
THE UNIVERSITY OF CHICAGO

PINGPONG: A DOMAIN-SPECIFIC LANGUAGE FOR DATA PROCESSING

WITH STATIC TYPE CHECKING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

EVAN COOK

CHICAGO, ILLINOIS

JUNE 1, 2024

To Mom and Dad

CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . v

ABSTRACT . vi

1 INTRODUCTION . 1

2 MOTIVATING EXAMPLES . 4
2.1 Example 1: Missing Dataframe Column 5
2.2 Example 2: Different Column Types in Dataframe Join 7
2.3 Example 3: Semantically Incorrect Dataframe Types 9
2.4 Example 4: Missing Data and the Optional Column 11
2.5 Example 5: Dataframe ’Keys’ and the Unique Column 12
2.6 Example 6: Column Type Recommendations 14
2.7 PingPong Design Roadmap . 16

3 TYPED DATAFRAMES IN PINGPONG 18
3.1 Core Terms, Values, and Types . 19
3.2 Dataframe Constituents and Operators 21
3.3 Column Variants . 23

4 ADVANCED OPERATIONS . 26
4.1 Column Aggregation . 26
4.2 Simple Relational Operators . 28
4.3 PingPong’s Natural Join . 32
4.4 Selection, Criterions, and UniqueWhere 37

5 IMPLEMENTATION AND DEMONSTRATION 42
5.1 Type Recommendations . 43
5.2 Term Evaluation . 46
5.3 Scanning and Parsing . 49
5.4 Proof-of-Concept PingPong System . 52

6 APPENDIX: SYNTACTIC DEFINITIONS 56
6.1 Term, Value, and Type Definitions . 56
6.2 Typing Rules . 58
6.3 Evaluation Rules . 61

REFERENCES . 63

iii

LIST OF FIGURES

2.1 Column Hierarchy . 14
2.2 User Experience Flowchart . 17

3.1 Example Term Definition + Evaluation Rules 19
3.2 PingPong Core Terms . 20
3.3 PingPong Values and Types . 21
3.4 PingPong Shorthand . 22
3.5 Optional Column Conversion . 24

4.1 Γ and Γagg Definitions . 27
4.2 Column Union Uniqueness C/E . 29
4.3 CROSS Operator Behavior . 32
4.4 JOIN operator behavior . 33
4.5 Unique Join C/E . 35
4.6 PingPong Criterion(s) . 37

5.1 User Experience Flowchart II . 42
5.2 Small-Step Evaluation Example . 46
5.3 Big-Step Evaluation Example . 47

6.1 PingPong Terms (Full) . 56
6.2 PingPong Values and Types . 57
6.3 PingPong Criterion(s) . 57
6.4 Core Term Typing Rules . 58
6.5 Advanced Utility Typing Rules . 59
6.6 Criterion Typing Rules . 60
6.7 Core Term Evaluation Rules . 61
6.8 Advanced Utility Evaluation Rules . 62

iv

LIST OF TABLES

1.1 Students . 1

2.1 Student Info Table – df . 5
2.2 Student Info Table 2 – df1 . 8
2.3 Student Info Table 3 – df2 . 15

4.1 ⃝∨ (Column Union) Behavior Table . 30
4.2 ⃝∧ (Column Intersection) Behavior Table 31
4.3 ⊘ (Column Difference) Behavior Table . 31
4.4 ⃝▷◁ (Column Join) Behavior Table . 35

5.1 Type Recommendation System Behavior 44

v

ABSTRACT

This paper details the type system and implementation behind an explicitly-typed

monomorphic language domain-specific to data processing. In particular, this paper

offers two novel contributions over other work in this area: (1) consideration of unique

columns and optional columns and associated typing, and (2) type recommendations

built into our custom language’s compile phase. This paper begins with motivation and

related work for typed dataframes, leading into novel type systems incorporating our

desired features. Then, it presents the system/language design of a table-specific lan-

guage "PingPong" based on this theory, as well as a proof-of-concept implementation.

vi

CHAPTER 1

INTRODUCTION

PingPong is a programming language domain-specific to data processing, combining

tabular data structures (dataframes in this paper) with a static type system. To un-

derstand both, we present a brief introduction to the history of tabular data structures.

In storage, we often encounter similarities between objects we wish to store. Suppose

we wish to store data for various students. We expect that every student has a first

name, a last name, a student ID, etc. These similarities allow for a uniform way of

storing this data in a table, as below:

Table 1.1: Students

FirstName LastName ID State Zip

Evan Cook 1000 CA 38243

James Ren 1001 AL 98342

Guy Birly 1002 PN 99340

Vega Polli 1003 WH 27415

Nelson Price 1004 ND 67934

Dan Milo 1005 CA 38248

Columns of a table correspond to attributes of our students, accessible as lists of

the corresponding entry type: the "FirstName" column as a list of strings, the "ZIP"

column as a list of integers, etc. Rows of a table correspond to individual entries (stu-

dents), accessible as records of labels to entry types. In this sense, a table can be

considered as a record of columns, or a list/set of records. One of the first popular lan-

guages for interacting with large-scale data tables was SQL, popularized in the 1970s.

