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ABSTRACT

Algorithm design is a vital skill developed in most undergraduate CS programs,

but few research studies focus on pedagogy related to algorithms coursework. To

understand the work that has been done in the area, we present a systematic survey

and literature review of CS Education studies. We find a broad sparsity of papers

which indicates that many open questions remain about teaching algorithm design.

We also note the need for papers using rigorous research methods.

We then synthesize the results of the existing literature to give insights into what

the corpus reveals about how we should teach algorithms. Broadly, we find that

much of the literature explores implementing well-established practices, such as active

learning or automated assessment, in the algorithms classroom. However, there are

algorithms-specific results as well: a number of papers find that students may under-

utilize certain algorithmic design techniques, and studies describe a variety of ways

to select algorithms problems that increase student engagement and learning.

The results we present, along with the publicly available set of papers collected,

provide a detailed representation of the current corpus of CS Education work related

to algorithm design and can orient further research in the area.
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CHAPTER 1

INTRODUCTION

The study of algorithms is widely regarded as a critical part of an undergraduate

Computer Science (CS) degree [Joint Task Force on Computing Curricula and Soci-

ety (2013)] and has clear practical applications, especially in software-related careers.

Furthermore, algorithm skills often play a large part in job interviews for new grad-

uates attempting to obtain a job after completing their computing degree [Behroozi

et al. (2019)]. As such, it is important that students receive meaningful, high-quality

instruction on the topic.

This work is also particularly necessary because theoretical computer science

courses, like Algorithms, are likely a source of increased inequity. Students in CS

already face higher levels of stereotype threat and impostor syndrome than their

non-CS peers [Kumar (2012)], and these psychological threats are especially preva-

lent among women and students of color [Rosenstein et al. (2020)]. At the same time,

some of the seminal studies about stereotype threat focus on its detrimental effect on

women doing math [Spencer et al. (1999)]. As such, TCS courses, situated right at

the intersection of CS and mathematics, are likely to place undue psychological pres-

sure on students traditionally underrepresented in CS, resulting in more exacerbated

achievement gaps. For these students especially, it is critical that effective peda-

gogical practices are developed with the goal of not only promoting success among

students but also improving equity and access to the traditionally demographically

homogeneous field.

Foundational work must be done in this area to guide future research. In this
1



work, we present a set of studies towards this goal. The primary contribution of this

work, in Chapter 3, is a systematic mapping and review of CS Education literature

related to algorithm design education, aiming to understand the current landscape

of research and consolidate the published knowledge in the field. In Chapter 4, we

discuss the implementation and progress of an ongoing study investigating students’

metacognitive and help-seeking behaviors while solving Dynamic Programming prob-

lems.
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CHAPTER 2

BACKGROUND

2.1 Systematic Literature Reviews

Systematic literature reviews (SLR) are an important part of pushing a research

field forward. According to Cooper (1988), as a field expands, a synthesis of exist-

ing knowledge pertaining to the topic area becomes increasingly necessary to help

researchers stay up to date with current developments, especially in topics related

to one’s primary specialty. Furthermore, according to Kitchenham and Charters

(2007a), an SLR can help researchers know what is and is not known in the field as

they plan for future studies, and can provide a framework through which any new

discourse on the topic can contribute.

Cooper (1988) also provides a taxonomy of six major characteristics through

which SLRs can be classified. We list the six characteristics below, along with the

appropriate categories for this review, to help situate our contribution.

• Focus: Our review primarily concerns itself with research methods and research

outcomes.

• Goal: Our review aims to synthesize prior literature and identify issues central

to the field.

• Perspective: Our review takes the role of neutral representation, aiming to

describe what is discussed by the literature without arguing for a specific point

of view.
3



• Coverage: Our review’s coverage of papers is exhaustive with selective citation.

Though we believe our review includes most of the literature on the topic,

some of the papers are not cited in this review. That said, a list of all papers

reviewed is publicly available. The fully tagged corpus can be found at https:

//doi.org/10.7910/DVN/KTR2ZH.

• Organization: Our review organizes papers conceptually, both by topic stud-

ied and by results.

• Audience: Our review is intended for specialized and general researchers,

as well as practitioners. CS Education researchers may use this review to

understand the topic and situate new research, whereas practitioners who teach

algorithms or related courses may use this review to discover interventions or

insights for use in their own courses.

2.2 Literature Reviews in CS Education

SLR papers have appeared regularly in computing education venues in recent years,

with reviews being conducted on topics like CS1 [Luxton-Reilly et al. (2018); Becker

and Quille (2019)], Parsons problems [Ericson et al. (2022); Du et al. (2020)], under-

graduate teaching assistants [Mirza et al. (2019)], meta-cognition in programming

[Prather et al. (2020)], use of theory in computing education research [Malmi et al.

(2019)], and demographic data reporting [Oleson et al. (2022)]. To our knowledge,

there have been no literature reviews seeking to understand the state of algorithms

education.
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Methodologically, two reviews very similar to ours are by Sheard et al. Sheard

et al. (2009), who use Simon’s classification scheme to present a detailed quantitative

landscape of programming education papers with some important outcomes listed,

and by Švábenský et al. Švábenský et al. (2020), who quantitatively extract and

present topics, methods, evaluation, impact, and contributors from cybersecurity

education papers, analyzing trends of these characteristics without much focus on

findings. These SLRs place a larger emphasis on the focus and approach of existing

research in the area. We take a similar approach because the relative sparsity of work

means that findings are difficult to synthesize but the methods and topics explored

by these papers can still be used to guide future work.

Topic-wise, the closest systematic reviews are on algorithm visualizations and

their effectiveness [Shaffer et al. (2007, 2010); Hundhausen et al. (2002)], one impor-

tant subarea of algorithms instruction. While there is some overlap, these reviews

cover a largely different set of literature than the literature reviewed in this paper.

Both studies cover algorithm visualization of traditional algorithms (e.g. greedy

programming). However, algorithm visualization reviews include topics that we do

not include, such as using algorithm visualizations to learn O(n2) sorting algorithms

or basic data structure traversals, as they are typically taught prior to algorithms

courses [Joint Task Force on Computing Curricula and Society (2013); Luu et al.

(2023)]. In addition, our review covers non-visualization interventions and studies

that seek to better understand student experiences in learning algorithms without

providing an intervention. In fact, such non-visual areas make up a large proportion

of the studies incorporated in this review.
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CHAPTER 3

ALGORITHMS EDUCATION LITERATURE REVIEW

3.1 Introduction

Though the design of rudimentary algorithms has been extensively researched in

an introductory programming context, most students will take a more in-depth

algorithms-focused course later in their degree, as suggested by the ACM curricular

guidelines [Joint Task Force on Computing Curricula and Society (2013)]. Research

on algorithm design instruction, as taught in upper-level algorithms courses, is criti-

cally underrepresented in the literature. As such, many open questions remain about

student experiences and difficulties in learning this material, as well as pedagogical

practices for teaching algorithm design in an effective manner.

