
THE UNIVERSITY OF CHICAGO

ORGANIZING FINE-GRAINED PARALLELISM USING KEYS AT SCALE

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

YUQING WANG

CHICAGO, ILLINOIS

GRADUATION DATE



Copyright © 2024 by Yuqing Wang

All Rights Reserved





TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Irregular Applications and Limited Performance Scaling . . . . . . . . . . . 6
2.2 Functional Language and Cloud Map-reduce . . . . . . . . . . . . . . . . . . 8
2.3 Fine-grained Parallel Hardware Architectures . . . . . . . . . . . . . . . . . 9

3 KVMSR PROGRAMMING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 KVMSR Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 KVMSR Interface: Expressing Computation . . . . . . . . . . . . . . 17
3.2.2 KVMSR Interface: Global Data Structures . . . . . . . . . . . . . . . 19
3.2.3 KVMSR Interface: Parallelism Management . . . . . . . . . . . . . . 21

4 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Convolution Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Express Parallel Computation . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Instruct Computation Binding . . . . . . . . . . . . . . . . . . . . . . 27

4.2 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Tuning Computation Binding: Static VS. Dynamic . . . . . . . . . . 30

4.3 BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Enable Rich-structured Key-Value Set . . . . . . . . . . . . . . . . . 34

5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Evaluation System Specification . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Programmability, Modularlity and Model Expressiveness . . . . . . . . . . . 38

5.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Benefits of Computation Location Control . . . . . . . . . . . . . . . . . . . 41

iv



5.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 BROADER USAGE AND INSIGHT . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Programmability and Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Insight and Lessons Learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 RELATED WORK AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 54
7.1 Functional Language and Cloud Map-Reduce . . . . . . . . . . . . . . . . . . 54
7.2 Message Passing (MPI) & Partitioned Global Address (PGAS) . . . . . . . . 55

7.2.1 MapRedudce in PGAS . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Linda & Tuple Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Scalable Graph Processing Systems . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



LIST OF FIGURES

2.1 The in and out degree distribution of the Twitter follower network . . . . . . . . 6
2.2 The UpDown System connected by the high-performance system network. . . . 10
2.3 each node has 1 CPU, 32 UpDown accelerators with uniform access to 8 HBM

stacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Parallel applications manage three dimensions to achieve performance (left). Com-
putation and data need to be mapped to distributed capabilities in a balanced
way for good performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 A parallel machine fundamentally has compute and data locations connected by
an interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Computation binding for the baseline convolution filter program: placing all the
tasks on a single lane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 The statically distributed Convolution Filter program spreads computation over
N lanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Speedup of the UDKVMSR Convolution, PageRank and BFS with static binding
based on Keys over the single-thread CPU baseline . . . . . . . . . . . . . . . . 43

5.2 Speedup of PageRank with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute
load (right bars) over the single-thread CPU baseline. . . . . . . . . . . . . . . . 44

5.3 Speedup of BFS with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute
load (right bars) over the single-thread CPU baseline. . . . . . . . . . . . . . . . 45

vi



LIST OF TABLES

3.1 A summary of the KVMSR interface. . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 UpDown System specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Code Size for each tuned version of KVMSR programs (Lines of Code). . . . . . 40
5.3 Programs and Key Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Description of programs implemented in the KVMSR programming model and
run on the UpDown system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Dr. Andrew A. Chein, whose

expertise and insight added considerably to my graduate experience. I am extremely grateful

for his guidance throughout the research and writing of this thesis. His insight to computer

architecture and system has greatly broaden my knowledge and reshaped my understanding

of the fields.

I would also like to thank my colleagues and friends in LSSG research group and the

UpDown project - Andronicus, Tianshuo, Marziyeh, Jose, Jerry (Ruiqi), Jiya, Tony, Jerry

(Jianru), Ziyi, and Ahsan - for feedback and collaboration that have been integral to the

completion of this thesis, and most importantly for supporting me all way through my

research.

viii



ABSTRACT

Rapidly proliferating machine learning and graph processing applications, demand high per-

formance on petascale datasets. Achieving this performance requires efficient exploitation of

irregular parallelism, as their sophisticated structures and real-world data produce computa-

tions with extreme irregularity. The need to exploit large-scale parallel hardware (million-fold

parallelism) is a further challenge.

Programming irregular data and parallelism using existing models (e.g., MPI) are difficult

because they couple naming, data mapping, and computation mapping. Further, they only

exploit coarse-grained parallelism. To solve this problem, we present a key-based program-

ming model, called key-value map-shuffle-reduce (KVMSR). The model enables programmers

to express fine-grained parallelism across programmer-defined key-value sets. Parallelism is

managed via the keys with a modular programming interface: KVMSR enables programs

to flexibly bind computation to compute resources based on keys for load balance and data

locality.

In this thesis, we illustrate and evaluate the KVMSR modular interface with three pro-

grams, convolution filter, PageRank, and BFS, to show its ability to separate computation

expression from binding to computation location for high performance. We evaluate KVMSR

on a novel fine-grained parallel architecture, called UpDown, supporting up to 4 billion fold

hardware parallelism in the full system design. On an 8,192-way parallel compute system,

KVMSR modular computation location control achieves up to 7,845x performance with

static approaches and an increase of 3,136x to 4,258x speedup with dynamic approaches for

computation location binding comparing to the single-thread CPU programs.

ix



CHAPTER 1

INTRODUCTION

In the past few decades, there has been a rise in "internet-scale" computation on big data,

producing a growing need for computing systems that can process large-scale data efficiently.

Among the emerging applications, graph computation is ubiquitous: complex relationships

in various real-world scenarios are represented by graphs efficiently, for example, social net-

works, the world wide web, recommendation systems, bio-informatics, etc. [16, 20, 29, 15].

As the data keeps growing, real-world graphs can occupy gigabytes of memory and if this

trend continues, real-time analysis of petabyte graphs will be the norm in the next decades.

Therefore, high-efficient low-latency real-time processing of graphs continues to demand

larger and more powerful machine presumably with millions of compute cores and petabytes

of memory, significantly beyond the scale of current parallel machines (typically of hundreds

or thousands cores and gigabytes of memory).

Graph computations exhibit high data parallelism at the vertex and/or edge level. The re-

sulting fine-grained computation parallelism is exploited in varied graph processing software

frameworks [24, 37, 8, 35, 38]. Despite the abundance, it is extremely irregular: real-world

graphs often has skewed degree distribution (e.g., power-law), meaning that most vertices

have a few neighbors except a couple outliers are connecting to magnitudes more of vertices

[5].

Graph computation’s data irregularity and fine-grained nature significantly restricts the

scaling of its parallel performance. Without dedicated control, the extreme imbalance be-

tween the high-degree and low-degree vertices would result in some of the computing units

being assigned magnitudes of work more than the rest of the machine, limiting the ma-

chine utilization and the overall performance. Furthermore, many graph algorithms exhibit

memory-intensive computation: each vertex/edge involves limited computation on scattered

data with limited data reuse (e.g., one addition for each edge in PageRank), leading to

1



poor data locality and costly communications and data movement. Compared to the regular

parallel applications (e.g., dense matrix multiplication), load-balance such application and

achieve scalable performance on a parallel machine is hard. As the scale of the computa-

tion and machine scales with the growing data (potentially to million-fold parallelism on

petabytes data), the issues would become even more critical.

The two main stream parallel programming solutions are message-passing interface (MPI)

and partitioned global address space models (PGAS). Despite the popularity, they do not

support irregular applications well (e.g., skewed real-world graph analytics and graph pattern

minings).

• MPI follows the single-program-multiple-data model (SPMD) model, that is data is

partitioned across the machine and the parallel computation on each node is tied to

the local data. Remote data are exchanged via costly messages. With scant support

for global data structures, programmers must assemble the data required for each piece

of parallel computation and align it to a static set of workers (ranks) to achieve high

performance, extremely challenging for irregular data [4].

• PGAS model provides a global address space that aids in expressing parallel computa-

tion over the distributed global data structures (e.g., graphs) [30]. Nonetheless, PGAS

lack effective support for fine-grained parallelism management which is important for

data-irregular parallelism. For example, naively distributing graph’s vertex-level ir-

regular computation across the machine would result in load-imbalance, hindering the

parallel efficiency.

Therefore, dealing with skewed computation is possible in MPI and PGAS, but with scant

support from model it is extremely challenging to balance the irregular data and the result

computation globally to achieve performance [1, 28].

A promising direction is MapReduce: many parallel applications have been expressed

under this framework in the past several decades mostly due to the prosperity of func-
2



tional languages and cloud MapReduce. Its simple yet powerful interface allows parallel

computation expressed in terms of independent map and reduce functions and parallelized

on parallel compute resources. Despite the similarity, traditional functional programming

languages and cloud MapReduce optimized for different paths and none could serve our

purposes. Functional programming languages focus on expressing fine-grained parallelism

in a shared memory machine. Thus, they cannot support these future large-scale parallel

machines with petabytes of distributed memory. Cloud map-reduce systems add keys to

organize the computation and are more scalable, but focus more on fault tolerance and fail

to exploit fine-grained parallelism efficiently with its coarse-grained approach [25, 31, 9].