Storing data tables as bags of records1, SQL implements several relational operators

on tables (e.g. selecting by record, natural join...) that prove very useful for data anal-

1. Similar to the "set of records" representation. However, SQL allows for duplicate records, while
a set representation cannot.

1

ysis. It also introduced the concept of unique columns (columns in which every entry

is different) and optional columns (columns that potentially contain NaN/NULL, i.e.

an empty entry). PingPong implements both, and we cover further details for them

below.

Tabular data processing would see several iterations over the next fifty years. Mi-

crosoft Excel, while not a programming language, is a well-known and user-friendly

way for interacting with tabular data. MATLAB and R are released in 1984 and 2000

respectively. Whereas SQL is centered around interaction with tables, R is primarily

a statistical programming language that stores tables in a "data.frame" structure. Fi-

nally, Python’s Pandas library provides an intuitive environment and syntax for users

to interact with tabular "dataframes". Pandas is similar to SQL in terms of functional-

ity, but differs in one key aspect. SQL maintains a tabular type derived from the types

of its columns; Pandas has no concept of column or dataframe typing, relying only on

the types of its entries. This results in several failure cases when using Pandas, which

we cover in depth below.

PingPong proposes a typed dataframe approach, combining the typing structure

of SQL with the approachability of Pandas. Related work in the field has attempted

something similar, going about the problem in a variety of ways. Packages like Frames

in Haskell and framelessw in Scala import dataframes into their respective languages,

thereby introducing types into the analysis. Zhuang and Lu [2022] provide a static

type checker add-on for Pandas. PingPong provides a third option: developing a new

language and syntax specifically for interacting with typed dataframes. This approach

allows for two novel features that previous work does not include. First, PingPong

includes SQL’s unique/optional columns in type checking, propagating them through

various relational operators. Second, creating a new language gives us direct control

over type-checking/evaluation, which we will leverage to implement column type recom-

2

mendations upon data readin. We provide more details for both of these novel features

below.

The remainder of this paper proceeds as follows. Chapter 2 justifies PingPong’s

utility over prior work with several motivating examples, informing a design plan that

highlights PingPong’s key features. Chapter 3 presents a type system implementing the

plan, building from core types to novel dataframe design and operations. Chapter 4 dis-

cusses typing for advanced dataframe utilities, delving into associated choices in system

design and implementation. Chapter 5 ties our system design together, culminating in

a proof-of-concept PingPong implementation and concluding remarks.

3

CHAPTER 2

MOTIVATING EXAMPLES

Above, we promote PingPong as a means of introducing type checking to data pro-

cessing. In particular, we highlighted our novel features of unique/optional columns and

type recommendations to differentiate PingPong from prior typed-dataframe packages.

With this in mind, we must clarify two key points before we move to implementation.

First, PingPong may include novel features, but those features must be important

enough for users to choose PingPong over other typed-dataframe alternatives. In the

first place, dataframe-typing options must be important enough for users to choose it

over convenient alternatives like Pandas. Second, supposing PingPong’s novel features

are useful, they must be feasible from a design perspective. In particular, it is not im-

mediately obvious how one would add type recommendations to PingPong – it would

be very difficult for in-language packages like Pandas or Haskell’s Frames. We can sum-

marize our concerns as follows:

• Why should we implement PingPong?

• How should we implement PingPong?

The remainder of this chapter is dedicated to answering these two questions, pro-

ceeding via several motivating examples. Each example consists of an ill-typed or

awkwardly-handled data processing step, and a comparison of Pandas’ current behav-

ior to PingPong’s expected behavior. These examples will highlight the utility of typed

dataframes, unique and optional column variants, and a type recommendation system

from the user perspective. These expected behaviors will help us answer our second

question, informing the framework for PingPong’s system design. We will focus on

surface-level details and expected user experience in this chapter, while reserving in-

depth discussion of system design/implementation for later chapters.

4

2.1 Example 1: Missing Dataframe Column

Before we move to PingPong-specific features, we begin with examples demon-

strating the utility of the typed-dataframe approach. The primary benefit of typing in

programming as a whole is the ability to catch issues in the compile phase, rather than

the runtime phase. As a rudimentary example, suppose a user attempts to add a string

and an integer. In almost every language, we would receive some form of TypeError:

>>> 1 + "1"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The compiler recognizes that the programmer is attempting an invalid (or ill-typed)

operation, and prevents execution of the program. Adding an integer to a string will

fail, so the compiler need not attempt to try (and fail at runtime) to add 1 and "1". At

its simplest, type checking is a means of saving time, and all programming languages

employ it to some degree. With this in mind, we move to the realm of data processing

and consider a common mistake: referencing a missing dataframe column. Below, we

have a simple Student Info data table, an incorrect code snippet in Pandas, and the

resulting (truncated) error in Pandas:

Table 2.1: Student Info Table – df

FirstName LastName ID State Zip

Evan Cook 1000 CA 38243

James Ren 1001 AL 98342

Guy Birly 1002 PN 99340

Vega Polli 1003 WH 27415

Nelson Price 1004 ND 67934

Dan Milo 1005 CA 38248

5

df = pd.read_csv(’student_data.txt’)

print(df["state"])

KeyError: ’state’

The above exception was the direct cause of the following exception:

KeyError Traceback (most recent call last)

Cell In[2], line 2

1 df = pd.read_csv(’student_data.txt’)

----> 2 print(df["state"])

Both Pandas and PingPong are case-sensitive in their column names. In other

words, the state column referenced in our code and the State column in our sample

data table are considered different. Because we are referencing a nonexistent column,

Pandas produces an error – but this KeyError is being produced during runtime. Un-

der the hood, Python represents our student data in the df variable as a map from

column labels (strings) to columns. Executing the code, it encounters a key state not

present in the map and throws a KeyError. But before encountering this issue, Pandas

first had to load the entirety of student_data.txt into the program. With a small test

dataset, this is fine; with a larger dataset, users are waiting for Pandas to execute code

already doomed to fail. By extending type checking to dataframes, Pandas will remove

this downtime and streamline user experience.

