

problems. We select several problems for this task:

1. Square matrix multiplication, the simplest benchmark problem which serves as an

upper bound for our FLOP performance;

41

2. Pairwise tensor contractions with a small number of large dimensions and fixed con-

traction structure;

3. Pairwise tensor contractions with a large number of dimensions of size 2 and permuted

indices;

4. Bucket contraction of buckets that are produced by actual expectation value calcula-

tion;

5. Full circuit contraction which takes into account buckets of large and small width.

By gradually adding complexity levels to the benchmark problems and evaluating the per-

formance on each level, we look for the largest reduction in FLOPs. The corresponding level

of complexity will be at the focus of our future efforts for optimisation of performance. The

results for these benchmarks are shown in Section 3.3.5 and Figures 3.6 and 3.7.

Matrix Multiplication

We perform the matrix multiplications for the square matrices of the same size and record

the time for the operation for the CPU backend Numpy and the GPU backends PyTorch

and CuPy. We use the built-in random() function of each backend to randomly generate

two square matrices of equal size as our input, and we use the built-in matmul() function

to produce the output matrix. The size of the input matrices ranges from 10 × 10 to

8192 × 8192, and the test is done repeatedly on four different data types: float, double,

complex64, and complex128. For the multiplication of two n × n matrices, we define the

number of complex operations to be n3, and we calculate the number of FLOPs for complex

numbers as 8× number_of_operations
operation_time .

42

Tensor Network Contraction

We have two experiment groups in benchmarking the tensor contraction performance: tensor

contractions with a fixed contraction expression and tensor contractions with many indices

where each index has a small size. We call the former group “tncontract fixed” because we

fix the contraction expression as “abcd,bcdf−→acf,” and we call the latter one “tncontract

random” because we randomly generate the contraction expression. In a general contrac-

tion expression, we sum over the indices not contained in the result indices. In this fixed

contraction expression, we sum over the common index “b” and “d” and keep the rest in our

result indices. We generate two square input tensors of shape n × n × n × n and output a

tensor of shape n × n × n, where n is a size ranging from 10 to 100. For the “tncontract

random” group, we randomly generate the number of contracted indices and the number

of indices in the results first and then fill in the shape array with size 2. For example, a

contraction formula “dacb,ad−→bcd” (index “a” is contracted) needs two input tensors: the

first one with shape 2 × 2 × 2 × 2 and the second one with shape 2 × 2. We use the for-

mula 2number_of_different_indices to calculate the number of operations, and we record the

contraction time and compute the FLOPs value based on the formula used in matrix mul-

tiplication. Following the same procedure in matrix multiplication, we use the backends’

built-in functions to randomly generate the input tensors based on the required size and the

four data types.

Circuit Simulation

For numerical evaluations, we benchmark the full expectation value simulation of the QAOA

MaxCut problem for a 3-regular graph of size 30 and QAOA depth p = 4. We have two

properties for evaluating the circuit simulation performance: unmerged vs. merged backend

and single vs. mixed backend.

43

0 5 10 15 20 25 30
bucket width

10 5

10 4

10 3

10 2

10 1

100

101

m
ea

n
of

 o
pe

ra
tio

n
tim

e

cupy
einsum
torch_gpu

Figure 3.1: Breakdown of mean time to contract a single bucket by bucket width. The
test is performed for expectation value as described in 3.3.1. CPU backends are faster for
buckets of width ≤ 13− 16, and GPU faster are better for larger buckets. This picture also
demonstrates that every contraction operation spends some time on overhead which doesn’t
depend on bucket width, and actual calculation that scales exponentially with bucket width.

3.3 Results

The experiment is performed on an NVIDIA DGX-2 server (provided by NVIDIA cor-

poration) with a V100 accelerator using the CUDA version 11.0. The baseline NumPy

backend is executed only on a CPU and labeled “einsum" in our experiment since we use

numpy.einsum() for the tensor computation. We also benchmark the GPU library CuPy

(on the GPU only) and PyTorch (on both the CPU and GPU).

3.3.1 Single CPU-GPU Backends

We benchmark the performance of the full expectation value simulation of the QAOA Max-

Cut problem on a 3-regular graph of size 30 with depth p = 4, as shown in in Figures 3.1,

3.2, and 3.3. This corresponds to contraction of 20 tensor networks, one network per each

lightcone. Our GPU implementation of the simulator using PyTorch (labeled “torch_gpu")
44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

bucket width

100

101

102

103
co

un
t o

f b
uc

ke
ts

Figure 3.2: Distribution of bucket width in the contraction of QAOA full circuit simulation.
The y-axis is log scale; 82% of buckets have width ≤ 6, which have relatively large overhead
time.

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Figure 3.3: Breakdown of total time spent on bucket of each size in full QAOA expectation
value simulation. The y-value on this plot is effectively one in Figure 3.1 multiplied by one in
Figure 3.2. This figure is very useful for analyzing the bottlenecks of the simulation. It shows
that most of the time for CPU backend is spent on large buckets, but for GPU backends the
large number of small buckets results in a slowdown.

45

achieves 70.3× speedup over the CPU baseline and 1.92× speedup over CuPy.

Figure 3.1 shows the mean contraction time of various bucket widths in different backends.

In comparison with "cupy" backend, the "einsum" backend spends less total time for bucket

width less than 16, and the threshold value changes to around 13 when being compared to

"torch_gpu" backend. Both GPU backends have similar and better performance for larger

bucket widths. However, this threshold value can fluctuate when comparing the same pair

of CPU and GPU backends. This is likely due to the fact that the benchmarking platform

are under different usage loads.

Figure 3.3 provides a breakdown of the contraction times of buckets by bucket width.

This distribution is multimodal: A large portion of time is spent on buckets of width 4.

For CPU backends the bulk of the simulation time is spent on contracting large buckets.

Figure 3.2 shows the distribution of bucket widths, where 82% of buckets have width less

than 7. This signifies that simulation has an overhead from contracting a large number of

small buckets.

This situation is particularly noticeable when looking at the total contraction time of

different bucket widths. Figure 3.3 shows that the distribution of time vs bucket width has

two modes: for large buckets that dominate the contraction time for CPU backends and for

small buckets where most of the time is spent on I/O and other code overhead.

3.3.2 Merged Backend Results

The “merged” groups merge the indices before performing contractions. In Fig. 3.4, the

three unmerged (baseline) backends are denoted by dashed lines, while the merged backends

are shown by solid lines. For the GPU backends CuPy and PyTorch, the merged group

performs significantly better for buckets of width ≥ 20. The CuPy merged backend always

has a similar or better performance compared with the CuPy unmerged group and has much

better performance for buckets of larger width. For buckets of width 28, the total operation

46

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Figure 3.4: Breakdown of total contraction time by bucket width in full expectation value
simulation of problem size 30. Lines with the same color use the same type of backends.
The solid lines represent the merged version of backends, and the dashed lines denote the
baseline backends. The merged GPU backends are better for buckets of width ≥ 20.

time of the unmerged GPU backends is about 0.28 seconds, compared with 32 ms (8.75×

speedup) for the CuPy merged group and 8.8 ms (31.82× speedup) for the PyTorch backend.

But we do not observe much improvement for the merged CPU backend.

3.3.3 Mix CPU-GPU Backend Results

From Figure 3.1 one can see that GPU backends perform much better for buckets of large

width, while CPU backends are better for smaller buckets. We thus implemented a mixed

backend approach, which dynamically selects a device (CPU or GPU) on which the bucket

should be contracted. We select a threshold value of 15 for the bucket width; any bucket that

has a width larger than 15 will be contracted on the GPU. Figure 3.3 shows that for GPU

backends small buckets occupy approximately 90% of the total simulation time. The results

for this approach are shown in Table 3.1 under backend names “Torch_CPU + Torch_GPU"

and “NumPy + CuPy." Using a CPU backend in combination with Torch_GPU improves

47

Backend Name Device Time (second) Speedup
Torch_CPU CPU 347 0.71×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
Torch_GPU GPU 3.5 70.3×
Torch_CPU + Torch_GPU Mixed 2.6 94.8×
NumPy + CuPy Mixed 2.1 117×

Table 3.1: Time for full QAOA expectation value simulation using backend that utilize GPUs
or CPUs. The expectation value is MaxCut on a 3-regular graph of size 30 and QAOA depth
p = 4. Speedup shows the overall runtime improvement compared with the baseline CPU backend
“NumPy". “Mixed" device means the backend uses both CPU and GPU devices.

the performance by 1.2×, and for CuPy the improvement is 3×. These results suggest that

using a combination of NumPy + Torch_GPU has the potential to give the best results.

We have evaluated the GPU performance of tensor network contraction for the energy

calculation of QAOA. The problem is largely inhomogeneous with a lot of small buckets

and a few very large buckets. Most of the improvement comes from using GPUs on large

buckets, with up to 300× speed improvement. On the other hand, the contraction of smaller

tensors is faster on CPUs. In general, if the maximum bucket width of a lightcone is less

than ∼ 17, the improvement from using GPUs is marginal. In addition, large buckets require

a lot of memory. For example, a bucket of width 27 produces a tensor with 27 dimensions

of size 2, and the memory requirement for complex128 data type is 2 GB. In practice, these

calculations are feasible up to width ∼ 29.

3.3.4 Mixed Merged Backend Results

Since the performance of the NumPy-CuPy hybrid backend is the best among all imple-

mented hybrid backends, cross-testing between merged backends and hybrid backends fo-

cuses on the combination of the NumPy backend and CuPy backend. Because of the API

constraint, the hybrid of a regular NumPy backend and a merged CuPy backend was not

implemented.

48

Backend Name Device Time (seconds) Speedup
NumPy_Merged CPU 383 0.64×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
CuPy_Merged GPU 5.6 43.9×
NumPy + CuPy Mixed 2.1 117×
NumPy_Merged + CuPy_Merged Mixed 1.4 176×

Table 3.2: Time for full QAOA expectation value simulation using different Merged backends, as
described in Section 3.2.3. The expectation value is MaxCut on a 3-regular graph of size 30 and
QAOA depth p = 4. Speedup shows the overall runtime improvement compared with the baseline
CPU backend “NumPy".

In Table 3.2, merging buckets provide a performance boost for the CuPy backend and

Numpy + CuPy hybrid backend but not the NumPy backend. CuPy_Merged is 20% faster

than CuPy, and NumPy_Merged + CuPy_Merged is 50% faster than its regular counter-

part. However, NumPy_Merged has an significant slowdown compared with the baseline

NumPy, suggesting that combining the regular NumPy backend with the merged CuPy

backend can provide more speedup for the future.

In Fig. 3.5, CPU performance is better than GPU performance when the bucket width

is approximately less than 15. After 15, GPU performance scales with width much better

than that of CPU performance, providing a significant speed boost over the CPU in the

end. GPU performance of the hybrid backend is better than that of pure GPU backend for

buckets of width ≥ 15. This speedup of the hybrid backend is likely caused by less garbage

handling for the GPU since most buckets aren’t stored on GPU memory.

3.3.5 Synthetic Benchmarks

We also benchmark the time required for the basic operations: matrix multiplication, tensor

network contraction with fixed contraction indices, and tensor network contraction with

random indices, as well as circuit contractions.

The summary of the results is shown in Table 3.3, which compares FLOPs count for

49

5 10 15 20 25 30
bucket width

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum-cupy
einsum

Figure 3.5: Breakdown of sum contraction time by bucket width for merged backends. CPU
backends are better for buckets of width ≤ 15, and GPU backends are better for larger
buckets. The hybrid backend’s GPU backend spends outperforms the regular GPU backend
for buckets of width ≥ 15.

similar-sized problems of different types. Figures 3.6 and 3.7 show dependence of FLOPs vs

problem size for different problems. We observe 80% of theoretical peak performance on GPU

for matrix multiplication. Switching to pairwise tensor network contraction shows similar

FLOPs for GPU, while for CPU, it results in 10× FLOPs decrease. A significant reduction

in performance comes from switching from pairwise tensor network contractions of a tensor

with few dimensions of large size to tensors with many permuted dimensions and small

size. This reduction in performance is about 10× for both CPU and GPU. This observation

suggests that further improvement can be achieved by reformulating the tensor network

operations in a smaller tensor by transposing and merging the dimensions of participating

tensors. It is partially addressed in using the merged indices approach, where the contraction

dimension is increased. The “Bucket Contraction Merged" task shows 45% of theoretical peak

performance, which significantly improves compared to the unmerged counterpart.

The significant reduction of performance comes when we compare bucket contraction and

50

Task CPU FLOPs GPU FLOPs
Matrix Multiplication 50.1G 2.38T
Tensor Network Fixed Contraction 5.53G 1.36T
Tensor Network Random Contraction 640M 97.5G
Bucket Contraction Unmerged 241M 61.9G
Bucket Contraction Merged 542M 1.14T
Lightcone Contraction Unmerged 326M 4.92G
Lightcone Contraction Merged 177M 3.1G
Circuit Contraction Mixed 30.7G

Table 3.3: Summary of GPU and CPU FLOPs for different tasks at around 100 million operations.
Matrix Multiplication and Tensor Contraction tasks are described in Section 3.3.5. “Bucket Contrac-
tion" groups record the maximum number of FLOPs for a single bucket. “Lightcone Contraction"
groups contain the FLOPs data on a single lightcone where the sum of operations is approximately
100 millions, small and large buckets combined.

full circuit contraction. It was explained in detail in Section 3.3.1 and is caused by overhead

from small buckets. It is evident from Figure 3.3 that most of the time in GPU simulation is

spent on overhead from small bucket contraction. This issue is addressed by implementing

the mixed backend approach.

It is also notable that the merged approach does not improve the performance for CPU

backends which is probably due to an inefficient implementation of original numpy.einsum().

Matrix Multiplication

The multiplication of square matrices of size 465 needs approximately 100 million complex

operations according to our calculation of operations value. The average operation time for

the multiplication of two randomly generated complex128 square matrices of size 465 is 0.3

ms on the GPU, which achieves 50× speedup compared with the operation time of 16 ms

on the CPU; NumPy produces 50G FLOPs on CPU, and the GPU backend CuPy reaches

2.38T FLOPs for this operation. We observe that the CPU backend has an advantage in

performing small operations: for matrices of size 10× 10, the CPU backend NumPy spends

only 5.8 µs for the multiplication, while the best GPU backend PyTorch spends 27 µs on the

51

operation. When the matrix size is less than 2000 × 2000 for the GPU backends, PyTorch

outperforms CuPy, and CuPy is slightly better for much larger operations. Moreover, the

operation time for both CPU and GPU backends decreases slightly when the size of matrices

increases from 1000 to 1024 and from 4090 to 4096.