1.1 The Problem

While graph computation has abundant data and computation parallelism, exploited by

various software graph processing systems such as Pregel and Powergraph, none of these

high-level systems provide programmer control over parallelism and locality. Lower-level par-

allel programming models (e.g., MPI, PGAS and MapReduce) enable programmer-controlled

parallelism for performance but generally at coarse-grain, inefficient for graph computation’s

fine-grained irregularity.

In short, we aim to solve the challenge in achieving scalable performance of irregular ap-

plications, mainly graph applications, on future large-scale machines. Most importantly, we

are targeting extreme-scaled machines with million-fold hardware parallelism and petabytes

of memory. The proposed solution should achieve the following properties lacking in existing

ones:

1. efficiently expresses and manages large-scale fine-grained parallelism in software

2. spreads the data across the petabyte memory for memory-level parallelism without

complicating the application program
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3. effectively binds the software parallelism onto the available compute resource under

extreme irregularity

4. supports flexible tuning of data layout and computation binding (i.e., bullet points

2&3) to optimize performance at various machine and data scales.

1.2 Approach

We propose the key-value map-shuffle-reduce (KVMSR) framework for irregular computation

parallelism on future large-scale parallel systems. These systems will use novel building

blocks for fine-grained parallelism and scale to 30 million parallel computation elements [33].

The key elements of our approach are:

• User-defined key space for flexible management of fine-grained software parallelism, in

contrast to MPI’s static data-based management.

• MapReduce-like programming interface with support of rich-structured distributed

data in a global address space, in contrast to the cloud MapReduce’s rigid string-based

key-value pairs.

• Customizable computation binding functions using keys to allow fine-grained paral-

lelism control such as alignment or computation affinity.

• Modular programming interfaces enabling orthogonal control of data layout, parallel

computation, and the binding to the parallel computation resources.

1.3 Key Contributions

This thesis presents the KVMSR model and illustrates the design using selected program

examples, namely convolution filter, PageRank, and BFS. We then demonstrate the model’s
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modular interface for flexibility support to performance-optimize challenging irregular com-

putations.

Specific contributions of this thesis include:

• Design of KVMSR for expressing fine-grained parallelism using key-value abstraction

and MapReduce-like interface at extreme scales.

• Design of parallelism management with keys and a simple and modular interface for

specifying computation binding independently from program computation and data

layout.

• Evaluation that shows on an 8,192-way parallel compute system, KVMSR achieves

up to 7,845x performance speedup over x86 CPU core with static computation bind-

ing approaches and an increase of speedup with dynamic approaches for computation

location binding.

• Analysis of a variety of parallel programs implemented in KVMSR and their usage

of KVMSR’s modular programming interface to express fine-grained computation and

manage irregular parallelism for performance.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 gives a brief overview of the

background. Then, the KVMSR model is defined in Chapter 3, followed by three program

examples described in Chapter 4. An implementation of the KVMSR model is evaluated in

Chapter 5, to show its flexibility and performance benefits. An analysis of a broader list of

KVMSR programs and the programming practices is given in Chapter 6. Finally, Chapter

7 discusses related works in graph computation and parallel programming, and Chapter 8.1

summarizes the thesis and points out directions for future work.
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CHAPTER 2

BACKGROUND

This chapter presents a overview of the data-dependent irregular applications and its chal-

lenge on conventional parallel architectures and then focuses on one of the well-known pro-

gramming paradigms for parallel application, MapReduce. It then describes the challenge

introduces a fine-grained architecture targeting irregular parallelism and shows the potentials

it unlocks for future parallel programming models.

2.1 Irregular Applications and Limited Performance Scaling

Irregular applications are hard to achieve performance on conventional coarse-grained parallel

architectures due to their data-dependent imbalanced work distribution. One example of

such an application is graph computation. Real-world graphs typically have skewed degree

distribution [6, 2], that is a majority of vertices are of low degrees whereas a small portion

of vertices have magnitudes more of neighbors. Figure 2.1 depicts the power-law degree

distribution of Twitter follower network.

Figure 2.1: The in and out degree distribution of the Twitter follower network

This graph property poses a challenge on efficiently parallelizing graph computation be-

cause graph algorithms are usually defined in a vertex/edge centric view where computation is
6



expressed in terms of vertex/edge program. For example, a Pregel program requires defining

a Vertex subclass and implementing the computation for a vertex in the Compute() method

[24]. Listing 2.1 shows the PageRank implemented in Pregel. The Compute() method is ex-

ecuted on each vertex and the amount of work per invocation is determined by the number

of neighbors for that vertex. The skewed degree distribution of real-world graphs results in

a fraction of the vertices having magnitudes more work than the rest.

Listing 2.1: PageRank implemented in Pregel [24].

class PageRankVertex :

public Vertex<double , void , double> {

public :

virtual void Compute ( Message I t e ra to r ∗ msgs ) {

i f ( super s t ep ( ) >= 1) {

double sum = 0 ;

for ( ; ! msgs−>Done ( ) ; msgs−>Next ( ) )

sum += msgs−>Value ( ) ;

∗MutableValue ( ) = 0 .15 / NumVertices ( ) + 0 .85 ∗ sum ;

}

i f ( super s t ep ( ) < 30) {

const i n t64 n = GetOutEdgeIterator ( ) . s i z e ( ) ;

SendMessageToAllNeighbors ( GetValue ( ) / n ) ;

} else {

VoteToHalt ( ) ;

}

}

} ;

The issue is more profound on conventional parallel machines, primarily because programs
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are implemented in single-program-multiple-data (SPMD) and message-based programming

model to mitigate the high cost of communication and remote data access. Typically, ,

the graph data is statically partitioned across the system and each node will be assigned

with a subset of the vertices and responsible for executing the corresponding vertex pro-

grams. Remote data accesses are done via messages, which are also batched for perfor-

mance. Graph computation’s fined-grained parallelism fits poorly into this model. Mostly

because of the skewed degree distribution of real-world graphs, part of the system will be

assigned significantly more work than the rest, leading to imbalance load across the system

and underutilizing the hardware parallelism.

2.2 Functional Language and Cloud Map-reduce

One of the parallel programming diagrams used widely is called MapReduce. It is known for

its simple yet powerful interface for expressing parallel computation.

The idea of MapReduce originated from the functional programming domain: functional

programming languages describes computations in terms of functions applied to sets/arrays

(map) and combine the results (reduce) [7, 26, 25]. These constructs can be used to ex-

press parallelism and exploit it on multicore and larger NUMA shared-memory machines.

However, these machines have limited scalability with the largest systems around 256 cores,

significantly smaller than the machine scale we are targeting at.

Later, in early 2000, cloud companies built a different map-reduce, designed for scale-out,

to internet-scale computations [9, 10]. The key motivation was to exploit the natural and

flexible expression of parallelism. These systems solved the important problems of reliability

(map and reducers) but with the significant restriction of no shared data structures (across

map or reduce functions). The cloud systems added keys, using them to both express

computation function, and indirectly to control parallelism. However, these systems manage

load balance automatically, depending on hashing and balanced sorts, eschewing programmer
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involvement. This works adequately because cloud MapReduce systems typically operate on

coarse-grained tasks, running billions of instructions, many orders of magnitude larger than

the 100 instruction fine-grained tasks we are pursuing.

MapReduce’s simple and expressive interface enables programmers to easily express mas-

sive parallelism in terms of map and reduce functions. Indeed, the cloud MapReduce frame-

work was used by companies like Google, Facebook, Yahoo, and Amazon to process large

graph data in the order of terabytes for a decade[32, 19]. Despite the richness of the domain,

cloud MapReduce’s coarse-grained work management performs poorly on skewed-distributed

graph data. Most importantly, there is scarce support for optimizing the irregular compu-

tation performance such as user-defined computation-to-compute-resource binding to incor-

porate application knowledge to load-balance the system.

2.3 Fine-grained Parallel Hardware Architectures

Despite the critique of existing software frameworks’ coarse-grained parallelism being in-

efficient for irregular applications, they were developed for machines in which fine-grained

parallelism management is expensive. To be specific, conventional parallel machines con-

straints software in the following aspects: 1) expensive remote communication due to long

latency and low bandwidth network, 2) no support for global address space, and 3) hardware

parallelism limited to CPU and simultaneous multi-threading level (i.e., up to thousands of

parallel threads). Under the above machine characteristics and limitations, programs whose

computation is partitioned based on data location and whose parallel computation operates

solely on local data with coarse-grained messages for exchanging remote data are efficient. In

other words, the performance challenge of scalable irregular applications originates from the

hardware architecture design. Therefore, many novel architectures are proposed to unfold

new opportunities for efficient data-dependent irregular parallelism. The key characteristics

of the architectures are 1) abundant hardware parallelism consisting of millions of simple
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cores in contrast to the conventional complex out-of-order CPU cores with hierarchies of

power-intensive caches, 2) nanosecond-level communication latency enabled by advanced in-

terconnect techniques plus hardware support for fast messaging on low-diameter networks in

contrast to the software-based message solution on traditional long-latency interconnect, 3)

asynchronous DRAM accesses capable of generating high memory-level parallelism (MLP)

and better utilizing the memory bandwidth in contrast to the synchronous load-store archi-

tecture with limited MLP, and 4) support of unified global address space eliminating the

distinction of local-vs-remote data accesses and relief the programming effort.

