
THE UNIVERSITY OF CHICAGO

ORGANIZING FINE-GRAINED PARALLELISM USING KEYS AT SCALE

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

YUQING WANG

CHICAGO, ILLINOIS

GRADUATION DATE

Copyright © 2024 by Yuqing Wang

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Introduction . 1

1.1.1 The Problem . 2
1.1.2 Approach . 2
1.1.3 Results and Key Contributions . 3

2 BACKGROUND . 4
2.1 Irregular Applications and Limited Performance Scaling 4
2.2 Functional Language and Cloud Map-reduce 6
2.3 Fine-grained Parallel Hardware Architectures 7

3 KVMSR PROGRAMMING MODEL . 10
3.1 Objectives . 10
3.2 KVMSR Programming Model . 11

3.2.1 KVMSR Interface: Expressing Computation 14
3.2.2 KVMSR Interface: Global Data Structures 15
3.2.3 KVMSR Interface: Parallelism Management 17

4 EXAMPLES . 21
4.1 Convolution Filter . 21

4.1.1 Computation . 21
4.1.2 Computation Binding . 22

4.2 PageRank . 24
4.2.1 Computation Binding . 24

4.3 A Broader Range of KVMSR Applications 26

5 EVALUATION . 27
5.1 Evaluation System Specification . 27
5.2 Programmability, Modularlity and Model Expressiveness 28

5.2.1 Implementation . 29
5.2.2 Metric . 29
5.2.3 Result . 30

5.3 Benefits of Computation Location Control 31
5.3.1 Experiment Setup . 31
5.3.2 Result . 32

iv

6 RELATED WORK AND DISCUSSION . 37
6.1 Functional Language and Cloud Map-Reduce 37
6.2 Message Passing (MPI) & Partitioned Global Address (PGAS) 38
6.3 Linda & Tuple Space . 39
6.4 Scalable Graph Processing Systems . 39
6.5 Discussion . 40

7 SUMMARY AND FUTURE WORK . 41
7.1 Summary . 41
7.2 Future Work . 42

REFERENCES . 44

v

LIST OF FIGURES

2.1 The in and out degree distribution of the Twitter follower network 4
2.2 The UpDown System connected by the high performance system network. . . . 8
2.3 each node has 1 CPU, 32 UpDown accelerators with uniform access to 8 HBM

stacks. 8

3.1 Parallel applications manage three dimensions to achieve performance (left). Com-
putation and data need to be mapped to distributed capabilities in a balanced
way for good performance. 11

3.2 A parallel machine fundamentally has compute and data locations connected by
an interconnect. 13

4.1 Computation binding for the baseline convolution filter program: placing all the
tasks on a single lane. 22

4.2 The statically distributed Convolution Filter program spreads computation over
N lanes. 23

5.1 Speedup of the UDKVMSR Convolution, PageRank and BFS with static binding
based on Keys over the single-thread CPU baseline 33

5.2 Speedup of PageRank with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute
load (right bars) over the single-thread CPU baseline. 34

5.3 Speedup of BFS with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute
load (right bars) over the single-thread CPU baseline. 35

vi

LIST OF TABLES

3.1 A summary of the KVMSR interface. 20

5.1 UpDown System specification . 28
5.2 Code Size for each tuned version of KVMSR programs (Lines of Code). 30
5.3 Programs and Key Properties . 31

vii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Dr. Andrew A. Chein, whose

expertise and insight added considerably to my graduate experience. I am extremely grateful

for his guidance throughout the research and writing of this thesis.

viii

ABSTRACT

Rapidly proliferating machine learning and graph processing applications, demand high-

performance on petascale datasets. Achieving this performance requires efficient exploita-

tion of irregular parallelism, as their sophisticated structures and real-world data produce

computations with extreme irregularity. The need to exploit large-scale parallel hardware

(million-fold parallelism) is a further challenge.

Programming irregular data and parallelism using existing models (e.g., MPI) is difficult

because they couple naming, data mapping, and computation mapping. Further, they only

exploit coarse-grained parallelism. To solve this problem, we present a key-based program-

ming model, called key-value map-shuffle-reduce (KVMSR). The model enables programmers

to express fine-grained parallelism across programmer-defined key-value sets. The parallel

computation can then be optimized using KVMSR’s modular control for load balance and

data locality. KVMSR achieves this by expressing parallelism with respect to a global address

space and providing modular control to flexibly bind computation to compute resources.

We define the KVMSR model and illustrate it with three programs, convolution filter,

PageRank and BFS, to show its ability to separate computation expression from binding to

computation location for high performance. We evaluate KVMSR on a novel fine-grained

parallel architecture, called UpDown, supporting up to 4 billion fold hardware parallelism

in the full system design. On an 8,192-way parallel compute system, KVMSR modular

computation location control achieves up to 9,202x performance with static approaches and

an increase of 3,136x to 4,258x speedup with dynamic approaches for computation location

binding comparing to the single-thread CPU programs.

ix

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the past last few decades, there has been a rise of "internet-scale" computation on big data,

producing a growing need for computing systems that process large-scale data efficiently.

Among the emerging applications, graph computation is ubiquitous as graphs are used to

represent complex relationships efficiently in various scenarios including social networks,

world wide web, recommendation systems, bio-informatics etc. [16, 19, 29, 15]. Graph

computations can exhibit high data-parallelism – exploited in varied software frameworks

[23, 36, 8, 34, 37]. However parallelism alone does not translate to scalable. As the data

keeps growing, graphs are now occupying gigabytes of memory and if this trend continues,

real-time analysis of petabytes large graphs will be the norm in the next decades. Given the

scale of the application, graph computation typically requires running on large-scale parallel

systems with millions of compute cores and petabytes of memory for storing the data.

To achieve decent performance on large-scale parallel machines, application programmers

need to generate sufficient parallelism to fill up the machine, effectively bind the parallelism

to compute elements and manage parallelism accordingly to balance the load and better

utilize the parallel compute resources. This is challenging because real-world graphs give

rise to irregular parallelism and poor data locality, producing load imbalance, costly com-

munications and data movement, and poor overall performance.

Main-stream parallel programming solutions do not support irregular applications well

(e.g., real-world graph analytics and graph pattern minings). Among them, two of the most

commonly used are message-passing interface (MPI) and partitioned global address space

models (PGAS). MPI follows single-program-multiple-data model (SPMD) and its programs

require partitioning the data across the machine so that the corresponding computation

1

are parallelized. With scant support for global data structures, in order to achieve high

performance on irregular parallelism, programmers must assemble the data required for each

piece of parallel computation and align it to a static set of workers (ranks) [4]. On the other

hands, PGAS model provides a global address space that aids in building the distributed

global data structure. Despite its capability of expressing global data structure, PGAS still

fails to serve these graph analytic applications well due to the graphs’ irregular data and

the resulting computation load-imbalance [30]. For both solutions, dealing with graphs is

possible, but difficult because of irregular data and parallelism [1, 27].

A promising direction is MapReduce. Many applications have been expressed under this

framework in the past several decades mostly due to the prosper of functional languages and

cloud MapReduce. Its simple yet powerful interface allows parallel computation expressed

in terms of independent map and reduce functions and parallelized on parallel compute

resources. Despite the similarity, traditional functional programming languages and cloud

MapReduce optimized for different paths and none could serve our purposes. Functional

programming languages focus on expressing fine-grained parallelism in a shared memory

machine. Thus, they cannot support these future large-scale parallel machines with petabytes

of distributed memory. Cloud map-reduce systems add keys to organize the computation

and are more scalable, but focus more on fault tolarance and fails to exploit fine-grained

parallelism efficiently with its coarse-grained approach [24, 31, 9].

1.1.1 The Problem

1.1.2 Approach

We propose the key-value map-shuffle-reduce (KVMSR) framework to support irregular data

and computation parallelism in future large-scale parallel systems. These systems will use

novel building blocks for fine-grained parallelism and scale to 30 million parallel computation

elements [32]. To optimize irregular programs, KVMSR combines rich-structured keys and
2

global addressing of data and adds novel simple interfaces for programmers to directly control

the binding of map and reduce tasks to compute resources. Hence, programmers can exploit

the expressiveness of keys to flexibly manage parallelism and then optimize performance, in

a modular fashion by controlling data locality and load balance.

1.1.3 Results and Key Contributions

We describe our KVMSR model, use program examples to illustrate it, and then show how

the model’s flexibility supports high performance for challenging irregular computations.

Specific contributions of this paper include:

• Design of KVMSR for expressing and managing fine-grained parallelism using keys.

KVMSR expresses the binding of computation to compute resources independently

from program computation and data structure.

• Examples of how the keys in KVMSR can be used to efficiently control computation

binding, both statically and dynamically (using application, system, and data infor-

mation), to achieve load balance and high performance on irregular graph applications

• Evaluation that shows on a 8,192-way parallel compute system, KVMSR modular

computation location control achieves up to 2,317x performance with static approaches

and an increase of 549x to 2,715x speedup with dynamic approaches for computation

location binding.