Fixed Tensor Network Contraction

We use the fixed contraction formula “abcd,bcdf−→acf” and control the size of the tensor

indices from 10 to 100. Even for the smallest case when the number of operations is 100,000

with indices of size 10, the slowest GPU backend is faster than the CPU backend Numpy,

which spends 0.3 ms on the contraction. For the GPU backends, we achieve 1.36T FLOPs

for this fixed contraction, which is 57% of the recorded peak performance. In accordance

with the matrix multiplication results, the CuPy backend performs better than the PyTorch

backend in the fixed tensor network contractions only when the number of operations is

greater than 1G.

Random Tensor Network Contraction

We let the number of indices be any number between 4 and 25, and we set the size of

each mode to be 2. For example, we have 5 indices in total, and we randomly generate

a contraction sequence “caedb,eab−→cde,” so the sizes of the input tensors are 25 and 23,

resulting in an output tensor of size 23. We reach 97.5 G FLOPs for the GPU backends and

640 M for the CPU backend only when performing this random contraction. As shown in

Fig. 3.6, the mean FLOPs drop significantly when we use random contraction (in green)

instead of fixed contraction (in red) on the CuPy backend. On the CPU, the gap increases

with the increasing number of operations according to Fig. 3.7. Therefore, contractions on

tensors with small numbers of indices of large size have better performance than contractions

on tensors with many indices of small size. The "tncontract random" group is designed to

52

101 103 105 107 109 1011

Operations

106

108

1010

1012

FL
OP

s

CuPy on different tasks
circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Figure 3.6: FLOPs vs. the number of operations for all tasks on the CuPy backend. “circuit
unmerged" and “circuit merged" are results of expectation value of the full circuit simulation
of QAOA MaxCut problem on a 3-regular graph of size 30 with depth p = 4. “tncontract
random” tests on tensors of many indices where each index has a small size. “tncontract
fixed" uses the contraction sequence “abcd,bcdf−→acf” for all contractions. “matmul" per-
forms matrix multiplication on square matrices. All groups use complex128 tensors in the
operation. We use the triangles to denote the data at ∼ 100 million operations, which is
shown in Table 3.3.

break down the circuit simulation to tensor contraction operations, so it overlaps with the

results from the "bucket unmerged" group in Fig. 3.6. From the difference in performance

of the random and the fixed tensor contraction group, we design the merged bucket group to

improve the performance of contractions. Our goal is to make the bucket simulation curve

close to the tensor contraction fixed group (the red curve).

3.4 Conclusions

This work has demonstrated that GPUs can significantly speed up quantum circuit simula-

tions using tensor network contractions. We demonstrate that GPUs are best for contracting

large tensors, while CPUs are slightly better for small tensors. Moving the computation onto

53

101 103 105 107 109 1011

Operations

106

107

108

109

1010

1011

1012

FL
OP

s

NumPy on different tasks
circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Figure 3.7: FLOPs vs. the number of operations for all tasks on NumPy backend. Same
problem setting as Fig. 3.6. “tncontract random" outperforms “tncontract fixed" as the ops
value increases. Merged backend does not have an advantage on CPU compared to the
unmerged backend. We use the triangles to denote the data at ∼ 100 million operations,
which is shown in Table 3.3.

54

GPUs can dramatically speed up the computation. We propose to use a contraction backend

that dynamically assigns the CPU or GPU device to tensors based on their size. This mixed

backend approach demonstrated a 176× improvement in time to solution.

We observe up to 300× speedup on GPU compared to CPU for individual large buckets.

In general, if the maximum bucketwidth of a lightcone is less than ∼ 17, the improvement

from using GPUs is marginal. It underlines the importance of using a mixed CPU/GPU

backend for tensor contraction and using device selection for the tensor at runtime to achieve

the maximum performance. On NVIDIA DGX-2 server we found out that the threshold is

∼ 15, but it may change for other computing systems.

We also demonstrated the performance of the merged indices approach, which improves

the arithmetic intensity and provides a significant FLOP improvement. Our synthetic bench-

marks for various tensor contraction tasks suggest that additional improvement can be ob-

tained by transposing and reshaping tensors in pairwise contractions.

The main conclusion of this chapter is that we found that GPUs can dramatically increase

the speed of tensor contractions for large tensors. The smaller tensors need to be computed

on a CPU only because of overhead to move on and off data to a GPU. We show that the

approach of merged indices allows to speed up large tensors contraction, but it does not solve

the problem completely. Where to compute tensors leads to the problem of optimal load

balancing between CPU and GPU. This potential issue will be the subject of our future work,

as well as testing of the performance of the code on new NVidia DGX systems and GPU

supercomputers using cuTensor and cuQuantum software packages developed by NVidia.

55

CHAPTER 4

MAXCUT QAOA PERFORMANCE STUDY

This chapter is adapted from Lykov, Chen, Chen, Keipert, Zhang, Gibbs, and Alexeev [2021].

4.1 Introduction

Quantum computing promises enormous computational powers that can far outperform any

classical computational capabilities [?]. In particular, certain problems can be solved much

faster compared with classical computing, as demonstrated experimentally by Google for the

task of sampling from a quantum state [Arute et al., 2019]. Thus, an important milestone

[Arute et al., 2019] in quantum technology, so-called ‘quantum supremacy’, was achieved as

defined by Preskill [?].

The next milestone, ‘quantum advantage’, where quantum devices solve useful problems

faster than classical hardware, is more elusive and has arguably not yet been demonstrated.

However, a recent study suggests a possibility of achieving a quantum advantage in runtime

over specialized state-of-the-art heuristic algorithms to solve the Maximum Independent Set

problem using Rydberg atom arrays [?]. Common classical solutions to several potential

applications for near-future quantum computing are heuristic and do not have performance

bounds. Thus, proving the advantage of quantum computers is far more challenging [???].

Providing an estimate of how quantum advantage over these classical solvers can be achieved

is important for the community and is the subject of this paper.

Most of the useful quantum algorithms require large fault-tolerant quantum comput-

ers, which remain far in the future. In the near future, however, we can expect to have

noisy intermediate-scale quantum (NISQ) devices [?]. In this context variational quan-

tum algorithms (VQAs) show the most promise [?] for the NISQ era, such as the varia-

tional quantum eigensolver (VQE) [?] and the Quantum Approximate Optimization Algo-

56

QAOA returns
solutions slower

QAOA returns
solutions faster

Time to solution

Q
u
a
lit

y
o
f
so

lu
ti
o
n

No advantage

Different mode
of operation

Different mode
of operation

Advantage

Time
advantage

Pe
rf

o
rm

a
n
ce

a
d
va

n
ta

g
e

Q
A
O

A
 r

e
tu

rn
s

b
e
tt

e
r

so
lu

ti
o
n
s

Q
A
O

A
 r

e
tu

rn
s

w
o
rs

e
 s

o
lu

ti
o
n
s

Figure 4.1: Locus of quantum advantage over classical algorithms. A particular classical
algorithm may return some solution to some ensemble of problems in time TC (horizontal
axis) with some quality CC (vertical axis). Similarly, a quantum algorithm may return a
different solution sampled in time TQ, which may be faster (right) or slower (left) than
classical, with a better (top) or worse (bottom) quality than classical. If QAOA returns
better solutions faster than the classical, then there is clear advantage (top right), and
conversely no advantage for worse solutions slower than the classical (bottom left).

rithm (QAOA) [Farhi et al., 2014]. Researchers have shown remarkable interest in QAOA

because it can be used to obtain approximate (i.e., valid but not optimal) solutions to a wide

range of useful combinatorial optimization problems [???].

In opposition, powerful classical approximate and exact solvers have been developed to

find good approximate solutions to combinatorial optimization problems. For example, a

recent work by Guerreschi and Matsuura [?] compares the time to solution of QAOA vs. the

classical combinatorial optimization suite AKMAXSAT. The classical optimizer takes expo-

nential time with a small prefactor, which leads to the conclusion that QAOA needs hundreds

of qubits to be faster than classical. This analysis requires the classical optimizer to find an

exact solution, while QAOA yields only approximate solutions. However, modern classical

heuristic algorithms are able to return an approximate solution on demand. Allowing for

57

worse-quality solutions makes these solvers extremely fast (on the order of milliseconds),

suggesting that QAOA must also be fast to remain competitive. A valid comparison should

consider both solution quality and time.

In this way, the locus of quantum advantage has two axes, as shown in Fig. 4.1: to

reach advantage, a quantum algorithm must be both faster and return better solutions than

a competing classical algorithm (green, top right). If the quantum version is slower and

returns worse solutions (red, bottom left) there is clearly no advantage. However, two more

regions are shown in the figure. If the QAOA returns better solutions more slowly than a

classical algorithm (yellow, top left), then we can increase the running time for the classical

version. It can try again and improve its solution with more time. This is a crucial mode to

consider when assessing advantage: heuristic algorithms may always outperform quantum

algorithms if quantum time to solution is slow. Alternatively, QAOA may return worse

solutions faster (yellow, bottom right), which may be useful for time-sensitive applications.

In the same way, we may stop the classical algorithm earlier, and the classical solutions will

become worse.

One must keep in mind that the reason for using a quantum algorithm is the scaling of

its time to solution with the problem size N . Therefore, a strong quantum advantage claim

should demonstrate the superior performance of a quantum algorithm in the large-N limit.

This paper focuses on the MaxCut combinatorial optimization problem on 3-regular

graphs for various problem size N . MaxCut is a popular benchmarking problem for QAOA

because of its simplicity and straightforward implementation. We propose a fast fixed-angle

approach to running QAOA that speeds up QAOA while preserving solution quality com-

pared with slower conventional approaches. We evaluate the expectation value of noiseless

QAOA solution quality using tensor network simulations on classical hardware. We then

find the time required for classical solvers to match this expected QAOA solution quality.

Surprisingly, we observe that even for the smallest possible time, the classical solution qual-

58

ity is above our QAOA solution quality for p = 11, our largest p with known performance.

Therefore, we compensate for this difference in quality by using multishot QAOA and find

the number of samples K required to match the classical solution quality. K allows us

to characterize quantum device parameters, such as sampling frequency, required for the

quantum algorithm to match the classical solution quality.

4.2 Results and discussion

This section will outline the results and comparison between classical optimizers and QAOA.

This has two halves: Sec. 4.2.1 outlines the results of the quantum algorithm, and Sec. 4.2.2

outlines the results of the classical competition.

4.2.1 Expected QAOA solution quality

The first algorithm is the quantum approximate optimization algorithm (QAOA), which uses

a particular ansatz to generate approximate solutions through measurement. We evaluate

QAOA for two specific modes. The first is single shot fixed angle QAOA, where a single

solution is generated. This has the the benefit of being very fast. The second generalization

is multi-shot fixed angle QAOA, where many solutions are generated, and the best is kept.

This has the benefit that the solution may be improved with increased run time.

In Section 4.3.3 we find that one can put limits on the QAOA MaxCut performance even

when the exact structure of a 3-regular graph is unknown using fixed angles. We have shown

that for large N the average cut fraction for QAOA solutions on 3-regular graphs converges

to a fixed value ftree. If memory limitations permit, we evaluate these values numerically

using tensor network simulations. This gives us the average QAOA performance for any

large N and p ≤ 11. To further strengthen the study of QAOA performance estimations, we

verify that for the small N , the performance is close to the same value ftree. We are able

to numerically verify that for p ≤ 4 and small N the typical cut fraction is close to ftree, as

59

102 103 104 105

N

10 4

10 3

10 2

10 1

100

101

Ti
m

e
to

 so
lu

tio
n,

 s

BURER2002 (p > 11)
Gurobi (p = 11)
FLIP (p = 6)

Figure 4.2: Time required for a single-shot QAOA to match classical MaxCut algorithms.
The blue line shows time for comparing with the Gurobi solver and using p = 11; the yellow
line shows comparison with the FLIP algorithm and p = 6. Each quantum device that runs
MaxCut QAOA can be represented on this plot as a point, where the x-axis is the number
of qubits and the y-axis is the time to solution. For any QAOA depth p, the quantum device
should return at least one bitstring faster than the Y-value on this plot.

shown on Fig. 4.6.

Combining the large-N theoretical analysis and small-N heuristic evidence, we are able

to predict the average performance of QAOA on 3-regular graphs for p ≤ 11. We note that

today’s hardware can run QAOA up to p ≤ 4 [?] and that for larger depths the hardware

noise prevents achieving better QAOA performance. Therefore, the p ≤ 11 constraint is not

an important limitation for our analysis.

60

4.2.2 Classical solution quality and time to solution

The second ensemble of algorithms are classical heuristic or any-time algorithms. These

algorithms have the property that they can be stopped mid-optimization and provide the

best solution found so far. After a short time spent loading the instance, they find an

initial ‘zero-time’ guess. Then, they explore the solution space and find incramentally better

solutions until stopping with the best solution after a generally exponential amount of time.

We experimentally evaluate the performance of the classical solvers Gurobi, MQLib using

BURER2002 heuristic, and FLIP in Sec. 4.3.2. We observe that the zero-time performance,

which is the quality of the fastest classical solution, is above the expected quality of QAOA

p = 11, as shown in Fig. 4.3. The time to first solution scales almost linearly with size, as

shown in Fig. 4.2. To compete with classical solvers, QAOA has to return better solutions

faster.

4.2.3 Multi-shot QAOA

To improve the performance of QAOA, one can sample many bitstrings and then take the

best one. This approach will work only if the dispersion of the cut fraction distribution is

large, however. For example, if the dispersion is zero, measuring the ansatz state would

return only bitstrings with a fixed cut value. By analyzing the correlations between the

qubits in Section 4.3.3, we show that the distribution of the cut fraction is a Gaussian

with the standard deviation on the order of 1/
√
N . The expectation value of maximum

of K samples is proportional to the standard deviation, as shown in Equation 4.7. This

equation determines the performance of multishot QAOA. In the large N limit the standard

deviation is small, and one might need to measure more samples in order to match the

classical performance.

If we have the mean performance of a classical algorithm, we can estimate the number of

samples K required for QAOA to match the classical performance. We denote the difference

61

102 103 104 105

N

0.82

0.84

0.86

0.88

0.90

0.92

Cu
t f

ra
ct

io
n

BURER2002
Gurobi
FLIP
QAOA p=11
QAOA p=6

Figure 4.3: Zero-time performance for graphs of different size N . The Y-value is the cut
fraction obtained by running corresponding algorithms for minimum possible time. This
corresponds to the Y-value of the star marker in Fig. 4.4. Dashed lines show the expected
QAOA performance for p = 11 (blue) and p = 6 (yellow). QAOA can outperform the FLIP
algorithm at depth p > 6, while for Gurobi it needs p > 11. Note that in order to claim
advantage, QAOA has to provide the zero-time solutions in faster time than FLIP or Gurobi
does. These times are shown on Fig. 4.2.

62

between classical and quantum expected cut fraction as ∆p(t), which is a function of the

running time of the classical algorithm. Moreover, it also depends on p, since p determines

QAOA expected performance. If ∆p(t) < 0, the performance of QAOA is better, and

we need only a K = 1 sample. In order to provide an advantage, QAOA would have to

measure this sample faster than the classical algorithm, as per Fig. 4.1. On the other hand,

if ∆p(t) > 0, the classical expectation value is larger than the quantum one, and we have to

perform multisample QAOA. We can find K by inverting Equation 4.7. In order to match

the classical algorithm, a quantum device should be able to run these K samples in no longer

than t. We can therefore get the threshold sampling frequency.