In the thesis, we focus on one example of novel fine-grained architecture called the Up-

Down. Figure 2.2 presents a high-level view of the system design. An UpDown system

consists of 16k nodes, each of which has 1 multi-core out-of-the-shelf CPU, 8 stacks of HBM

memory, and 32 customized ASIC accelerators, called UpDown accelerator, as shown in fig-

ure 2.3. An UpDown accelerator consists of 64 MIMD cores, called lanes, and each lane has

64KB single-cycle-access software-managed scratchpad memory. A lane can sustain up to

128 concurrently active threads, each with independent hardware thread context (instruction

pointer, general-purpose registers, etc.) Each lane has a FIFO event queue for incoming mes-

sages and an operand buffer for the message operands. The execution of a lane is scheduled

based on the events in the queue.

Figure 2.2: The UpDown System connected by the high-performance system network.

The UpDown accelerator is programmed using a RISC-V-like ISA with customized in-

structions for hardware-assisted event-driven programming. These instructions interact with

10



Figure 2.3: each node has 1 CPU, 32 UpDown accelerators with uniform access to 8 HBM
stacks.

the hardware structures customized for fast messaging described above and speed up event

creation and event handling on UpDown. Hence, an UpDown lane can create an event and

send in as minimal as 3 instructions. On the receiver side, the message operands are di-

rectly mapped onto the register namespace so that instructions can directly operate on the

incoming message’s operands, unlike on conventional machines, the data must be moved to

a register before compute on it.

All the UpDown accelerators are connected via a diameter 3 topology called Polarstar

network featuring low-diameter, low-latency, and high-bandwidth communication [18]. Up-

Down provides a namespace called NetworkID (or nwid in short) for all the accelerators in

a 16k node machine to send asynchronous messages directly to each other. Messages on

UpDown are extremely fine-grained, typically between 4 to 12 words, including the desti-

nation UpDown lane nwid, the thread id to be activated, the event to be triggered at the

destination lane, and the data operands. A full-scale UpDown system has 16k nodes, 32

UpDown accelerators per node, 64 lanes per accelerator, and up to 128 thread context per

lane, capable of delivering 4,194,304,000 fold hardware parallelism.

Despite the promising performance potential, UpDown’s extremely fine-grained hardware
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parallelism poses a significant challenge in writing software programs capable of utilizing its

potential and delivering good performance. Most importantly, one needs to solve two major

problems: 1) how to flexibly express and generate the fine-grained parallelism in software and

2) how to map the software parallelism onto the hardware with good performance and high

utilization? Addressing these challenges is the subject of our work.
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CHAPTER 3

KVMSR PROGRAMMING MODEL

This chapter gives an overview of the KVMSR programming model. It first illustrates the

objectives of the design and then provides an abstract view of the target parallel system. The

rest of the chapter illustrates the KVMSR interface design, including defining data layout,

expressing computation, and binding computation to processing units.

3.1 Objectives

Designing a programming model for irregular applications on fine-grained parallel machines

requires understanding what a good parallel program should look like. Here, we identify three

main aspects critical to parallel programs. As shown in Figure 3.1, successful paralleliza-

tion of a program requires controlling three dimensions (namely, data layout, computation

mapping, and parallelism binding) of the program, coordinating them to achieve good load

balance and high machine utilization. The latter will lead to good parallel scalability and

performance.

To achieve the goal, parallel applications must deal with several challenges including

accurately expressing parallel computation and data structures, efficiently mapping com-

putation to compute locations (e.g., cores or lanes), and data to memory locations (e.g.,

memory stacks or banks). as illustrated in Figure 3.1. While doing these correctly from a

functional point of view is already challenging for regular HPC applications, doing so and

also achieving scalable performance is even harder for irregular data-dependent applications.

Therefore, the objective of a programming model is not limited to expressing the parallel

computation correctly but also involves the ease of tweaking the dimensions to balance the

irregular data and computation across the system for performance. In other words, we are

aiming to solve two problems: 1) how to flexibly express the fine-grained parallel computa-
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tion in software and 2) how to map the software parallelism onto the hardware with good

performance and high utilization?

Figure 3.1: Parallel applications manage three dimensions to achieve performance (left).
Computation and data need to be mapped to distributed capabilities in a balanced way for
good performance.

3.2 KVMSR Programming Model

To answer the two questions proposed in Section 2, we propose the key-value map-shuffle-

reduce (KVMSR) model featuring a flexible expression of parallel computation with a cus-

tomized choice of computation binding independent from data distribution.

KVMSR employs keys as the critical abstraction for programmers to express parallel

computation. Parallelism is equal to the number of keys in the input key-value set and

computation is as fine-grained as the map task corresponding to a key. The reduce tasks are

similar except that the parallelism equals the total number of intermediate pairs generated

by the map tasks. That is, a reduce task is generated for each intermediate key-value pair

emitted by the map task.

KVMSR builds upon a global address space abstraction for data structures and supports

customized data structures so long as they conform with the key-value set interface. There-

fore, a data element can be addressed/named uniformly from anywhere in the machine. From
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the program’s point of view, there is no distinction between accessing local data vs remote

data, eliminating the programmer from manually managing the data movement.

KVMSR’s major innovation is to use the keys as the basis for programmers to bind

parallel computation to compute resources. Most importantly, such binding is expressed

independently from the data layout and program computation and can be done statically

or dynamically based on the runtime load status of the machine, resulting in a clean and

modular interface. Such flexibility enables programmers to statically or dynamically load-

balance their parallel programs without reorganizing the data or changing the map and/or

reduce task implementation to accommodate the changes in binding.

Tersely, the key elements of KVMSR include:

1. Flexible and fine-grained parallelism, expressed as kv_map() and kv_reduce() tasks

on keys

2. User-defined key spaces to control binding of kv_map() and kv_reduce() tasks to

computation resources

3. Global address space for uniformly addressing and expressing of global data layout

4. Exposing machine primitives for exploring data location and dynamic computation

load

The four features collectively enable high-level programming of applications with global

data structures and independent control of a program’s parallelism and computation binding.

With a simple MapReduce-like interface, one can tune different dimensions of a parallel

program to achieve high performance on the target system: exploring computation binding

to exploit parallelism, colocating for data locality, and load balancing based on dynamic

information.
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Figure 3.2: A parallel machine fundamentally has compute and data locations connected by
an interconnect.

Machine Model

In our model, we assume that a parallel machine includes two types of elements – compute

and memory – tied together by an interconnect as illustrated in Figure 3.2. We further

assume the hardware provides a global address space, and the ability to send messages and

move data across the interconnect with low overhead.

Here is a detailed description for each element:

1. Processing units: We assume that the machine consists of some number of MIMD

processing cores, and each core has a unique ID associated. A core can send a direct

message to any arbitrary core provided with the ID through the interconnect. For the

rest of the thesis, we use lane to denote a MIMD core and assign the index from the

namespace {0:num_lanes} to each lane, denoted as the LaneID.

2. Memory: The machine also has some number of memory locations, denoted as

{0:num_memories}. Lanes are attached to memory locations (can be one-to-one or

many-to-one relationships) but can directly access all the locations with a unified global

address space. In addition, the machine provides mechanisms to identify the affinity

based on the data address so that programmers can instruct the programs to take

advantage of data locality. We will describe later why this can be achieved and is

useful.

Given this machine model, high performance is achieved by sufficient parallelism and
16



good load balance to utilize all of the compute elements efficiently. In the rest of the section,

we will describe the KVMSR programming interface and illustrate how it can eliminate

programmers’ challenges on writing high-performance parallel programs on irregular data.

3.2.1 KVMSR Interface: Expressing Computation

At a high-level view, each KVMSR program contains two phases, map and reduce. The

map phase runs on the input key value set and generates an intermediate key-value set. The

intermediate key-value pairs will be shuffled to the reduce phase which executes in parallel

and produces an output key-value set. The procedure is illustrated in pseudo-code in Listing

3.1.

Listing 3.1: Pseudo-code for KVMSR. Execute map tasks in parallel, generates an inter-

mediate key-value set, shuffles, and executes reduce tasks in parallel to produce an output

key-value set.

thread KVMSR {

LaneRange l ane s ;

event map_shuffle_reduce (KVSet input_set , KVSet output_set ,

LaneRange lanes_op ) {

KVSet in t e r_se t ;

l ane s = lanes_op ;

for (KVPair kv : input_set )

send (kv_map , kv . key , kv . va lue s ) ;

s h u f f l e ( i n t e r_se t ) ;

for (KVPair kv : i n t e r_se t )

send ( kv_reduce , kv . key , kv . va lue s ) ; // genera te output KVSet
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send_reply ( output_set ) ;

}

}

To write a KVMSR program, programmers need to define the parallel computation tasks

in terms of kv_map() and kv_reduce() functions. The interface is illustrated in Listing

3.2. Similar to the conventional MapReduce framework’s interface, both map and reduce

functions take a key and a list of values associated with that key, compute on the input

key-value pair as defined in the function bodies, and then emit one or more key-value pairs

to the intermediate or output key-value set (output can be eliminated as well).