The remainder of the thesis is organized as follows. Chapter ?? gives a brief overview of

the background. Then, the KVMSR model is defined in Chapter 3, followed by two program

examples described in Chapter 4. An implementation of the KVMSR model is evaluated

in Chapter 5, to show its flexibility and performance benefits. Finally, Chapter 6 discusses

related work in the field, and Chapter 7.1 summarizes the thesis and points out directions

for future work.
3

CHAPTER 2

BACKGROUND

This chapter presents a overview of the data-dependent irregular applications and its chal-

lenge on conventional parallel architectures and then focuses on one of the well-known pro-

gramming paradigms for parallel application, MapReduce. It then describes the challenge

introduces a fine-grained architecture targeting irregular parallelism and shows the potentials

it unlocks for future parallel programming models.

2.1 Irregular Applications and Limited Performance Scaling

Irregular applications are hard to achieve performance on conventional coarse-grained parallel

architectures due to their data-dependent imbalanced work distribution. One example of

such an application is graph computation. Real-world graphs typically have skewed degree

distribution [6, 2], that is a majority of vertices are of low degrees whereas a small portion

of vertices have magnitudes more of neighbors. Figure 2.1 depicts the power-law degree

distribution of Twitter follower network.

Figure 2.1: The in and out degree distribution of the Twitter follower network

This graph property poses a challenge on efficiently parallelizing graph computation be-

cause graph algorithms are usually defined in a vertex/edge centric view where computation is
4

expressed in terms of vertex/edge program. For example, a Pregel program requires defining

a Vertex subclass and implementing the computation for a vertex in the Compute() method

[23]. Listing 2.1 shows the PageRank implemented in Pregel. The Compute() method is ex-

ecuted on each vertex and the amount of work per invocation is determined by the number

of neighbors for that vertex. The skewed degree distribution of real-world graphs results in

a fraction of the vertices having magnitudes more work than the rest.

Listing 2.1: PageRank implemented in Pregel [23].

class PageRankVertex :

public Vertex<double , void , double> {

public :

virtual void Compute (Message I t e ra to r ∗ msgs) {

i f (super s t ep () >= 1) {

double sum = 0 ;

for (; ! msgs−>Done () ; msgs−>Next ())

sum += msgs−>Value () ;

∗MutableValue () = 0 .15 / NumVertices () + 0 .85 ∗ sum ;

}

i f (super s t ep () < 30) {

const i n t64 n = GetOutEdgeIterator () . s i z e () ;

SendMessageToAllNeighbors (GetValue () / n) ;

} else {

VoteToHalt () ;

}

}

} ;

The issue is more profound on conventional parallel machines, primarily because they

5

rely on the single-program-multiple-data (SPMD) and message-based programming model

to mitigate the high cost of communication and remote data access. That is, the graph is

statically partitioned across the system and each node is assigned with a subset of the vertices

and also responsible for executing the corresponding vertex programs. Remote data accesses

are done with messages, which are also batched for performance. Graph computation’s

fined-grained parallelism fits poorly into this model. Mostly because of the skewed degree

distribution of real-world graphs, part of the system will be assigned significantly more work

than the rest, leading to imbalance load across the system and under utilizing the hardware

parallelism.

2.2 Functional Language and Cloud Map-reduce

One of the parallel programming diagrams used widely is called MapReduce. It is known for

its simple yet powerful interface for expressing parallel computation.

The idea of MapReduce originated from the functional programming domain: functional

programming languages describes computations in terms of functions applied to sets/arrays

(map) and combine the results (reduce) [25, 24, 7]. These constructs can be used to ex-

press parallelism and exploit it on multicore and larger NUMA shared-memory machines.

However, these machines have limited scalability with the largest systems around 256 cores,

significantly smaller than the machine scale we are targeting at.

Later, in early 2000, cloud companies built a different map-reduce, designed for scale-out,

to internet-scale computations [9, 10]. The key motivation was to exploit the natural and

flexible expression of parallelism. These systems solved the important problems of reliability

(map and reducers), but with the significant restriction of no shared data structures (across

map or reduce functions). The cloud systems added keys, using them to both express

computation function, and indirectly to control parallelism. However, these systems manage

load balance automatically, depending on hashing and balanced sorts, eschewing programmer

6

involvement. This works adequately because cloud MapReduce systems typically operate on

coarse-grained tasks, running billions of instructions, many orders of magnitude larger than

the 100 instruction fine-grained tasks we are pursuing.

MapReduce’s simple and expressive interface can serve the first requirement posted in

the above section and is a good candidate for expressing fine-grained software parallelism

for graph computation. Despite the richness of domain, none of the existing frameworks

provide a way for programmers to control the location of compute or data, i.e., the second

requirements.

2.3 Fine-grained Parallel Hardware Architectures

Many novel architectures are proposed targeting challenge of efficient data-dependent irreg-

ular parallelism. The key characteristics of the architectures are: 1) abundant hardware

parallelism consisting of millions of simple cores in contrast to the conventional complex

out-of-order CPU cores with hierarchies of power-intensive caches, 2) nanosecond-level com-

munication latency enabled by advanced interconnect techniques plus hardware support for

fast messaging on low-diameter network in contrast to the software-based message solution on

traditional long-latency interconnect, and 3) asynchronous DRAM accesses capable of gen-

erating high memory-level parallelism (MLP) and better utilizing the memory bandwidth in

contrast to the synchronous load-store architecture with limited MLP.

The UpDown architecture is one example of novel architectures targeting irregular ap-

plications. Figure 2.2 presents a high-level view of the system design. An UpDown system

consists of 16k nodes, each of which has 1 multi-core out-of-the-shelf CPU, 8 stacks of HBM

memory, and 32 customized ASIC accelerators, called UpDown accelerator, as shown in fig-

ure 2.3. An UpDown accelerator consists of 64 MIMD cores, called lanes, and each lane

has 64KB single-cycle-access software-managed scratchpad memory. A lane can sustain up

to 128 concurrently active threads, each of which has independent hardware thread context

7

(instruction pointer, general-purpose registers, etc.) Each lane has a FIFO event queue for

incoming messages and an operand buffer for the message operands. The execution of a lane

is scheduled based on the events in the queue.

Figure 2.2: The UpDown System connected by the high performance system network.

Figure 2.3: each node has 1 CPU, 32 UpDown accelerators with uniform access to 8 HBM
stacks.

The UpDown accelerator is programmed using a RISC-V-like ISA with customized in-

structions for hardware-assisted event-driven programming. These instructions interact with

the hardware structures customized for fast messaging described above and speedup event

creation and event handling on UpDown. Hence, UpDown lane can create a event and send

in as minimal as 3 instructions. On the receiver side, the message operands are directly

mapped onto the register name space so that instructions can directly operate on the in-

coming message’s operands, unlike on conventional machines, the data must be moved to a

8

register before compute on it.

All the UpDown accelerators are connected via a diameter 3 topology called Polarstar

network featuring low-diameter, low-latency, and high-bandwidth communication [18]. Up-

Down provides a name space called NetworkID (or nwid in short) for all the accelerators

in a 16k node machine to send asynchronous messages directly to each other. Messages on

UpDown are extremely fine-grained, typically between 4 to 12 words, including the desti-

nation UpDown lane nwid, the thread id to be activated, the event to be triggered at the

destination lane, and the data operands. For a full-scale system with 16k nodes, 32 UpDown

accelerators per node, 64 lanes per accelerator and up to 128 thread context per lane, it’s

capable of delivering 4,194,304,000 fold hardware parallelism.

Despite the promising performance potentials provided by the hardware design, the ex-

tremely fine-grained hardware parallelism poses a significant challenge on writing software

programs capable of utilizing its potentials and delivering good performance. Most impor-

tantly, one need to solve two major problems: 1) how to flexibly express and generate the

fine-grained parallelism in software and 2) how to map the software parallelism onto the

hardware with good performance and high utilization?

9

CHAPTER 3

KVMSR PROGRAMMING MODEL

This chapter gives an overview of the KVMSR programming model. It first illustrates the

objectives of the design and then provides an abstract view of the target parallel system. The

rest of the chapter illustrates the KVMSR interface design, including defining data layout,

expressing computation, and binding computation to processing units.

3.1 Objectives

Designing a programming model for irregular applications on fine-grained parallel machines

requires understanding what a good parallel program should look like. Here, we identify three

main aspects critical to parallel programs. As shown in Figure 3.1, successful paralleliza-

tion of a program requires controlling three dimensions (namely, data layout, computation

mapping, and parallelism binding) of the program, coordinating them to achieve good load

balance and high machine utilization. The latter will lead to good parallel scalability and

performance.

To achieve the goal, parallel applications must deal with several challenges including accu-

rately expressing parallel computation and data structures, efficiently mapping computation

to compute locations (e.g., cores or lanes), and data to memory locations (e.g., memory

stacks or banks). as illustrated in Figure 3.1. While doing these correctly from a functional

point of view is already challenging for regular HPC applications, doing so and also achiev-

ing scalable performance is even harder for irregular data-dependent applications. Therefore,

the objective of a programming model is not limited to expressing the parallel computation

correctly but also involves ease of tweaking the dimensions to balance the irregular data and

computation across the system for performance. In other words, we are aiming to solve two

problems: 1) how to flexibly express the fine-grained parallel computation in software and

10

2) how to map the software parallelism onto the hardware with good performance and high

utilization?

Figure 3.1: Parallel applications manage three dimensions to achieve performance (left).
Computation and data need to be mapped to distributed capabilities in a balanced way for
good performance.

3.2 KVMSR Programming Model

To answer the two questions, we propose the key-value map-shuffle-reduce (KVMSR) model

featuring a flexible expression of parallel computation with a customized choice of computa-

tion binding independent from data distribution.