νp(t) =
K

t
=

1

t
exp

(
N

2γ2p
∆p(t)

2

)
(4.1)

The scaling of ∆p(t) with t is essential here since it determines at which point t we will have

the smallest sampling frequency for advantage. We find that for BURER2002, the value of

∆(t) is the lowest for the smallest possible t = t0, which is when a classical algorithm can

produce its first solution. To provide the lower bound for QAOA we consider t0 as the most

favourable point, since classical solution improves much faster with time than a multi-shot

QAOA solution. This point is discussed in more detail in the Supplementary Methods.

Time t0 is shown on Fig. 4.2 for different classical algorithms. We note that in the

figure the time scales polynomially with the number of nodes N . Figure 4.3 shows the mean

cut fraction for the same classical algorithms, as well as the expectation value of QAOA

at p = 6, 11. These two figures show that a simple linear-runtime FLIP algorithm is fast

and gives a performance on par with p = 6 QAOA. In this case ∆6(t0) < 0, and we need

to sample only a single bitstring. To obtain the p = 6 sampling frequency for advantage

over the FLIP algorithm, one has to invert the time from Fig. 4.2. If the quantum device

is not capable of running p = 6 with little noise, the quantum computer will have to do

multishot QAOA. Note that any classical prepossessing for QAOA will be at least linear in

63

100 us 1 ms 50 ms 1 st0, G 10 s 1 min 10 min
Time

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Cu
t f

ra
ct

io
n

Gurobi
MQLib+BURER2002
FLIP
QAOA p=11 multishot
QAOA p=6 multishot
QAOA p=11

Figure 4.4: Evolution of cut fraction value in the process of running the classical algorithms
solving 3-regular MaxCut with N=256. The shaded area shows 90-10 percentiles interval,
and the solid line shows the mean cut fraction over 100 graphs. The dashed lines show the
expectation value of single-shot QAOA for p = 6, 11, and the dash-dotted lines show the
expected performance for multishot QAOA given a sampling rate of 5 kHz. Note that for
this N = 256 the multi-shot QAOA with p = 6 can compete with Gurobi at 50 milliseconds.
However, the slope of the multi-shot line will decrease for larger N , reducing the utility of
the multi-shot QAOA.

64

102 103 104 105

N

2

10

103

109

1027

Sa
m

pl
in

g
fre

qu
en

cy
, H

z

Gurobi
BURER2002 (MQLib)

Figure 4.5: Sampling frequency required to achieve MaxCut advantage using QAOA p = 11.
The shaded area around the solid lines corresponds to 90-10 percentiles over 100 seeds for
Gurobi and 20 seeds for BURER2002. The background shading represents comparison of
a quantum computer with BURER2002 solver corresponding to modes in Fig. 4.1. Each
quantum device can be represented on this plot as a point, where the x-axis is the number
of qubits, and the y-axis is the time to solution. Depending on the region where the point
lands, there are different results of comparisons. QAOA becomes inefficient for large N ,
when sampling frequency starts to grow exponentially with N .

time since one must read the input and produce a quantum circuit. Therefore, for small

p < 6 QAOA will not give significant advantage: for any fast QAOA device one needs a fast

classical computer; one might just run the classical FLIP algorithm on it.

The Gurobi solver is able to achieve substantially better performance, and it slightly

outperforms p = 11 QAOA. Moreover, the BURER2002 algorithm demonstrates even better

solution quality than does Gurobi while being significantly faster. For both Gurobi and

BURER2002, the ∆11(t0) > 0, and we need to either perform multishot QAOA or increase p.

Figure 4.5 shows the advantage sampling frequency ν11(t0) for the Gurobi and BURER2002

algorithms; note that the vertical axis is doubly exponential.

The sampling frequency is a result of two factors that work in opposite directions. On

the one hand, the time to solution for a classical algorithm grows with N , and hence ν

65

drops. On the other hand, the standard deviation of distribution vanishes as 1/
√
N , and

therefore the number of samples K grows exponentially. There is an optimal size N for

which the sampling frequency is minimal. This analysis shows that there is a possibility for

advantage with multi-shot QAOA for moderate sizes ofN = 100..10 000, for which a sampling

frequency of ≈ 10kHz is required. These frequencies are very sensitive to the difference in

solution quality, and for p ≥ 12 a different presentation is needed, if one quantum sample

is expected to give better than classical solution quality. This is discussed in more detail in

Supplementary Methods.

For large N , as expected, we see a rapid growth of sampling frequency, which indicates

that QAOA does not scale for larger graph sizes, unless we go to higher depth p > 11. The

color shading shows correspondence with Fig. 4.1. If the quantum device is able to run

p ≥ 11 and its sampling frequency and the number of qubits N corresponds to the green

area, we have a quantum advantage. Otherwise, the quantum device belongs to the red area,

and there is no advantage.

It is important to note the effect of classical parallelization on our results. Despite

giving more resources to the classical side, parallel computing is unlikely to help it. To

understand this, one has to think on how parallelization would change the performance

profile as shown on Figure 4.4. The time to the first classical solution is usually bound from

below by preparation tasks such as reading the graph, which are inherently serial. Thus,

parallelization will not reduce t0 and is in fact likely to increase it due to communication

overhead. Instead, it will increase the slope of the solution quality curve, helping classical

algorithms to compete in the convergence regime.

4.2.4 Discussion

As shown in Fig. 4.1, to achieve quantum advantage, QAOA must return better solutions

faster than the competing classical algorithm. This puts stringent requirements on the speed

66

of QAOA, which previously may have gone unevaluated. If QAOA returns a solution more

slowly, the competing classical algorithm may ‘try again’ to improve its solution, as is the

case for anytime optimizers such as the Gurobi solver. The simplest way to improve the speed

of QAOA is to reduce the number of queries to the quantum device, which we propose in our

fixed-angle QAOA approach. This implementation forgoes the variational optimization step

and uses solution concentration, reducing the number of samples to order 1 instead of order

100,000. Even with these improvements, however, the space of quantum advantage may be

difficult to access.

Our work demonstrates that with a quantum computer of ≈ 100 qubits, QAOA can

be competitive with classical MaxCut solvers if the time to solution is shorter than 100 µs

and the depth of the QAOA circuit is p ≥ 6. Note that this time to solution must include

all parts of the computation, including state preparation, gate execution, and measurement.

Depending on the parallelization of the architecture, there may be a quadratic time overhead.

However, the required speed of the quantum device grows with N exponentially. Even if an

experiment shows advantage for intermediate N and p ≤ 11, the advantage will be lost

on larger problems regardless of the quantum sampling rate. Thus, in order to be fully

competitive with classical MaxCut solvers, quantum computers have to increase solution

quality, for instance by using p ≥ 12. Notably, p = 12 is required but not sufficient for

achieving advantage: the end goal is obtaining a cut fraction better than ≥ 0.885 for large

N , including overcoming other challenges of quantum devices such as noise.

These results lead us to conclude that for 3-regular graphs (perhaps all regular graphs),

achieving quantum advantage on NISQ devices may be difficult. For example, the fidelity

requirements to achieve quantum advantage are well above the characteristics of NISQ de-

vices.

We note that improved versions of QAOA exist, where the initial state is replaced with

a preoptimized state [?] or the mixer operator is adapted to improve performance [??].

67

One also can use information from classical solvers to generate a better ansatz state [?].

These algorithms have further potential to compete against classical MaxCut algorithms.

Also, more general problems, such as weighted MaxCut, maximum independent set, and

3-SAT, may be necessary in order to find problem instances suitable for achieving quantum

advantage.

When comparing with classical algorithms, one must record the complete time to solution

from the circuit configuration to the measured state. This parameter may be used in the

extension of the notion of quantum volume, which is customarily used for quantum device

characterization. Our work shows that QAOA MaxCut does not scale with graph size for at

least up to p ≤ 11, thus putting quantum advantage for this problem away from the NISQ

era.

4.3 Methods

Both classical solvers and QAOA return a bitstring as a solution to the MaxCut problem.

To compare the algorithms, we must decide on a metric to use to measure the quality of the

solution. A common metric for QAOA and many classical algorithms is the approximation

ratio, which is defined as the ratio of cut value (as defined in Eq. (4.3)) of the solution divided

by the optimal (i.e., maximum possible) cut value for the given graph. This metric is hard to

evaluate heuristically for large N , since we do not know the optimal solution. We therefore

use the cut fraction as the metric for solution quality, which is the cut value divided by the

number of edges.

We analyze the algorithms on an ensemble of problem instances. Some instances may give

advantage, while others may not. We therefore analyze ensemble advantage, which compares

the average solution quality over the ensemble. The set of 3-regular graphs is extremely large

for large graph size N , so for classical heuristic algorithms we evaluate the performance on

a subset of graphs. We then look at the mean of the cut fraction over the ensemble, which

68

is the statistical approximation of the mean of the cut fraction over all 3-regular graphs.

4.3.1 QAOA Methodology

Usually QAOA is thought of as a hybrid algorithm, where a quantum-classical outer loop

optimizes the angles γ, β through repeated query to the quantum device by a classical opti-

mizer. Depending on the noise, this process may require hundreds or thousands of queries

in order to find optimal angles, which slows the computation. To our knowledge, no com-

prehensive work exists on exactly how many queries may be required to find such angles. It

has been numerically observed [??], however, that for small graph size N = 12 and p = 4,

classical noise-free optimizers may find good angles in approximately 100 steps, which can

be larger for higher N and p. Each step may need order 103 bitstring queries to average

out shot noise and find expectation values for an optimizer, and thus seeking global angles

may require approximately 100 000 queries to the simulator. The angles are then used for

preparing an ansatz state, which is in turn measured (potentially multiple times) to obtain

a solution. Assuming a sampling rate of 1 kHz, this approach implies a QAOA solution of

approximately 100 seconds.

Recent results, however, suggest that angles may be precomputed on a classical device

[?] or transferred from other similar graphs [?]. Further research analytically finds optimal

angles for p ≤ 20 and d → ∞ for all large-girth d-regular graphs, but does not give angles

for finite d [?]. Going a step further, a recent work finds that evaluating regular graphs at

particular fixed angles has good performance on all problem instances [?]. These precom-

puted or fixed angles allow the outer loop to be bypassed, finding close to optimal results in

a single shot. In this way, a 1000 Hz QAOA solution can be found in milliseconds, a speedup

of several ordesr of magnitude.

For this reason we study the prospect for quantum advantage in the context of fixed-

angle QAOA. For d-regular graphs, there exist particular fixed angles with universally good

69

performance [?]. Additionally, as will be shown in Section 4.3.5, one can reasonably expect

that sampling a single bitstring from the fixed-angle QAOA will yield a solution with a cut

fraction close to the expectation value.

The crucial property of the fixed-angle single-shot approach is that it is guaranteed to

work for any graph sizeN . On the other hand, angle optimisation could be less productive for

large N , and the multiple-shot (measuring the QAOA ansatz multiple times) approach is less

productive for large N , as shown in Section 4.3.6. Moreover, the quality of the solution scales

with depth as √p [?], which is faster than with the number of samples
√
logK, instructing us

to resort to multishot QAOA only if larger p is unreachable. Thus, the fixed-angle single-shot

QAOA can robustly speed up finding a good approximate solution from the order of seconds

to milliseconds, a necessity for advantage over state-of-the-art anytime heuristic classical

solvers, which can get good or exact solutions in approximately milliseconds. Crucially,

single-shot QAOA quality of solution can be maintained for all sizes N at fixed depth p,

which can mean constant time scaling, for particularly capable quantum devices.

To simulate the expectation value of the cost function for QAOA, we employ a classical

quantum circuit simulation algorithm QTensor [Lykov et al., 2020b; ?; ?]. This algorithm

is based on tensor network contraction and is described in more detail in Supplementary

Methods. Using this approach, one can simulate expectation values on a classical computer

even for circuits with millions of qubits.

4.3.2 Classical Solvers

Two main types of classical MaxCut algorithms exist: approximate algorithms and heuristic

solvers. Approximate algorithms guarantee a certain quality of solution for any problem

instance. Such algorithms [??] also provide polynomial-time scaling. Heuristic solvers [??]

are usually based on branch-and-bound methods [?] that use branch pruning and heuristic

rules for variable and value ordering. These heuristics are usually designed to run well on

70

graphs that are common in practical use cases. Heuristic solvers typically return better

solutions than do approximate solvers, but they provide no guarantee on the quality of the

solution.

The comparison of QAOA with classical solvers thus requires making choices of measures

that depend on the context of comparison. From a theory point of view, guaranteed perfor-

mance is more important; in contrast, from an applied point of view, heuristic performance

is the measure of choice. A previous work [?] demonstrates that QAOA provides better

performance guarantees than does the Goemans–Williamson algorithm [?]. In this paper we

compare against heuristic algorithms since such a comparison is more relevant for real-world

problems. On the other hand, the performance of classical solvers reported in this paper can

depend on a particular problem instance.

We evaluate two classical algorithms using a single node of Argonne’s Skylake testbed;

the processor used is an Intel Xeon Platinum 8180M CPU @ 2.50 GHz with 768 GB of RAM.

The first algorithm we study is the Gurobi solver [?], which is a combination of many

heuristic algorithms. We evaluate Gurobi with an improved configuration based on commu-

nication with Gurobi support 1. We use Symmetry=0 and PreQLinearize=2 in our improved

configuration. As further tweaks and hardware resources may increase the speed, the re-

sults here serve as a characteristic lower bound on Gurobi performance rather than a true

guarantee. We run Gurobi on 100 random-regular graphs for each size N and allow each

optimization to run for 30 minutes. During the algorithm runtime we collect information

about the process, in particular the quality of the best-known solution. In this way we obtain

a performance profile of the algorithm that shows the relation between the solution quality

and the running time. An example of such a performance profile for N = 256 is shown in

Fig. 4.4. Gurobi was configured to use only a single CPU, to avoid interference in runtime

between different Gurobi optimization runs for different problem instances. In order to speed

1. https://support.gurobi.com/hc/en-us/community/posts/4403570181137-Worse-performance
-for-smaller-problem

71

https://support.gurobi.com/hc/en-us/community/posts/4403570181137-Worse-performance-for-smaller-problem
https://support.gurobi.com/hc/en-us/community/posts/4403570181137-Worse-performance-for-smaller-problem

up collection of the statistics, 55 problem instances were executed in parallel.

The second algorithm is MQLib [?], which is implemented in C++ and uses a variety

of different heuristics for solving MaxCut and QUBO problems. We chose the BURER2002

heuristic since in our experiments it performs the best for MaxCut on random regular graphs.