Listing 3.2: Function kv_map() and kv_reduce() interface.

thread UserKVMSR: KVMSR {

. . . .

event kv_map(Key key , Types va lue s ) {

. . . map code . . .

send (kv_map_emit , inter_key , in te r_va lues ) ;

send_reply ( ) ;

}

event kv_reduce (Key inter_key , Types in te r_va lues ) {

. . . reduce code . . .

send ( kv_reduce_emit , out_key , out_values ) ;

send_reply ( ) ;

}

}

As illustrated in Listing 3.1, the kv_map() functions are called in parallel for each key
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in the input key-value set, producing an intermediate key-value set. These are shuffled to

bring together values for any single key. The kv_reduce() function is called in parallel on

each intermediate key-value pair to produce the output set. While many uses are possible,

kv_map() typically expresses independent parallel computation, and kv_reduce() merges

values, handling any needed serialization in the program.

3.2.2 KVMSR Interface: Global Data Structures

KVMSR expects the input and output to follow the KVSet interface. Logically, each set

contains an arbitrary number of key-value pairs, each includes a key and an arbitrary size

of values. The keys are used to iterate over the entire KVSet (i.e., sequential access function

get_next()) and retrieve a particular key-value pair from the KVSet (i.e., random access

function get_values()). Listing 3.3 gives a brief skeleton of the interface for KVSet. Note

that the skeleton uses pointers (Key* and Values*) for simplicity. Nonetheless, the interface

does not constrain the data layout and underline data structure and it can be implemented

as array, trees, table, queues etc. It is left to the programmers to define the access approach

in the random and sequential access functions based on the data layout they choose for their

programs.

Listing 3.3: Data structure KVSet interface.

thread UserKVSet : KVSet{

Key∗ key ; Values∗ va lue s ;

event get_next (Key key ) {

. . . c a l c u l a t e next key . . .

send_reply ( key ) ;

}
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event get_values (Key key ) {

. . . c a l c u l a t e address . . .

send_reply ( Value ∗ ) ;

}

}

To write a KVMSR program, programmers first should extend the KVSet interface, imple-

ment the abstract functions for random and sequential access with keys for each customized

subclass of KVSet, and then pass the input and output KVSet to the KVMSR entry point

kv_map_shuffle_reudce().

As described in Section 3.2, KVMSR assumes the machine supports a global address

space with unified naming (i.e., addresses) to access all the data. Therefore, KVSet can be

allocated locally in a memory location or stride across all the memory locations and anywhere

in between. Regardless of the data layout, KVMSR can address the data within the global

address space, greatly simplifying data management.

Global data structures also make KVMSR much more powerful than the conventional

cloud MapReduce [9, 10], because in the latter map and reduce computation is restricted to

the data from the input value and cannot access globally shared data. On the other hand,

KVMSR’s map and reduce functions can access arbitrary data during the computation with

the global address. More importantly, it implies that KVMSR’s input values can include

pointers to data in the global shared address space, and with pointers, map and reduce

functions can directly interact and/or manipulate pointer-based data structures, such as self-

synchronizing data abstractions, etc. For example, one can define the map task to read data

from a shared hash table using one of the input values as the table index and define the reduce

function to write the output to a multi-producer-multi-consumer queue supporting atomic

operations. In Section 4.1, we give an example to demonstrate the benefits of operating on

global memory.
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Such flexibility is the key to KVMSR’s programmability and generality. The support of

pointers enables programmers to describe computations on complex data structures. It also

implies that programmers can take their existing C or C++ implementation of a serialized

program and place it inside KVMSR’s map/reduce functions to parallelize the computation

automatically with minimal code changes.

3.2.3 KVMSR Interface: Parallelism Management

Managing parallelism is crucial to parallel programs’ performance. Too much parallelism on

a lane will overflow the lane resources (queues for example) slowing down the progression,

whereas insufficient parallelism will leave the lane underutilized limiting the throughput.

Traditional parallel programming frameworks usually expose primitives for controlling the

thread/process limits, e.g., threads, ranks, etc. Similarly, KVMSR also allows programmers

to assign a range of lanes to the program and specify the maximum number of concurrently

running threads on each lane (bounded by the hardware parallelism) using the function

set_max_thread().

Applications exploit the available parallel compute resources by binding tasks to compu-

tation locations and whether one can efficiently do so is critical to the program’s performance.

A static binding implied from the data location is sufficient if the program is regular and/or

the parallelism is predictable but not for irregular applications with nondeterministic data-

dependent irregularity. Therefore, to help write and optimize irregular parallel programs,

KVMSR provides two customizable functions for programmers to control the binding of

computation to resources, i.e., compute locations, enabling programmers to load-balance the

system based on program knowledge and/or runtime information dynamically.
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Customizing Computation Location Binding

As described above, KVMSR describes parallel computation in terms of map and reduce

tasks, which are managed based on keys. Therefore, KVMSR provides two customizable

functions get_map_loc() and get_reduce_loc(), both using the key to determine a location

on which the task will be executed. The interface is illustrated in Listing 3.4.

Listing 3.4: Function get_map_loc() and get_reduce_loc() interface. Bind keys to com-

pute locations.

thread UserKVMSR: KVMSR {

LaneRange l ane s ;

. . . .

event get_map_loc (Key key ) {

// Pick a lane from lane s based on key

LaneID id = . . . ;

send_reply ( id ) ;

}

event get_reduce_loc (Key key ) {

// Pick a lane from lane s based on key

LaneID id = . . . ;

send_reply ( id ) ;

}

}

With the get_map_loc() and get_reduce_loc() functions, the computation location

binding for both phases can be statically specified or dynamically decided as below.

• Static Simple hashing or static distribution techniques can be used to spread unpre-
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dictable task sizes and number of task computations across the machine. The binding

can also be determined statically based on the data location, given it does not change

during the program execution.

• Dynamic Locations can also be dynamically determined based on machine compute

load.Applications can use machine-specific features, such as get_less_busy_lane(),

to acquire system load information and dynamically decide the binding to load-balance

the system.

In summary, we introduced the KVMSR programming model and briefly explained the

design objectives in this Chapter. Table 3.1 lists the key data abstraction, interface functions,

and virtual functions to be implemented by programmers in KVMSR.

In the next Chapter, we will show how to utilize the power of customizing control of com-

putation binding in KVMSR for parallelism management and computation load balancing.
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CHAPTER 4

EXAMPLES

In this Chapter, we describe three program examples to demonstrate KVMSR’s modular

programming interface and highlight its flexibility and efficiency in expressing and optimizing

irregular parallel programs.

4.1 Convolution Filter

We start with a simple example, the convolution filter program, mainly to illustrate KVMSR’s

programming interface. The input and output pixel data are stored in global two-dimensional

arrays. The KVMSR program applies a convolution filter on each sub-image of the same

size and output another image.

4.1.1 Express Parallel Computation

The KVMSR pseudo code is shown in Listing 4.1. Each map function applies a 3x3 convo-

lution filter to the sub-image centered at pixel < x, y > and outputs the new value for that

pixel. The outputs are then shuffled to the reduce function, which stores new values in the

output image. Here, we use the center pixel’s < x, y > coordinates as the key.

Listing 4.1: Baseline KVMSR convolution filter program pseudo code

thread TwoDimKVSet : KVSet {

typedef struct { int x_idx , y_idx ; } Key ;

double input_image [M] [N ] ;

event get_next (Key key ) {

Key next_key = key . y_idx < N − 1 ?

Key{key . x_idx , key . y_idx + 1} : Key{key . x_idx + 1 , 0} ;
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Figure 4.1: Computation binding for the baseline convolution filter program: placing all the
tasks on a single lane.

send_reply ( next_key ) ;

}

event get_values (Key key ) {

send_reply ( input_image [ key . x_idx ] [ key . y_idx ] ) ;

}

}

thread ConvFilterKVMSR : KVMSR {

double output_image [M] [N ] ;

event kv_map(Key key , double value ) {

double [ 3 ] [ 3 ] conv_kernel = l o a d_ f i l t e r ( ) ;

for ( int i = −1; i < 2 ; i++) {

for ( int j = −1; j < 2 ; j++) {

i f ( key . x_idx + i < 0 | | key . x_idx + i >= M | |

key . y_idx + j < 0 | | key . y_idx + j >= N)

continue ;
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Key inter_key = Key{key . x_idx + i , key . y_idx + j } ;

kv_emit ( inter_key , conv_kernel [ i ∗ −1][ j ∗−1] ∗ value ) ;

}

}

send_reply ( ) ;

}

event kv_reduce (Key key , double value ) {

output_image [ key . x_idx ] [ key . y_idx ] += value ;

send_reply ( ) ;

}

}

4.1.2 Instruct Computation Binding

In Listing 4.2, we customize the get_map_loc() and get_reduce_loc() functions to dis-

tribute the computation tasks to the available lanes based on keys. With KVMSR’s modu-

larized interface, only the binding functions are changed, and the rest of the program, e.g.,

kv_map() or kv_reduce() computation and data layout, remains the same, as shown in

Figure 4.2.