KVMSR employs keys as the critical abstraction for programmers to express parallel

computation. Parallelism is equal to the number of keys in the input key-value set and

computation is as fine-grained as the map task corresponding to a key. The reduce tasks are

similar except that the parallelism equals the total number of intermediate pairs generated

by the map tasks. That is, a reduce task is generated for each intermediate key-value pair

emitted by the map task.

KVMSR builds upon a global address space abstraction for data structures and supports

customized data structures so long as they conform with the key-value set interface. There-

fore, a data element can be addressed/named uniformly from anywhere in the machine. From

11

the program’s point of view, there is no distinction between accessing local data vs remote

data, eliminating the programmer from manually managing the data movement.

KVMSR’s major innovation is to use the keys as the basis for programmers to bind

parallel computation to compute resources. Most importantly, such binding is expressed

independently from the data layout and program computation and can be done statically

or dynamically based on the runtime load status of the machine, resulting in a clean and

modular interface. Such flexibility enables programmers to statically or dynamically load-

balance their parallel programs without reorganizing the data or changing the map and/or

reduce task implementation to accommodate the changes in binding.

Tersely, the key elements of KVMSR include:

1. Flexible and fine-grained parallelism, expressed as kv_map() and kv_reduce() tasks

on keys

2. User-defined key spaces to control binding of kv_map() and kv_reduce() tasks to

computation resources

3. Global address space for uniformly addressing and expressing of global data layout

4. Exposing machine primitives for exploring data location and dynamic computation

load

The four features collectively enable high-level programming of applications with global

data structures and independent control of a program’s parallelism and computation binding.

With a simple MapReduce-like interface, one can tune different dimensions of a parallel

program to achieve high performance on the target system: exploring computation binding

to exploit parallelism, colocating for data locality, and load balancing based on dynamic

information.

12

Figure 3.2: A parallel machine fundamentally has compute and data locations connected by
an interconnect.

Machine Model

In our model, we assume that a parallel machine includes two types of elements – compute

and memory – tied together by an interconnect as illustrated in Figure 3.2. We further

assume the hardware provides a global address space, and the ability to send messages and

move data across the interconnect with low overhead.

Here is a detailed description for each element:

1. Processing units: We assume that the machine consists of some number of MIMD

processing cores, and each core has a unique ID associated. A core can send a direct

message to any arbitrary core provided with the ID through the interconnect. For the

rest of the thesis, we use lane to denote a MIMD core and assign the index from the

namespace {0:num_lanes} to each lane, denoted as the LaneID.

2. Memory: The machine also has some number of memory locations, denoted as

{0:num_memories}. Lanes are attached to memory locations (can be one-to-one or

many-to-one relationships) but can directly access all the locations with a unified global

address space. In addition, the machine provides mechanisms to identify the affinity

based on the data address so that programmers can instruct the programs to take

advantage of data locality. We will describe later why this can be achieved and is

useful.

Given this machine model, high performance is achieved by sufficient parallelism and
13

good load balance to utilize all of the compute elements efficiently. In the rest of the section,

we will describe the KVMSR programming interface and illustrate how it can eliminate

programmers’ challenges on writing high-performance parallel programs on irregular data.

3.2.1 KVMSR Interface: Expressing Computation

At a high-level view, each KVMSR program contains two phases, map and reduce. The

map phase runs on the input key value set and generates an intermediate key-value set. The

intermediate key-value pairs will be shuffled to the reduce phase which executes in parallel

and produces an output key-value set. The procedure is illustrated in pseudo-code in Listing

3.1.

Listing 3.1: Pseudo-code for KVMSR. Execute map tasks in parallel, generates an inter-

mediate key-value set, shuffles, and executes reduce tasks in parallel to produce an output

key-value set.

event kv_map_shuffle_reduce (KVSet input_set , KVSet output_set) {

KVSet in t e r_se t ;

for (KVPair kv : input_set)

send (kv_map , kv . key , kv . va lue s) ; // genera te in t e rmed ia t e KVSet

s h u f f l e (i n t e r_se t) ;

for (KVPair kv : i n t e r_se t)

send (kv_reduce , kv . key , kv . va lue s) ; // genera te output KVSet

send_reply (output_set) ; }

To write a KVMSR program, programmers need to define the parallel computation tasks

in terms of kv_map() and kv_reduce() functions. The interface is illustrated in Listing

3.2. Similar to the conventional MapReduce framework’s interface, both map and reduce

functions take a key and a list of values associated with that key, compute on the input

key-value pair as defined in the function bodies, and then emit one or more key-value pairs

14

to the intermediate or output key-value set (output can be eliminated as well).

Listing 3.2: Function kv_map() and kv_reduce() interface.

event kv_map(Key key , Types va lue s) {

. . . map code . . .

send (kv_map_emit , inter_key , in te r_va lues) ; }

event kv_reduce (Key inter_key , Types in te r_va lues) {

. . . reduce code . . .

send (kv_reduce_emit , out_key , out_values) ; }

As illustrated in Listing 3.1, the kv_map() functions are called in parallel for each key

in the input key-value set, producing an intermediate key-value set. These are shuffled to

bring together values for any single key. The kv_reduce() function is called in parallel on

each intermediate key-value pair to produce the output set. While many uses are possible,

kv_map() typically expresses independent parallel computation, and kv_reduce() merges

values, handling any needed serialization in the program.

3.2.2 KVMSR Interface: Global Data Structures

KVMSR expects the input and output to follow the KVSet interface. Logically, each set

contains an arbitrary number of key-value pairs, each includes a key and an arbitrary size

of values. The keys are used to iterate over the entire KVSet (i.e., sequential access function

get_next()) and retrieve a particular key-value pair from the KVSet (i.e., random access

function get_values()). Listing 3.3 gives a brief skeleton of the interface for KVSet. Note

that the skeleton uses pointers (Key* and Values*) for simplicity. Nonetheless, the interface

does not constrain the data layout and underline data structure and it can be implemented

as array, trees, table, queues etc. It is left to the programmers to define the access approach

in the random and sequential access functions based on the data layout they choose for their
15

programs.

Listing 3.3: Data structure KVSet interface.

struct KVSet{

Key∗ key ; Values ∗ va lue s ; }

event get_next (Key key) {

. . . c a l c u l a t e next key . . .

send_reply (key) ;

}

event get_values (Key key) {

. . . c a l c u l a t e address . . .

send_reply (Value ∗) ; }

To write a KVMSR program, programmers first should extend the KVSet interface, imple-

ment the abstract functions for random and sequential access with keys for each customized

subclass of KVSet, and then pass the input and output KVSet to the KVMSR entry point

kv_map_shuffle_reudce().

As described in Section 3.2, KVMSR assumes the machine supports a global address

space with unified naming (i.e., addresses) to access all the data. Therefore, KVSet can be

allocated locally in a memory location or stride across all the memory locations and anywhere

in between. Regardless of the data layout, KVMSR can address the data within the global

address space, greatly simplifying data management.

Global data structures also make KVMSR much more powerful than the conventional

cloud MapReduce [9, 10], because in the latter map and reduce computation is restricted to

the data from the input value and cannot access globally shared data. On the other hand,

KVMSR’s map and reduce functions can access arbitrary data during the computation with

16

the global address. More importantly, it implies that KVMSR’s input values can include

pointers to data in the global shared address space, and with pointers, map and reduce

functions can directly interact and/or manipulate pointer-based data structures, such as self-

synchronizing data abstractions, etc. For example, one can define the map task to read data

from a shared hash table using one of the input values as the table index and define the reduce

function to write the output to a multi-producer-multi-consumer queue supporting atomic

operations. In Section 4.1, we give an example to demonstrate the benefits of operating on

global memory.

Such flexibility is the key to KVMSR’s programmability and generality. The support of

pointers enables programmers to describe computations on complex data structures. It also

implies that programmers can take their existing C or C++ implementation of a serialized

program and place it inside KVMSR’s map/reduce functions to parallelize the computation

automatically with minimal code changes.

3.2.3 KVMSR Interface: Parallelism Management

Managing parallelism is crucial to parallel programs’ performance. Too much parallelism on

a lane will overflow the lane resources (queues for example) slowing down the progression,

whereas insufficient parallelism will leave the lane underutilized limiting the throughput.

Traditional parallel programming frameworks usually expose primitives for controlling the

thread/process limits, e.g., threads, ranks, etc. Similarly, KVMSR also allows programmers

to assign a range of lanes to the program and specify the maximum number of concurrently

running threads on each lane (bounded by the hardware parallelism) using the function

set_max_thread().

Applications exploit the available parallel compute resources by binding tasks to compu-

tation locations and whether one can efficiently do so is critical to the program’s performance.

A static binding implied from the data location is sufficient if the program is regular and/or

17

the parallelism is predictable but not for irregular applications with nondeterministic data-

dependent irregularity. Therefore, to help write and optimize irregular parallel programs,

KVMSR provides two customizable functions for programmers to control the binding of

computation to resources, i.e., compute locations, enabling programmers to load-balance the

system based on program knowledge and/or runtime information dynamically.

Customizing Computation Location Binding

As described above, KVMSR describes parallel computation in terms of map and reduce

tasks, which are managed based on keys. Therefore, KVMSR provides two customizable

functions get_map_loc() and get_reduce_loc(), both using the key to determine a location

on which the task will be executed. The interface is illustrated in Listing 3.4.