Upon reading data into PingPong, users will specify a static dataframe type. With

this, PingPong can catch column-name and other dataframe-related typing errors like

this at compile time. When running this example, we would expect some form of

dataframe-specific TypeError specifying the column and dataframe, rather than an

indirect KeyError. Our envisioned PingPong code and behavior would look something

like this:

6

df : DataFrame({[

’FirstName’: String,

’LastName’: String,

’ID’: Integer,

’State’: String,

’Zip’: Integer]}) = read_csv(’student_data.txt’)

col = select(df, "state") # ’select’ a column from a dataframe

TypeError: Column ’state’ not found in dataframe df

2.2 Example 2: Different Column Types in Dataframe Join

Above, we found that Pandas delivers a reasonably descriptive KeyError during run-

time. As we will see, Pandas errors are not always very informative, even with basic

ill-typing mistakes. This example consists of a standard database join between two sam-

ple dataframes. The first dataframe is our Student Info dataframe used in Example 1.

The second dataframe contains more information about our students, plus a shared ID

column – this is represented by the table below. We also include sample Pandas code

to perform a relational join (pd.merge in Pandas), and the resulting (truncated) error

output:

7

Table 2.2: Student Info Table 2 – df1

ID Graduation_Year Classes_Taken Exam_Taken Exam_Score

#1000 2024 30 True 95.0

#1004 2023 34 False NaN

#998 2022 33 True 97.0

#1002 2025 24 False NaN

#1001 2026 21 True 90.0

#1010 2024 28 False NaN

df = pd.read_csv(’student_data.txt’)

df1 = pd.read_csv(’student_data1.txt’)

joined = df.merge(df1)

ValueError Traceback (most recent call last)

Cell In[3], line 3

1 df = pd.read_csv(’student_data.txt’)

2 df1 = pd.read_csv(’student_data1.txt’)

----> 3 df.merge(df1)

ValueError: You are trying to merge on int64 and object columns.

If you wish to proceed you should use pd.concat

Once again, Pandas produces a runtime error. But this time, the ValueError and

associated explanation are not very clear concerning the issue in our code. Examining

our data table above, note that the entries in our ID columns contain "#" charac-

ters. This will force Pandas’ .csv reader to represent df1’s ID column entries as strings.

However, our dataframe from Example 1 considers IDs as integers. One frame has an

ID column contains integers in one frame, and the other has an ID column containing

8

strings. This ill-typed merge attempt is the issue that Pandas should be flagging.

However, Pandas’ ValueError is not very descriptive. It recognizes an issue with the

merge (i.e. the relational join), but it seems to interpret it as a botched pd.concat. The

error also does not specify which column(s) are erroneous, leaving a user confused about

what to do next. Pandas is producing a very opaque error for a simple typing issue,

which PingPong will be able to easily catch in the compile phase. Upon encountering

this error, PingPong will raise a TypeError for a column mismatch in a database join.

Furthermore, it will be able to point to the specific column(s) at fault. The equivalent

PingPong code and resulting compile error is below:

df1 : DataFrame({[

’ID’: String,

’Graduation_Year’: Integer,

’Classes_Taken’: Integer,

’Exam_Taken’: Bool,

’Exam_Score’: Float]})

= read_csv(’student_data1.txt’)

joined = join(df, df1) # join df (from E1) and df1

TypeError: Column type mismatch in join -- column "ID" contains Integer in

one frame, but contains String in the other

2.3 Example 3: Semantically Incorrect Dataframe Types

The code error in the previous example stemmed from our storage of IDs as integers

in one table, and as strings in another. Our IDs above are numbers, and one might

question why our second table stores numerical IDs are strings. As it turns out, string

representation here is better than integer representation from a typing perspective!

9

Although IDs are numeric, most numeric operations are not applicable to them. When

working with a database containing student IDs, adding two IDs is useless in practice.