Listing 4.2: Parallel convolution filter program code with static computation location binding

based on the key.

thread ConvFilterKVMSR : KVMSR {

LaneRange l ane s ;

. . .

LaneID get_map_loc (Key key ) {

int idx = key . x_idx ∗ input_img . dim [ 1 ] + key . y_idx ;

return l an e s . base_l id + idx % lane s . num_lanes ;
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Figure 4.2: The statically distributed Convolution Filter program spreads computation over
N lanes.

}

LaneID get_reduce_loc (Key key ) {

int idx = key . x_idx ∗ input_img . dim [ 1 ] + key . y_idx ;

return l an e s . base_l id + idx % lane s . num_lanes ;

}

}

Using this simple example, we show that programmers can express program function in

kv_map() or kv_reduce() task, conveniently use global data structures, and orthogonally

control the computation location binding to parallelize the program across the compute

resources.

4.2 PageRank

In a push-based PageRank program, each vertex reads its out-neighbors and sends the PageR-

ank value along that edge. In the reduce stage, each vertex computes the average of incoming

values from its in-neighbors in one pass and outputs the updated PageRank value [39] as

shown in the KVMSR pseudo-code in Listing 4.3.
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Listing 4.3: Baseline PageRank Program pseudo code

struct Vertex{

int degree ;

double value ;

int ne ighbors [ ] ;

}

thread VlistKVSet : KVSet{

typedef int Key ;

typedef Vertex Value ;

Vertex∗ v e r t i c e s ;

event get_next (Key key ) {

send_reply ( key + 1 ) ;

}

event get_values (Key key ) {

send_reply ( v e r t i c e s + key ∗ s izeof ( Vertex ) ) ;

}

}

thread PageRankKVMSR: KVMSR {

double alpha ;

event kv_map(Key key , Vertex ver tex ) {

double out_pr_value = ( ver tex . va lue ∗ alpha ) / ver tex . degree ;

for ( int i = 0 ; i < ver tex . degree ; i++)
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kv_emit ( ver tex . ne ighbors [ i ] , out_pr_value ) ;

send_reply ( ) ;

}

event kv_reduce (Key key , double value ) {

Vertex ver tex = output_kvset . get ( key ) ;

ver tex . va lue = one_pass_avg ( ver tex . value , va lue ) ;

send_reply ( ) ;

}

}

4.2.1 Tuning Computation Binding: Static VS. Dynamic

One way to parallelize the computation is to distribute the keys (in this case vertices) evenly

across the lanes and assign tasks accordingly based on the keys. The resulting program is

presented in Listing 4.4 (the rest of the code remains the same and is omitted from the

pseudo-code).

Listing 4.4: PageRank program with the default static computation binding based on key.

thread PageRankKVMSR: KVMSR {

LaneRange l ane s ;

. . . .

LaneID get_map_loc (Key key ) {

LaneID id = lane s . base_l id + key % lane s . num_lanes ;

send_reply ( id ) ;

}

LaneID get_reduce_loc (Key key ) {

LaneID id = lane s . base_l id + key % lane s . num_lanes ;
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send_reply ( id ) ;

}

}

Alternatively, one can also spread the computation based on the data locations. For

example, in Listing 4.5, we use the function get_location(data) to find the location of

data and statically bind computation to where it is located.

Listing 4.5: PageRank with static computation binding based on data location

thread PageRankKVMSR: KVMSR {

LaneRange l ane s ;

. . . .

LaneID get_map_loc (Key key ) {

LaneID id = lane s . ge t_locat ion ( input_set . get_values ( key ) ) ;

send_reply ( id ) ;

}

LaneID get_reduce_loc (Key key ) {

LaneID id = lane s . ge t_locat ion ( input_set . get_values ( key ) ) ;

send_reply ( id ) ;

}

}

Static bindings work well for PageRank if the graph is regular and every vertex has the

same number of neighbors. However, most real-world graphs have skewed degree distribu-

tions. Lanes that are assigned high-degree vertices will have a magnitude more work than

the rest, resulting in an imbalanced load across the machine and bad parallel performance.

To solve the issue raised by irregular data, we present another variant of PageRank

which uses get_less_busy_lane() to dynamically identify lanes with less load and bind
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computation accordingly to spread the load. The resulting program is shown in Listing 4.6.

Listing 4.6: PageRank program with dynamic computation binding based on the computate

load

thread PageRankKVMSR: KVMSR {

. . . .

LaneID get_map_loc (Key key ) {

send_reply ( get_less_busy_lane ( ) ) ;

}

LaneID get_reduce_loc (Key key ) {

send_reply ( get_less_busy_lane ( ) ) ;

}

}

Using PageRank, we illustrate several ways of using the get_map_loc() and get_reduce_loc()

to statically or dynamically distribute unpredictable irregular computation across computa-

tion resources.

4.3 BFS

We then present a more complicated example, BFS, which involves changing the KeyValueSet

data structure and layout in DRAM as part of the optimization. At a high-level, each itera-

tion of the BFS KVMSR program reads from the frontier containing the active vertices and

conditionally update their neighbors if they are not visited. The program keeps iterating

until the frontier becomes empty. Listing 4.7 shows the KVMSR program pseudo code for

BFS. Similar to the PageRank example, map tasks in BFS operates on the vertex-level and

involves traversal of the neighbor list except that the vertex comes from the frontier and

updates are optional based on incoming vertex depth.
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Listing 4.7: Baseline BFS program pseudo code.

struct Vertex{

int vid ; int degree ;

int ne ighbors [ ] ;

}

thread bfsKVMSR: KVMSR {

GraphAbstraction graph ;

event kv_map(Key key , int value ) {

Vertex v = graph . get_vertex ( key ) ;

int out_depth = value + 1 ;

for ( int i = 0 ; i < v . degree ; i++)

kv_emit ( v . ne ighbors [ i ] , out_depth ) ;

send_reply ( ) ;

}

event kv_reduce (Key key , int value ) {

Vertex u = graph . get_vertex ( key ) ;

i f (u . depth > value ) {

u . depth = value ;

kv_emit (u , va lue ) ;

send_reply ( ) ;

}

}
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4.3.1 Enable Rich-structured Key-Value Set

So far, the KVMSR examples we gave all take plain arrays as input and/output key-value

sets. Listing ?? shows the pseudo code to take an one dimensional array as input key-value

set. Implementing the BFS frontiers using fixed sized arrays is possible since the size is

bounded by the number of vertices but as the graph data scales to gigabytes and terabytes,

linear look up on a huge array with millions of entries to merge redundant insertions be-

comes extremely expensive. Furthermore, the KVMSR BFS program is designed to run

on massively-paralleled machine where concurrent insertion/update is critical to scalable

performance.

Listing 4.8: Array-based frontier BFS program pseudo code.

thread ArrayKVSet : KVSet{

typedef int Key ;

Values∗ va lue s ;

event get_next (Key key ) {

send_reply ( key + 1 ) ;

}

event get_values (Key key ) {

Values∗ value_ptr = va lue s + key ∗ s izeof ( Values ) ;

send_reply ( value_ptr ) ;

}

}

Fortunately, the issue can be solved by a hash table distributed across the parallel ma-

chine allowing concurrent atomic updates and fast table look ups with constant overheads.

KVMSR’s key-value set abstraction enable adopting the rich-structured data structure like
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hash table fairly simple. In this case, to enable hash table as KVMSR’s input key-value set,

it simply requires implementing the abstract iterating function next(Key) using the hash

table’s build-in iterator and wrapping the hash table get() function inside key-value set’s

random access function get_values(Key). The pseudo code to enable hash table key-value

set are depicted in Listing 4.9.

Listing 4.9: HashTable-based frontier BFS program pseudo code.

thread HashTableKVSet : KVSet{

HashTable<Key , Values> hash_table ;

event get_next (Key key ) {

send_reply ( hash_table . next ( key ) ) ;

}

event get_values (Key key ) {

send_reply ( hash_table . get ( key ) ) ;

}

}

The BFS KVMSR program gives an example of adopting advanced data strctures in

terms of key-value abstraction, and highlights KVMSR’s flexible support of data layouts

and concurrent data abstractions in a global shared memory machine.

KVMSR is based on a MapReduce-like programming interface and extended with a modu-

lar interface for customizing computation binding on a parallel machine. The former provides

KVMSR with programmability and generality demonstrated in cloud MapReduce and func-

tional languages, whereas the latter enables flexible performance tuning of data-dependent

irregular programs on large-scale parallel machines. As a result, KVMSR enables a wide

range of programs running on a fine-grained machine with minimal programming effort.
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In the next Chapter, we conduct a detailed evaluation of KVMSR’s scalability and pro-

grammability on a massively-paralleled fine-grained machine.
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CHAPTER 5

EVALUATION

In this Chapter, We evaluate the KVMSR programming model, mainly focusing on two

properties: 1) programmability, modularity, and expressiveness of the model and 2) the

performance scaling on a fine-grained parallel machine, the UChicago UpDown machine

(described in Section 2). The performance numbers are collected from the gem5 simulator

with UpDown accelerator extension.