Despite using a single thread, this algorithm is much faster than Gurobi; thus we run it for 1

second. In the same way as with Gurobi, we collect the performance profile of this algorithm.

While QAOA and Gurobi can be used as general-purpose combinatorial optimization

algorithms, this algorithm is designed to solve MaxCut problems only, and the heuristic was

picked that demonstrated the best performance on the graphs we considered. In this way

we use Gurobi as a worst-case classical solver, which is capable of solving the same problems

as QAOA can. Moreover, Gurobi is a well-established commercial tool that is widely used

in industry. Note, however, that we use QAOA fixed angles that are optimized specifically

for 3-regular graphs, and one can argue that our fixed-angle QAOA is an algorithm designed

for 3-regular MaxCut. For this reason we also consider the best-case MQLib+BURER2002

classical algorithm, which is designed for MaxCut, and we choose the heuristic that performs

best on 3-regular graphs.

4.3.3 QAOA performance

Two aspects are involved in comparing the performance of algorithms, as outlined in Fig. 4.1:

time to solution and quality of solution. In this section we evaluate the performance of single-

shot fixed-angle QAOA. As discussed in the introduction, the time to solution is a crucial

part and for QAOA is dependent on the initialization time and the number of rounds of

sampling. Single-shot fixed-angle QAOA involves only a single round of sampling, and so

the time to solution can be extremely fast, with initialization time potentially becoming

the limiting factor. This initialization time is bound by the speed of classical computers,

which perform calibration and device control. Naturally, if one is able to achieve greater

72

initialization speed by using better classical computers, the same computers can be used to

improve the speed of solving MaxCut classically. Therefore, it is also important to consider

the time scaling of both quantum initialization and classical runtime.

The quality of the QAOA solution is the other part of performance. The discussion below

evaluates this feature by using subgraph decompositions and QAOA typicality, including a

justification of single shot sampling.

QAOA is a variational ansatz algorithm structured to provide solutions to combinatorial

optimization problems. The ansatz is constructed as p repeated applications of an objective

Ĉ and mixing B̂ unitary:

|γ, β⟩ = e−iβpB̂e−iγpĈ(· · ·)e−iβ1B̂e−iγ1Ĉ |+⟩, (4.2)

where B̂ is a sum over Pauli X operators B̂ =
∑N

i σ̂ix. A common problem instance is

MaxCut, which strives to bipartition the vertices of some graph G such that the maximum

number of edges have vertices in opposite sets. Each such edge is considered to be cut by

the bipartition. This may be captured in the objective function

Ĉ =
1

2

∑
⟨ij⟩∈G

(1− σ̂izσ̂
j
z), (4.3)

whose eigenstates are bipartitions in the Z basis, with eigenvalues that count the number

of cut edges. To get the solution to the optimization problem, one prepares the ansatz state

|γ⃗, β⃗⟩ on a quantum device and then measures the state. The measured bitstring is the

solution output from the algorithm.

While QAOA is guaranteed to converge to the exact solution in the p → ∞ limit in

accordance with the adiabatic theorem [Farhi et al., 2014; ?], today’s hardware is limited to

low depths p ∼ 1 to 5, because of the noise and decoherence effects inherent to the NISQ

era.

73

A useful tool for analyzing the performance of QAOA is the fact that QAOA is local

[Farhi et al., 2014; ?]: the entanglement between any two qubits at a distance of ≥ 2p steps

from each other is strictly zero. For a similar reason, the expectation value of a particular

edge ⟨ij⟩

f⟨ij⟩ =
1

2
⟨γ⃗, β⃗|1− σ̂izσ̂

j
z|γ⃗, β⃗⟩ (4.4)

depends only on the structure of the graph within p steps of edge ⟨ij⟩. Regular graphs have a

finite number of such local structures (also known as subgraphs) [?], and so the expectation

value of the objective function can be rewritten as a sum over subgraphs

⟨Ĉ⟩ =
∑

subgraphs λ

Mλ(G)fλ. (4.5)

Here, λ indexes the different possible subgraphs of depth p for a d regular graph, Mλ(G)

counts the number of each subgraph λ for a particular graph G, and fλ is the expectation

value of the subgraph (e.g., Eq. (4.4)). For example, if there are no cycles ≤ 2p + 1, only

one subgraph (the tree subgraph) contributes to the sum.

With this tool we may ask and answer the following question: What is the typical

performance of single-shot fixed-angle QAOA, evaluated over some ensemble of graphs?

Here, performance is characterized as the typical (average) fraction of edges cut by a bitstring

solution returned by a single sample of fixed-angle QAOA, averaged over all graphs in the

particular ensemble.

For our study we choose the ensemble of 3-regular graphs on N vertices. Different

ensembles, characterized by different connectivity d and size N , may have different QAOA

performance [??].

Using the structure of the random regular graphs, we can put bounds on the cut fraction

by bounding the number of different subgraphs and evaluating the number of large cycles.

74

These bounds become tighter for N −→ ∞ and fixed p since the majority of subgraphs

become trees and 1-cycle graphs. We describe this analysis in detail in Supplemental meth-

ods, which shows that the QAOA cut fraction will equal the expectation value on the tree

subgraph, which may be used as a ‘with high probability’ (WHP) proxy of performance.

Furthermore, using a subgraph counting argument, we may count the number of tree sub-

graphs to find an upper and lower WHP bound on the cut fraction for smaller graphs. These

bounds are shown as the boundaries of the red and green regions in Fig. 4.6.

4.3.4 QAOA Ensemble Estimates

A more straightforward but less rigorous characterization of QAOA performance is simply

to evaluate fixed-angle QAOA on a subsample of graphs in the ensemble. The results of

such an analysis require an assumption not on the particular combinatorial graph structure

of ensembles but instead on the typicality of expectation values on subgraphs. This is an

assumption on the structure of QAOA and allows an extension of typical cut fractions from

the large N limit where most subgraphs are trees to a small N limit where typically a very

small fraction of subgraphs are trees.

Figure 4.6 plots the ensemble-averaged cut fraction for p = 2 and various sizes of graphs.

For N ≤ 16, the ensemble includes every 3-regular graph (4,681 in total). For each size of

N > 16, we evaluate fixed-angle QAOA on 1,000 3-regular graphs drawn at random from

the ensemble of all 3-regular graphs for each size N ∈ (16, 256]. Note that because the

evaluation is done at fixed angles, it may be done with minimal quantum calculation by a

decomposition into subgraphs, then looking up the subgraph expectation value fλ from [?].

This approach is also described in more detail in [?]. In this way, expectation values can be

computed as fast as an isomorphism check.

From Fig. 4.6 we observe that the median cut fraction across the ensemble appears to

concentrate around that of the tree subgraph value, even for ensembles where the typical

75

graph is too small to include many tree subgraphs. Additionally, the variance (dark fill)

reduces as N increases, consistent with the fact that for larger N there are fewer kinds of

subgraphs with non-negligible frequency. Furthermore, the absolute range (light fill), which

plots the largest and smallest expectation value across the ensemble, is consistently small.

While the data for the absolute range exists here only for N ≤ 16 because of complete

sampling of the ensemble, 0ne can reasonably expect that these absolute ranges extend for

all N , suggesting that the absolute best performance of p = 2 QAOA on 3-regular graphs is

around ≈ 0.8.

We numerically observe across a range of p (not shown) that these behaviors persist: the

typical cut fraction is approximately equal to that of the tree subgraph value fp-tree even in

the limit where no subgraph is a tree. This suggests that the typical subgraph expectation

value fλ ≈ fp-tree, and only an atypical number of subgraphs have expectation values that

diverge from the tree value. With this observation, we may use the value fp-tree as a proxy

for the average cut fraction of fixed-angle QAOA.

These analyses yield four different regimes for advantage vs. classical algorithms, shown

in Fig. 4.6. If a classical algorithm yields small cut fractions for large graphs (green, bottom

right), then there is advantage in a strong sense. Based only on graph combinatorics, with

high probability most of the edges participate in few cycles, and thus the cut fraction is

almost guaranteed to be around the tree value, larger than the classical solver. Conversely,

if the classical algorithm yields large cut fractions for large graphs (red, top right), there is

no advantage in the strong sense: QAOA will yield, for example, only ∼ 0.756 for p = 2

because most edges see no global structure. This analysis emphasizes that of [?], which

suggests that QAOA needs to ‘see’ the whole graph in order to get reasonable performance.

Two additional performance regimes for small graphs exist, where QAOA can reasonably

see the whole graph. If a classical algorithm yields small cut fractions for small graphs

76

101 102 103

Number of vertices
0.5

0.6

0.7

0.8

0.9

1.0

W
HP

 c
ut

 fr
ac

tio
n

gu
ar

an
te

e

AdvantageEnsemble
advantage

No ensemble
advantage No advantage

Upper bound
Ensemble median
Lower bound
Ensemble variance

Figure 4.6: p = 2 QAOA cut fraction guarantees under different assumptions. Dashed
and solid lines plot with high probability the lower and upper bounds on cut fractions,
respectively, assuming only graph theoretic typicality on the number of subgraphs. Dotted
plots are the ensemble median over an ensemble of 3-regular graphs; for N ≤ 16 (dots); this
includes all graphs, while for N > 16 this is an ensemble of 1,000 graphs for each size. We
used 32 sizes between 16 and 256. Dark black fill plots the variance in the cut fraction over
the ensemble, and light black fill plots the extremal values over the ensemble. The median
serves as a proxy of performance assuming QAOA typicality. Given a particular cut from a
classical solver, there may be different regions of advantage, shown by the four colors and
discussed in the text.

77

(yellow, bottom left), then there is advantage in a weak sense, which we call the ‘ensemble

advantage’. Based on QAOA concentration, there is at least a 50% chance that the QAOA

result on a particular graph will yield a better cut fraction than will the classical algorithm;

assuming that the variance in cut fraction is small, this is a ‘with high probability’ statement.

Conversely, if the classical algorithm yields large cut fractions for small graphs (orange, top

left), there is no advantage in a weak sense. Assuming QAOA concentration, the cut fraction

will be smaller than the classical value, and for some classical cut fraction there are no graphs

with advantage (e.g., > 0.8 for p = 2).

Based on these numerical results, we may use the expectation value of the tree subgraph

fp-tree as a high-probability proxy for typical fixed-angle QAOA performance on regular

graphs. For large N , this result is validated by graph-theoretic bounds counting the typical

number of tree subgraphs in a typical graph. For small N , this result is validated by fixed-

angle QAOA evaluation on a large ensemble of graphs.

4.3.5 Single-shot QAOA Sampling

A crucial element of single-shot fixed-angle QAOA is that the typical bitstring measured

from the QAOA ansatz has a cut value similar to the average. This fact was originally

observed by Farhi et al. in the original QAOA proposal [Farhi et al., 2014]: because of the

strict locality of QAOA, vertices a distance more than > 2p steps from each other have a

ZZ correlation of strictly zero. Thus, for large graphs with a width > 2p, by the central

limit theorem the cut fraction concentrates to a Gaussian with a standard deviation of order

1√
N

around the mean. As the variance grows sublinearly in N , the values concentrate at

the mean, and thus with high probability measuring a single sample of QAOA will yield a

solution with a cut value close to the average.

However, this result is limited in scope for larger depths p, because it imposes no re-

quirements on the strength of correlations for vertices within distance ≤ 2p. Therefore, here

78

1 2 3 4 5 6 7 8 9 10
Distance between vertices

10 6

10 5

10 4

10 3

10 2

10 1

100

Co
rre

la
tio

n
(

1)
d

i
i+

d

p=1
p=2
p=3
p=4
p=5

Figure 4.7: Long-range antiferromagnetic correlation coefficient on the 3-regular Bethe lat-
tice, which is a proxy for an N →∞ typical 3-regular graph. Horizontal indexes the distance
between two vertices. QAOA is strictly local, which implies that no correlations exist between
vertices a distance > 2p away. As shown here, however, these correlations are exponentially
decaying with distance. This suggests that even if the QAOA ‘sees the whole graph’, one
can use the central limit theorem to argue that the distribution of QAOA performance is
Gaussian with the standard deviation of ∝ 1/

√
N

79

we strengthen the argument of Farhi et al. and show that these concentration results may

persist even in the limit of large depth p and small graphs N . We formalize these results by

evaluating the ZZ correlations of vertices within 2p steps, as shown in Fig. 4.7. Expectation

values are computed on the 3-regular Bethe lattice, which has no cycles and thus can be

considered the N →∞ typical limit. Instead of computing the nearest-neighbor correlation

function, the x-axis computes the correlation function between vertices a certain distance

apart. For distance 1, the correlations are that of the objective function fp-tree. Additionally,

for distance > 2p, the correlations are strictly zero in accordance with the strict locality of

QAOA. For distance ≤ 2p, the correlations are exponentially decaying with distance. Con-

sequently, even for vertices within the lightcone of QAOA, the correlation is small; and so

by the central limit theorem the distribution will be Gaussian. This result holds because

the probability of having a cycle of fixed size converges to 0 as N →∞. In other words, we

know that with N → ∞ we will have a Gaussian cost distribution with standard deviation

∝ 1√
N

.

When considering small N graphs, ones that have cycles of length ≤ 2p+ 1, we can rea-

sonably extend the argument of Section 4.3.4 on typicality of subgraph expectation values.

Under this typicality argument, the correlations between close vertices is still exponentially

decaying with distance, even though the subgraph may not be a tree and there are mul-

tiple short paths between vertices. Thus, for all graphs, by the central limit theorem the

distribution of solutions concentrates as a Gaussian with a standard deviation of order 1√
N

around the mean. By extension, with probability ∼ 50%, any single measurement will yield

a bitstring with a cut value greater than the average. These results of cut distributions have

been found heuristically in [?].

The results are a full characterization of the fixed-angle single-shot QAOA on 3-regular

graphs. Given a typical graph sampled from the ensemble of all regular graphs, the typical

80

cut fraction from level p QAOA will be about that of the expectation value of the p-tree

fp-tree. The distribution of bitstrings is concentrated as a Gaussian of subextensive variance

around the mean, indicating that one can find a solution with quality greater than the mean

with order 1 samples. Furthermore, because the fixed angles bypass the hybrid optimization

loop, the number of queries to the quantum simulator is reduced by orders of magnitude,

yielding solutions on potentially millisecond timescales.

4.3.6 Mult-shot QAOA Sampling

In the preceding section we demonstrated that the standard deviation of MaxCut cost distri-

bution falls as 1/
√
N , which deems impractical the usage of multiple shots for large graphs.

However, it is worth verifying more precisely its effect on the QAOA performance. The

multiple-shot QAOA involves measuring the bitstring from the same ansatz state and then

picking the bitstring with the best cost. To evaluate such an approach, we need to find the

expectation value for the best bitstring over K measurements.

As shown above, the distribution of cost for each measured bitstring is Gaussian, p(x) =

G(
x−µp
σN

). We define a new random variable ξ which is the cost of the best of K bitstrings.