In contrast, something like string concatenation is intuitively more appropriate. As

another example, consider Table 2.1 from Example 1 and the following Pandas code:

df = pd.read_csv(’student_data.txt’)

np.mean(df["Zip"])

>>> 50003.833333333336

Because ZIP codes are numeric, Pandas’ csv reader will automatically read them

into df as numbers. Calling np.mean on numbers is valid, and Pandas returns the

numerical mean of the ZIP column without issue. But as stated above, considering ZIP

codes as integers (or any numeric type) is semantically incorrect, and attempting to take

the mean of the ZIP column should ideally throw a TypeError. Luckily, PingPong’s

explicit dataframe typing allows us to do exactly that. Unlike in Example 1, we will

specify ZIP to be a string column, and the expected behavior should be as follows:

df : DataFrame({[

’FirstName’: String,

’LastName’: String,

’ID’: Integer,

’State’: String,

’Zip’: String]}) = read_csv(’student_data.txt’)

mean = agg(mean, select(df, "Zip")) # use mean aggregator on ZIP column

TypeError: mean aggregator takes numerical column, but "Zip" contains String

10

2.4 Example 4: Missing Data and the Optional Column

In data processing, we often encounter situations where data we expect to be present is

not. For example, suppose our student info table contains addresses for some students,

while other students opt out. We have no data for these students, but there is no sensible

default address we can use either. In practice, missing data entries are filled with a

special entry NULL, which we will use throughout the remainder of this paper. Using

NULLs is a good stopgap, but improperly handling them quickly results in erroneous

code. Readers may recall above that Table 2.2 had a column Exam_Score containing

NaN, which is Pandas’ version of NULL. We provide some sample code to manually

calculate the average exam score, and the output in Pandas:

df1 = pd.read_csv(’student_data1.txt’)

np.sum(df2["Exam_Score"]) / len(df2["Exam_Score"])

>>> 56.4

Our average score is lower than the current lowest score in the class, so something

went wrong. Examining our data, we find that some students haven’t yet taken the

exam. Taking the sum of df2’s Exam_Score adds up non-NULL exam scores (NULL

does not interact with any terms), but dividing by the length includes students with

exam scores of NULL. In other words, we are effectively giving all students who haven’t

taken the exam a score of 0. This isn’t necessarily incorrect – in some cases, it makes

perfect sense – but we really wanted to restrict our calculation entirely to students with

non-NULL exam scores.

Pandas does provide a correct way of doing this. Calling np.mean on the Exam_Score

column automatically filters out NULL entries, and would return the correct average

score. Built-in NULL removal is convenient, but it also obfuscates the presence of

11

NULLs from the user. In the worst case, users may not even consider missing data

in their analysis – and upon stepping outside of Pandas’ built-in function library, will

produce incorrect results as above. PingPong solves this problem by introducing the

optional column as a column containing NULL entries. Optional columns are speci-

fied upon readin, and automatically propagate throughout the program into optional

variants of aggregators. We include the equivalent PingPong code and output below:

df1 : DataFrame({[’ID’: String, ’Graduation_Year’: Integer,

’Classes_Taken’: Integer, ’Exam_Taken’: Bool,

’Exam_Score’: Optional Float]}) = read_csv(’student_data1.txt’)

mean = agg(mean, select(df1, "Exam_Score")) # mean of optional col

>>> Some(94.0)

2.5 Example 5: Dataframe ’Keys’ and the Unique Column

The next example introduces the unique column as a column variant designed to high-

light candidate/primary keys. In database management, a candidate key is defined to

be a set of columns whose values uniquely define each entry in the database. That is,

every entry contains a different set of entries for the columns in a candidate key. In

Table 2.2, both the ID column and Classes_Taken column are candidate keys. Our

candidate key can also contain more than one column, so {"ID", "Classes_Taken"} is

a candidate key as well. The unique column differentiates single-column candidate keys

(i.e. columns that uniquely define our database by themselves). In our example above,

the ID and Classes_Taken columns would be considered unique columns.

Because a unique column uniquely defines our dataframe, we can extract individual

entries via their value in a unique column. In practice, a relational database will always

contain a unique column for this purpose, designated the primary key of the database.
12

If no primary key is present in the database, one will automatically be generated; for

Table 2.2, we will designate the ID column as the primary key. We calculated the

average exam score for our table in the last example. Below is some sample Pandas

code to get the student with ID #1000, and calculate the difference between their score

and the average:

df1 = pd.read_csv("student_data1.txt")

student = df1[df1["ID"] == "#1000"] # get student with ID == #1000

student["Exam_Score"] - np.mean(df1["Exam_Score"])

>>> 0 1.0

Name: Exam_Score, dtype: float64

We expect our result to be a number, but Pandas gives us a mangled record instead.

Pandas has no way of distinguishing a primary key (or any unique column) from other

columns of a dataframe. We know that ID uniquely defines our data, and searching for

a unique value should (1) find a single entry, or (2) find that no such entry is present.

Pandas does not know this, and returns what it returns in the non-unique setting: a

list of records, i.e. a smaller dataframe. The above code subtracts a number from a

record, and should be ill-typed – but Pandas interprets this mistake as a broadcasting

attempt, producing the above result. PingPong’s unique column fixes this issue with

a unqwhere command, allowing users to pull individual entries from a dataframe via

a unique column. (In fact, the output of unqwhere will be an optional record –

see Chapter 4 for more clarification.) We include sample PingPong code and expected

behavior below:

13

df1 : DataFrame({[

’ID’: Unique String,

’Graduation_Year’: Int,

’Classes_Taken’: Unique Int,

’Exam_Taken’: Bool,

’Exam_Score’: Optional Float]}) = read_csv(’student_data1.txt’)

student = unqwhere(df1, "ID" == "#1000") # get student with ID == #1000

diff = rd_select(student, "Exam_Score") - agg(mean, select(df1, "Exam_Score"))

>>> Some(1.0)