In this chapter, we present a systematic literature mapping and review regarding

algorithms education, specifically as found in upper-level college courses, to under-

stand with greater clarity both where knowledge exists and where open questions

remain. Our work aims to answer the following research questions:

• RQ1: What algorithm topics are currently represented in the literature, and

what kinds of studies are being conducted on these topics?

• RQ2: What kinds of interventions have been developed to teach algorithm

design?

• RQ3: What knowledge currently exists in the literature about undergraduate

algorithm design courses? What are the major takeaways?
6



The main contributions of this work are to:

• Characterize the current literature with respect to methods, topic, and author-

ship,

• Synthesize the existing knowledge about teaching algorithms, and

• Identify opportunities for future research.

3.2 Methods

To investigate our research questions, we conducted a systematic literature review,

following guidelines from Kitchenham and Charters (2007b) and Randolph (2009).

3.2.1 Search Strategy

We conducted our search on the ACM Full-Text Collection in the ACM Digital Li-

brary (DL). To capture our research questions with an appropriate query, we first

identified the set of topics that could be considered appropriate for an algorithms

course. Within the "Algorithms and Complexity (AL)" knowledge area proposed by

the most recent ACM Curricular Guidelines [Joint Task Force on Computing Curric-

ula and Society (2013)], the sections AL/Algorithmic Strategies and AL/Fundamental

Data Structures and Algorithms relate directly to our research questions. To distin-

guish between data structures topics and algorithms topics, we removed topics that

most schools teach prior to their algorithms course as found by Luu et al. (2023)

(e.g. Sequential and binary search algorithms).
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For each topic remaining, we designed and validated a query to capture the corpus

of literature on the topic. For some topics, this was straightforward: Greedy algo-

rithms was captured by the query “greedy”. For others, this required more care: for

Reduction: transform-and-conquer, “reduction” was too common to be a reasonable

query, whereas “transform-and-conquer” was too specific, but the query {“algorithm

reduction” OR “reduction algorithm”} captures papers relevant to our interests. In-

cluded topics and their corresponding queries are shown in Table 3.1.

With this set of queries, we conducted three searches within the ACM Digital

Library (DL). First, we searched for all research articles from venues sponsored

by or in collaboration with SIGCSE (366 unique entries). Papers from SIGCSE

TS and ITiCSE between 1970 and 2008 are classified as articles in the DL instead

because they were published in the SIGCSE Bulletin, so we searched these as well

(454 entries). Finally, we searched for research articles in TOCE (56 entries). From

this corpus, we removed any retracted papers, ACM Bulletin Member Spotlights, or

papers without PDFs in the DL.

We note that this literature search omits venues unaffiliated with the ACM DL.

This decision was made in large part due to consistency in search mechanism and

capacity constraints. We recognize that venues like the Taylor & Francis Journal of

Computer Science Education, the Sage Journal of Educational Computing Research,

and the CCSC regional conferences, among others, provide important contributions

to the CS Education discourse as well, and encourage exploration of these venues for

work related to our topic. That said, the set of venues included is consistent with

other CS Education literature reviews [Heckman et al. (2021)].
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3.2.2 Study Selection

We then applied three further exclusion criteria on the remaining 869 papers. First,

we aimed to omit papers not relevant to our search, but variation in algorithms course

content made this difficult. For example, only around 60% of institutions teach

Depth-First Search/Breadth-First Search (DFS/BFS) in their algorithms courses

[Luu et al. (2023)]. To ensure that no relevant papers were excluded, we kept any

Table 3.1: Topics and Queries Used

Topic ACM Digital Library Query
Branch-and-bound "branch and bound"
Brute-force algorithms "brute force" AND algorithm
Depth- and breadth-
first traversals

"breadth first search" OR "depth first search" OR "breadth first
traversal" OR "depth first traversal"

Divide-and-conquer "divide and conquer"
Dynamic programming "dynamic programming"
Greedy algorithms "greedy"
Heuristics "heuristic algorithms"

Minimum spanning tree "minimum spanning tree" OR "prim’s algorithm" OR "kruskal’s
algorithm"

Pattern matching and
string/text algorithms

"string algorithm" OR "text algorithm" OR "substring match-
ing" OR "regular expression matching" OR "longest common
subsequence"

Recursive backtracking "recursive backtracking"
Reduction: transform-
and-conquer "algorithm reduction" OR "reduction algorithm"

Representations of
graphs "adjacency list" OR "adjacency matrix"

Shortest-path
algorithms

"shortest path algorithm" OR "dijkstra’s algorithm" OR "floyd’s
algorithm"

O(n log n) Sorting
algorithms

"quick sort" OR "quicksort" OR "heap sort" OR "heapsort" OR
"merge sort" OR "mergesort"
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paper that states involvement in an “algorithms course” as well as any paper explicitly

teaching any of our topics (see Table 3.1). For example, a paper about a CS2 (Data

Structures) course in general would be omitted, but a paper that describes teaching

DFS/BFS in CS2 would be kept.

Papers were also only kept if they presented some form of data from college-

level students. Either quantitative or qualitative data was accepted, but papers that

describe an intervention or tool but do not evaluate it were omitted.

The exclusion criteria were applied by four of the listed authors, who indepen-

dently filtered a subset of 20 papers, discussed to reach a consensus, and continued.

After the authors filtered the second subset, Fleiss’ Kappa statistic [Fleiss (1971)] was

used to compute the inter-rater agreement for four raters, and the authors achieved

Fleiss’ Kappa κ > 0.87, so the rest of the papers were processed independently. In

the end, 94 papers were identified as relevant to our literature review.

3.2.3 Paper Tagging

The authors then developed a set of tags for describing and classifying the relevant

papers.

Codebook Development

A Content Analysis protocol [Drisko and Maschi (2016)] was used to develop a code-

book with appropriate categories for our review. We began with a draft codebook

with deductive codes and descriptions that all coders agreed upon. We then itera-

tively improved the codebook by repeating the following steps:
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1. Each coder independently tags 10 papers according to the codebook.

2. Any disagreements in coding are resolved through discussion.

3. The codebook is adjusted to reflect the new shared understanding of the coders.

This may involve adding or removing codes, or adjusting the descriptions.