The cumulative distribution function (CDF) of the best of K bitstrings is FK(ξ), and F1(ξ)

is the CDF of a normal distribution. The probability density for ξ is

pK(ξ) =
d

dξ
FK(ξ) =

d

dξ
FK
1 (ξ) = KFK−1

1 (ξ)p(ξ), (4.6)

where F1(ξ) =
∫ ξ
−∞ p(x)dx and FK

1 is the ordinary exponentiation. The expectation value

for ξ can be found by EK =
∫∞
−∞ dx xpK(x). While the analytical expression for the integral

can be extensive, a good upper bound exists for it: EK ≤ σ
√
2 logK + µ.

Combined with the 1/
√
N scaling of the standard deviation, we can obtain a bound on

improvement in cut fraction from sampling K times:

81

∆ = γp

√
2

N
logK, (4.7)

where γp is a scaling parameter. The value ∆ is the difference of solution quality for multishot

and single-shot QAOA. Essentially it determines the utility of using multishot QAOA. We

can determine the scaling constant γp by classically simulating the distribution of the cost

value in the ansatz state. We perform these simulations using QTensor for an ensemble of

graphs with N ≤ 26 to obtain γ6 = 0.1926 and γ11 = 0.1284.

It is also worthwhile to verify the 1/
√
N scaling, by calculating γp for various N . We can

do so for smaller p = 3 and graph sizes N ≤ 256. We calculate the standard deviation by

∆C =
√
⟨C2⟩ − ⟨C⟩2 and evaluate the ⟨C2⟩ using QTensor. This evaluation gives large light

cones for large p; the largest that we were able to simulate is p = 3. From the deviations ∆C

we can obtain values for γ3. We find that for all N the values stay within 5% of the average

over all N . This shows that they do not depend on N , which in turn signifies that the 1/
√
N

scaling is a valid model. The results of numerical simulation of the standard deviation are

discussed in more detail in the Supplementary Methods.

To compare multishot QAOA with classical solvers, we plot the expected performance of

multishot QAOA in Fig. 4.4 as dash-dotted lines. We assume that a quantum device is able

to sample at the 5kHz rate. Today’s hardware is able to run up to p = 5 and achieve the

5 kHz sampling rate [?]. Notably, the sampling frequency of modern quantum computers is

bound not by gate duration, but by qubit preparation and measurement.

For small N , reasonable improvement can be achieved by using a few samples. For

example, for N = 256 with p = 6 and just K = 200 shots, QAOA can perform as well as

single-shot p = 11 QAOA. For large N , however, too many samples are required to obtain

substantial improvement for multishot QAOA to be practical.

82

4.3.7 Classical performance

To compare the QAOA algorithm with its classical counterparts, we choose the state-of-

the art algorithms that solve the similar spectrum of problems as QAOA, and we evaluate

the time to solution and solution quality. Here, we compare two algorithms: Gurobi and

MQLib+BURER2002. Both are anytime heuristic algorithms that can provide an approxi-

mate solution at arbitrary time. For these algorithms we collect the ‘performance profiles’—

the dependence of solution quality on time spent finding the solution. We also evaluate

performance of a simple MaxCut algorithm FLIP. This algorithm has a proven linear time

scaling with input size. It returns a single solution after a short time. To obtain a better

FLIP solution, one may run the algorithm several times and take the best solution, similarly

to the multishot QAOA.

Both algorithms have to read the input and perform some initialization step to output

any solution. This initialization step determines the minimum time required for getting

the initial solution—a ‘first guess’ of the algorithm. This time is the leftmost point of the

performance profile marked with a star in Fig. 4.4. We call this time t0 and the corresponding

solution quality ‘zero-time performance’.

We observe two important results.

1. Zero-time performance is constant with N and is comparable to that of p = 11 QAOA,

as shown in Fig. 4.3, where solid lines show classical performance and dashed lines

show QAOA performance.

2. t0 scales as a low-degree polynomial in N , as shown in Fig. 4.2. The y-axis is t0 for

several classical algorithms.

Since the zero-time performance is slightly above the expected QAOA performance at

p = 11, we focus on analyzing this zero-time regime. In the following subsections we discuss

the performance of the classical algorithms and then proceed to the comparison with QAOA.

83

4.3.8 Performance of Gurobi Solver

In our classical experiments, as mentioned in Section 4.3.2, we collect the solution quality

with respect to time for multiple N and graph instances. An example averaged solution

quality evolution is shown in Fig. 4.4 for an ensemble of 256 vertex 3-regular graphs. Between

times 0 and t0,G, the Gurobi algorithm goes through some initialization and quickly finds

some naive approximate solution. Next, the first incumbent solution is generated, which

will be improved in further runtime. Notably, for the first 50 milliseconds, no significant

improvement to solution quality is found. After that, the solution quality starts to rise and

slowly converge to the optimal value of ∼ 0.92.

It is important to appreciate that Gurobi is more than just a heuristic solver: in addition

to the incumbent solution, it always returns an upper bound on the optimal cost. When the

upper bound and the cost for the incumbent solution match, the optimal solution is found.

It is likely that Gurobi spends a large portion of its runtime on proving the optimality by

lowering the upper bound. This emphasizes that we use Gurobi as a worst-case classical

solver.

Notably, the x-axis of Fig. 4.4 is logarithmic: the lower and upper bounds eventually

converge after exponential time with a small prefactor, ending the program and yielding

the exact solution. Additionally, the typical upper and lower bounds of the cut fraction

of the best solution are close to 1. Even after approximately 10 seconds for a 256-vertex

graph, the algorithm returns cut fractions with very high quality ∼ 0.92, far better than

intermediate-depth QAOA.

The zero-time performance of Gurobi for N = 256 corresponds to the Y-value of the star

marker on Fig. 4.4. We plot this value for various N in Fig. 4.3. As shown in the figure,

zero-time performance goes up and reaches a constant value of ∼ 0.882 at N ∼ 100. Even

for large graphs of N = 105, the solution quality stays at the same level.

Such solution quality is returned after time t0,G, which we plot in Fig. 4.2 for various N .

84

For example, for a 1000-node graph it will take ∼ 40 milliseconds to return the first solution.

Evidently, this time scales as a low-degree polynomial with N . This shows that Gurobi can

consistently return solutions of quality ∼ 0.882 in polynomial time.

4.3.9 Performance of MQLib+BURER2002 and FLIP Algorithms

The MQLib algorithm with the BURER2002 heuristic shows significantly better perfor-

mance, which is expected since it is specific to MaxCut. As shown in Fig. 4.4 for N = 256

and in Fig. 4.2 for various N , the speed of this algorithm is much better compared with

Gurobi’s. Moreover, t0 for MQLib also scales as a low-degree polynomial, and for 1,000

nodes MQLib can return a solution in 2 milliseconds. The zero-time performance shows the

same constant behavior, and the value of the constant is slightly higher than that of Gurobi,

as shown in Fig. 4.3.

While for Gurobi and MQLib we find the time scaling heuristically, the FLIP algorithm

is known to have linear time scaling. With our implementation in Python, it shows speed

comparable to that of MQLib and solution quality comparable to QAOA p = 6. We use this

algorithm as a demonstration that a linear-time algorithm can give constant performance

for large N , averaged over multiple graph instances.

4.4 Acknowledgements

This research was developed with funding from the Defense Advanced Research Projects

Agency (DARPA). The views, opinions and/or findings expressed are those of the author

and should not be interpreted as representing the official views or policies of the Department

of Defense or the U.S. Government. Y.A.’s and D.L.’s work at Argonne National Labora-

tory was supported by the U.S. Department of Energy, Office of Science, under contract

DE-AC02-06CH11357. The work at UWM was also supported by the U.S. Department of

Energy, Office of Science, National Quantum Information Science Research Centers.

85

4.5 Data availability

The code, figures and datasets generated during the current study are available in a public

repository https://github.com/danlkv/quantum-classical-time-maxcut. See the

README.md file for the details on the contents of the repository.

86

https://github.com/danlkv/quantum-classical-time-maxcut

CHAPTER 5

DISTRIBUTED STATEVECTOR SIMULATION

This chapter is adapted from Lykov, Shaydulin, Sun, Alexeev, and Pistoia [2023].

Until high-fidelity quantum computers with a large number of qubits become widely

available, classical simulation remains a vital tool for algorithm design, tuning, and val-

idation. We present a simulator for the Quantum Approximate Optimization Algorithm

(QAOA). Our simulator is designed with the goal of reducing the computational cost of

QAOA parameter optimization and supports both CPU and GPU execution. Our cen-

tral observation is that the computational cost of both simulating the QAOA state and

computing the QAOA objective to be optimized can be reduced by precomputing the diag-

onal Hamiltonian encoding the problem. We reduce the time for a typical QAOA param-

eter optimization by eleven times for n = 26 qubits compared to a state-of-the-art GPU

quantum circuit simulator based on cuQuantum. Our simulator is available on GitHub:

https://github.com/jpmorganchase/QOKit

5.1 Introduction

Quantum computers offer the prospect of accelerating the solution of a wide range of com-

putational problems [?]. At the same time, only a small number of quantum algorithmic

primitives with provable speedup have been identified, motivating the development of heuris-

tics. Due to the limited availability and imperfections of near-term quantum computers, the

design and validation of heuristic quantum algorithms have been largely performed in clas-

sical simulation. Additionally, classical simulators are commonly used to validate the results

obtained on small-scale near-term devices. As a consequence, fast, high-performance simu-

lators are a crucial tool for algorithm development.

Quantum Approximate Optimization Algorithm (QAOA) [Farhi et al., 2014; ?] is one

87

https://github.com/jpmorganchase/QOKit

Precompute
diagonal

Calculate
objective

Optimizer

Cost function to optimize

Simulator

⟨γ⃗β⃗|Ĉ|γ⃗β⃗⟩ γ⃗, β⃗

Figure 5.1: Overview of the simulator. Precomputing and storing the diagonal cost operator
reduces the cost of both simulating the phase operator in QAOA as well as evaluating the
QAOA objective.

of the most promising quantum algorithms for combinatorial optimization. QAOA approxi-

mately solves optimization problems by preparing a parameterized quantum state such that

upon measuring it, high quality solutions are obtained with high probability.

Due to the difficulty of theoretical analysis, QAOA performance is commonly analyzed

numerically. Recently, Boulebnane and Montanaro demonstrated numerically that QAOA

scales better than state-of-the-art classical solvers for random 8-SAT [?]. The demonstrated

potential of QAOA as an algorithmic component that enables quantum speedups motivates

the development of tools for its numerical study. Since QAOA performance increases with

circuit depth p, it is particularly interesting to simulate high-depth QAOA. For example,

Ref. [?] only observes a quantum speedup with QAOA for p ≳ 14 and Ref. [?] demonstrates

that p ≥ 12 is needed for QAOA to be competitive with classical solvers for the MaxCut

problem on 3-regular graphs.

We implement a fast state-vector simulator for the study of QAOA. Our simulator is

optimized for simulating QAOA with high depth as well as repeated evaluation of QAOA

objective, which is required for tuning the QAOA parameters. To accelerate the simulation,

we first precompute the values of the function to be optimized (see Fig. 5.1). The result of

88

precomputation is reused during the parameter optimization. The precomputation algorithm

is easy to parallelize, making it amenable to GPU acceleration. The precomputation requires

storing an exponentially-sized vector, increasing the memory footprint of the simulation by

only 12.5%. Our technique is general, and we implement transverse-field and Hamming-

weight-preserving xy mixers. We achieve orders of magnitude speedups over state-of-the-art

state-vector and tensor-network simulators and demonstrate scalability to 1,024 GPUs [?].

We implement the developed simulator in QOKit framework, which also provides optimized

parameters and additional tooling for a set of commonly studied problems

We use the developed simulator to simulate QAOA with up to 40 qubits, enabling a

scaling analysis of QAOA performance on the LABS problem. The details of the observed

quantum speedup over state-of-the-art classical solvers are described in detail in Ref. [?].

5.2 Background

Consider the problem of minimizing a cost function f : F → R defined on a subset F of

the Boolean cube Bn. The bijection B ∼= {−1, 1} is used to express the cost function f as a

polynomial in terms of spins

f(s) =
L∑

k=1

wk

∏
i∈tk

si, si ∈ {−1, 1}. (5.1)

The polynomial is defined by a set of terms T = {(w1, t1), (w2, t2), . . . (wL, tL)}. Each term

consists of a weight wk ∈ R and a set of integers tk from 1 to n, i.e., tk ⊆ {i | 1 ≤ i ≤ n}.

Constant offset is encoded using a term (woffset,∅).

We present numerical results for QAOA applied to the following two problems. First,

we consider the commonly studied MaxCut problem. The cost function for the MaxCut

problem is given by
∑

i,j∈E
1
2sisj −

|E|
2 where G = (V,E) is the problem graph, T = E, and

si ∈ {−1, 1} are the variables to be optimized. Second, we consider the Low Autocorrelation

89

Binary Sequences (LABS) problem. The cost function for the LABS problem with n variables

is given by 2
∑n−3

i=1 si
∑⌊n−i−1

2 ⌋
t=1

∑n−i−t
k=t+1 si+tsi+ksi+k+t +

∑n−2
i=1 si

∑⌊n−i
2 ⌋

k=1 si+2k.

The QAOA state is prepared by applying phase and mixing operators in alternation.

The phase operator is diagonal and adds phases to computational basis states based on the

values of the cost function. The mixing operator, also known as the mixer, is non-diagonal

and is used to induce non-trivial dynamics. The phase operator is created using the diagonal

problem Hamiltonian given by Ĉ =
∑

x∈F f(x) |x⟩⟨x|, where |x⟩ is a computational basis

quantum state. The spectrum of the operator matches the values of the cost function to be

optimized, thus the ground state |x∗⟩ of such Hamiltonian corresponds to the optimal value

f(x∗). The goal of QAOA is to bring the quantum system close to a state such that upon

measuring it, we obtain x∗ with high probability.

The QAOA circuit is given by

|γ⃗β⃗⟩ =
p∏

l=1

(
e−iβlM̂e−iγlĈ

)
|s⟩ .

If F = Bn, the standard choices are the transverse-field operator M̂ =
∑

i xi as the mixer and

uniform superposition |+⟩⊗n as the initial state. The free parameters γl and βl are chosen

to minimize the expected solution quality ⟨γ⃗β⃗|Ĉ|γ⃗β⃗⟩, typically using a local optimizer.

5.3 Simulation of QAOA using QOKit

The convention of representing a quantum program as a sequence of quantum gates may

pose limitations when simulating QAOA classically. In standard gate-based simulators such

as Qiskit and QTensor, the phase operator must be compiled into gates. The number of

these gates typically scales polynomially with the number of terms in the cost function

|T |. The overhead is especially large when considering objectives with higher order terms,

such as k-SAT with k > 3 and Low Autocorrelations Binary Sequences (LABS) problem.