Listing 3.4: Function get_map_loc() and get_reduce_loc() interface. Bind keys to com-

pute locations.

event get_map_loc (Key key) {

LaneID id = . . . ;

send_reply (id) ; }

event get_reduce_loc (Key key) {

LaneID id = . . . ;

send_reply (id) ; }

With the get_map_loc() and get_reduce_loc() functions, the computation location

binding for both phases can be statically specified or dynamically decided as below.

• Static Simple hashing or static distribution techniques can be used to spread unpre-

dictable task sizes and number of task computations across the machine. The binding

can also be determined statically based on the data location, given it does not change

during the program execution.

18

• Dynamic Locations can also be dynamically determined based on machine compute

load.Applications can use machine-specific features, such as get_less_busy_lane(),

to acquire system load information and dynamically decide the binding to load-balance

the system.

In summary, we introduced the KVMSR programming model and briefly explained the

design objectives in this Chapter. Table 3.1 lists the key data abstraction, interface functions,

and virtual functions to be implemented by programmers in KVMSR.

In the next Chapter, we will show how to utilize the power of customizing control of com-

putation binding in KVMSR for parallelism management and computation load balancing.

19

Ta
bl

e
3.

1:
A

su
m

m
ar

y
of

th
e

K
V

M
SR

in
te

rf
ac

e.

K
V

M
SR

In
te

rf
ac

e
T

yp
e

D
es

cr
ip

ti
on

K
V

S
et

da
ta

st
ru

ct
ur

e
In

pu
t,

in
te

rm
ed

ia
te

,a
nd

ou
tp

ut
da

ta
st

ru
ct

ur
es

sh
ou

ld
be

de
-

fin
ed

fo
llo

w
in

g
th

e
K

ey
V
al

ue
Se

t
ab

st
ra

ct
io

n.
U

se
r

de
fin

it
io

n
sp

ec
ifi

es
ho

w
th

e
da

ta
is

la
id

ou
t

in
th

e
D

R
A

M
an

d
th

e
da

ta
ty

pe
of

ke
y

an
d

va
lu

e
fo

r
ea

ch
ke

y-
va

lu
e

pa
ir

.
ev

en
t

ge
t_

va
lu

es
(K

ey
)

ab
st

ra
ct

fu
nc

ti
on

G
iv

en
a

ke
y

fr
om

th
e
KV

Se
t’

s
ke

y
sp

ac
e,

re
tu

rn
s

a
po

in
te

r
to

it
s

co
rr

es
po

nd
in

g
va

lu
es

(i
.e

.,
ad

dr
es

s)
.

ev
en

t
ge

t_
n
ex

t(
K

ey
)

ab
st

ra
ct

fu
nc

ti
on

G
iv

en
a

ke
y

fr
om

th
e
KV

Se
t’

s
ke

y
sp

ac
e,

re
tu

rn
s

th
e

ne
xt

ke
y

in
th

e
KV

Se
t.

ev
en

t
kv

_
m

ap
_

sh
u
ffl

e_
re

d
u
ce

()
in

te
rf

ac
e

fu
nc

ti
on

E
nt

ry
po

in
t

of
th

e
K

V
M

SR
pr

og
ra

m
.

ev
en

t
kv

_
m

ap
(K

ey
,
V

al
u
es

..
.)

ab
st

ra
ct

fu
nc

ti
on

D
efi

ne
s

th
e

co
m

pu
ta

ti
on

on
in

pu
t
KV

Se
t.

Ta
ke

s
a

ke
y-

va
lu

e
pa

ir
fr

om
in

pu
t

K
V

Se
t

an
d

m
ay

ge
ne

ra
te

1
or

m
or

e
ke

y-
va

lu
e

pa
ir

s
to

th
e

in
te

rm
ed

ia
te

KV
Se

t.
ev

en
t

kv
_

re
d
u
ce

(K
ey

,
V

al
u
es

..
.)

ab
st

ra
ct

fu
nc

ti
on

D
efi

ne
s

th
e

co
m

pu
ta

ti
on

on
in

te
rm

ed
ia

te
KV

Se
t.

Ta
ke

s
a

ke
y-

va
lu

e
pa

ir
fr

om
th

e
in

te
rm

ed
ia

te
KV

Se
t

an
d

w
ri

te
s

th
e

re
su

lt
to

th
e

ou
tp

ut
KV

Se
t.

ev
en

t
ge

t_
m

ap
_

lo
c(

K
ey

)
ab

st
ra

ct
fu

nc
ti

on
G

iv
en

a
ke

y
fr

om
th

e
in

pu
t
KV

Se
t’

s
ke

y
sp

ac
e,

re
tu

rn
s

th
e

la
ne

fo
r

w
hi

ch
th

e
co

rr
es

po
nd

in
g

m
ap

ta
sk

w
ill

be
sc

he
du

le
d.

ev
en

t
ge

t_
re

d
u
ce

_
lo

c(
K

ey
)

ab
st

ra
ct

fu
nc

ti
on

G
iv

en
a

ke
y

fr
om

th
e

in
te

rm
ed

ia
te

KV
Se

t’
s

ke
y

sp
ac

e,
re

tu
rn

s
th

e
la

ne
fo

rw
hi

ch
th

e
co

rr
es

po
nd

in
g

re
du

ce
ta

sk
w

ill
be

sc
he

d-
ul

ed
.

A
ll

th
e

in
te

rm
ed

ia
te

ke
y-

va
lu

e
pa

ir
s

w
it

h
th

e
sa

m
e

ke
y

w
ill

be
sc

he
du

le
d

on
th

e
sa

m
e

la
ne

.

20

CHAPTER 4

EXAMPLES

In this Chapter, we describe two program examples to demonstrate KVMSR’s modular

programming interface and highlight its flexibility and efficiency in expressing and optimizing

irregular parallel programs.

4.1 Convolution Filter

We start with a simple example, the convolution filter program, mainly to illustrate KVMSR’s

programming interface. The input and output pixel data are stored in global two-dimensional

arrays. The KVMSR program applies a convolution filter on each sub-image of the same

size and output another image.

4.1.1 Computation

The KVMSR pseudo code is shown in Listing 4.1. Each map function applies a 3x3 convo-

lution filter to the sub-image centered at pixel < x, y > and outputs the new value for that

pixel. The outputs are then shuffled to the reduce function, which stores new values in the

output image. Here, we use the center pixel’s < x, y > coordinates as the key.

Listing 4.1: Baseline KVMSR convolution filter program code

typedef struct { int x_idx , y_idx ; } Key ;

double input_image [M] [N] ;

void kv_map(Key key , double [] va lue s) {

double [3] [3] conv_kernel = l o a d_ f i l t e r () ;

double [3] [3] sub_img = to_matrix (va lue s) ;

double r e s u l t = conv (sub_img , conv_kernel) ;

21

Figure 4.1: Computation binding for the baseline convolution filter program: placing all the
tasks on a single lane.

kv_emit (key , r e s u l t) ;

return ; }

void kv_reduce (Key key , double value) {

output_image [key . x_idx] [key . y_idx] = value ;

return ; }

LaneID get_map_loc (Key key) { return 0 ; }

LaneID get_reduce_loc (Key key) { return 0 ; }

4.1.2 Computation Binding

In Listing 4.2, we customize the get_map_loc() and get_reduce_loc() functions to dis-

tribute the computation tasks to the available lanes based on keys. With KVMSR’s modu-

larized interface, only the binding functions are changed, and the rest of the program, e.g.,

kv_map() or kv_reduce() computation and data layout, remains the same, as shown in

Figure 4.2.

22

Figure 4.2: The statically distributed Convolution Filter program spreads computation over
N lanes.

Listing 4.2: Parallel convolution filter program code with static computation location binding

based on the key.

LaneID get_map_loc (Key key) {

int idx = key . x_idx ∗ input_img . dim [1] + key . y_idx ;

return idx % NUM_LANES;

}

LaneID get_reduce_loc (Key key) {

int idx = key . x_idx ∗ input_img . dim [1] + key . y_idx ;

return idx % NUM_LANES;

}

Using this simple example, we show that programmers can express program function in

kv_map() or kv_reduce() task, conveniently use global data structures, and orthogonally

control the computation location binding to parallelize the program across the compute

resources.

23

4.2 PageRank

In a push-based PageRank program, each vertex reads its out-neighbors and sends the PageR-

ank value along that edge. In the reduce stage, each vertex computes the average of incoming

values from its in-neighbors in one pass and outputs the updated PageRank value [38] as

shown in the KVMSR pseudo-code in Listing 4.3.

Listing 4.3: Baseline PageRank Program Code

typedef int Key ;

struct Vertex{ int degree ; int ne ighbors [] ; }

void kv_map(Key key , double value) {

Vertex v = input_graph . get_vertex (key) ;

double out_pr_value = value / v . degree ;

for (int i = 0 ; i < v . degree ; i++)

kv_emit (v . ne ighbors [i] , out_pr_value) ;

return ; }

void kv_reduce (Key key , double value) {

Vertex u = output_graph . get_vertex (key) ;

u . va lue = one_pass_avg (u . value , va lue) ;

return ; }

4.2.1 Computation Binding

One way to parallelize the computation is to distribute the keys (in this case vertices) evenly

across the lanes and assign tasks accordingly based on the keys. The resulting program is

presented in Listing 4.4 (the rest of the code remains the same and is omitted from the

pseudo-code).