At the end of the third cycle, no changes were made to the codebook. Fleiss’ Kappa

statistic was used to calculate reliability with a fixed number of raters on categorical

items [Fleiss (1971)], and the authors achieved Fleiss’ Kappa κ > 0.80 inter-rater

agreement on this batch, so the remaining papers were tagged independently.

Final Codebook

The finalized codebook’s codes were split into four major sections, described here.

Within each section, the list of possible tags does not exhaustively consider every

possibility for a paper but does capture every paper found in our review. All tags

can be seen in Table 3.3.

Topic: Each paper was tagged by the topic or topics from the ACM curricular

guidelines it focused on, and an extra Not topic-specific tag was added for papers

that studied algorithms pedagogy as a whole without focusing on a specific topic.

Our codebook specifies that topic tags are reserved for when the Results section of

the paper explicitly describes the topic, so that whole-course interventions are tagged

as Not topic-specific rather than with every individual topic taught in the course.

Evaluation: This set of tags aims to describe the data presented by the paper.

These tags include Quantitative Data and Qualitative Data as broad categories, but

11



also data gathering methods (e.g. Survey, Interview) and data analysis methods (e.g.

Statistical Tests, Thematic Coding). Note that papers could and often did contain

multiple of these tags, and that some tags even imply others. For example, if a paper

was tagged with Thematic Coding, then it was also tagged with Qualitative Data.

Metric: This set of tags aims to determine the student metric measured by the

paper. We found all papers presented data on at least one of Performance, Affect,

or Persistence (whether students remain enrolled in the course).

Intervention: This set of tags aims to capture information about the interven-

tion developed in the paper, if applicable. We categorized interventions based on the

aspect of the course targeted, and introduced a Tools tag because some interventions

developed a tool without directly affecting the course. These were not mutually ex-

clusive — for example, a tool may be developed to help students during discussion.

A full list and description of intervention tags can be found in Table 3.2.

3.2.4 Results Consolidation

To identify major takeaways from the corpus, the papers were split based on whether

they presented an intervention. For papers containing interventions, the first and

third authors read each paper, recording the results of the paper as well as any

features of the intervention explicitly described in the paper as beneficial. These

results and features were consolidated and inductively coded by the authors. Papers

not containing an intervention were instead inductively coded based on focus. The

final codes can be found as the headers in Section 3.4.

12



Table 3.2: Tagging Scheme to Characterize Interventions

Tag Description

None
A study that does not change the way students learn the material,
and instead investigates the status quo, e.g. misconceptions or student
behavior.

Tools
A study that develops and/or evaluates a tool that a student can inter-
act and interface with, especially a software tool, that aids with student
learning.

Course Policy A study that changes course logistics unrelated to content (e.g. late
policy or collaboration policy).

Content
Presentation

A study that changes how the students are presented non-interactive
course material (e.g. lecture).

Discussion/Lab A study that changes staff-facilitated problem-solving sessions (e.g.
labs and group work).

Student Work A study that changes non-staff-facilitated work done by students (e.g.
homework or projects).

Exams A study that changes how students are evaluated in test settings.

3.3 Corpus Survey

The results of the tagging can be found in Table 3.3. Note that a single paper can

be tagged in multiple categories and topics, so it can be represented in multiple rows

and columns. The last row contains a summary of the results. The fully tagged

corpus can be found at https://doi.org/10.7910/DVN/KTR2ZH.

We begin by presenting a broad survey of the methodology used in the corpus.

We then drill down to answer more specific questions about topic coverage, changes

over time, “rigor” (which we define later), and the venues and authors that publish

the most. Findings are accompanied by a discussion about implications and future

steps.

13
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Table 3.3: Tags by Topic. Note that some papers cover multiple topics, and contribute to each
corresponding row in the table.

Evaluation Metric Intervention

Topic Total
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Branch-and-
bound 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

Brute-force
Algorithms 2 2 1 2 2 2 0 0 0 2 1 1 0 2 0 0 1 1 0

Depth- and
Breadth-First
Traversals

7 6 5 4 3 3 3 1 1 4 5 0 0 3 0 2 1 3 0

Divide-and-
Conquer 3 3 1 3 2 1 2 1 0 3 0 0 2 1 0 0 1 0 0

Dynamic
Programming 10 10 6 8 5 3 5 2 1 8 5 1 3 4 0 1 1 3 0

Greedy
Algorithms 8 8 4 6 0 0 6 2 5 6 4 0 2 3 0 3 2 2 0

Heuristics 3 3 0 3 0 0 2 0 2 3 0 0 1 1 0 0 0 2 0

Minimum
Spanning Trees 5 5 4 3 1 1 2 0 0 3 3 1 0 3 0 0 1 4 1

Pattern Matching
and String/Text
Algorithms

1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

Recursive
Backtracking 3 3 2 3 1 1 2 0 1 3 2 0 1 2 0 1 1 0 0

Reductions 6 5 3 6 1 0 4 1 2 6 2 0 3 0 1 2 0 2 0

Representations of
Graphs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Shortest-path
Algorithms 6 6 4 5 2 2 1 0 0 5 4 1 0 6 0 1 1 1 0

O(n log n) Sorting
Algorithms 10 9 7 6 5 2 5 1 0 6 9 1 1 4 0 2 2 4 0

Total (any topic) 46 43 28 35 15 10 23 6 8 35 27 2 9 20 1 10 9 15 1
Not topic-specific 48 45 27 34 23 7 22 6 7 34 30 2 11 16 11 9 7 16 2

Total 94 88 54 69 38 17 45 12 15 69 57 4 20 36 12 19 16 31 3
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3.3.1 Corpus Methodology

Nearly every paper (88/94) meeting our selection criteria presents quantitative data,

and 73% (69/94) of papers use student scores and grades. Notably, around 40%

(38/94) of the papers run statistical tests, and only around 18% (17/94) run con-

trolled trials. On the other hand, only half of the papers use qualitative data. The-

matic coding, found in only 16% (15/94) of papers, was done for interview responses

(e.g. Toma and Vahrenhold (2018)), student work (e.g. Velázquez-Iturbide (2012)),

and survey responses (e.g. Weber (2023)). Both quantitative and qualitative data

are presented in 41% (39/94) of the papers.

In terms of evaluation metrics, 73% (69/94) of papers use student performance,

61% (57/94) use affective measures, and 34% (32/94) of papers use both. Of the

four papers measuring persistence [Gárcia-Mateos and Fernández-Alemán (2009);

Deb et al. (2017); Lin et al. (2021); Coffey (2013)], all four measure performance

as well, and three measure affect, so it may be worthwhile to conduct studies more

centered around persistence in the algorithms class.