90

Existing state-vector simulators primarily work by iterating over each gate in the circuit

and modifying the state vector. By exploiting the structure of the circuit, our state-vector

simulator recognizes that each application of the phase operator involves the same set of

gates and that the set acts as a diagonal operator, reducing the cost of simulation.

5.3.1 Precomputation of the cost vector

QOKit precomputes the diagonal elements in the operator Ĉ, which are the values of the cost

function f for each assignment of the input. The values are stored as a 2n-sized cost vector,

which encodes all the information about the problem Hamiltonian. QOKit provides simple

high-level API which supports both cost functions defined as a polynomial on spins (see

Listing 5.1), as well as a Python lambda function. For precomputation using polynomial

terms (Eq. 5.1), we start by allocating an array of zeroes, and iterate over terms in T ,

applying a GPU kernel in-parallel for each element of the array. The binary representation

of an index of a vector element corresponds to qubit values in a basis state. This allows us to

calculate the value of the term using bitwise-XOR and “population count" operations. The

kernel calculates the term value and adds it to a single element of the vector in-place. This

has the advantage of locality, which is beneficial for GPU parallelization and distributed

computing.

To apply the phase operator with parameter γl, we perform an element-wise product of

the state vector and e−iγlC⃗ , where C⃗ is the cost vector and the exponentiation is applied

element-wise. After simulating the QAOA evolution, we reuse the precomputed C⃗ to evaluate

the expected solution quality ⟨γ⃗β⃗|Ĉ|γ⃗β⃗⟩ by taking an inner product between C⃗ and the

QAOA state.

91

5.3.2 Mixing operator

Application of the mixing operator is more challenging than that of the phase operator,

and accounts for the vast majority of computational cost in our simulation. We briefly

discuss the implementation using the example of the transverse-field mixer. Other mixers

are implemented similarly. The transverse-field mixer can be decomposed into products of

local gates as UM = e−iβ
∑

i xi =
∏

i e
−iβxi . Each gate e−iβx = cos(β)i− i sin(β)x “mixes"

two probability amplitudes, and all n gates mix all 2n probability amplitudes. Classical

simulation of this operation requires all-to-all communication, where each output vector

element depends on every entry of the input vector. For example, for β = π/2 the phase

operator implements the Walsh-Hadamard transform, which is a Fourier transform on the

Boolean cube Bn. The definition of QAOA mixing operator via Walsh-Hadamard transform

was known for a long time, see e.g., Refs. [??]. In fact, the ability of quantum computers

to efficiently perform Walsh-Hadamard transform [??], which is the central building block

for the famed Grover’s algorithm [?], was the inspiration for the definition of the QAOA

mixer [?].

Our GPU simulator implements each e−iβxi of the mixing operator by applying a GPU

kernel which modifies two elements of the state vector. Since these calculations do not

interfere with each other, the updates on all pairs of elements in the state vector can be

done in place and in parallel, hence well-utilizing the parallelization power of the GPU. The

algorithm for simulating a single e−iβxi is described in Algorithm 2. To simulate the full

mixer, Algorithm 2 is applied to each qubit i ∈ [n], as shown in Algorithm 3. Both algorithms

modify the state vector in-place without using any additional memory.

The full QAOA simulation algorithm in QOKit is described in Algorithm 4. Furthermore,

we implement the simulation using NVIDIA cuQuantum framework, by replacing Algo-

rithm 3 with calls to the cuStateVec library. We refer to this implementation as QOKit (cuS-

tateVec). In addition to the conventional transverse-field mixing Hamiltonian M =
∑

i xi,

92

we implement Hamming-weight-preserving xy mixer whose Hamiltonian is given by a set of

two-qubit operators M =
∑
⟨i,j⟩

1
2(xixj + yiyj) for ⟨i, j⟩ corresponding to the edges of ring

or complete graphs. The implementation leverages the observation that Algorithms 2 and

3 can be easily extended to SU(4) operators.

Algorithm 2 Fast SU(2) On A State Vector

Input: Vector x ∈ CN with N = 2n, a unitary matrix U⋆ =

(
a −b∗
b a∗

)
∈ SU(2)

and a positive integer d ∈ [n] Output: Vector y = Ux, where U = i⊗(d−1)⊗U⋆⊗i⊗(n−d)

and i is the 2-dimensional identity matrix Create a reference y to input vector x k1 = 1
to 2n−d k2 = 1 to 2d−1 Compute indices: l1 ← (k1−1)2d+k2 l2 ←
(k1− 1)2d+k2+2d−1 Simultaneously update yl1 and yl2 : yl1 ← ayl1 − b

∗yl2
yl2 ← byl1 + a∗yl2 return y

Algorithm 3 Fast Uniform SU(2) Transform (Single-node)
Input: Vector x ∈ CN , a unitary matrix U ∈ SU(N) decomposable into tensor

product of n unitary matrices in SU(2), i.e. U =
⊗n

i=1 Ui = Un ⊗ · · · ⊗ U2 ⊗ U1, where

Ui =

(
ai −b∗i
bi a∗i

)
∈ SU(2) and N = 2n Output: Vector y = Ux Create a reference y to

input vector x i = 1 to n Apply Algorithm 2 with U⋆ ← Ui and d← i return y

Algorithm 4 Fast Simulation of QAOA
Input: Initial vector x ∈ CN , QAOA circuit parameters β,γ ∈ Rp, cost function

f : Zn
2 → R, where N = 2n Output: State vector after applying the QAOA circuit

to x Pre-compute (and cache) cost values for all binary strings into a vector c ∈ CN

Initialize output vector y ← x l = 1 to p Apply phase operator: for k = 1 to N do
yk ← e−iγlckyk end for Apply mixing operator: Apply Algorithm 3 on y
with ai ← cos βl, bi ← sin βl ∀ i ∈ [n] return y

5.3.3 Distributed simulation

A typical supercomputer consists of multiple identical compute nodes connected by a fast

interconnect. Each node in turn consists of a CPU and several GPUs. Since GPUs are

much faster in our simulation tasks, we do not use CPUs in our distributed simulation. Each

93

of K GPUs holds a slice of the state vector, which corresponds to fixing the values of a

set of k = log2(K) qubits. For example, for K = 2 GPUs, the first GPU holds probability

amplitudes for states with the first qubit in state |0⟩, while the second GPU holds states with

first qubit in the state |1⟩. In general, using K GPUs allows us to increase the simulation

size by k qubits.

During the precomputation, the cost vector C⃗ is sliced in the same way as the state

vector. Due to the locality discussed above, the precomputation and the phase operator

application do not require any communication across GPUs. The most expensive part of the

simulation is the mixing operator, since it requires an all-to-all communication pattern. In

our simulation we distribute the state vector by splitting it into K chunks, which corresponds

to fixing first k qubits, which we call global qubits. Bits of the binary representation of the

node index determine the fixed qubit values. The remaining n− k qubits are referred to as

local qubits.

The mixer application starts by applying the e−iβxi gates that correspond to local qubits.

To apply x rotations on global qubits, we reshape the distributed state vector using the

MPI_Alltoall MPI collective. This operation splits each local state vector further into K

subchunks and transfers subchunk A of process B into subchunk B of process A. If each

subchunk consists of one element and we arrange the full state vector in a matrix with

process id as column index and subchunk id as the row index, then the call to MPI_Alltoall

performs a transposition of this matrix. For a n-qubit simulation the algorithm requires

2k ≤ n to ensure that there is at least one element in each subchunk. Consider the state

vector reshaped as a tensor Vabc with a being the process id representing the k global qubits,

b being a multi-index of first k local qubits, and c being a multi-index of the last n − 2k

qubits. Then the MPI_Alltoall operation corresponds to a transposition of the first two

indices, i.e., Vabc → Vbac. Thus, after this transposition, the global qubits become local

and we are free to apply operations on those k global qubits locally in each process. The

94

algorithm concludes by applying the MPI_Alltoall once again to restore the original qubit

ordering. This algorithm is described in Algorithm 5.

Algorithm 5 Fast Uniform SU(2) Transform (Multi-node)
Input: Vector x ∈ CN distributed over K nodes, a unitary matrix U =

⊗n
i=1 Ui =

Un⊗· · ·⊗U2⊗U1, where Ui ∈ SU(2) and N = 2n Output: Distributed vector y = Ux
Create a reference y to the local slice of input vector x i = 1 to n − log2K Apply
Algorithm 2 with U⋆ ← Ui and d ← i to the local slice y. Run in-place MPI_AlltoAll
on the local slice y. i = n − log2K + 1 to n Apply Algorithm 2 with U⋆ ← Ui and
d ← i − log2K to the local slice y. Run in-place MPI_AlltoAll on the local slice y.
return y

The MPI_Alltoall is known be a challenging collective communication routine, since it

requires the total transfer of the full state vector K times. There exist many algorithms

for this implementation [??], each with its own trade-offs. Furthermore, the same commu-

nication problem occurs in applying distributed Fast Fourier Transform (FFT), which has

been studied extensively [????]. In this work, we use the out-of-the-box MPI implementa-

tion Cray MPICH. Utilizing the research on distributed FFT may help further improve our

implementation.

5.4 Examples of use

QOKit consists of two conceptual parts:

9999Low-level simulation API defined by an abstract class qokit.fur.QAOAFastSimulatorBase

Easy-to-use one-line methods for simulating MaxCut, LABS and portfolio optimization

problems

9999 The low-level simulation API is designed to provide more flexibility in terms of

inputs, methods and outputs of simulation. The simulation inputs can be specified by pro-

viding either terms T or existing pre-computed diagonal vector. The simulation method is

specified by using a particular subclass of qokit.fur.QAOAFastSimulatorBase or by using

95

a shorthand method qokit.fur.choose_simulator. This simulator class is the main means

of simulation, with input parameters being passed in the constructor, the simulation done in

simulate_qaoa method, and outputs type specified by choosing a corresponding method of

the simulator object. An example of using the simulator with input terms parameter is shown

in Listing 5.1.

1 import qokit

2 simclass = qokit.fur.choose_simulator(name=’auto’)

3 n = 28 # number of qubits

4 # terms for all -to -all MaxCut with weight 0.3

5 terms = [(.3, (i, j)) for i in range(n) for j in range(i+1, n)]

6 sim = simclass(n, terms=terms)

7 # get precomputed cost vector

8 costs = sim.get_cost_diagonal ()

9 result = sim.simulate_qaoa(gamma , beta)

10 E = sim.get_expectation(result)

Listing 5.1: Evaluating the QAOA objective for weighted MaxCut problem on an all-to-all
graph using QOKit.

QOKit implements five different simulator classes that share the same API:

1.2.1. python – A portable CPU numpy-based version

2. c – Custom CPU simulator implemented in C

3. nbcuda – GPU simulator using numba

4. gpumpi – A distributed version of the GPU simulator

5. cusvmpi – A distributed GPU simulator with cuStateVec as backend

To choose from the simulators, one may use one of the following three methods, depending

on the choice of mixer type:

1. qokit.fur.choose_simulator()

2. qokit.fur.choose_simulator_xyring()

96

3. qokit.fur.choose_simulator_xycomplete()

Each of these simulators accepts an optional name parameter. The default simulator is chosen

based on existence of GPU or configured MPI environment. An example of using a custom

mixer for simulation is provided in Listing 5.2.

1 import qokit

2 simclass = qokit.fur.choose_simulator_xycomplete ()

3 n = 40

4 terms = qokit.labs.get_terms(n)

5 sim = simclass(n, terms=terms)

6 result = sim.simulate_qaoa(gamma , beta)

7 E = sim.get_expectation(result)

Listing 5.2: Using QOKit with a different mixing operator: M =
∑
⟨i,j⟩

1
2(xixj + yiyj) for

tuples ⟨i, j⟩ from a complete graph on qubits.

The constructor of each simulator class accepts one of terms or costs argument. The

terms argument is a list of tuples (wk, tk), where wk is the weight of product defined by

tk, whih is a tuple of integers specifying the indices of Boolean variables involved in this

product, as described in Equation 5.1. The simulation method returns a result object,

which is a representation of the evolved state vector. The data type of this object may

change depending on simulator type, and for best portability it is advised to use the output

methods instead of directly interacting with this object. The output methods all have get_

prefix, accept the result object as their first argument, and return CPU values. These

methods are:

1. get_expectation(result)

2. get_overlap(result)

3. get_statevector(result)

4. get_probabilities(result)

97

When evaluating the expectation and overlap with the ground state, the cost vector from

the phase operator is used by default. This vector is precomputed at the class instantiation

and can be retrieved using get_cost_diagonal() method. Alternatively, the user may spec-

ify a custom cost vector by passing it as the costs argument when calling get_expectation

or get_overlap.

The output methods may accept additional optional arguments depending on the type of

the simulator. For example, GPU simulators’ get_probabilities method has preserve_state

argument (default True) which specifies whether to preserve the statevector for additional

calculations; otherwise, the norm-square operation will be applied in-place. In both cases,

the method returns a real-valued array of probabilities. Distributed GPU simulators accept

mpi_gather argument (default True) that signals the method to return a full state vector on

each node. Specifying mpi_gather = True guarantees that the same code will produce the

same result if the hardware-specific simulator class is changed. An example of using QOKit

for distributed simulation is provided in Listing 5.3.

1 import qokit

2 simclass = qokit.fur.choose_simulator(name=’cusvmpi ’)

3 n = 40

4 terms = qokit.labs.get_terms(n)

5 sim = simclass(n, terms=terms)

6 result = sim.simulate_qaoa(gamma , beta)

7 E = sim.get_expectation(result , preserve_state=False)

Listing 5.3: Evaluating the QAOA objective for LABS problem using MPI on a distributed
computing system using QOKit. The preserve_state argument is used to reduce memory
usage when evaluating the expectation value.

5.5 Performance of QOKit

We now present a comparison of QOKit performance to state-of-the-art state-vector and

tensor-network quantum simulators. We show that our framework has lower runtimes and

98

6 8 10 12 14 16 18 20 22 24
n

10−3

10−2

10−1

100

101

T
im

e
(s

)

OpenQAOA

Qiskit

QOKit CPU

Figure 5.2: Runtime of end-to-end simulation of QAOA expectation value with p = 6 on
MaxCut problem on 3-regular graphs with commonly-used CPU simulators for QAOA. They
time plotted is the mean over 5 runs.

scales well to large supercomputing systems. All reported benchmarks are executed on the

Polaris supercomputer accessed through the Argonne Leadership Computing Facility. Single-

node results are obtained using a compute node with two AMD EPYC 7713 64-Core CPUs

with 2 threads per core, 503 GB of RAM and an NVIDIA A100 GPU with 80 GB of memory.

In all experiments the state vector is stored with double precision (complex128 data type).

5.5.1 CPU and GPU simulation

The CPU simulation is implemented in two ways: using the NumPy Python library and

using a custom C code (“c” simulator above). The latter is more performance, so we only

report the results with c simulator. We evaluate the CPU performance by simulating QAOA

with p = 6 on MaxCut random regular graphs.