24

Listing 4.4: PageRank program with the default static computation binding based on key.

LaneID get_map_loc (Key key){ return key % NUM_LANES; }

LaneID get_reduce_loc (Key key){ return key % NUM_LANES; }

Alternatively, one can also spread the computation based on the data locations. For

example, in Listing 4.5, we use the function get_location(data) to find the location of

data and statically bind computation to where it is located.

Listing 4.5: PageRank with static computation binding based on data location

LaneID get_map_loc (Key key){

return get_locat ion (input_graph . get_vertex (key)) ; }

LaneID get_reduce_loc (Key key){

return get_locat ion (output_graph . get_vertex (key)) ; }

Static bindings work well for PageRank if the graph is regular and every vertex has the

same number of neighbors. However, most real-world graphs have skewed degree distribu-

tions. Lanes that are assigned high-degree vertices will have a magnitude more work than

the rest, resulting in an imbalanced load across the machine and bad parallel performance.

To solve the issue raised by irregular data, we present another variant of PageRank

which uses get_less_busy_lane() to dynamically identify lanes with less load and bind

computation accordingly to spread the load. The resulting program is shown in Listing 4.6.

Listing 4.6: PageRank program with dynamic computation binding based on the computate

load

LaneID get_map_loc (Key key) { return get_less_busy_lane () ; }

LaneID get_reduce_loc (Key key) { return get_less_busy_lane () ; }

Using PageRank, we illustrate several ways of using the get_map_loc() and get_reduce_loc()

to statically or dynamically distribute unpredictable irregular computation across computa-

tion resources.

25

4.3 A Broader Range of KVMSR Applications

We have presented two KVMSR programs and the procedure to tune different dimensions of

a parallel program (computation, data, and computation binding referring to section 3.1 for

performance in the sections above. For the sake of understanding, the examples we pick are

relatively easy with minimal computation done per key-value pair. We want to highlight in

this section that KVMSR can support a wide range of challenging irregular computations.

KVMSR belongs to the larger project on developing the next-generation high-performance

supercomputer targetting sparse and irregular computation, namely UpDown. By the time

the thesis is written, we have a range of challenging applications developed entirely or par-

tially on KVMSR for the UpDown project and many more are under development. The

computation varies noticeably, ranging from graph neural network training and inference,

sparse matrix multiplication, graph pattern matching, genetic sequencing, multi-hop rea-

soning, graph transformation, influence maximization, graph adjustment, etc. Most of the

development was done within days. Table ?? summarizes the applications and their charac-

teristic.

KVMSR is based on a MapReduce-like programming interface and extended with a modu-

lar interface for customizing computation binding on a parallel machine. The former provides

KVMSR with programmability and generality demonstrated in cloud MapReduce and func-

tional languages, whereas the latter enables flexible performance tuning of data-dependent

irregular programs on large-scale parallel machines. As a result, KVMSR enables a wide

range of programs running on a fine-grained machine with minimal programming effort.

In the next Chapter, we conduct a detailed evaluation of KVMSR’s scalability and pro-

grammability on the UpDown machine.

26

CHAPTER 5

EVALUATION

In this Chapter, We evaluate the KVMSR programming model, mainly focusing on two

properties: 1) programmability, modularity, and expressiveness of the model and 2) the

performance scaling on a fine-grained parallel machine, the UChicago UpDown machine

(described in Section 2). The performance numbers are collected from the gem5 simulator

with UpDown accelerator extension.

5.1 Evaluation System Specification

Table 5.1 lists the hardware details of the UpDown system. Briefly speaking, an UpDown

machine is designed to have up to 16k nodes, each of which has 2,048 lanes, i.e., compute

locations, organized in clusters of 64 (one UpDown accelerator) . As for the memory, there

are 8 HBM2e stacks attached to each node, in total 128GB of memory. The high degree of

fine-grained parallelism is possible at low power on UpDown because the lanes have no data

caches, only a small 64KB scratchpad memory.

Key performance attributes of the machine include a high degree of multithreading in

each lane with 1 cycle thread creation and termination, massive fine-grained MIMD lanes

each with 64KB scratchpad memory for fast access, and a globally addressed memory with

low latency – 70ns within a stack and 150ns to remote stacks.

In our experiments, we simulate various numbers of parallel compute resources up to

8,192 lanes (i.e., 4 nodes). We utilize the machine’s special feature to identify a lightly

loaded lane and find a lane near a data for implementing the get_less_busy_lane() and

get_location(data) function used in PageRank and BFS.

all computations in the baseline program run on a single lane (serialized execution).

Parallel versions distribute the computation using custom binding functions shown in Listing

27

Table 5.1: UpDown System specification

Total number of nodes 16,000
Accelerators per node 32
Accelerator cores per node 2,048
Scratchpad memory per accelerator 4 MB
Scratchpad memory per core 64 KB
DRAM capacity per node 128 GB
DRAM bandwidth per node 8.8 TB/s
Intra-node DRAM access latency 150.24ns
Inter-node DRAM access latency 1,100 ns
Cross node network bandwidth 4 TBps/node
Cross node network latency 26.5 ns

4.2, 4.5, and 4.6.

We then execute the programs on the UpDown simulator implemented with GEM5,

evaluate performance, and report the runtime [32, 3]. The KVMSR programs exhibit fine-

grained parallelism, indicated by the number of parallel tasks and the mean instructions

per task. Pagerank and BFS are not only fine-grained but extremely irregular in their task

size, as demonstrated by the huge standard deviation. Traditional scalable programming

models such as MPI and PGAS are unable to exploit such fine-grained parallelism, as their

per-message communication overheads alone are thousands to millions of instructions.

5.2 Programmability, Modularlity and Model Expressiveness

KVMSR’s modular interface allows computation location binding to be expressed separately

from the program’s parallel computation (function). In this section, we measure the pro-

gramming effort (in lines of code) to tuning dimensions of the parallel programs to highlight

modularity and programmability of KVMSR.

28

5.2.1 Implementation

We implement the KVMSR model on the UpDown machine, called UDKVMSR (UpDown

KVMSR), and evaluate three KVMSR programs: convolution filter, PageRank, and BFS.

The convolution filter and PageRank program follow Listing 4.1 and Listing 4.3 in Section

4.

In addition to the two program examples in Section 4, we further implemented the syn-

chronous push-based BFS in UDKVMSR. The program structure is similar to PageRank but

with input and output from frontiers implemented using the parallel hash table abstraction,

updating the distance and parent information instead of PageRank values. BFS uses the

same computation-to-compute-location binding functions as PageRank.

5.2.2 Metric

To show the expressiveness of KVMSR, we count the lines of code for describing program

computation/function and the binding of computation to lanes. UpDown programs are

written in a C-like language and compiled by the compiler, called UDWeave, into the UpDown

assembly programs. Listing 5.1 gives an example of a UDWeave program. The lines of

UDWeave code are comparable to those of the corresponding C program, except that memory

accesses are achieved by asynchronous messages with UpDown intrinsic functions.

Listing 5.1: UDWeave code for reading the neighbors of a vertex from the BFS UDKVMSR

program. Functions evw_update_event(), send_event(), and send_dram_read() are in-

trinsic functions supported by the UpDown hardware and will be compiled to UpDown ISA

instructions.

event kv_map(long degree , long vid , long ∗ neighbors , long d i s t , long∗ vertex_addr) {

// I f the v e r t e x i s v i s i t e d or has degree 0 , s k i p i t

i f ((d i s t >= 0 && d i s t <= i t e r a t i o n) | | degree == 0)) {

long evw = evw_update_event (CEVNT, kv_map_return) ;

29

send_event (evw , vid , CEVNT) ;

y i e l d ;

}

int count = 0 ;

long∗ n l i s t_pt r = ne ighbors ;

long evw = evw_update_event (CEVNT, rd_nl i s t_return) ;

while (count < degree) {

send_dram_read (n l i s t_ptr , DRAM_MSG_SIZE, evw) ;

count = count + DRAM_MSG_SIZE;

n l i s t_pt r = n l i s t_pt r + DRAM_MSG_BSIZE;

}

}

5.2.3 Result

Table 5.2: Code Size for each tuned version of KVMSR programs (Lines of Code).

Application Function Serialized
Baseline

Static Bind-
ing on Key

Static Bind-
ing on Data
Location

Dynamic
binding on
compute
load

Convolution
Filter

24 0 2 2 N/A

PageRank 58 0 2 2 6
BFS 185 0 2 2 6

In Table 5.2, we present the line of code counts for the programs and their varia-

tions. A program’s code includes its computation/function portion (defined in kv_map()

and kv_reduce()), and the computation binding portion (defined in get_map_loc() and

get_reduce_loc()). The baseline does not specify any computation binding and execute
30

Table 5.3: Programs and Key Properties

Program (Dataset) Data Size Num Tasks Data/Task Mean
Inst/Task

StdDev
Inst/Task

Convolution Filter (8Kx8K
Matrix, 3x3 filter)

512MB 67,076,100 72B 58 0

PageRank & BFS (RMAT
graph scale 20, 220 vertices)

292M 1,048,576 305B 154 43,395

everything on 1 lane, so 0 lines are required. The static bindings in convolution filter,

PageRank, and BFS programs each add 2 lines of code to specify computation location from

keys or data location using get_location(data). One line in each of get_map_loc() and

get_reduce_loc(). PageRank’s and BFS’s dynamic binding version based on the compute

load (see Listing 4.6) adds 6 lines using the UpDown intrinsic function get_less_busy_lane().