Most papers (79%, 74/94) present interventions, and around 40% (36/94) center

around a tool. For example, five papers present a strategy for implementing active

learning in the classroom via interactive question-and-answer tools [Pargas (2006);

Anderson et al. (2007); Kurtz et al. (2014); Phan and Hicks (2018); Deb et al. (2018)].

On the other hand, around a fifth (20/94) of the papers surveyed do not develop an

intervention. Many of these papers analyze student problem-solving strategies when

presented with algorithm design problems, and a number of others study topic-

specific misconceptions.
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We only find four interventions related to student examinations. Given the broad

applicability of algorithms to test questions and the effect that question design and

test logistics can have on exam validity, we expect research on this subject to be

potentially useful.

3.3.2 Representation of Topics

Of the 94 papers included in our literature review, nearly half focus on a specific topic

or set of topics, whereas the other half present results that do not pertain to any

particular topic, such as studies about broad problem-solving skills or policy-based

interventions.

Most topic-specific papers only focus on one topic, though ten papers focus on

two topics, three were tagged with three topics each [Deb et al. (2017); Taylor et al.

(2009); Brown et al. (2022)], and one paper was tagged with four (Branch-and-Bound,

Greedy Algorithms, Heuristics, Recursive Backtracking) [Velázquez-Iturbide (2019)].

However, many areas are still understudied. In this section, we begin by discussing

trends in individual topics, and then compare topic-specific papers with those that

are not topic-specific.

Topics with More Coverage

At 10 papers, O(n log n) Sorting Algorithms are the topic most covered in the

literature, though we expect that O(n2) algorithms are studied far more thoroughly.

Most of these papers leverage sorting as a familiar task to develop engaging active-

learning interventions for introducing faster sorting algorithms, including through
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games [Hakulinen (2011); Hosseini et al. (2019)] and exploratory activities [Rasala

et al. (1994); Rebelsky (2005); McCann (2004)], though a couple instead use assess-

ment results to provide insight into common misconceptions [Winters and Payne

(2006); Taherkhani et al. (2012)].

Research about the topic of Dynamic Programming has taken a relatively

wide variety of approaches. Two papers contribute interesting course projects that

motivate the use of Dynamic Programming through various problems, one from a

centuries-old mathematical text [Pengelley et al. (2006)] and the other from the mod-

ern world [Bird and Curran (2006)]. Tools have also been developed to help scaffold

different steps of solving DP problems, specifically interpreting the problem con-

straints [Lin et al. (2021)], visualizing subproblem recurrences [Velázquez-Iturbide

et al. (2016); Velázquez-Iturbide and Pérez-Carrasco (2016)], and writing a proof

[Xia and Zilles (2023)]. Research has been conducted [Danielsiek et al. (2012); Paul

and Vahrenhold (2013)] and reproduced [Zehra et al. (2018)] investigating common

roadblocks in solving DP problems as well, finding that students either don’t rec-

ognize that DP is the correct approach, fail to split the problem into appropriate

subproblems, or have trouble identifying the correct recursion of subproblems. Fi-

nally, Enström and Kann (2017) find that teaching the DP process as separate steps

can increase student self-efficacy .

On the other hand, Greedy Algorithms has seen 8 papers but markedly less

breadth, with one paper about misconceptions [Velázquez-Iturbide (2019)], one about

collective argumentation [Kallia et al. (2022)], and the other six about interactive

learning interventions. Though five provide thematic coding of student responses,
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none provide statistical tests in their evaluations, limiting our understanding of in-

tervention effectiveness.

Topics with Less Coverage

We found no papers related to Graph Representations and one related to Pattern-

Matching and String/Text Algorithms [Bird and Curran (2006)], though the

latter may be partially captured in research about Dynamic Programming and Greedy

Algorithms. Despite Divide-and-Conquer, Minimum Spanning Trees (MST),

and Shortest-path Algorithms being taught in more than 80% of algorithms

courses [Luu et al. (2023)], the topics are only studied by 3, 5, and 6 papers, re-

spectively. Of the three Divide-and-Conquer papers, two focus on misconception

detection in a wide set of topics that includes Divide-and-Conquer [Danielsiek et al.

(2012); Paul and Vahrenhold (2013)], while the third involves a tool for learning in

the classroom Phan and Hicks (2018), so questions remain about presenting, testing,

and assigning work on the topic. Four of the five MST papers relate to the develop-

ment of student assignments [Deb et al. (2017); Taylor et al. (2009); Erkan (2018);

Stasko (1997)], and the other paper studies exam questions [Gaber et al. (2023)],

leaving the presentation of the material or common student misconceptions unex-

plored. Finally, all six Shortest-path papers are tool-based interventions, leaving

plenty of room for exploration of misconceptions or pedagogical strategies.
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Papers Without Specific Topics

Within non-topic-specific papers (half of our set), there is considerable variation

in the extent to which the knowledge extracted applies specifically to algorithms

courses. For example, some papers test interventions in an algorithms course but

could have reasonably tested them in any CS course (e.g. [Belleville et al. (2020);

Pargas (2006)]), some studies include algorithms courses alongside other CS courses

in their data set (e.g. [Deb et al. (2018); Bennedssen and Caspersen (2008)]), and

some studies are topical to algorithms in particular (e.g. [Danielsiek et al. (2017);

Collberg et al. (2004)]).

For the most part, these non-specific studies mirror the topic-specific papers in

terms of evaluation and intervention methods used. The most notable difference is

in Course Policy, where all but one paper focuses on the course as a whole rather

than individual topics. This is unsurprising, as we expect course policy changes to

affect all topics in a course equally, though Crescenzi et al. (2013) study a sizeable

modification to course structure targeted at the course’s NP-completeness unit.

That said, the studies are still notably different in their aims. For example, while

most topic-specific papers without interventions focus on identifying misconceptions

for the topic, papers without specific topics instead focus on broader measurements

like skill development [Ginat (2001)], learning outcomes [Bennedssen and Caspersen

(2008)], and even student affect [Danielsiek et al. (2017)]. Likewise, while most

content-specific tools presented are related to algorithm visualization, papers with-

out specific topics feature not only visualization tools (e.g. Naps et al. (2000); Lee

and Rößling (2011)) but also tools for facilitating improvements in grading [Gárcia-
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Mateos and Fernández-Alemán (2009); Coore and Fokum (2019)], lectures [Pargas

(2006); Kurtz et al. (2014)], and assignments [Zeller (2000); Marshall et al. (2006)].

3.3.3 Topics over Time

In Figure 3.1, we display the distribution of topics covered by year. Sorting Algo-

rithms dominate the topic-specific literature early on, representing the only topic

in 1994-1998 and 5 of 12 between 1994-2008. However, we also see it become more

infrequent in later years despite the general steadiness of papers. Even so, in every

period, at least two-thirds of the papers within our study relate to either Sorting,

DFS/BFS, Greedy Algorithms, or Dynamic Programming.