2.6 Example 6: Column Type Recommendations

In the above examples, we considered the optional column and unique column as vari-

ations of the original database column. Considering their respective requirements, we

observe a hierarchy in which some column forms are more specific than others. A unique

column is a normal (non-unique) column with an additional condition for uniqueness;

a normal column is an optional column with an additional condition to not contain

NULLs. So our hierarchy looks something like this:

Figure 2.1: Column Hierarchy

14

‘Upgrading’ a column in the hierarchy allows for additional functionality. Upgrading

an optional column to a normal column allows users to ignore NULL considerations,

allowing for manual calculations as in Example 4. Upgrading a normal column to a

unique column allows for unqwhere functionality as in Example 5. In PingPong, users

specify the types and variants of the columns in a dataframe on readin. But perhaps a

user specifies an optional column that actually contains no NULLs, or a normal column

that uniquely defines the data. PingPong also includes type recommendations when

reading in data, letting users know that certain columns can be upgraded. Consider

the following dataset and sample code in PingPong:

Table 2.3: Student Info Table 3 – df2

Name ID Graduation_Year Classes_Taken Exam_Taken Exam_Score

John 1000 2024 30 True 95.0

Mason 1004 2023 35 True 93.5

Kendra 998 2022 35 True 95.0

William 1002 2025 24 True 89.0

Myles 1001 2026 20 True 90.0

Sally 1010 2024 32 True 99.5

df2 : DataFrame({[

’Name’: String,

’ID’: Unique String,

’Graduation_Year’: Integer,

’Classes_Taken’: Integer,

’Exam_Taken’: Bool,

’Exam_Score’: Optional Float]})

= read_csv(’student_data2.txt’)

15

The Exam_Score column is specified as an optional Int column, but contains no

NULLs. Also, the Name column is specified as a (normal) String column, but is actually

unique-valued. Upgrading the former to an Int column and the latter to a unique

String column allows for additional functionality that users should be informed about.

However, we cannot simply fix the user’s dataframe type, lest we cause type errors

further down the program. PingPong implements type recommendations as a solution:

>>> Recommendation Found! Column ’Name’ specified as col, but could be ucol.

Recommendation Found! Column ’Exam_Score’ specified as ocol, but could be col.

Continue execution? (y/n)

Type recommendations inform the user of potential improvements, while also allow-

ing execution to continue if they are confident in their typing. If users select ‘yes’, code

execution continues without any further type flagging. If users select ‘no’, the runtime

terminates, allowing users to update their dataframe types accordingly.

2.7 PingPong Design Roadmap

Summarizing our examples above, we expect PingPong to have the following three

primary features:

• [1] A system incorporating static typing to dataframes, to catch type errors in
the compile phase

• [2] The incorporation of unique columns (ucol) and optional columns (ocol) to
our dataframes into our type system

• [3] Column type recommendations helping users to better understand + manip-
ulate their data

Several typed-dataframe packages implementing [1] already exist – some examples

include Frames in Haskell, Frameless using Scala, and Gamma. PingPong’s typed-

16

dataframe system was built from scratch (covered in later chapters), but it is ulti-

mately not a novel contribution to the field. No existing package has implemented [2],

but it could hypothetically be incorporated into one of the above options. However,

implementing [3] would be very difficult for any in-language package. Our desired user

experience including recommendations is summarized by the flowchart below:

Figure 2.2: User Experience Flowchart

In PingPong, users write and repair their code until it passes type checking. Upon

proceeding to execution, we enter a ‘second checking phase’ where data is checked

against the types specified in code. This could potentially be simulated in another

typed-dataframe package, but a simpler solution is to design PingPong as a domain-

specific language with these functionalities in mind. Hence, we update our desired

features to include PingPong as a new domain-specific language:

• [1] A system incorporating static typing to dataframes, and scanning, parsing,
and csv reading functionality to bring user code/resources into it

• [2] Consideration for unique columns and optional columns in our type system
and in the PingPong language

• [3] A custom PingPong compiler and evaluator, with built-in column type rec-
ommendations

17

CHAPTER 3

TYPED DATAFRAMES IN PINGPONG

This chapter will introduce the type system upon which PingPong’s static typing sys-

tem for dataframes is built. We assume a basic understanding of type theory and

programming languages, as well as standard typing/evaluation rule notation. As an

refresher, we include a sample typing rule for integer addition:

Γ ⊢ t1 : Int Γ ⊢ t2 : Int

Γ ⊢ t1 + t2 : Int
(T− ADD)

In essence, this rule denotes addition (+) as an operator receiving two terms t1 and

t2 as input. If both t1 and t2 are integers, (T-ADD) tells us that t1 + t2 is an integer

as well; if not, our expression is ill-typed and the type-checker throws a TypeError. A

standard type-checker takes an expression as input. It applies typing rules as above

to ’reduce’ its type until one of two things happen: (1) it reaches an irreducible type,

returning it as the type of the expression, or (2) it encounters an ill-typed operator

usage and throws a TypeError. Interested readers can consult Pierce [2002] for a more

in-depth explanation.