Table 5.2 highlights KVMSR’s modular interface, allowing the definition of computation

binding orthogonal to the program function, i.e., only the binding functions are modified

leaving the main body of the program unchanged.

5.3 Benefits of Computation Location Control

In this section, we run the above UDKVMSR programs on the UpDown machine and collect

the performance statistics from the gem5-based UpDown simulator.

5.3.1 Experiment Setup

Table 5.3 summarizes the datasets we used for the experiments. Convolution filer is running

on a regular matrix with 8,192x8,192 (=67,108,864) entries and of size 512MB. PageRank

and BFS both are running on the synthetic graph generated using the RMAT generator

with parameters from Graph500 specification (a = 0.57, b = c = .19, and daverage = 16)

[5, 13]. The generated graphs resemble real-world graphs and exhibit highly-skewed degree

31

distributions.

We customized the GEM5 [3], a cycle-accurate hardware simulator, to simulate the Up-

Down machine. The simulator configurations follow the machine specification in Section 5.1

except that it only simulate up to 4 nodes, that is 8,192 lanes (MIMD cores) due to time and

memory constraints. The baselines for our evaluation are the corresponidng C++ program

for the same three applications (Convolution, PageRank and BFS) and running on a single

core CPU. We collect the performance numbers also from the GEM5 simulator. The simu-

lated system is a x86 Out of Order CPU (single core) with 64KB L1 cache, 256KB L2 cache

and 8MB L3 cache at 2 GHz. The baseline C++ program is single-threaded, i.e., serializes

the execution.

5.3.2 Result

We conducted two experiments to evaluate KVMSR’s potential for performance scaling on

thousands-fold parallelism and the impact of customized computation binding functions on

parallel programs.

1. Experiment I We run the Convolution, PageRank and BFS UDKVMSR programs

described in Section 4 with the static computation binding function on keys shown in

Listing 4.2 for Convolution and Listing 4.4 for PageRank and BFS. We simulate the

programs on the gem5 and measure their performance running on 64, 128, 256, 512,

1,024, and 2,048 UpDown lanes.

2. Experiment II We focus on PageRank and BFS, i.e., the data-dependent irregular

programs, and comparing the performance of the same UDKVMSR programs except

different choices of computation binding functions. We further scale up the machien

scale to 8,192 lanes (4 UpDown nodes).

32

Performance Scaling of KVMSR Programs

Figure 5.1 presents the speedup of the UDKVMSR programs over the single-threaded CPU

baseline programs for Convolution, PageRank and BFS respectively with the same static

binding function based on key (i.e., statically divided the keys across the lanes).

Figure 5.1: Speedup of the UDKVMSR Convolution, PageRank and BFS with static binding
based on Keys over the single-thread CPU baseline

Compared to the single-thread C++ baseline program, the UDKVMSR convolution pro-

gram gains 477x performance speedup on 256 lanes and 9,202x on 8,192 lanes program,

achieving excellent parallel performance. On the other hand, the UDKVMSR PageRank

and BFS program gained 195x performance speedup on 256 lanes and 635x on 8,192 lanes,

and 408x performance speedup on 256 lanes and 2,423x on 8,192 lanes respectively, achieving

moderate performance improvement from a 32x increase of hardware parallelism.

Taking a closer look at the performance scaling, we compare the 256-lane performance

to that of the 8,192 lanes for the UDKVMSR programs. Convolution scales well, gaining

19.4x improvement for a 32 times increase in hardware parallelism. On the other hand,

PageRank and BFS with the static computation binding fail to scale, gaining only 3.24x and

5.93x speedup respectively. This results from the data-dependent work unbalancing since

33

Figure 5.2: Speedup of PageRank with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute load (right
bars) over the single-thread CPU baseline.

both PageRank and BFS operate on the RMAT graph with skewed degree distribution. The

naive binding approach which statically divides the tasks across the lanes leads to some

unlucky lanes getting assigned high-degree vertices and having magnitudes of more work

than the rest. The poor performance scaling is mostly a result of lanes pending for the

long-run task to finish.

Managing Parallelism

As shown in the previous experiment, the two graph UDKVMSR programs with static com-

putation binding based on key approach scale poorly as the hardware parallelism increases.

The reasons are twofold:

1. The task size is determined by the highly-skewed input vertex’s degree, resulting in

irregular task size (see Table 5.3).

2. Both programs access memory intensively with limited computation associated with
34

Figure 5.3: Speedup of BFS with static binding based on Keys (left bars), static binding
based on data location (middle bars), and dynamic binding based on compute load (right
bars) over the single-thread CPU baseline.

each data so DRAM access latency dominates.

To study the impact of computation binding on irregular parallel programs performance,

we designed the second experiment: changed the computation binding functions and mea-

sured the programs’ performance and scaling. We again normalize the performance of BFS

and PageRank programs running on various sizes of the machines but this time for different

computation binding functions, including both static and dynamic. For better comparison,

the left bars in Figure 5.2 and 5.3 shows the same data as the PageRank and BFS perfor-

mance in Figure 5.1, where both programs use the static binding function based key to evely

divided the keys to lanes.

The first alternative we explored is binding computation to locations close to the data.

The data is depicted by the middle bars in Figure 5.2 and 5.3. With improved data locality,

PageRank and BFS achieve an average of 2.6x performance improvement compared to the

static binding based on keys. In the case of 4 nodes (8,192 lanes), the performance of

35

PageRank improves by 3.2x due to reduced memory access latency. BFS scales less but still

improves by 1.96x over the naive binding appraoch. However, static binding functions lack

the run-time information to distribute the computation evenly, so in the case of less than 1

node (≤ 2,048 lanes), load imbalancing across the lanes significantly limits the performance,

leaving room for improvement.

The other binding approach we examined is dynamically binding tasks to on less busy

lanes based on the run time system load status. The data is shown in the right bars in Figure

5.2 and 5.3. The additional runtime information dramatically improves PageRank’s perfor-

mance: about 4.9 times the speedup for 2,048 lanes from 343x to 3,136x. The improvement

on BFS is less compared to the static binding based on data location approach, i.e., from

339x to 4,258x, since the BFS’s parallelism (i.e., frontier size) is spread across the iterations

and data accesses dominates the latency.

In summary, KVMSR’s flexible and modular interface allows this dramatic change of com-

putation location binding with a few lines of code, bringing huge performance improvements

to the programs.

36

CHAPTER 6

RELATED WORK AND DISCUSSION

In this Chapter, we review the related work on parallel programming models and frameworks

and graph processing systems.

6.1 Functional Language and Cloud Map-Reduce

Functional languages allowed functions to be applied to sets/arrays (map) and combine

the results (reduce) [25, 24, 7]. Originated for expressive power, these constructs can be

used to express parallelism and exploit it on multi-core and large NUMA shared-memory

machines. However, these machines have limited scalability with the largest systems around

256 cores. Our studies are for 8,192 compute locations, and a full system design has over

30M compute locations, which have several magnitudes more hardware parallelism than any

existing multi-core machines.

Later, cloud companies built a different map-reduce, designed for scale-out/internet-scale

computations and focus on fault tolerant [9, 10]. The key motivation was to exploit the nat-

ural and flexible expression of parallelism and effectively map the parallelism onto scale-out

distributed systems. These systems solved the important problems of reliability (map and

reducers), but with the significant restriction of no shared data structures (across map or

reduce functions). Compared to the functional languages predecessors, the cloud systems

added string keys, using them to express computation function and to control parallelism

indirectly and at coarse-grained. However, these systems manage load balance automati-

cally, depending on hashing and balanced sorts, eschewing programmer involvement. This

works adequately for cloud system because their MapReduce typically operate on coarse-

grained tasks, running billions of instructions, many orders of magnitude larger than the 100

instruction fine-grained tasks we are pursuing in UDKVMSR.

37

None of these functional or cloud map-reduce frameworks provide any way for program-

mers to control the location of compute or data. KVMSR uses keys to control and manage

the parallelism. Users can direct the computation location mapping, balance the load across

the system, and synchronize data reduction all with keys. Such control is the core contribu-

tion of KVMSR.

6.2 Message Passing (MPI) & Partitioned Global Address

(PGAS)

A popular model for scalable parallelism (and high-performance computing – HPC), is mes-

sage passing. Typically, the single-program multiple data (SPMD) divides data across sepa-

rate processes with private address space [14]. Each process computes on local, private data,

and in the pure message-passing model, all remote (global) data is accessed via explicit

messages.

The message-passing model makes programming complex distributed structures tricky

(e.g., trees, graphs, hierarchical data). For computations using such structures for algo-

rithmic efficiency, programming with distributed data and computation is challenging. The

model provides no support for global naming, so different names must be used (typically

software-interpreted) for any global data structures. As a result, programs using sophisti-

cated pointer-based structures are difficult to express in this model [27]. If work is dynami-

cally generated and tied to such structures, e.g., irregular work and parallelism, programming

is even more challenging [21]. If the data or computation is irregular, this produces complex

programming and communication (see high-performance implementations of irregular and

graph applications [27, 26]).