Figure 3.1: Topic of topic-specific papers, by year
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3.3.4 Rigor over Time

Scientific rigor is by nature tough to quantify, as the best practices for any paper

depend on the specific research questions. For papers with quantitative data, the

use of statistical tests or controlled trials serves as our proxy for a metric of rigor

[Sanders et al. (2019)]. Similarly, for papers presenting qualitative data, we use

thematic coding. Note that the papers with no evaluation or student data were

already filtered out of our review. Figure 3.2 shows the percentage of each type of

study, presented in 5-year bands.

Figure 3.2: Percentage of papers with statistical tests (quantitative), controlled trials
(quantitative), thematic coding (qualitative), and at least one of the above

We see no “rigorous” studies initially, but there is an encouraging upward trend

in the usage of rigorous procedures in algorithms papers as the field matures. In the

most recent period, 2019-2023, 56% of qualitative papers use thematic coding, and

two thirds of quantitative papers use either statistical tests or controlled tests.
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3.3.5 Where and Whom are Studies Coming From?

Our search consisted of all publications sponsored by or in collaboration with SIGCSE,

as well as TOCE. The distributions of papers per conference, split by year, can be

found in Figure 3.3.

Figure 3.3: Papers per venue, by year

As expected, SIGCSE’s largest conferences, the Technical Symposium and ITiCSE,

account for a vast majority of the papers (44 and 33, respectively) in our literature

review, with ICER contributing more recently. We found five relevant papers from

TOCE (and its previous moniker JERIC) as well.

We also seek to understand whether much of the work is accomplished by just a

few groups, or whether it is widespread in the community. The tally of papers per

author can be found in Table 3.4.

We can see that the most active groups are two pairs of collaborators. Velázquez-

Iturbide / Pérez-Carrasco have studied optimization algorithms and developed vi-
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Table 3.4: Number of Papers per Author. Asterisks indicate frequent collaborators.

Author Number of Publications

J. Ángel Velázquez-Iturbide* 7
Jan Vahrenhold** 5

David Ginat 4
Antonio Pérez-Carrasco* 4

Michal Armoni 3
Holger Danielsiek** 3

[12 authors] 2
[183 authors] 1

sualization tools to assist with a variety of algorithm paradigms (e.g. Velázquez-

Iturbide (2012); Velázquez-Iturbide et al. (2016); Velázquez-Iturbide (2019); Velázquez-

Iturbide and Pérez-Carrasco (2016)) and Vahrenhold / Danielsiek have explored

instruments for measuring student affect and success in algorithms courses (e.g.

Danielsiek et al. (2012, 2017); Paul and Vahrenhold (2013); Toma and Vahrenhold

(2018)). In addition, David Ginat has written four papers discussing metacogni-

tive strategies for algorithmic problem-solving (e.g. Ginat (2001); Ginat and Blau

(2017)), and Michal Armoni has conducted a series of studies on reductive thinking

[Armoni (2009)]. The vast majority of authors publish only one or two papers (195

authors), limiting the depth of contributions that might be made.

3.4 Corpus Takeaways

In this section, we go beyond the numbers to provide insights into the major take-

aways from the corpus as a whole. Subsections are broadly sorted in order of de-

creasing specificity to algorithms courses.
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3.4.1 Student Approaches to Algorithm Design Problems

Though the skill of algorithm design is somewhat nebulous, there is general consen-

sus that it is closely tied to abstraction ability. Bennedssen and Caspersen (2008)

examine 10 courses mandatory for the CS degree and find that abstraction ability

correlates with performance in only the algorithms course. Think-alouds have been

run to identify varied extents to which students utilize abstraction to solve problems

[Ginat and Blau (2017); Izu et al. (2017)].

More specific algorithm design skills have been studied as well, with the general

finding that students under-utilize them even after having taken an algorithms course.

In problems where recursion [Ginat (2004)] and reduction [Armoni (2009)] would

have been helpful, students understand the concepts but underestimate their utility

in general problem-solving contexts. On the other hand, students demonstrate an

overreliance on intuitive greedy approaches, even in the face of counterexamples

[Ginat (2003)].

At the topic level, a limited number of papers explore common misconceptions

in algorithms topics. Danielsiek et al. (2012) use both student work and thinkalouds

to cover a wide variety of topics, but other studies have focused on more specific

topics like dynamic programming [Zehra et al. (2018)] and optimization algorithms

[Velázquez-Iturbide (2019)].

3.4.2 Problem Selection

We find a recurring theme that intentional problem selection can be leveraged to mo-

tivate students. The broad applicability of algorithms lends itself nicely to problems
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tied to the real world, which can give students both familiarity with the problem

setting and motivation to solve it. For example, linking shortest path algorithms to

GPS navigation is a setting in which multiple papers demonstrate that students en-

joy and engage more with the real-world map [Holdsworth and Lui (2009); Teresco

et al. (2018)]. Mehta et al. (2012) presented bipartite matching in the setting of

forming balanced class project groups, resulting in both more successful groupings

and an increased understanding of bipartite matching. Problems can also tie into

the real world through the researcher: Pengelley et al. (2006) presented a Dynamic

Programming problem posed by a mathematician’s letter from 1838, and Wirth and

Bertolacci (2006) presented a problem from the instructor’s research, both finding

that the humanized context motivated students.

Problems with a variety of solutions can also be particularly helpful. In mul-

tiple studies, students indicate that writing both efficient and inefficient solutions

to problems and comparing their runtimes on real inputs provided more motivation

for designing efficient algorithms than theoretical runtime analyses [McCann (2004);

Coffey (2013)]. Similarly, studies have designed projects asking students to compare

BFS against DFS [Erkan and Gochev (2008)], Prim’s algorithm against Kruskal’s

algorithm [Erkan (2018)], and several different sorting [Rasala et al. (1994)] and

matching [Lucas (2015)] algorithms, finding in all cases that students describe the

comparisons as valuable and insightful. In each of these projects, the comparison

is facilitated in part by a visualization of either the evaluation or output of the

algorithms.
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3.4.3 Algorithm Visualization

In our data set, we identified 15 studies about algorithms visualizations. Broadly,

students state that they appreciate visualizations, though few studies experimentally

measure learning outcomes. Of these papers, three found that introducing visual-

izations improves student learning [Velázquez-Iturbide (2013); Deb et al. (2017);

Farghally et al. (2017)], though only one uses statistical tests. On the other hand,

Jarc et al. (2000) find that introducing visualizations provides no statistically signifi-

cant learning outcomes, and Velázquez-Iturbide and Pérez-Carrasco (2016) find that

students are more efficient but do not perform better. Taylor et al. (2009) find that

student learning significantly improves when the visualization forces students to take

an active, predictive role. For a more thorough review on algorithms visualizations

that is not specific to algorithms courses, we recommend the work by Hundhausen

et al. (2002).