5.1 Evaluation System Specification

Table 5.1 lists the hardware details of the UpDown system. Briefly speaking, an UpDown

machine is designed to have up to 16k nodes, each of which has 2,048 lanes, i.e., compute

locations, organized in clusters of 64 (one UpDown accelerator) . As for the memory, there

are 8 HBM2e stacks attached to each node, in total 128GB of memory. The high degree of

fine-grained parallelism is possible at low power on UpDown because the lanes have no data

caches, only a small 64KB scratchpad memory.

Key performance attributes of the machine include a high degree of multithreading in

each lane with 1 cycle thread creation and termination, massive fine-grained MIMD lanes

each with 64KB scratchpad memory for fast access, and a globally addressed memory with

low latency – 70ns within a stack and 150ns to remote stacks.

In our experiments, we simulate various numbers of parallel compute resources up to

8,192 lanes (i.e., 4 nodes). We utilize the machine’s special feature to identify a lightly

loaded lane and find a lane near a data for implementing the get_less_busy_lane() and

get_location(data) function used in PageRank and BFS.

all computations in the baseline program run on a single lane (serialized execution).

Parallel versions distribute the computation using custom binding functions shown in Listing
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Table 5.1: UpDown System specification

Total number of nodes 16,000

Accelerators per node 32

Accelerator cores per node 2,048

Scratchpad memory per accelerator 4 MB

Scratchpad memory per core 64 KB

DRAM capacity per node 128 GB

DRAM bandwidth per node 8.8 TB/s

Intra-node DRAM access latency 150.24ns

Inter-node DRAM access latency 1,100 ns

Cross node network bandwidth 4 TBps/node

Cross node network latency 26.5 ns

4.2, 4.5, and 4.6.

We then execute the programs on the UpDown simulator implemented with GEM5,

evaluate performance, and report the runtime [33, 3]. The KVMSR programs exhibit fine-

grained parallelism, indicated by the number of parallel tasks and the mean instructions

per task. Pagerank and BFS are not only fine-grained but extremely irregular in their task

size, as demonstrated by the huge standard deviation. Traditional scalable programming

models such as MPI and PGAS are unable to exploit such fine-grained parallelism, as their

per-message communication overheads alone are thousands to millions of instructions.

5.2 Programmability, Modularlity and Model Expressiveness

KVMSR’s modular interface allows computation location binding to be expressed separately

from the program’s parallel computation (function). In this section, we measure the pro-

gramming effort (in lines of code) to tuning dimensions of the parallel programs to highlight

modularity and programmability of KVMSR.
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5.2.1 Implementation

We implement the KVMSR model on the UpDown machine, called UDKVMSR (UpDown

KVMSR), and evaluate three KVMSR programs: convolution filter, PageRank, and BFS.

The convolution filter and PageRank program follow Listing 4.1 and Listing 4.3 in Section

4.

In addition to the two program examples in Section 4, we further implemented the syn-

chronous push-based BFS in UDKVMSR. The program structure is similar to PageRank but

with input and output from frontiers implemented using the parallel hash table abstraction,

updating the distance and parent information instead of PageRank values. BFS uses the

same computation-to-compute-location binding functions as PageRank.

5.2.2 Metric

To show the expressiveness of KVMSR, we count the lines of code for describing program

computation/function and the binding of computation to lanes. UpDown programs are

written in a C-like language and compiled by the compiler, called UDWeave, into the UpDown

assembly programs. Listing 5.1 gives an example of a UDWeave program. The lines of

UDWeave code are comparable to those of the corresponding C program, except that memory

accesses are achieved by asynchronous messages with UpDown intrinsic functions.

Listing 5.1: UDWeave code for reading the neighbors of a vertex from the BFS UDKVMSR

program. Functions evw_update_event(), send_event(), and send_dram_read() are in-

trinsic functions supported by the UpDown hardware and will be compiled to UpDown ISA

instructions.

event load_neighbors ( long degree , long vid , long ∗neighbors , long d i s t ) {

// I f the v e r t e x i s v i s i t e d or has degree 0 , s k i p i t

i f ( ( d i s t >= 0 && d i s t <= i t e r a t i o n ) | | degree == 0)) {

long evw = evw_update_event (CEVNT, kv_map_return ) ;
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send_event (evw , vid , CEVNT) ;

y i e l d ;

}

int count = 0 ;

long∗ n l i s t_pt r = ne ighbors ;

long evw = evw_update_event (CEVNT, rd_nl i s t_return ) ;

while ( count < degree ) {

send_dram_read ( n l i s t_ptr , DRAM_MSG_SIZE, evw ) ;

count = count + DRAM_MSG_SIZE;

n l i s t_pt r = n l i s t_pt r + DRAM_MSG_BSIZE;

}

}

5.2.3 Result

Table 5.2: Code Size for each tuned version of KVMSR programs (Lines of Code).

Application Function Serialized
Baseline

Static
Binding on
Key

Static
Binding
on Data
Location

Dynamic
binding on
compute
load

Convolution Filter 24 0 2 2 N/A

PageRank 58 0 2 2 6

BFS 185 0 2 2 6

In Table 5.2, we present the line of code counts for the programs and their varia-

tions. A program’s code includes its computation/function portion (defined in kv_map()

and kv_reduce()), and the computation binding portion (defined in get_map_loc() and
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Table 5.3: Programs and Key Properties

Program (Dataset) Data Size Num Tasks Data/Task
Mean

Inst/Task

StdDev

Inst/Task

Convolution Filter (8Kx8K
Matrix, 3x3 filter)

512MB 67,076,100 72B 58 0

PageRank & BFS (RMAT
graph scale 20, 220 vertices)

292M 1,048,576 305B 154 43,395

get_reduce_loc()). The baseline does not specify any computation binding and execute

everything on 1 lane, so 0 lines are required. The static bindings in convolution filter,

PageRank, and BFS programs each add 2 lines of code to specify computation location from

keys or data location using get_location(data). One line in each of get_map_loc() and

get_reduce_loc(). PageRank’s and BFS’s dynamic binding version based on the compute

load (see Listing 4.6) adds 6 lines using the UpDown intrinsic function get_less_busy_lane().

Table 5.2 highlights KVMSR’s modular interface, allowing the definition of computation

binding orthogonal to the program function, i.e., only the binding functions are modified

leaving the main body of the program unchanged.

5.3 Benefits of Computation Location Control

In this section, we run the above UDKVMSR programs on the UpDown machine and collect

the performance statistics from the gem5-based UpDown simulator.

5.3.1 Experiment Setup

Table 5.3 summarizes the datasets we used for the experiments. Convolution filer is running

on a regular matrix with 8,192x8,192 (=67,108,864) entries and of size 512MB. PageRank

and BFS both are running on the synthetic graph generated using the RMAT generator

with parameters from Graph500 specification (a = 0.57, b = c = .19, and daverage = 16)
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[5, 13]. The generated graphs resemble real-world graphs and exhibit highly-skewed degree

distributions.

We customized the GEM5 [3], a cycle-accurate hardware simulator, to simulate the Up-

Down machine. The simulator configurations follow the machine specification in Section 5.1

except that it only simulate up to 4 nodes, that is 8,192 lanes (MIMD cores) due to time and

memory constraints. The baselines for our evaluation are the corresponidng C++ program

for the same three applications (Convolution, PageRank and BFS) and running on a single

core CPU. We collect the performance numbers also from the GEM5 simulator. The simu-

lated system is a x86 Out of Order CPU (single core) with 64KB L1 cache, 256KB L2 cache

and 8MB L3 cache at 2 GHz. The baseline C++ program is single-threaded, i.e., serializes

the execution.

5.3.2 Result

We conducted two experiments to evaluate KVMSR’s potential for performance scaling on

thousand-fold parallelism and the impact of customized computation binding functions on

parallel programs.

1. Experiment I We run the Convolution, PageRank and BFS UDKVMSR programs

described in Section 4 with the static computation binding function on keys shown in

Listing 4.2 for Convolution and Listing 4.4 for PageRank and BFS. We simulate the

programs on the gem5 and measure their performance running on 64, 128, 256, 512,

1,024, and 2,048 UpDown lanes.

2. Experiment II We focus on PageRank and BFS, i.e., the data-dependent irregular

programs, and compare the performance of the same UDKVMSR programs except for

different choices of computation binding functions. We further scale up the machine

scale to 8,192 lanes (4 UpDown nodes).
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Performance Scaling of KVMSR Programs

Figure 5.1 presents the speedup of the UDKVMSR programs over the single-threaded CPU

baseline programs for Convolution, PageRank and BFS respectively with the same static

binding function based on the key (i.e., statically divided the keys across the lanes).

Figure 5.1: Speedup of the UDKVMSR Convolution, PageRank and BFS with static binding
based on Keys over the single-thread CPU baseline

Compared to the single-thread C++ baseline program, the UDKVMSR convolution pro-

gram gains 477x performance speedup on 256 lanes and 7,845x on 8,192 lanes program,

achieving good parallel performance. On the other hand, the UDKVMSR PageRank and

BFS program gained 195x performance speedup on 256 lanes and 635x on 8,192 lanes, and

408x performance speedup on 256 lanes and 2,423x on 8,192 lanes respectively, achieving

moderate performance improvement from a 32x increase of hardware parallelism.