An important extension of the message-passing model adds a partitioned global address

space (PGAS), federating the local process address spaces as in Global Arrays, UPC++, and

ADLB [30, 1, 21]. PGAS programs provide the convenience of global naming, easing the pro-

38

gramming of complex data structures and irregular parallelism. However, this convenience

does not alter the underlying performance challenge, as to achieve speedup work must be

aligned and balanced across the address spaces. This is because ultimately the computation

is done by cores which can only access data in a single private address space.

6.3 Linda & Tuple Space

Linda is another well-established model in the parallel programming world, focusing on co-

ordinating communication between processes [11]. The key concept in Linda is its tuple

space abstraction, a data repository shared between processes where each process can inde-

pendently generate and/or take elements (i.e., tuples) from it. The resulting advantage is

communication orthogonality, meaning that processes involved in communication are decou-

pled in both time and space dimensions.

The logical view of KVMSR’s key space, to some extent, resembles Linda’s tuple space.

Despite the similarity, tuple space focuses on concurrent access, production, and modifica-

tion of shared tuples. On the other hand, the key space in KVMSR is mainly for efficiently

managing parallel computation on key-value pairs. One can bundle keys together and par-

tition the key space in different granularities for KVMSR to exploit parallelism at various

levels. This level of management is not a focus for tuple space, where communication is at

the granularity of each tuple.

6.4 Scalable Graph Processing Systems

While many graph-processing systems have been constructed, many of them focus on effi-

ciency and do not scale to large numbers of parallel nodes [17, 35]. Of those designed to

scale, those based on map-reduce are designed to scale, but suffer from massive inefficiency

as each vertex and edge operation can cost a TCP message in a cloud computing cluster

39

[22, 33]. The two implications are that high performance requires the use of datacenter scale

resources (10,000 nodes to outperform a 128-node SMP) and because they are built on map-

reduce, load balance is performed by the system, and programmer input is not possible. At

the lower efficiency and coarse-grained execution of these systems, sampling with balanced

sorting gives adequate balance. Customized graph computing systems have been developed

that include a custom programming model, vertex-centric and iterative, and achieve mod-

erate scalability on conventional hardware (16x on either 16 or 64 nodes), largely benefiting

from the increased memory to compute larger problems [20, 12]. KVSMSR targets general

irregular algorithms and data, a much larger class of applications.

6.5 Discussion

In general, flexibility and modularity in program structure are considered a virtue in lan-

guages and programming models – and application software architecture. In message-passing

programs, code expression locks in data layout/locality choices, and consequently computa-

tion mapping (freezing the data mapping). In PGAS programs, this problem is lessened, but

achieving good performance requires data movement and work management to align with

the parallel compute structure.

By design, KVMSR uses a global address space to enable computation to be expressed

independently of performance tuning. Thus computation binding to compute resources can

be done flexibly with keys. This supports rapid exploration to find good choices, enabling

adaptation to different data properties, hardware properties, or even dynamical runtime

states.

40

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

This thesis presents the architecture of the UpDown accelerator, as an event-driven pro-

grammable processor, with a notion of how it fits into the larger UpDown system. The key

ideas demonstrated are summarized below.

• The novel UpDown ISA and architecture mechanisms in the UpDown accelerator help

achieve our goal of software customization in the memory hierarchy. While this cus-

tomization can be applied across applications in general, we demonstrated this on a

set of irregular graph processing applications and SpMV using encoded memory

• The key features of the UpDown accelerator, namely low-latency events, short thread

activations, split transaction messaging, and flexible software programmability enable

it to achieve high thread creation rates (43Bi/s) and potentially saturate the available

memory bandwidth (381GB/s) of a single HBM2e DRAM stack.

• We demonstrated in our evaluation, that the UpDown features enable fine-grained

parallelism and software customization, achieving performance scale-up as a function

of parallelism in large-scale irregular workloads like graph processing. We showed

speedups of up to 631x and geomean 282x over a single x86 core. Additionally, we

showed the low area (1.25%) and power (17%)of the UpDown (compared to [28]) which

allows cost-efficient scaling of the system.

• Finally, the UpDown ISA is also generic enough that it is not constrained to any par-

ticular set of applications or data structures, as shown by its use across a variety of

workloads and data representations. This is in contrast to the typical domain special-

41

ized architectures (DSAs) being proposed in literature that have hardwired mechanisms

targeting a specific class or applications and data structures.

7.2 Future Work

Several research problems still remain to be explored surrounding the UpDown accelerator.

Some of them are discussed below.

1. The evaluation of the UpDown accelerator vs a single-threaded x86 core provides valu-

able insights into the efficacy of the UpDown ISA and architecture mechanisms. There

is scope to expand this evaluation to a broader class of architectures.

2. The UpDown cluster showed significant performance scaling going from 1 to 4 Up-

Downs. However, multiple aspects of the larger UpDown system such as the intercon-

nect architecture within a cluster, node and between nodes, scalability of the UpDown

mechanisms beyond a node, interaction with multiple DRAM stacks, remain to be

explored and evaluated.

3. The integration of an accelerator into a heterogeneous system is an interesting research

problem in general. In the UpDown system, we integrate the accelerator into the

memory hierarchy between the Top cores and DRAM. There are interesting research

questions around how UpDown can communicate notifications and data to the Top core

and its caches to keep up with the high memory bandwidths that we have measured.

There are also interesting questions around the memory consistency and coherence

models as the scale of the system grows.

4. The high level programming model for the UpDown system is also an open research

question. This thesis has focused on the architecture mechanisms and used hand-coded

assembly kernels to showcase performance benefits. The precise compiler infrastruc-

ture, programming model and runtime system are open problems to study.
42

5. Finally, while we have studied graph analytics and SpMV as representative applications

to evaluate the UpDown architecture, studying a broader class of applications like

graph neural networks, data mining etc. are of interest to prove further the generality

of UpDown mechanisms for irregular applications.

43

REFS

[1] John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr, Mathias Jacquelin,
Amir Kamil, Brian van Straalen, and Scott B. Baden. “The UPC++ PGAS Library
for Exascale Computing”. In: Proceedings of the Second Annual PGAS Applications
Workshop. PAW17. Denver, CO, USA: Association for Computing Machinery, 2017.
isbn: 9781450351232. doi: 10.1145/3144779.3169108. url: https://doi.org/10.1
145/3144779.3169108.

[2] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random Networks”.
In: Science 286.5439 (Oct. 1999), pp. 509–512. doi: 10.1126/science.286.5439.509.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David
A. Wood. “The Gem5 Simulator”. In: SIGARCH Comput. Archit. News 39.2 (Aug.
2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/2024716.2024718. url: https://doi
-org.proxy.uchicago.edu/10.1145/2024716.2024718.

[4] Rupak Biswas, Leonid Oliker, and Hongzhang Shan. “Parallel computing strategies for
irregular algorithms”. In: Annual review of scalable computing 5 (2003), p. 1.

[5] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. “R-MAT: A recursive
model for graph mining”. In: vol. 6. Apr. 2004. doi: 10.1137/1.9781611972740.43.

[6] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Distribu-
tions in Empirical Data”. In: SIAM Review 51.4 (2009), pp. 661–703. doi: 10.1137/0
70710111. url: http://link.aip.org/link/?SIR/51/661/1.

[7] The C++ Reference Manual. available from https://en.cppreference.com/w/.

[8] Timothy A. Davis. “Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms in
the Language of Sparse Linear Algebra”. In: ACM Trans. Math. Softw. 45.4 (Dec. 2019).
issn: 0098-3500. doi: 10.1145/3322125. url: https://doi.org/10.1145/3322125.

[9] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782. doi: 1
0.1145/1327452.1327492. url: https://doi.org/10.1145/1327452.1327492.

[10] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. “Efficient Big Data Processing in Hadoop
MapReduce”. In: Proc. VLDB Endow. 5.12 (Aug. 2012), pp. 2014–2015. issn: 2150-
8097. doi: 10.14778/2367502.2367562. url: https://doi-org.proxy.uchicago.e
du/10.14778/2367502.2367562.

[11] David Gelernter. “Generative Communication in Linda”. In: ACM Trans. Program.
Lang. Syst. 7.1 (Jan. 1985), pp. 80–112. issn: 0164-0925. doi: 10.1145/2363.2433.
url: https://doi-org.proxy.uchicago.edu/10.1145/2363.2433.

44

https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1145/2024716.2024718
https://doi-org.proxy.uchicago.edu/10.1145/2024716.2024718
https://doi-org.proxy.uchicago.edu/10.1145/2024716.2024718
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
http://link.aip.org/link/?SIR/51/661/1
https://en.cppreference.com/w/
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.14778/2367502.2367562
https://doi-org.proxy.uchicago.edu/10.14778/2367502.2367562
https://doi-org.proxy.uchicago.edu/10.14778/2367502.2367562
https://doi.org/10.1145/2363.2433
https://doi-org.proxy.uchicago.edu/10.1145/2363.2433

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
“PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”. In: 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 17–30. isbn: 978-1-931971-96-6.
url: https://www.usenix.org/conference/osdi12/technical-sessions/presen
tation/gonzalez.

[13] Graph 500 Results. https://graph500.org/.

[14] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface. The MIT Press, 2014. isbn: 0262527391.