3.4.4 Coding Practice

Though around a quarter of algorithms courses have no programming component

[Luu et al. (2023)], research has found that algorithmic coding assignments increase

student engagement [Gárcia-Mateos and Fernández-Alemán (2009)] and helps stu-

dents develop their algorithmic design [Izu and Alexander (2018)] and runtime anal-

ysis [Coore and Fokum (2019)] skills. Online coding platforms allow for a public

leaderboard of coding problem scores, which some studies have used in an attempt

to motivate students [Coore and Fokum (2019); Färnqvist and Heintz (2016)] with

mixed results: Coore and Fokum (2019) observed that the strongest students worked
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hard to maintain their ranking, but other students were demotivated when the top

scorers had yet to solve a problem.

3.4.5 Assessment Policy

The use of algorithmic coding problems permits automated assessment, which stu-

dents find fair and constructive [Färnqvist and Heintz (2016); Weber (2023)], though

additional human interpretation of automated feedback may be helpful [Leite and

Blanco (2020)]. Weber (2023) finds promise in standards-based grading for algo-

rithms courses, along with allowing students to re-submit work as they continue to

master course concepts. While students did continue to improve on past assignments

throughout the course, some took advantage of the chance to procrastinate work until

the end of the term.

Two papers investigate the utility of two-stage quizzes (consisting of an individual

and a group phase), finding that team quizzes increase students’ perceived and mea-

sured learning gains [Belleville et al. (2020); Ham and Myers (2021)]. Gaber et al.

(2023) make the case for repeating previously-seen problems on exams, showing that

these questions are still considerably challenging for students yet perceived as fair.

3.4.6 Active Learning

Research on algorithms-based active learning exercises in lecture corroborates find-

ings in other settings that students enjoy exploring a problem space with their

peers [Belleville et al. (2020); VanDeGrift (2017); Toma and Vahrenhold (2018)],

feel an increased sense of engagement in class [Anderson et al. (2007); Gehringer
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and Miller (2009)], and report learning both course material and collaboration skills

[VanDeGrift (2017)]. Additionally, incorporating in-class interaction into historically

lecture-based courses led to higher instructor satisfaction in some cases [Hosseini and

Perweiler (2019); Bouchez-Tichadou (2018)].

Most studies incorporate active learning by having students work through prob-

lems in class, whether exploring a problem instance [Anderson et al. (2007); Kurtz

et al. (2014)], coding an algorithmic solution [Phan and Hicks (2018)], or perform-

ing algorithm analysis [Pargas (2006); Deibel (2005)]. Some of these activities were

equipped with auto-grading as well, which Deb et al. (2018) find improved student re-

tention of course material. To dissuade a "guess-and-check" approach while using an

auto-grader, Kurtz et al. (2014) capped grades based on the number of submissions.

Game-based exercises have also shown promising results, with research finding

that these activities can drive participation from students who are typically silent

[Hosseini and Perweiler (2019); Hosseini et al. (2019)]. Some of the algorithms-based

games developed include a sorting algorithm design contest [Hosseini et al. (2019)],

a matching game in which students choose algorithms for given criteria, and a draw-

and-guess game in which students illustrate course content [Hakulinen (2011)].

However, despite the success of interactive in-class activities, facilitating pro-

ductive group work may require further attention: in a study on communication

behaviors during a collaborative algorithmic problem solving session, Kallia et al.

(2022) observed that first-year undergraduates struggled to build off of each others’

ideas while MSc students were overly dismissive of others’ ideas. Two papers find

success using a variety of intentional group-formation strategies to encourage produc-
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tive collaboration, making groups based on learning style, prior student knowledge,

or mixed instructor/student input [Deibel (2005); Mehta et al. (2012)].

3.4.7 Psychological Factors

Little is known about psychological factors in algorithms courses, but a series of

papers by Danielsiek, Toma, and Vahrenhold develop and validate an algorithms-

specific instrument to measure self-efficacy [Danielsiek et al. (2017)] and use it along

with other instruments to measure the cognitive load and perceived benefit of differ-

ent collaborative lab assignments [Toma and Vahrenhold (2018)]. Their work finds

that collaborative labs are perceived as effective and inclusive, and demonstrate the

potential for using measurements of various emotional responses to guide intervention

design.

3.5 Limitations and Future Work

Though we designed our search query to capture papers related to algorithm design,

some papers may have been missed. First, if a paper does not use our search terms,

our query may not capture it. Furthermore, our search was limited to venues spon-

sored by or in collaboration with SIGCSE in the ACM DL, so research published

outside of these venues was not included (e.g. the Taylor & Francis journal Computer

Science Education), though we expect to have captured most of the work in the area.

(See Section 3.2.1.)

The variability in course offerings across institutions also may have resulted in

some omitted papers. Topics that we consider to be relevant to algorithm design are
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sometimes taught in prerequisite courses like CS2 [Luu et al. (2023)], but we may

not be able to tell based on the paper. As such, knowledge about teaching these

topics in other courses is missed if the paper does not explicitly mention our topic

of interest.

Furthermore, while in this review we were able to cover all topics from the ACM

Curricular Guidelines sections AL/Algorithmic Strategies and AL/Fundamental Data

Structures and Algorithms which are usually covered in an algorithms course, we

were not able to cover topics listed in the related sections AL/Basic Automata Com-

putability and Complexity about computing theory and AL/Basic Analysis about

algorithmic analysis. These topics are also required learning for CS majors accord-

ing to the ACM Curricular Guidelines, though they are less frequently covered in

algorithms courses [Luu et al. (2023)]. Future reviews could use these as topics of

focus.

As with any qualitative coding endeavor, we also note that misinterpretations

of papers in the review are possible. However, we hope that the content analysis

procedure, with many rounds of codebook refinement and discussions about poten-

tially different interpretations of the codebook, mitigated the likelihood of these

outcomes.
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CHAPTER 4

DYNAMIC PROGRAMMING THINK-ALOUD

INTERVIEWS

4.1 Introduction

Dynamic Programming (DP) is a quintessential algorithms topic, covered in more

than 80% of college upper-level Algorithms courses [Luu et al. (2023)]. As discussed

in the prior chapter, it has seen slightly more research focus than other algorithms

topics, at least in part due to its general perception as one of the most conceptually

challenging topics in the course [Enström and Kann (2017)]. A summary of the

variety of work done on this topic can be found in Section 3.3.2.