The remainder of this chapter is dedicated to building a theoretical foundation for

typing dataframes. We will begin by establishing the necessary core types and terms,

up to and including our dataframe representation. Then, we will build typing rules for

columns and records, leading to typing rules for dataframe construction and manipu-

lation. Finally, we will introduce typing for unique and optional columns, discussing

how our theory is modified as a result. PingPong also includes relational operators and

higher-order utilities for dataframes, requiring more complex type theory and ucol/ocol

manipulation – these topics will be covered in Chapter 4.

18

3.1 Core Terms, Values, and Types

Before we consider typing rules, we must first consider the core terms, values, and types

in our language. Recall that representing PingPong via a recursive term definition allows

for step-by-step expression evaluation. As a refresher, consider a simple language only

containing Boolean and the conditional operator:

Figure 3.1: Example Term Definition + Evaluation Rules

t ::=
true
false
if t then t else t

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

if true then t2 else t3 → t2

if false then t2 else t3 → t3

Our term definition consists of a conditional operator, as well as the boolean terms

true and false. We will refer to the non-operator terms in our term definition as

core terms, i.e. terms representing irreducible data types. Because our term definition

is recursive, our language includes nested conditional statements of arbitrary depth.

We reduce expressions by applying the evaluation rules above until one of two events

occur: (1) We reach a value term, returning it as the result of evaluation; (2) we be-

come ’stuck’ and the evaluation errors out. In a sound typing/evaluation systems, type

checking allows us to discern whether an expression will become stuck, before evalua-

tion.1 Every expression in our toy language can be typed as Bool – hence no expression

in the language can become stuck.

PingPong supports Boolean, Integer, Float, and String types as ‘base terms’ for

our data. Using these building blocks, we can build our dataframe representation. For

the following, denote seq(t) = [t, ..., t], i.e. a sequence of t. Columns consist of a

sequence of terms, as well as a variant type denoted as κ.2 Recall above that Ping-

1. For more complex languages we can encounter correctly typed expressions that still result in
runtime errors. We will see several examples of this below.

2. Some readers may be wondering why we store a variant ’type’ in the column ’term,’ rather than

19

Pong considers a unique column and optional column variant in addition to ’normal’

columns. We define κ ∈ {ucol, col, ocol}, with Column(seq(t), κ). As in Pierce, records

are constructed as a sequence of label-term pairs: Record(seq(l, t)). Finally, dataframes

are constructed as a record of columns: DataFrame(seq(l, t)). Records and dataframes

have identical term structures; the functional difference arises in type checking, which

we will cover below.

We also require some miscellaneous terms to tie the language together. PingPong

includes variables for storing intermediate data processing steps. PingPong will also

require optional terms to populate optional columns, which we discuss further below.

Condensing all of this, our core terms are as follows:

Figure 3.2: PingPong Core Terms

t ::=
Bool(b)
Int(z)
Float(x)
String(s)

x
Some(t)
None(τ)

Column(seq(t), κ)
Record(seq((l, t)))
DataFrame(seq((l, t)))

bool encapsulation, b ∈ {true, false}
int encapsulation, z ∈ Z
float encapsulation, x ∈ R
string encapsulation, s ∈ Σ∗

variable
optional some wrapping
optional none

column encapsulation
record encapsulation
dataframe encapsulation - record of columns

PingPong’s value and type definitions follow readily from our core terms above.

Each of our base terms – i.e. Bool(b), Int(z), Float(x), String(s) – are clearly values.

None is a value, as well as Some(v) when v is a value. Finally, columns, records, and

dataframes are values when each of their contained term is a value. Concerning types

we have our base types Bool, Int, Float, and String, plus the optional type Option[τ]

for optional terms. Our column type consists of an entry type τ plus its variant type

the column ’type’. We must store κ in both locations to resolve ambiguity in column construction
from a literal.

20

κ. Records are typed as a sequence of label-type pairs, as are dataframes. Dataframes

are similar with an added constraint, being typed as a sequence of label-column type

pairs. In summary, we have the following for PingPong’s values and types:

Figure 3.3: PingPong Values and Types

v ::=
[base terms]
Some(v)
None(τ)
Column(seq(v), κ)
Record(seq((l, v)))
DataFrame(seq((l, v)))

τ ::=
Bool
Int
Float
String

Option[τ]

Column([τ, κ])
Record(seq((l, τ)))
DataFrame(seq((l, [τ, κ])))

e.g. Bool(b), Int(z) . . .

boolean type
integer type
float type
string type

optional type

column type, κ ∈ {ucol, col, ocol}
record type, mapping labels to types
df type, mapping labels to column types

3.2 Dataframe Constituents and Operators

With our system’s building blocks defined, we are ready to begin defining our type

system. We begin by building up from basic data types to a typing rule for dataframe

construction. Then, we introduce and type some dataframe manipulation operators to

expand PingPong’s basic dataframe toolkit. Recalling our definition of the variant type

κ from above, our typing rules will make use of the following shorthand for columns,

records, and dataframes:

21

Figure 3.4: PingPong Shorthand

[τ, κ] := Column(τ, κ)

{li : τi} := Record(li : τ
i=1..n
i)

{[li : [τi, κi]i=1..n }] := DataFrame(li : Column[τi, κi]))

(− li : τ
i=1..n
i)− := Criterion(l1 : τ1, ..., ln : τn)