Figure 5.2 shows a comparison of runtime for varying number of qubits for commonly-

used CPU simulators. We use QOKit c simulator, Qiskit Aer state-vector simulator version

0.12.2, and OpenQAOA “vectorized” simulator version 0.1.3. We observe ≈ 5−10× speedup

99

6 8 10 12 14 16 18 20 22 24 26 28 30
n

10−3

10−2

10−1

100

101

T
im

e
(s

)

cuTensorNet

QTensor GPU

Qiskit

Qiskit GPU

cuStateVec (gates)

QOKit

QOKit (cuStateVec)

Figure 5.3: Time to apply a single layer of QAOA for the LABS problem with commonly-used
CPU and GPU simulators. QOKit simulator uses the precomputation which is not included
in current plot. The precomputation time is amortized, as shown on Figure 5.4. QOKit can
be configured to use cuStateVec for application of the mixing operator, which provides the
best results.

against Qiskit [?] and OpenQAOA [?] across a wide range of values of n. We note that

the simulation method in QAOAKit [?] is Qiskit, which is why we do not benchmark it

separately.

We evaluate the GPU performance by evaluating time to simulate one layer of QAOA

applied to the LABS problem. Fig. 5.3 provides a comparison between QOKit and commonly

used state-vector (Qiskit [?] version 0.43.3, cuStateVec [?]) and tensor-network (cuTensor-

Net [?], QTensor [Lykov, 2021]) simulators. We used CuQuantum Python package version

23.6.0 and cudatoolkit version 14.4.4. The tensor network timing is obtained by running

calculation of a single probability amplitude for various values of 1 ≤ p ≤ 15 and dividing

the total contraction time by p. Deep circuits have optimal contraction order that produces

100

100 101 102 103 104

p

100

101

102

103

104

T
im

e
(s

)

QOKit + CPU precompute
cuStateVec (gates)
QOKit + GPU precompute

Figure 5.4: Total simulation time vs. number of layers in QAOA circuit for LABS problem
with n = 26. The GPU precomputation is fast enough to provide speedup over the gate-
based state-vector simulation (cuStateVec) even for a single evaluation of the QAOA circuit.

contraction width equal to n. Since obtaining batches of amplitudes does not produce high

overhead [?], this serves as a lower bound for full state evolution. Note that the so-called

“lightcone approach”, wherein only the reverse causal cone of the desired observable is sim-

ulated, does not significantly reduce the resource requirements due to the high depth and

connectivity of the phase operator. For QTensor, “tamaki_30” contraction optimization al-

gorithm is used. CuTensorNet contraction is optimized with default settings. It is possible

that the performance can be improved by using diagonal gates [?], which are only partially

supported by cuTensorNet at this moment.

For n > 20, we observe that the precomputation provides orders of magnitude speedups

for simulation of a QAOA layer. The LABS problem has a large number of terms in the cost

function, leading to deep circuits which put tensor network simulators at a disadvantage.

As a consequence, we observe that tensor network simulators are slower than state-vector

simulation. We also observe that using cuStateVec as a backend for mixer gate simulation

provides additional ≈ 2× speedup, possibly due to higher numerical efficiency achieved by in-

house NVIDIA implementation. We do not include the precomputation cost in Fig. 5.3. This

cost is amortized over application of a QAOA layer as shown in Fig. 5.4, and is negligible if

precomputation is performed on GPU. Simulation of each layer in a deep quantum circuit has

101

8 16 32 64 128
K

10

20

30

40

50

60

70

80

T
im

e
(s

)

QOKit (cuStateVec)

QOKit

33 34 35 36 37
n

Figure 5.5: Weak scaling results for simulation of 1 layer of LABS QAOA on Polaris super-
computer. We observe that cuStateVec backend has lower communication overhead, leading
to lower overall runtime.

the same time and memory cost. Thus, to obtain the time for multiple function evaluations,

one can simply use this plot with aggregate number of layers in all function evaluations.

Our best GPU performance for QAOA on LABS problem is ≈ 6 seconds per QAOA layer

for n = 31 using double precision. This simulation requires the same memory amount as one

with n = 32 using single precision. In addition to our own implementation, we benchmark

the same simulator as in the Ref. [?] on the LABS problem. For smaller n ≤ 26, QOKit

with cuStateVec shows a ≈ 20× speedup from our precomputation approach. We discuss the

choice of cuStateVec as the baseline as well as other state-of-the-art simulation techniques

in Sec. 5.6.

5.5.2 Distributed simulation

Finally, we scale the QAOA simulation to n = 40 qubits using 1024 GPUs of the Polaris

supercomputer. At n = 40, we observe a runtime of ≈ 20 s per layer. The results of the

simulation are discussed in detail in Ref. [?]. Here, we focus on the technical aspects of the

simulation.

In distributed experiments, we use compute nodes of Polaris with 4 NVIDIA A100 GPUs

102

with 40GB of memory. The maximum values of f are known for n < 65, and they are

less then 216. Therefore, we are able to store the precomputed diagonal as a 2n vector of

uint16 values, which reduces the memory overhead of the cost value vector. As discussed in

Section 5.3.3, the most expensive part of this simulation is communication. We implement

two approaches for this simulation, a custom MPI code that uses MPI_Alltoall collective

and an implementation leveraging the distributed index swap operation in cuStateVec. Weak

scaling results in Figure 5.5 demonstrate the advantage of cuStateVec implementation of

communication. The GPUs co-located on a single node are connected with high-bandwidh

NVLink network. To transfer data between nodes, GPU data need to transfer to CPU for

subsequent transfer to another node. This requires the communication to correctly choose

the communication method depending on GPU location. MPI has built-in support which

can be enabled using MPI_GPU_SUPPORT_ENABLED environment variable. However, it shows

worse performance than the cuStateVec communication code, which uses direct CUDA peer-

to-peer communication calls for local GPU communication. We observe that our performance

is comparable to distributed simulation reported in Ref. [?], despite having 2× fewer GPUs

per node. This is due to the majority of time being spent in communication, which is

confirmed by our smaller-scale profiling experiments. Further research, including adapting

the communication patterns used in high-efficiency FFT algorithms, may improve our results.

5.6 Related work

Classical simulation of quantum systems is a dynamic field with a plethora of simulation

algorithms [?Lykov, 2021; ?; ?] and a variety of use cases [??]. The main approaches to

simulation are tensor network contraction algorithms and state-vector evolution algorithms.

Tensor network algorithms are able to utilize the structure of quantum circuit and need not

store the full 2n-dimensional state vector when simulating n qubits. Instead, they construct

a tensor network and contract it in the most efficient way possible. This approach works

103

best when the circuit is shallow, since the tensor network contraction can be performed

across qubit dimension instead of over time dimension. The main research areas of this

approach are finding the best contraction order [???] and applying approximate simulation

algorithms [??]. However, while there is no theoretical limitation on simulating deep circuits

using tensor networks, it is challenging to implement a performant simulator of deep quantum

circuits based on tensor networks, as demonstrated by the numerical experiments above.

The state vector evolution algorithms are more straightforward and intuitive to imple-

ment. The main limitation of state-vector simulator is the 2n size of the state vector. There

are many approaches to improve state-vector simulators. Compressing the state vector has

been proposed to reduce the memory requirement and enable the simulation of a higher

number of qubits [?]. To utilize the structure in the set of quantum gates, some state-vector

simulators use the gate fusion approach [????]. The idea is to group the gates that act on a

set of F qubits, then create a single F -qubit gate by multiplying these gates together. This

approach is often applied for F = 2 and provides significant speed improvements. Com-

puting the fused gate requires storing 4F complex numbers, which is a key limitation. Our

approach corresponds to using gate fusion with F = n, but the group of gates is known to

produce a diagonal gate, which can be stored as a vector of only 2n elements.

In our comparison in Sec. 5.5.1, we do not enable gate fusion in cuStateVec. While gate

fusion may improve the performance of cuStateVec, we believe it is very unlikely to achieve

the same efficiency as our method of using the precomputed diagonal cost operator. Our

argument is based on examining the results reported in Ref. [?]. The central challenge for

gate fusion is presented by the fact that the phase operator for the LABS problem requires

many gates to implement. For example, for n = 31, the LABS cost function has ≈ 75n

terms, with many of them being 4-order terms. If decomposed into 2-qubit gates, the circuit

for QAOA with p = 1 for the LABS problem has ≈ 160n gates after compilation. For

comparison, QAOA circuit from Ref. [?] for n = 33 and p = 2 has 50n un-fused gates,

104

which is ≈ 7× fewer. After gate fusion, the circuits from Ref. [?] have ≈ 4n fused gates.

Our precomputation approach reduces the number of gates to practically only the n mixer

gates. Thus, assuming that application of a single gate takes the same amount of time for

any statevector simulator, we can expect a speedup in the range of 4− 160×. We note that

while this estimate does not take into account various other time factors and variation in

gate application times, it provides intuition for why we rule out gate fusion outperforming

our techniques.

While there exist a multitude of quantum simulation frameworks, the best results for

state-vector GPU simulation that we found in the literature were reported in Ref. [?]

(cuQuantum) and Ref. [?] (qsim). Ref. [?] reports ≈ 10 seconds for simulating QAOA

with p = 2, n = 33 qubits and 1650 gates, using the complex64 data type on a single

A100 GPU with 80 GB memory. Ref. [?] presents single-precision simulation results on

a A100 GPU with 40 GB memory. The benchmark uses random circuits of depth of 20.

The reported simulation time for n = 32 is ≈ 6 seconds. Notably, this time may depend

significantly on the structure of the circuit since it impacts the gate fusion, as shown in

Ref. [?]. Assuming similar gate count, these results show very similar performance, since the

simulation in Ref. [?] is two times larger. This motivates our use of cuQuantum (Ref. [?])

as a baseline state-of-the-art state-vector quantum simulator.

Symmetry of the function to be optimized has been shown to enable a reduction in the

computational and memory cost of QAOA simulation [???]. While we do not implement

symmetry-based optimizations in this work, they can be combined with our techniques to

further improve performance.

In addition to the simulation method, many simulators differ in the scope of the project.

Some simulators like cuQuantum [?] position themselves as a simulator-development SDK,

with flexible but complicated API. On the other hand, there exist simulation libraries that

focus on the quantum side and delegate the concern of low-level performance to other li-

105

braries [??]. Many software packages exist somewhere in the middle, featuring full support

for quantum circuit simulation and focusing on end-to-end optimization efforts on a partic-

ular quantum algorithm or circuit type [??]. QOKit is positioned as one of such packages,

as it provides both an optimized low-level QAOA-specific simulation algorithm as well as

high-level quantum optimization API for specific optimization problems.

5.7 Conclusion

We develop a fast and easy-to-use simulation framework for quantum optimization. We

apply a simple but powerful optimization by precomputing the values of the cost function.

We use the precomputed values to apply the QAOA phase operator by a single elementwise

multiplication and to compute the QAOA objective by a single inner product. We provide

an easy-to-use high-level API for a range of commonly considered problems, as well as low-

level API for extending our code to other problems. We demonstrate orders of magnitude

gains in performance compared to commonly used quantum simulators. By scaling our

simulator to 1,024 GPUs and 40 qubits, we enabled an analysis of QAOA on the Low

Autocorrelation Binary Sequences problem that demonstrated a quantum speedup over state-

of-the-art classical solvers [?].

After this manuscript appeared on arXiv, we became aware of a serial CPU-only Python

implementation of a QAOA simulator that uses diagonal Hamiltonian precomputation and

Fast Walsh-Hadamard transform to accelerate QAOA state simulation and QAOA objective

evaluation [??]. We note that Ref. [?] requires two applications of fast Walsh-Hadamard

transform (forward and inverse) and a diagonal Hamiltonian operation to simulate one layer

of QAOA mixer, whereas Algorithms 2, 3 apply the mixer in one step with a cost equivalent

to one application of fast Walsh-Hadamard transform. In addition, the implementation of

fast Walsh-Hadamard transform in Ref. [?] requires one additional copy of the input state

vector, whereas Algorithms 2, 3 applies the mixer in place.

106

CHAPTER 6

CONCLUSIONS AND OUTLOOK

A naïve approach to simulating observables of an arbitrary quantum system scales expo-

nentially with the system size. However, by utilizing the structure of interactions between

system components, it is possible to simulate the system more efficiently. This approach can

reduce the exponential factor or in some cases change the scaling to linear in system size.

The latter case is possible due to lightcone optimization for calculation of energy expectation

values. In the case of calculation of probability amplitudes, the tensor network approach

allows calculating a batch of several amplitudes for the same cost as a single amplitude. If

the contraction width of the tensor network is w, then one can calculate the batch of 2w

probability amplitudes without significant increase in computational cost. In the application

to the quantum circuit simulation, it is possible to exploit the structure of quantum gates

in the circuit. For gates that have non-zero elements only on their diagonal, the “Diagonal

gates" optimization is possible and provides a significant performance improvement.

A key part of the process of tensor network contraction is the contraction ordering al-

gorithm. The cost for contraction depends exponentially on the quality of the contraction

order. It, therefore, promises to be a rewarding task to study different contraction order

algorithms. The tensor networks used for most quantum many-body simulation problems

have a lot of small indices. This setup is not beneficial for the numerical efficiency of tensor

network contraction, since the contraction of two tensors is dominated by read/write oper-

ations, not arithmetic operations. This puts an additional constraint on the optimization

of the contraction procedure of tensor networks. As discussed above, multiple approaches

can be utilized to improve the performance of parallelized GPU-accelerated tensor network

contraction.

To further improve the scaling of the tensor network approach, it is possible to borrow

the idea of approximate simulations using the tensor decomposition, as used in the DMRG

107

algorithm. This approach can dramatically reduce the cost for simulation for a small error

in the resulting value.

108

REFERENCES

Argonne National Laboratory Leadership Computing Facility, 2017.

U.S. Department of Energy Office of Science Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program, 2017.

Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy
experiments. arXiv preprint arXiv:1612.05903, 2016.

Yuri Alexeev, Dave Bacon, Kenneth R Brown, Robert Calderbank, Lincoln D Carr, Fred-
eric T Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey Gor-
shkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail
Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler,
Martin Savage, and Jeff Thompson. Quantum computer systems for scientific discovery.
PRX Quantum, 2(1):017001, 2021.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,
2019.

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
computing, 26(5):1411–1473, 1997.

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell, 2017.

Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.

Hans L Bodlaender, Fedor V Fomin, Arie MCA Koster, Dieter Kratsch, and Dimitrios M
Thilikos. On exact algorithms for treewidth. In European Symposium on Algorithms, pages
672–683. Springer, 2006.

Sergio Boixo. Random circuits dataset. https://github.com/sboixo/GRCS.git, 2019.
Accessed: 2019-09-16.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simulation
of low-depth quantum circuits as complex undirected graphical models. arXiv preprint
arXiv:1712.05384, 2017.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14(6):595, 2018.