As described, little work has been done investigating metacognitive interventions

for teaching DP. Prior work by Danielsiek et al. (2012), Paul and Vahrenhold (2013),

and Zehra et al. (2018) explore common roadblocks experienced by students inde-

pendently solving DP problems, and Enström and Kann (2017) describe teaching

the last step of DP first to boost student self-efficacy with the topic. In this chapter,

we present an ongoing project that extends their work by conducting an investiga-

tion examining student metacognitive approaches to DP. We conduct think-aloud

interviews where students receive on-demand semi-structured guidance as they work

through the problems. This guidance is focused on metacognitive approaches to

solving the problems, designed to answer the following research questions:

• RQ1: What common incomplete understandings or misconceptions lead to

students being unable to solve Dynamic Programming problems?
31



• RQ2: What metacognitive approaches do students develop while learning to

solve Dynamic Programming problems?

• RQ3: What obstacles prompt students to request further guidance while solv-

ing Dynamic Programming problems?

• RQ4: To what extent does structured metacognitive guidance benefit students

solving Dynamic Programming problems?

This work is still ongoing: interviews have been conducted and fully transcribed,

and data analysis is in its very early stages. As such, in this chapter we describe the

study’s motivation and design, as well as the planned methodology for data analysis,

but no results will be presented.

4.2 Background

4.2.1 Metacognition

Metacognition, somewhat colloquially described as “thinking about thinking" [Miller

et al. (1970)], refers to a student’s self-regulatory knowledge and mechanisms related

to their own learning, though the scope of this and its overlap with self-regulation can

vary [Dinsmore et al. (2008)]. In our context, we operationalize the concept to refer to

a student’s ability to evaluate the effectiveness of their own learning/problem-solving

strategies and reuse effective ones. The concept is well-established even within the

field of CS education, demonstrated in part by the review conducted by Prather

et al. (2020) about metacognition in programming education. Metacognition has
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been studied to a limited extent within algorithms as well - see Section 3.4.1.

4.2.2 Dynamic Programming Problem-Solving Steps

One popular method for developing a student’s metacognitive problem-solving skills

is in-process scaffolding, in which students are explicitly provided with a series of

problem-solving steps to help them self-orient and self-reflect as they think through

solving a problem (e.g., Prather et al. (2019); Loksa et al. (2016)). Loksa et al. (2016)

presents the following six steps for solving open-ended programming problems:

1. Reinterpret the problem prompt,

2. Search for analogous problems,

3. Search for solutions,

4. Evaluate a potential solution,

5. Implement a solution,

6. Evaluate the implemented solution.

Though these steps do not translate directly to algorithm design, the popular algo-

rithms textbook by Cormen et al. (2022) provides a set of steps for tackling Dynamic

Programming problems:

1. Characterize the structure of an optimal solution,

2. Recursively define the value of an optimal solution,
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3. Compute the value of an optimal solution in a bottom-up fashion.

These steps are validated to an extent by the work done by Danielsiek et al. (2012)

and Zehra et al. (2018), who identify these steps as common places where students

falter in solving DP problems. Within our study, we take inspiration from both of

these lists in both orienting and guiding students as they solve DP problems.

4.3 Methods

4.3.1 Study Population and Recruitment

We conducted interviews in Winter 2024 after receiving IRB approval. Participants

were recruited from our institution’s Algorithms course, through announcements

made by the course’s instructors on behalf of the researchers. In these announce-

ments, students were informed of an opportunity to participate in a study where

they would receive both practice and guidance about solving Dynamic Programming

problems. Students were also informed that participation was entirely voluntary and

that instructors would not be informed of student participation.

Interviews were conducted in two rounds: one for the two weeks between the

release and due date of the DP homework assignment, and the other for the two

school days prior to the course final. 20 interviews were conducted in the first round,

and 11 interviews were conducted in the second round. Participants were allowed

to participate in both rounds if desired, and 7 of the second-round interviewees

were also interviewed in the first round. We especially wanted to collect data from

returning participants in order to measure how student approaches develop as they
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gain experience with the material.

4.3.2 Interview Protocol

Interviews were conducted with a think-aloud model, where participants were pre-

sented with a series of prepared Dynamic Programming problems and asked to nar-

rate their thought process to the best of their ability as they worked through the

problems. Participants were informed that the interviewer could provide guidance

at any time, but only upon request. This delineation was made both to allow the

participant to work as independently as possible and to understand what types of

help are requested by the participant. Each interview lasted approximately one hour.

Two forms of data were collected. First, a transcript was created from a voice

recording of the interview. Second, participants were provided with scratch paper

for the participant to work on, which was scanned at the end of the interview.

Dynamic Programming problems were selected to ensure that a wide variety of

solution types were covered. Specifically, we selected both 1D and 2D problems, var-

ied the data type both being processed and being stored in the DP array, and picked

a problem with a non-standard subproblem and extraction method. Students solved

between 1-3 problems in each session, and problems were presented to students in

increasing difficulty. Students who were being interviewed for a second time received

problems from a new set of similar difficulty. The first problem, Coin Row, is the

same as the one used in prior DP misconceptions research Danielsiek et al. (2012);

Zehra et al. (2018), though the others differ. The list of problems can be found in

the appendix, Section A.1.
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During the last few minutes of each interview, participants were also asked a

short series of questions about their experience solving algorithms problems. These

questions were also changed for second-time interview participants. The following

questions were asked for a participant’s first interview:

• How did it feel to work through those questions?

• Is there anything you’d like us to know about the process of solving algorithms

that you use that may not have been represented while you were solving the

problems?

• What do you think has had the largest effect on the way you approach these

problems? (if asked for examples, a class, a professor, a textbook, a video.)

• Please describe your experience with Algorithms outside of UChicago. Do you

work on problems related to Algorithms for interview practice, research, or any

other extracurricular activities?

For a returning participant, we instead asked the following questions:

• How did it feel to work through those questions, compared to last time?

• What has guided your learning process for Dynamic Programming over the last

few weeks? What has been helpful? Unhelpful?