We begin by typing our ’normal’ dataframe column. Our column term Column(seq(t), κ)

consists of a list of terms and a variant type κ. We require every term in the sequence to

have type τ , at which point our column is typed as Column([τ , col]). Column unwrap-

ping (indexing) follows readily from this definition: we verify our index as an integer,

and return the entry type τ as in Column([τ , col]). Note that type checking does not

tell us whether our index lies within the bounds of our column; this is unfortunately

a mistake that can only be caught during runtime. In formal notation, we have the

following typing rules:

Γ ⊢ for each i = 1..n, ti : τ

Γ ⊢ Column([t1, ..., tn], col) : Column([τ, col])
(T− COL)

Γ ⊢ t1 : [τ, col] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : τ
(T− COLINDEX)

Moving onto records, we proceed similarly to Pierce. For each label-term pair li : ti

in a record term containing label-term pairs, the corresponding type contains a label-

type pair li : typeOf(ti). Record unwrapping (selection) follows readily: we verify

our selection key lj is a member of {li}i=1..n, and return the corresponding τj . Note

that while record and dataframe column labels are alphanumeric, we do not consider

them strings in the PingPong language. Setting labels to string terms would mean

that record types contain terms. Furthermore, applying string operations to labels is

generally unnecessary, since column names are independent of data processing results.

So although we must type-check column indices as integers, we do not need to type-

check record selection keys as strings. Our typing rules are as such:

22

Γ ⊢ for each i = 1..n, ti : τi

Γ ⊢ Record(li : t
i=1..n
i) : Record(li : τ

i=1..n
i)

(T− REC)

Γ ⊢ t1 : {li : τi}
Γ ⊢ RecordSelect(t1, lj) : τj

(T− RECSELECT)

As mentioned above, dataframe typing proceeds in a similar manner to record typ-

ing. For each label-term pair li : ti, we have the additional constraint that typeOf(ti) is

of the form [τi, κi]. From there, the dataframe constructor is identical to the record con-

structor. PingPong also provides operators for column selection and insertion, which

proceed similarly to their record counterparts. Note that certain issues (e.g. length

mismatch between inserted column and DF) can only be detected at runtime. We have

the following typing rules:

Γ ⊢ for each i = 1..n, ti : [τi, κi]

Γ ⊢ DataFrame(li : t
i=1..n
i)) : DataFrame(li : [τi, κi]))

(T−DF)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]
Γ ⊢ DFSelect(t1, li) : [τi, κi]

(T−DFSELECT)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : [τn+1, κn+1]

Γ ⊢ DFInsert(t1, ln+1, t2) : {[li : [τi, κi]i=1..n+1 }]
(T−DFINSERT)

3.3 Column Variants

Above, we discuss typing for dataframes consisting of only normal columns (cols), i.e.

dataframes as considered in other typed-dataframe packages. We now transition to

discussing PingPong’s novel contributions, beginning by introducing unique/optional

column variants to the theory. As of yet, we have only provided a typing rule (T-COL)

outputting [τ, col]. However, PingPong dataframes are constructed from columns of the

form [τ, κ] where κ ∈ {ucol, col, ocol}. To complete the type system, we present similar

wrapping/unwrapping rules for unique columns and optional columns.

23

Unique column (ucol) typing is decidedly intuitive: we proceed as with a normal

column, while adding a uniqueness criterion. Recall that unique column terms differ

from normal column terms via κ, i.e. they have the form Column(seq(t), ucol). As

before, each term in the sequence must have the same type τ . Our uniqueness criterion

specifies that no two terms are the same. Equivalently, for terms [t1, t2, ..., tn] we have

that ti = tj → i = j. Supposing these two conditions hold, our term has type [τ , ucol].

As an important note, observe that normal column typing is a less restrictive version

of unique column typing. If unique columns satisfy the conditions of two typing rules,

we would be introducing non-determinism into our type system, which is something we

want to avoid. We avoid this by including κ within column terms, effectively separating

‘prospective’ ucols from ‘prospective’ cols. Finally, unique column indexing proceeds

identically to column indexing:

Γ ⊢ for each i = 1..n, ti : τ ∀i, j, ti = tj → i = j

Γ ⊢ Column([t1, ..., tn], ucol) : Column[τ, ucol]
(T− UCOL)

Γ ⊢ t1 : [τ, ucol] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : τ
(T− UCOLIND)

Optional columns (ocols) in PingPong are designed to handle a typed equivalent

of NULL, making them slightly different than other column variants. In practice, ocols

will either encounter data entries of type τ or NULLs. A natural solution is to have

optional columns contain optional terms. We wrap available data entries in Some, while

replacing NULLs with None, as per the below diagram:

Figure 3.5: Optional Column Conversion

24

In theory, None is a valid replacement for Some(t) for any t, and so be considered

as any optional type. But in practice, we are generating None within columns whose

entry type τ is already specified. It suffices to assign occurrences of None a single type

τ – hence our term definition contains None(τ), with the following typing rule:

Γ ⊢ None(τ) : Option[τ]
(T− NONE)

Given a term Column([seq(t), ocol]), our type check verifies that every term in the

sequence has type Option[τ], at which point we return the type Column([τ , ocol]). We

remove optionality from the entry type to keep consistency with other column variants.