109

https://github.com/sboixo/GRCS.git

Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an
introductory course on tensor networks. Journal of Physics A: Mathematical and Theo-
retical, 50(22):223001, 2017.

Thang Nguyen Bui and Curt Jones. A heuristic for reducing fill-in in sparse matrix fac-
torization. Technical report, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1993.

Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K Clark, Maksims Volkovs,
and Leandro Aolita. Probabilistic simulation of quantum circuits with the transformer.
arXiv preprint arXiv:1912.11052, 2019.

Jianxin Chen, Fang Zhang, Mingcheng Chen, Cupjin Huang, Michael Newman, and
Yaoyun Shi. Classical simulation of intermediate-size quantum circuits. arXiv preprint
arXiv:1805.01450, 2018a.

Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi. Classical
simulation of intermediate-size quantum circuits. arXiv, may 2018b.

Yu Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly, B Campbell, Z Chen,
B Chiaro, et al. Qubit architecture with high coherence and fast tunable coupling. Physical
review letters, 113(22):220502, 2014.

Zhao-Yun Chen, Qi Zhou, Cheng Xue, Xia Yang, Guang-Can Guo, and Guo-Ping Guo.
64-qubit quantum circuit simulation. Science Bulletin, 63(15):964–971, 2018c.

Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of multi-
dimensional loops with reduction for parallel execution. Parallel Processing Letters, 7(02):
157–168, 1997.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P
Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimiza-
tion: Part 1 – low-rank tensor decompositions. Foundations and Trends® in Machine
Learning, 9(4-5):249–429, 2016.

Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Willsch, Naoki Yoshioka, Nobuyasu
Ito, Shengjun Yuan, and Kristel Michielsen. Massively parallel quantum computer simu-
lator, eleven years later. Computer Physics Communications, 237:47–61, 2019.

Koen De Raedt, Kristel Michielsen, Hans De Raedt, Binh Trieu, Guido Arnold, Marcus
Richter, Th Lippert, H Watanabe, and N Ito. Massively parallel quantum computer
simulator. Computer Physics Communications, 176(2):121–136, 2007.

Rina Dechter. Bucket elimination: A unifying framework for several probabilistic inference.
CoRR, abs/1302.3572, 2013.

110

Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Transactions on Mathematical
Software (TOMS), 14(1):1–17, 1988.

Daniel J Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum optimization.
Quantum, 5:479, 2021.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum approximate
optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm. arXiv preprint arXiv:1411.4028, 2014.

Richard P. Feynman. Simulating physics with computers. 21(6-7):467–488, June 1982.
doi:10.1007/bf02650179.

E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero,
and Alán Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PLOS ONE,
13(12):e0208510, Dec 2018. ISSN 1932-6203. doi:10.1371/journal.pone.0208510.

Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

Edward Gillman, Dominic C. Rose, and Juan P. Garrahan. A tensor network approach to
finite markov decision processes, 2020.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence, pages 201–208. AUAI
Press, 2004.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth, 2012.

Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction, 2020.

Michael Hamann and Ben Strasser. Correspondence between multilevel graph partitions and
tree decompositions. Algorithms, 12(9):198, 2019.

Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quantum cir-
cuit. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 33. ACM, 2017.

Aram W Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549
(7671):203, 2017.

111

https://doi.org/10.1007/bf02650179
https://doi.org/10.1371/journal.pone.0208510

IBM. Ibm q experience, 2018.

Intel. 2018 ces: Intel advances quantum and neuromorphic computing research, 2018.

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash.
Learning to optimize variational quantum circuits to solve combinatorial problems. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020.

Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

Ton Kloks, H Bodlaender, Haiko Müller, and Dieter Kratsch. Computing treewidth and
minimum fill-in: All you need are the minimal separators. In European Symposium on
Algorithms, pages 260–271. Springer, 1993.

Riling Li, Bujiao Wu, Mingsheng Ying, Xiaoming Sun, and Guangwen Yang. Quantum
supremacy circuit simulation on Sunway Taihulight. arXiv preprint arXiv:1804.04797,
2018.

Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017.

Danil Lykov, Roman Schutski, Valerii Vinokur, and Yuri Alexeev. Large-Scale Parallel
Tensor Network Quantum Simulator. In under review of Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC
’20, New York, New York, USA, 2020a. ACM Press.

Danylo Lykov. QTensor. https://github.com/danlkv/qtensor, 2021.

Danylo Lykov and Yuri Alexeev. Importance of diagonal gates in tensor network simulations,
2021.

Danylo Lykov, Roman Schutski, Alexey Galda, Valerii Vinokur, and Yurii Alexeev. Ten-
sor network quantum simulator with step-dependent parallelization. arXiv preprint
arXiv:2012.02430, 2020b.

Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs,
and Yuri Alexeev. Performance evaluation and acceleration of the qtensor quantum circuit
simulator on gpus. In 2021 IEEE/ACM Second International Workshop on Quantum
Computing Software (QCS), pages 27–34, 2021. doi:10.1109/QCS54837.2021.00007.

Danylo Lykov, Ruslan Shaydulin, Yue Sun, Yuri Alexeev, and Marco Pistoia. Fast simulation
of high-depth qaoa circuits. In Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis, SC-W 2023.
ACM, November 2023. doi:10.1145/3624062.3624216. URL http://dx.doi.org/10.11
45/3624062.3624216.

112

https://github.com/danlkv/qtensor
https://doi.org/10.1109/QCS54837.2021.00007
https://doi.org/10.1145/3624062.3624216
http://dx.doi.org/10.1145/3624062.3624216
http://dx.doi.org/10.1145/3624062.3624216

Igor L Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor
networks. SIAM Journal on Computing, 38(3):963–981, 2008.

Stephen Marsland. Machine learning: an algorithmic perspective. Chapman and Hall/CRC,
2011.

H.-D. Meyer, U. Manthe, and L.S. Cederbaum. The multi-configurational time-dependent
hartree approach. 165(1):73–78, January 1990. doi:10.1016/0009-2614(90)87014-i. URL
https://doi.org/10.1016/0009-2614(90)87014-i.

Jacob Miller, Geoffrey Roeder, and Tai-Danae Bradley. Probabilistic graphical models and
tensor networks: A hybrid framework, 2021.

Vladimir Mironov, Yuri Alexeev, Kristopher Keipert, Michael Dḿello, Alexander Moskovsky,
and Mark S. Gordon. An efficient MPI/OpenMP parallelization of the Hartree-Fock
method for the second generation of Intel Xeon Phi processor. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
on - SC ’17, pages 1–12, New York, New York, USA, 2017. ACM Press.

Uwe Naumann and Olaf Schenk. Combinatorial scientific computing. CRC Press, 2012.

Charles Neill, Pedran Roushan, K Kechedzhi, Sergio Boixo, Sergei V Isakov, V Smelyanskiy,
A Megrant, B Chiaro, A Dunsworth, K Arya, et al. A blueprint for demonstrating quantum
supremacy with superconducting qubits. Science, 360(6385):195–199, 2018.

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition.
Phys. Rev., 65:117–149, Feb 1944. doi:10.1103/PhysRev.65.117. URL https://link.aps
.org/doi/10.1103/PhysRev.65.117.

Román Orús. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Annals of Physics, 349:117–158, Oct 2014. ISSN 0003-4916.
doi:10.1016/j.aop.2014.06.013. URL http://dx.doi.org/10.1016/j.aop.2014.06.013.

Matthew Otten. QuaC (quantum in c) is a parallel time dependent open quantum systems
solver, 2020.

Feng Pan, Pengfei Zhou, Sujie Li, and Pan Zhang. Contracting arbitrary tensor networks:
general approximate algorithm and applications in graphical models and quantum circuit
simulations. arXiv preprint arXiv:1912.03014, 2019.

Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein,
Edgar Solomonik, and Robert Wisnieff. Breaking the 49-qubit barrier in the simulation
of quantum circuits. arXiv preprint arXiv:1710.05867, 2017.

Robert NC Pfeifer, Jutho Haegeman, and Frank Verstraete. Faster identification of optimal
contraction sequences for tensor networks. Physical Review E, 90(3):033315, 2014.

113

https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1103/PhysRev.65.117
https://link.aps.org/doi/10.1103/PhysRev.65.117
https://link.aps.org/doi/10.1103/PhysRev.65.117
https://doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

Ilya Safro, Dorit Ron, and Achi Brandt. Multilevel algorithms for linear ordering problems.
Journal of Experimental Algorithmics (JEA), 13:1–4, 2009.

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of Physics, 326(1):96–192, Jan 2011. ISSN 0003-4916.
doi:10.1016/j.aop.2010.09.012. URL http://dx.doi.org/10.1016/j.aop.2010.09.012.

Roman Schutski, Danil Lykov, and Ivan Oseledets. Adaptive algorithm for quantum circuit
simulation. Phys. Rev. A, 101:042335, Apr 2020. doi:10.1103/PhysRevA.101.042335.

Ruslan Shaydulin and Yuri Alexeev. Evaluating quantum approximate optimization algo-
rithm: A case study. In Proceedings of the 2nd International Workshop on Quantum
Computing for Sustainable Computing, 2019.

Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. Multistart methods for quantum approx-
imate optimization. In 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–8. IEEE, 2019a.

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian FA Negre, Ilya Safro, Susan M
Mniszewski, and Yuri Alexeev. A hybrid approach for solving optimization problems on
small quantum computers. Computer, 52(6):18–26, 2019b.

Ruslan Shaydulin, Stuart Hadfield, Tad Hogg, and Ilya Safro. Classical symmetries and
QAOA. arXiv preprint arXiv:2012.04713, 2020.

Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134.
Ieee, 1994.

Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik. qHiPSTER: the quantum
high performance software testing environment. arXiv preprint arXiv:1601.07195, 2016.

Hisao Tamaki. Positive-Instance Driven Dynamic Programming for Treewidth. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms
(ESA 2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages
68:1–68:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-049-1. doi:10.4230/LIPIcs.ESA.2017.68.

Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
Journal on computing, 13(3):566–579, 1984.

Laurens Vanderstraeten, Bram Vanhecke, and Frank Verstraete. Residual entropies for
three-dimensional frustrated spin systems with tensor networks. 98(4), October 2018.
doi:10.1103/physreve.98.042145. URL https://doi.org/10.1103/physreve.98.042145.

114

https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevA.101.042335
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.1103/physreve.98.042145
https://doi.org/10.1103/physreve.98.042145

Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rieffel, Rupak
Biswas, and Salvatore Mandrà. A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware. NPJ Quantum Informa-
tion, 5:1–16, 2019.

Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Ru-
pak Biswas, Eleanor Rieffel, Alan Ho, and Salvatore Mandrà. Establishing the quantum
supremacy frontier with a 281 Pflop/s simulation. Quantum Science and Technology, 2020.

Haobin Wang and Michael Thoss. Multilayer formulation of the multiconfiguration time-
dependent hartree theory. 119(3):1289–1299, July 2003. doi:10.1063/1.1580111. URL
https://doi.org/10.1063/1.1580111.

Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G Rieffel. Quantum approximate
optimization algorithm for maxcut: A fermionic view. Physical Review A, 97(2):022304,
2018.

Xin-Chuan Wu, Sheng Di, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic Chong.
Memory-efficient quantum circuit simulation by using lossy data compression. In Proceed-
ings of the 3rd International Workshop on Post-Moore Era Supercomputing (PMES) at
SC18, Denver, CO, USA, 2018a.

Xin-Chuan Wu, Sheng Di, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic T Chong.
Amplitude-aware lossy compression for quantum circuit simulation. In Proceedings of 4th
International Workshop on Data Reduction for Big Scientific Data (DRBSD-4) at SC18,
2018b.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri
Alexeev, and Frederic T Chong. Full-state quantum circuit simulation by using data
compression. In Proceedings of the High Performance Computing,Networking, Storage
and Analysis International Conference (SC19), Denver, CO, USA, 2019. IEEE Computer
Society.

Ya-Qian Zhao, Ren-Gang Li, Jin-Zhe Jiang, Chen Li, Hong-Zhen Li, En-Dong Wang, Wei-
Feng Gong, Xin Zhang, and Zhi-Qiang Wei. Simulation of quantum computing on classical
supercomputers, 2020.

115

https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Tensor networks introduction
	1.1.1 Tensors and quantum states
	1.1.2 Tensor networks

	1.2 Quantum computing introduction
	1.3 Structure

	2 Parallel computation
	2.1 Introduction
	2.2 Related Work
	2.3 Methodology
	2.3.1 QAOA introduction
	2.3.2 Description of quantum circuits

	2.4 Overview of simulation algorithm
	2.4.1 Quantum circuit as tensor expression
	2.4.2 Graph model of tensor expression

	2.5 Simulation of a single amplitude
	2.5.1 Ordering algorithm

	2.6 Parallelization algorithm
	2.6.1 Description of hardware and software
	2.6.2 Single-node parallelization
	2.6.3 Multinode parallelization
	2.6.4 Step-dependent slicing

	2.7 Simulation of several amplitudes
	2.8 Results
	2.9 Conclusions
	2.10 Acknowledgements

	3 GPU acceleration of tensor network contraction
	3.1 Introduction
	3.2 Methodology
	3.2.1 QAOA Overview
	3.2.2 Tensor Network Contractions
	3.2.3 Merged Indices Contraction
	3.2.4 CPU-GPU Hybrid Backend
	3.2.5 Datasets for Synthetic Benchmarks

	3.3 Results
	3.3.1 Single CPU-GPU Backends
	3.3.2 Merged Backend Results
	3.3.3 Mix CPU-GPU Backend Results
	3.3.4 Mixed Merged Backend Results
	3.3.5 Synthetic Benchmarks

	3.4 Conclusions

	4 MaxCut QAOA performance study
	4.1 Introduction
	4.2 Results and discussion
	4.2.1 Expected QAOA solution quality
	4.2.2 Classical solution quality and time to solution
	4.2.3 Multi-shot QAOA
	4.2.4 Discussion

	4.3 Methods
	4.3.1 QAOA Methodology
	4.3.2 Classical Solvers
	4.3.3 QAOA performance
	4.3.4 QAOA Ensemble Estimates
	4.3.5 Single-shot QAOA Sampling
	4.3.6 Mult-shot QAOA Sampling
	4.3.7 Classical performance
	4.3.8 Performance of Gurobi Solver
	4.3.9 Performance of MQLib+BURER2002 and FLIP Algorithms

	4.4 Acknowledgements
	4.5 Data availability

	5 Distributed Statevector simulation
	5.1 Introduction
	5.2 Background
	5.3 Simulation of QAOA using QOKit
	5.3.1 Precomputation of the cost vector
	5.3.2 Mixing operator
	5.3.3 Distributed simulation

	5.4 Examples of use
	5.5 Performance of QOKit
	5.5.1 CPU and GPU simulation
	5.5.2 Distributed simulation

	5.6 Related work
	5.7 Conclusion

	6 Conclusions and outlook
	References