Taking a closer look at the performance scaling, we compare the 256-lane performance

to that of the 8,192 lanes for the UDKVMSR programs. Convolution scales well, gaining

16.8x improvement for a 32 times increase in hardware parallelism. On the other hand,

PageRank and BFS with the static computation binding fail to scale, gaining only 3.24x and

5.93x speedup respectively. This results from the data-dependent work unbalancing since
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Figure 5.2: Speedup of PageRank with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute load (right
bars) over the single-thread CPU baseline.

both programs take the RMAT graph with skewed degree distribution as input. The naive

binding approach which statically divides the tasks across the lanes leads to some unlucky

lanes getting assigned high-degree vertices and having magnitudes of more work than the

rest. The poor performance scaling is mostly a result of lanes pending for the long-run task

to finish.

Managing Parallelism

We show that the two graph UDKVMSR programs with static computation binding based on

key approach scale poorly as the hardware parallelism increases in the previous subsection.

The main reasons are:

1. The task size is determined by the highly-skewed input vertex’s degree, resulting in

irregular task size (see Table 5.3).

2. Both programs access memory intensively with limited computation associated with
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Figure 5.3: Speedup of BFS with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute load (right
bars) over the single-thread CPU baseline.

each data so DRAM access latency dominates the performance.

To study the impact of computation binding on irregular parallel programs performance,

we designed the second experiment: changed the computation binding functions and mea-

sured the programs’ performance and scaling. We again normalize the performance of BFS

and PageRank programs running on various sizes of the machines but this time for different

computation binding functions, including both static and dynamic. For better comparison,

the left bars in Figure 5.2 and 5.3 shows the same data as the PageRank and BFS per-

formance in Figure 5.1, where both programs use the static binding function based key to

evenly divided the keys to lanes.

The first alternative we explored is binding computation to locations close to the data.

The data is depicted by the middle bars in Figure 5.2 and 5.3. With improved data locality,

PageRank and BFS achieve an average of 2.6x performance improvement compared to the

static binding based on keys. In the case of 4 nodes (8,192 lanes), the performance of
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PageRank improves by 3.2x due to reduced memory access latency. BFS scales less but still

improves by 1.96x over the naive binding approach. However, static binding functions lack

the run-time information to distribute the computation evenly, so in the case of less than 1

node (≤ 2,048 lanes), load imbalancing across the lanes significantly limits the performance,

leaving room for improvement.

The other binding approach we examined is dynamically binding tasks to on less busy

lanes based on the run time system load status. The data is shown in the right bars in Figure

5.2 and 5.3. The additional runtime information dramatically improves PageRank’s perfor-

mance: about 4.9 times the speedup for 2,048 lanes from 343x to 3,136x. The improvement

on BFS is less compared to the static binding based on the data location approach, i.e., from

339x to 4,258x, since the BFS’s parallelism (i.e., frontier size) is spread across the iterations

and data accesses dominate the latency.

In summary, KVMSR’s flexible and modular interface allows this dramatic change of com-

putation location binding with a few lines of code, bringing huge performance improvements

to the programs.
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CHAPTER 6

BROADER USAGE AND INSIGHT

We have presented in the Chapter 4 three KVMSR programs, including a demonstration of

using KVMSR’s modular interface to tune various dimensions of a parallel program (com-

putation, data, and computation binding described in Section 3.1) for performance. For the

sake of understanding, the examples we pick are relatively easy: most map/reduce function

involves a couple of integer/floating point arithmetic instructions for each key-value pair.

We want to highlight in this Chapter that KVMSR has supported a much wider range of

challenging irregular computations with massive fine-grained parallelism. We would also like

to share the lessons we learned from the implementation practise.

6.1 Programmability and Flexibility

KVMSR belongs to the larger project on developing the next-generation high-performance

supercomputer targetting sparse and irregular computation. At the time of this writing,

the UpDown project has completed a range of challenging applications developed entirely

or partially on KVMSR for the UpDown project and many more are under development.

The computation varies noticeably, ranging from graph neural network training and infer-

ence, sparse matrix multiplication, graph pattern matching, genetic sequencing, multi-hop

reasoning, graph transformation, influence maximization, graph adjustment, etc. Most of

the development was done within days and performance tuning in weeks due to KVMSR’s

simple and modular interface. Table 6.1 summarizes the application computation and their

usage of KVMSR.
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Table 6.1: Description of programs implemented in the KVMSR programming model and
run on the UpDown system.

Program Key-Value Set Computation

SpMV Input&output: Sparse

matrix representation.

Each key has two values:

1) Row start offset, and 2)

row end offset

The map function fetches the sparse matrix

values indexed by the KVMSR key, then gets the

corresponding vector values, computes the row

entry in the resulting vector, and store to the

output matrix.

GNN Input&output: The

vertex store inside a graph

abstraction implemented

using the hash table. Keys

are Vertex IDs and the

key-value pair is the

Vertex in the vertex store.

The map function gets all the neighbors of the

vertex (key) and their feature vectors, performs

aggregation, and then writes back the resulting

vector.

Multihop

Ingestion

Input&output: Hash

table. Keys are the hash

table key.

The map function filters entries based on

relation. If the relation matches, insert head/tail

into another SHT in reduce.
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Program Key-Value Set Computation

Influence

Maximiza-

tion I:

Compute

Random

Reverse

Reachable

Set (RRR

Set)

Input: An array of

random seeds. Keys are the

seed vertex IDs to start the

random BFS. Output:

Hash table. The keys

contain two values: the

vertex ID and the RRR set

ID.

The map function runs a serialized random BFS

on a globally shared graph and inserts the

vertices belonging to the resulting BFS tree into

a hash table. Note that the graph is stored in a

graph abstraction implemented using the hash

table and is not part of the input key-value set.

Calls to query the graph abstraction are made

inside the map function (e.g., get a vertex’s

degree and neighbor vertices, etc.)

Influence

Maximiza-

tion II: Find

the vertex

with

maximized

influence

Input: The hash table

from phase I. Each key has

the vertex ID and the RRR

set ID containing the

vertex. Output: A

histogram implemented

with an array. The values

are the number of

occurrences of a vertex in

all the RRR sets.

The map function generates a count of 1 for the

vertex ID field in the input key. The resulting

key-value pair is shuffled to reduce. The reduce

function sums all the counts corresponding to the

same vertex and writes to the output histogram.

After the KVMSR program, traverse the

histogram to find the vertex with the maximized

counts.
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Program Key-Value Set Computation

Influence

Maximiza-

tion III:

Eliminate

RRR sets

containing

the

maximized

influencer.

Input: The hash table

from phase I storing all the

RRR sets. Output: An

array of flags indicating

whether a RRR set is

active. The key is

implicitly the index of the

array, corresponding to a

RRR set ID.

The map function checks if the vertex id of the

input key equals the max influencer’s ID. If so,

set the corresponding RRR set to not active.

Adjust

Graph I:

Remove

influencers.

Input: An array of max

influencers found by the

Influence Maximization

program.

The map function removes the max influencer

(input key) from the graph and its neighbors by

calling the graph abstraction to set the edge

attribute to 0. Note that the graph is stored in

the global shared memory and implemented using

the graph abstraction.

Extract

Subgraph

(Vertex)

Input&Output: The

vertex store of a graph

abstraction implemented

using the hash table. Keys

are Vertex ID and the

key-value pair is the

Vertex in the vertex store.

The map function conditionally inserts the input

vertex (input key-value pair) to another graph’s

vertex store based on the vertex attribute.
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Program Key-Value Set Computation

Extract

Subgraph

(Edge)

Input&Output: The edge

store of a graph abstraction

implemented using the

hash table. Keys are Edge

ID and the key-value pair is

the Edge in the edge store.

The map function conditionally inserts the input

edge (input key-value pair) to another graph’s

edge store based on whether the source and

destination vertex is selected in the Extract

Subgraph (Vertex) program.

Generating

Genomic

Contigs

Input: Array of file offsets

for a text file containing the

genome sequence. Output:

A histogram implemented

with hash table. The key is

the 32-kmer to be counted

and the values are the

number of occurrences of a

32-kmer in the text file.

The map function reads the from text file based

on the input file offsets (key-value pair) and

generates a count of 1 for each 32-kmer in the

subsequent read. The counts will be shuffled to

the reduce function and sum to the total count

for that kmer. Then, the reduce outputs the

counts to the output histogram.

Building

macro-node

graphs

Input: Hash table from

the Generating Genomic

Contigs program Output:

A graph abstraction

implemented in hash table.

The graph to be

constructed containing the

macro nodes.

The map function gets an entry from the input

hash table, generate two nodes and an arbitrary

number of edges and insert them into the output

graph.
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Program Key-Value Set Computation

Splitting

Vertex in a

skewed

graph

Input&Output: version 1

- array-based vertex list

version 2 - graph

abstraction implemented in

hash table

The map function gets a vertex from input

key-value set, split the vertex into sub-vertices if

the original vertex’s degree is greater than a split

threshold, and randomly assign the neighbors to

split vertices. Then, the reduce function inserts

the new-generated vertices if split otherwise the

original vertex with its neighbors into the output

output key-value set.