[15] Tomaž Hočevar and Janez Demšar. “A combinatorial approach to graphlet counting”.
In: Bioinformatics 30.4 (Dec. 2014), pp. 559–565. issn: 1367-4803. doi: 10.1093/bio
informatics/btt717. eprint: https://academic.oup.com/bioinformatics/articl
e-pdf/30/4/559/48917199/bioinformatics_30_4_559.pdf. url: https://doi
.org/10.1093/bioinformatics/btt717.

[16] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. “What is Twitter, a
Social Network or a News Media?” In: Proceedings of the 19th International Confer-
ence on World Wide Web. WWW ’10. Raleigh, North Carolina, USA: Association for
Computing Machinery, 2010, pp. 591–600. isbn: 9781605587998. doi: 10.1145/17726
90.1772751. url: https://doi.org/10.1145/1772690.1772751.

[17] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. “GraphChi: Large-Scale Graph Com-
putation on Just a PC”. In: Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX Asso-
ciation, 2012, pp. 31–46. isbn: 9781931971966.

[18] Kartik Lakhotia, Laura Monroe, Kelly Isham, Maciej Besta, Nils Blach, Torsten Hoe-
fler, and Fabrizio Petrini. PolarStar: Expanding the Scalability Horizon of Diameter-3
Networks. 2023. arXiv: 2302.07217 [cs.NI].

[19] G. Linden, B. Smith, and J. York. “Amazon.com recommendations: item-to-item col-
laborative filtering”. In: IEEE Internet Computing 7.1 (2003), pp. 76–80. doi: 10.110
9/MIC.2003.1167344.

[20] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph Hellerstein. “GraphLab: A New Framework for Parallel Machine Learning”. In:
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence.
UAI’10. Catalina Island, CA: AUAI Press, 2010, pp. 340–349. isbn: 9780974903965.

[21] Ewing Lusk, Ralph Butler, and Steven C Pieper. “Evolution of a Minimal Parallel
Programming Model”. In: Int. J. High Perform. Comput. Appl. 32.1 (Jan. 2018), pp. 4–
13. issn: 1094-3420. doi: 10.1177/1094342017703448. url: https://doi.org/10.1
177/1094342017703448.

45

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://graph500.org/
https://doi.org/10.1093/bioinformatics/btt717
https://doi.org/10.1093/bioinformatics/btt717
https://academic.oup.com/bioinformatics/article-pdf/30/4/559/48917199/bioinformatics_30_4_559.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/4/559/48917199/bioinformatics_30_4_559.pdf
https://doi.org/10.1093/bioinformatics/btt717
https://doi.org/10.1093/bioinformatics/btt717
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://arxiv.org/abs/2302.07217
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1177/1094342017703448
https://doi.org/10.1177/1094342017703448
https://doi.org/10.1177/1094342017703448

[22] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. “Pregel: A System for Large-Scale Graph Pro-
cessing”. In: Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’10. Indianapolis, Indiana, USA: Association for Comput-
ing Machinery, 2010, pp. 135–146. isbn: 9781450300322. doi: 10.1145/1807167.180
7184. url: https://doi.org/10.1145/1807167.1807184.

[23] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system for large-scale graph process-
ing”. In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’10. Indianapolis, Indiana, USA: Association for Computing
Machinery, 2010, pp. 135–146. isbn: 9781450300322. doi: 10.1145/1807167.1807184.
url: https://doi-org.proxy.uchicago.edu/10.1145/1807167.1807184.

[24] Simon Marlow et al. “Haskell 2010 language report”. In: Available online http://www.
haskell. org/(May 2011) (2010).

[25] John McCarthy, Paul W Abrahams, Daniel J Edwards, Timothy P Hart, and Michael I
Levin. LISP 1.5 programmer’s manual. MIT press, 1962.

[26] Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino Tumeo, and
Ananth Kalyanaraman. “CuRipples: Influence Maximization on Multi-GPU Systems”.
In: Proceedings of the 34th ACM International Conference on Supercomputing. ICS ’20.
Barcelona, Spain: Association for Computing Machinery, 2020. isbn: 9781450379830.
doi: 10.1145/3392717.3392750. url: https://doi.org/10.1145/3392717.339275
0.

[27] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun Sathanur,
Ryan Mcclure, and Jason McDermott. “Fast and Scalable Implementations of Influ-
ence Maximization Algorithms”. In: 2019 IEEE International Conference on Cluster
Computing (CLUSTER). 2019, pp. 1–12. doi: 10.1109/CLUSTER.2019.8890991.

[28] Hassan Mujtaba. “Intel Sapphire Rapids ‘4th Gen Xeon’ CPU Delidded By Der8auer,
Unveils Extreme Core Count Die With 56 Golden Cove Cores”. In: WCCFTech (2022).
url: https://wccf.tech/189cd.

[29] M. E. J. Newman. “The Structure and Function of Complex Networks”. In: SIAM
Review 45.2 (Jan. 2003), pp. 167–256. issn: 1095-7200. doi: 10.1137/s00361445034
2480. url: http://dx.doi.org/10.1137/S003614450342480.

[30] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. “Global Arrays: A
Portable "Shared-Memory" Programming Model for Distributed Memory Computers”.
In: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing. Supercomput-
ing ’94. Washington, D.C.: IEEE Computer Society Press, 1994, pp. 340–349. isbn:
0818666056.

[31] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. The Scala lan-
guage specification. 2004.

46

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi-org.proxy.uchicago.edu/10.1145/1807167.1807184
https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1109/CLUSTER.2019.8890991
https://wccf.tech/189cd
https://doi.org/10.1137/s003614450342480
https://doi.org/10.1137/s003614450342480
http://dx.doi.org/10.1137/S003614450342480

[32] Andronicus Rajasukumar. UPDOWN: AN INTELLIGENT DATA MOVEMENT AR-
CHITECTURE FOR LARGE SCALE GRAPH PROCESSING. Tech. rep. TR-2023-
03, Available from https://newtraell.cs.uchicago.edu/research/publications
/techreports/TR-2023-03. University of Chicago, Computer Science, 2023.

[33] Scaling Apache Giraph to a Trillion Edges. https://engineering.fb.com/2013/08
/14/core-data/scaling-apache-giraph-to-a-trillion-edges/. 2013.

[34] Julian Shun and Guy E Blelloch. “Ligra: A Lightweight Graph Processing Framework
for Shared Memory”. In: (), p. 12.

[35] Julian Shun and Guy E. Blelloch. “Ligra: A Lightweight Graph Processing Framework
for Shared Memory”. In: SIGPLAN Not. 48.8 (Feb. 2013), pp. 135–146. issn: 0362-
1340. doi: 10.1145/2517327.2442530. url: https://doi.org/10.1145/2517327.2
442530.

[36] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. “GraphMat: high performance graph analytics made productive”. In: Proceed-
ings of the VLDB Endowment 8.11 (July 2015), pp. 1214–1225. issn: 2150-8097. doi:
10.14778/2809974.2809983. url: https://dl.acm.org/doi/10.14778/2809974.2
809983 (visited on 04/03/2022).

[37] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John
D. Owens. “Gunrock: a high-performance graph processing library on the GPU”. In:
SIGPLAN Not. 51.8 (Feb. 2016). issn: 0362-1340. doi: 10.1145/3016078.2851145.
url: https://doi.org/10.1145/3016078.2851145.

[38] B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares and
Products”. In: Technometrics 4.3 (1962), pp. 419–420. doi: 10.1080/00401706.1962
.10490022. eprint: https://www.tandfonline.com/doi/pdf/10.1080/00401706.19
62.10490022. url: https://www.tandfonline.com/doi/abs/10.1080/00401706.1
962.10490022.

47

https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2023-03
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2023-03
https://engineering.fb.com/2013/08/14/core-data/scaling-apache-giraph-to-a-trillion-edges/
https://engineering.fb.com/2013/08/14/core-data/scaling-apache-giraph-to-a-trillion-edges/
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.14778/2809974.2809983
https://dl.acm.org/doi/10.14778/2809974.2809983
https://dl.acm.org/doi/10.14778/2809974.2809983
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Introduction
	1.1.1 The Problem
	1.1.2 Approach
	1.1.3 Results and Key Contributions

	2 Background
	2.1 Irregular Applications and Limited Performance Scaling
	2.2 Functional Language and Cloud Map-reduce
	2.3 Fine-grained Parallel Hardware Architectures

	3 KVMSR Programming Model
	3.1 Objectives
	3.2 KVMSR Programming Model
	3.2.1 KVMSR Interface: Expressing Computation
	3.2.2 KVMSR Interface: Global Data Structures
	3.2.3 KVMSR Interface: Parallelism Management

	4 Examples
	4.1 Convolution Filter
	4.1.1 Computation
	4.1.2 Computation Binding

	4.2 PageRank
	4.2.1 Computation Binding

	4.3 A Broader Range of KVMSR Applications

	5 Evaluation
	5.1 Evaluation System Specification
	5.2 Programmability, Modularlity and Model Expressiveness
	5.2.1 Implementation
	5.2.2 Metric
	5.2.3 Result

	5.3 Benefits of Computation Location Control
	5.3.1 Experiment Setup
	5.3.2 Result

	6 Related Work and Discussion
	6.1 Functional Language and Cloud Map-Reduce
	6.2 Message Passing (MPI) & Partitioned Global Address (PGAS)
	6.3 Linda & Tuple Space
	6.4 Scalable Graph Processing Systems
	6.5 Discussion

	7 Summary and Future Work
	7.1 Summary
	7.2 Future Work

	References