• How has your comfort level with Dynamic Programming changed over the last

few weeks?
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4.3.3 Provided Guidance

The guidance provided by interviewers was semi-structured to focus on metacogni-

tive guidance if possible. When students requested help, interviewers asked follow-up

questions if necessary to differentiate between four levels of help, inspired by a frame-

work presented by Franklin et al. (2013):

1. Validation: Student needs reassurance that they are on the right track.

2. What: Student needs a keyword/pointer about the next step.

3. How: Student still needs some guidance even if given a keyword.

4. Reteach: Student needs entire lesson to be retaught.

The guidance provided by the interviewer was determined by the level indicated. If

the request was on level 1, they were simply provided reassurance. If the request was

on level 2, the participant was presented with a list of four problem-solving steps,

essentially a combination of the steps provided by Loksa et al. (2016) and Cormen

et al. (2022) (see Section 4.2.2):

• Reinterpret the problem prompt,

• Pick a subproblem,

• Write a recurrence relation,

• Compute the value of an optimal solution in a bottom-up fashion.
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Participants were then simply asked to identify which step they were on. For level

3 requests, participants were provided help both with the steps above and through

the lens of a different popular metacognitive strategy: creating a worked example.

In particular, the participant was instructed to create a small worked example, and

were asked a set of questions that helped them use the worked example to complete

the step they were on. Finally, for level 4 requests, the interviewer also provided

more problem-specific and participant-specific guidance as necessary.

4.3.4 Planned Analysis

Two researchers will independently code all participant interview transcriptions and

scanned student work. The researchers will analyze the interviews, coding for the

following:

• Common incomplete understandings of Dynamic Programming,

• Types of help requested,

• Student utilization of problem-solving strategies, and

• Common sources of information relied on by students outside of the interview.

Coding will be done inductively. The researchers will meet both during and after

the coding process to discuss any emergent themes or findings.
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CHAPTER 5

FUTURE WORK

As discussed, the sparsity of research on algorithms education suggests many areas

for future work. Section 3.3.2 discusses potential areas of exploration at a more

fine-grained level.

At a broader level, our review finds that research in the area relies heavily on

quantitative data, especially measuring student scores or grades, but relatively few

studies use statistical tests and even fewer run controlled trials. Though we acknowl-

edge the difficulty of running controlled trials in an educational setting, more rigorous

approaches to this data would be valuable to better understand the effectiveness of

various interventions.

At the same time, this reliance on quantitative data is accompanied by a dearth

of qualitative data, especially about psychological factors like sense of belonging or

self-efficacy. Rigorous explorations of student experiences in these classes would be

incredibly useful for not only determining the extent to which the mathematical

content of algorithms courses affects psychological factors but also orienting future

research around mitigating impostor syndrome, stereotype threat, or other discovered

barriers.
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CHAPTER 6

AUTHOR’S CONTRIBUTION

The literature review presented in this Master’s paper is work that was performed

by a collaborative, multi-institutional team, on which I took a leadership role. I led

weekly meetings for the project, providing insight into the direction and scope of the

literature review. I developed the initial version of the codebook and updated it in

accordance with the team’s updated decisions and understandings. I tagged more

than half of the papers in both the study selection (869 papers) and paper tagging

(94 papers) phases of the review. Data compilation, analysis, and visualization were

all done by me as well. During our survey of paper results, I read every paper in

the corpus, and worked with one collaborator to group the results by major themes.

Sections 3.3.4, 3.3.5, and 3.3.6 were written by this collaborator.

The think-aloud interviews are also work being performed with one collaborator.
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CHAPTER 7

CONCLUSION

In this thesis, we present a pair of studies aimed at increasing our understanding of

teaching upper-level undergraduate algorithms. In an effort to synthesize research

related to algorithm design education, we categorized all papers in the ACM Digital

Library containing search terms for algorithm design topics covered in algorithms

courses, guided by the ACM Curricular Guidelines and surveys of algorithms course

instructors [Joint Task Force on Computing Curricula and Society (2013); Luu et al.

(2023)]. We found that algorithms research is a growing field, with more rigorous

methods being applied over time. Studies have generally agreed that active learning

interventions and interesting problem-selection can contribute to both learning and

motivation, corroborating research in the broader CS Education space. However,

even among the most studied areas in algorithm design, there are still large gaps

in the literature. For some topics, there is adequate literature on student miscon-

ceptions, but concrete instructional interventions are lacking. In others, researchers

have created interventions, but have not yet rigorously tested their efficacy using

controlled trials. Exams and Psychological Factors stand out as important areas

with very little research at all. The second study we present is ongoing work aimed

at resolving one of those gaps - there is adequate literature about where students

tend to struggle in the process of solving Dynamic Programming problems, but no

studies have developed metacognitive instructional interventions for guiding them

through it. We hope this review can similarly inform other research directions and

help guide the future of algorithms education.
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CHAPTER A

APPENDIX

A.1 Dynamic Programming Interview Problems

Below are the problems presented to students participating in the Dynamic Pro-

gramming interviews. Problems are split by whether it was the participant’s first or

second interview, and within each interview listed in order of increasing difficulty.

See Section 4.3.2.

A.1.1 First Interview

• Q1: Coin Row. There are n coins in a row whose values are positive integers

c1, ..., cn. You may pick up coins from this row, but you can not pick up

two adjacent coins. Design a Dynamic Programming algorithm that finds the

largest sum of values you can pick up.

• Q2: Gift Packing. You have a box of size V , and gifts of positive integer

size p1, ..., pn. You want to give your friend a box full of gifts. Design a

Dynamic Programming algorithm to determine whether there exists a subset

of the presents that has total size exactly equal to the size of the box.

• Q3: Text Reconstruction. You’ve intercepted a secret message that consists

of the letters m1, ...,mn, but there are no spaces or punctuation so you’re not

sure whether it was supposed to be a sequence of words. For any string of letters

s, you can call is_valid(s) to determine whether the string is a valid word
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in constant time. Design a Dynamic Programming algorithm that determines

whether the message can be split into a sequence of valid words.

A.1.2 Second Interview

• Q1: Vacation Planning. You’re planning a big trip, but the place you’re

visiting is known for its erratic weather. For each of the n days that you

could visit, your enjoyment on day i would be some integer wi (not necessarily

positive). Find the sequence of consecutive days to visit that maximizes the

sum of your enjoyment.

• Q2: Roadtrip Planning. You’ve decided to make the long drive to your

vacation destination. Along the highway, you will pass through n gas stations.

At gas station i, you can pay pi for each mile’s worth of gas, and your tank

can hold enough gas to travel C miles. The distance between station i− 1 and

station i is given by di. You start at station 0 with 0 gallons of gas. Determine

the minimum amount you need to pay to successfully reach gas station n.

• Q3: Lazy Meetings. At your job, there are n meetings scheduled today.

Meeting i starts at time ai, ends at time bi, and costs you ei energy to attend.

You have been asked to attend every meeting, but some of the meetings overlap

with each other, so you will need to skip some. You may only skip a meeting if

you attend a meeting that overlaps with it. Design a Dynamic Programming

algorithm that finds the least amount of energy you need to spend to get

through your meetings today.
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