6.2 Insight and Lessons Learnt

When implementing the programs listed in the table 6.1, we found the following properties

of KVMSR greatly aid the programming effort:

• Express computation in a MapReduce-like interface: For most programs, it is

natural to break the parallel computation into map phase which computes on indepen-

dent data and the reduce phase where values are exchanged and merged. Having the

MapReduce interface for expressing the computation allows programmers to finish im-

plementation in days. Also, many programs already have the same or similar variations

implemented using the cloud MapReduce frameworks, so the transition to a program

on the new fine-grained architecture is fairly smooth. One example is the Generating

Genomic Contigs program, which is a variation of the well-known word-counting

MapReduce program. The computation in the Influence Maximization II: Find

the vertex with maximized influence program is also similar.

• Modular Interface design: We found that a number of programs above either share

similar input/output data or has the two versions of the same program with different
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input/output. KVMSR’s modular interface greatly eases the effort to build a program

or variants of the old program via only changing one part of the program, i.e., data

layout/structure or computation, unlike traditional approaches requiring rewriting all

the closely coupled parts of the program.

• Global memory: It is highlighted in the table that a few programs interact with an

additional globally shared data abstraction in the map and/or reduce function which

is not part of the input/output key-value set of the KVMSR program, or instance, the

Influence Maximization I: Compute Random Reverse Reachable Set (RRR Set)

program and the Adjust graph program. This is possible because KVMSR operates

on a global shared memory and can directly address anywhere in the system provided

with a valid global address. Without it, the program would need to be further broken

into more pieces with significantly more intermediate states to keep track.

• Flexible parallelism management and control: The above parallel programs often

have million-fold parallelism in software and are running on a machine with thousands

of independent MIMD processing units and magnitudes of more threads. KVMSR’s

modular interface greatly eases the challenge for programmers to tune the parallelism

and manage the computation binding for performance.
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CHAPTER 7

RELATED WORK AND DISCUSSION

In this Chapter, we review the related work on parallel programming models and frameworks

and graph processing systems.

7.1 Functional Language and Cloud Map-Reduce

Functional languages allowed functions to be applied to sets/arrays (map) and combine

the results (reduce) [26, 25, 7]. Originated for expressive power, these constructs can be

used to express parallelism and exploit it on multi-core and large NUMA shared-memory

machines. However, these machines have limited scalability with the largest systems around

256 cores. Our studies are for 8,192 compute locations, and a full system design has over

30M compute locations, which have several magnitudes more hardware parallelism than any

existing multi-core machines.

Later, cloud companies built a different map-reduce, designed for scale-out/internet-scale

computations and focus on fault tolerant [9, 10]. The key motivation was to exploit the nat-

ural and flexible expression of parallelism and effectively map the parallelism onto scale-out

distributed systems. These systems solved the important problems of reliability (map and

reducers), but with the significant restriction of no shared data structures (across map or

reduce functions). Compared to the functional languages predecessors, the cloud systems

added string keys, using them to express computation function and to control parallelism

indirectly and at coarse-grained. However, these systems manage load balance automati-

cally, depending on hashing and balanced sorts, eschewing programmer involvement. This

works adequately for cloud system because their MapReduce typically operate on coarse-

grained tasks, running billions of instructions, many orders of magnitude larger than the 100

instruction fine-grained tasks we are pursuing in UDKVMSR.
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None of these functional or cloud map-reduce frameworks provide any way for program-

mers to control the location of compute or data. KVMSR uses keys to control and manage

the parallelism. Users can direct the computation location mapping, balance the load across

the system, and synchronize data reduction all with keys. Such control is the core contribu-

tion of KVMSR.

7.2 Message Passing (MPI) & Partitioned Global Address

(PGAS)

Message passing interface is a popular model for scalable parallelism (and high-performance

computing – HPC). Typically, the single-program multiple data (SPMD) divides data across

separate processes with private address space [14]. Each process computes on local, private

data, and in the pure message-passing model, all remote (global) data is accessed via explicit

messages.

The message-passing model makes programming complex distributed structures tricky

(e.g., trees, graphs, hierarchical data). For computations using such structures for algo-

rithmic efficiency, programming with distributed data and computation is challenging. The

model provides no support for global naming, so different names must be used (typically

software-interpreted) for any global data structures. As a result, programs using sophisti-

cated pointer-based structures are difficult to express in this model [28]. If work is dynami-

cally generated and tied to such structures, e.g., irregular work and parallelism, programming

is even more challenging [22]. If the data or computation is irregular, this produces complex

programming and communication (see high-performance implementations of irregular and

graph applications [28, 27]).

An important extension of the message-passing model adds a partitioned global address

space (PGAS), federating the local process address spaces as in Global Arrays, UPC++, and

ADLB [30, 1, 22]. PGAS programs provide the convenience of global naming, easing the pro-

55



gramming of complex data structures and irregular parallelism. However, this convenience

does not alter the underlying performance challenge, as to achieve speedup work must be

aligned and balanced across the address spaces. This is because ultimately the computation

is done by cores which can only access data in a single private address space.

7.2.1 MapRedudce in PGAS

Some previous works in the early 2010s tried to implement the MapReduce

7.3 Linda & Tuple Space

Linda is another well-established model in the parallel programming world, focusing on co-

ordinating communication between processes [11]. The key concept in Linda is its tuple

space abstraction, a data repository shared between processes where each process can inde-

pendently generate and/or take elements (i.e., tuples) from it. The resulting advantage is

communication orthogonality, meaning that processes involved in communication are decou-

pled in both time and space dimensions.

The logical view of KVMSR’s key space, to some extent, resembles Linda’s tuple space.

Despite the similarity, tuple space focuses on concurrent access, production, and modifica-

tion of shared tuples. On the other hand, the key space in KVMSR is mainly for efficiently

managing parallel computation on key-value pairs. One can bundle keys together and par-

tition the key space in different granularities for KVMSR to exploit parallelism at various

levels. This level of management is not a focus for tuple space, where communication is at

the granularity of each tuple.
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7.4 Scalable Graph Processing Systems

While many graph-processing systems have been constructed, many of them focus on effi-

ciency and do not scale to large numbers of parallel nodes [17, 36]. Of those designed to

scale, those based on map-reduce are designed to scale, but suffer from massive inefficiency

as each vertex and edge operation can cost a TCP message in a cloud computing cluster

[23, 34]. The two implications are that high performance requires the use of datacenter scale

resources (10,000 nodes to outperform a 128-node SMP) and because they are built on map-

reduce, load balance is performed by the system, and programmer input is not possible. At

the lower efficiency and coarse-grained execution of these systems, sampling with balanced

sorting gives adequate balance. Customized graph computing systems have been developed

that include a custom programming model, vertex-centric and iterative, and achieve mod-

erate scalability on conventional hardware (16x on either 16 or 64 nodes), largely benefiting

from the increased memory to compute larger problems [21, 12]. KVSMSR targets general

irregular algorithms and data, a much larger class of applications.

7.5 Discussion

In general, flexibility and modularity in program structure are considered a virtue in lan-

guages and programming models – and application software architecture. In message-passing

programs, code expression locks in data layout/locality choices, and consequently computa-

tion mapping (freezing the data mapping). In PGAS programs, this problem is lessened, but

achieving good performance requires data movement and work management to align with

the parallel compute structure.

By design, KVMSR uses a global address space to enable computation to be expressed

independently of performance tuning. Thus computation binding to compute resources can

be done flexibly with keys. This supports rapid exploration to find good choices, enabling
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adaptation to different data properties, hardware properties, or even dynamical runtime

states.
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary and Future Work

We have presented a key-based MapReduce-like programming model, KVMSR, for optimiz-

ing the execution of irregular parallel programs on large-scale parallel systems. The model

enables the expression and management of fine-grained parallelism with keys, global naming

of data structures and computation locations, and customized control of compute location

binding orthogonal to the expression of data layout and computation itself. We have demon-

strated the expressiveness, modularity, and flexibility of the KVMSR programming interface

and presented the promising initial performance it can achieve on three irregular parallel

programs.

Several research problems still remain to be explored surrounding the KVMSR program-

ming model. Some of them are discussed below.

1. Evaluation of the KVMSR on a larger machine setup, e.g., millions of parallel execution

units. Also, explore KVMSR’s opportunity on other state-of-art or theoretical parallel

machines.

2. A more rigorous experiments on a broader range of regular and irregular applications

list in Chapter 6 and on larger and/or more skewed datasets. This is aim to verify the

scalable performance achieved by KVMSR shown in this thesis can be generalize to a

variety of applications.

3. Exploration of other dynamic load-balancing approaches to choose computation loca-

tion using the application and/or runtime information and potentially with UpDown’s

novel machine mechanisms on a broader applications.
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4. Ongoing work on a dynamic global fine-grained load-balancer extension for KVMSR.

The is an extension of the static and locally-dynamic load-balancing mechanism the

illustrate in this thesis.
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