This means the optionality must be re-added upon unwrapping, so our ocol indexing

rule is slightly changed as well:

Γ ⊢ for each i = 1..n, ti : Option[τ]

Γ ⊢ Column([t1, ..., tn], ocol) : Column([τ, ocol])
(T−OCOL)

Γ ⊢ t1 : [τ, ocol] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : Option[τ]
(T−OCOLIND)

25

CHAPTER 4

ADVANCED OPERATIONS

This chapter covers some advanced operators corresponding to useful commands in re-

lational database theory. In the previous chapter, our typing rules were mostly straight-

forward, following a structure similar to Pierce and prior work in the field. However, the

novelty and complexity of this chapter’s content means we have a bit more freedom. We

encounter a fundamental tradeoff between keeping our typing simple, while maximiz-

ing the breadth of PingPong’s resulting functionality. Our final design choices balance

these two options, while ensuring the feasibility of a proof-of-concept implementation

covered in Chapter 5.

4.1 Column Aggregation

Earlier, we presented an example in which we took the mean exam score within a col-

umn. However, we did not use a ’mean’ keyword in PingPong’s sample code; instead,

we used the expression agg(mean, select(df, "Zip")) to calculate the mean of the

"Zip" column of df. PingPong condenses all implemented column aggregators into a

single operator agg, where users specify their aggregators by passing their names into

agg. This design is useful as aggregators are type-checked in a similar fashion, passing

through a process unique to the ’agg’ operation. More specifically, we will use a new

context Γagg mapping aggregator names to behaviors.

This strategy is modeled off the term-variable binding Γ as it appears in Pierce for

storing variables. Γ consists of x : τ pairs, leading to the following variable typing rule

(also present in PingPong):

x : τ ∈ Γ

Γ ⊢ x : τ
(T− VAR)

Γ is effectively a mapping from variables to their respective types. Upon encounter-

26

ing an unseen variable during type checking, we extend Γ to include its expected type.

The above typing rule states that a seen variable should be assigned its corresponding

type from Γ. Because PingPong includes variables, our typing rules need Γ to assign

types to variables nested within the input/output terms. Including "Γ ⊢ [...]" indicates

that information in Γ is required to determine the type of [...].

Similarly, Γagg is effectively a mapping from an (aggregator, column type) tuple to

an output type. We include the definitions for Γ and Γagg side-by-side:

Figure 4.1: Γ and Γagg Definitions

Γ ::=
∅
Γ, x : τ

Γagg ::=
∅
Γagg, (agg, [τ, κ]) : τ

In practice, we will encounter an agg operator containing an aggregator name and

a column. Upon identifying the column type, our goal is to predict the aggregator’s

behavior on a column of that type. To do this, we store all aggregator behaviors in

Γagg. In our example above, we would expect the pairing (’mean’, [Int col]) : Float

to be contained within Γagg. From here, we simply return the result type that Γagg

provides. We have the following typing rule:

Γ,Γagg ⊢ t1 : [τ1, κ1] (agg, [τ1, κ1]) : τ2 ∈ Γagg
Γ,Γagg ⊢ Agg(agg, t1) : τ2

(T− AGG)

Our design above introduces some potential concerns, which we address below. First,

notice we include Γagg in our typing rule above. Since information from Γagg recursively

propagates throughout our type checking, we technically must include Γagg in every

typing rule throughout our language. For the sake of brevity, we will omit this in

notation (but keep it implicitly) for typing rules in the language. Second, we have not

yet specified how we handle aggregator overloading – for example, applying mean to

both integers and floats. Fortunately, Γagg allows us to specify different output types

for different column types, even for the same aggregator. For example, Γagg would
27

include the following tuples for the mean:

• (’mean’, [Int ucol]) : Float

• (’mean’, [Int col]) : Float

• (’mean’, [Int ocol]) : Option[Float]

• (’mean’, [Float ucol]) : Float

• (’mean’, [Float col]) : Float

• (’mean’, [Float ocol]) : Option[Float]

4.2 Simple Relational Operators

In the following sections, we move to typing some core operators in relational database

theory. In particular, we will cover the following seven operators: SELECT, PRO-

JECTION, UNION, INTERSECTION, DIFFERENCE, CROSS and (natural)

JOIN. While we will provide brief explanations for each, this paper presumes an un-

derstanding of each of these operator’s function. Our analysis is based upon work

presented in Atzeni and Antonellis [1993], which readers may wish to consult.

We begin by considering the PROJECTION operator. In summary, this operator

filters a dataframe by column. More specifically, it takes as input a dataframe and

a sequence1 of column labels, and returns a dataframe containing only the columns

with labels in the sequence. This operation is relatively straightforward; in fact, it is

constructible using the DFSelect and DataFrame operators already present in PingPong.

Regardless, we provide an explicit typing rule below:

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]
Γ ⊢ Proj(t1, seq(l)) : {[lj : [τj , κj]lj∈seq(l) }]

(T− PROJ)

From here, we will cover the UNION, INTERSECTION, and DIFFERENCE

operators. In summary, each of these operators takes as input two dataframes, treating

1. Relational algebra usually deals with sets, but we elect to preserve ordering and duplicates in
our projections to more closely align with SQL functionality.

28

both as a set of records. From there, each operation’s function is relatively intuitive:

UNION takes the union of the two sets, INTERSECTION takes their intersection,

and DIFFERENCE their difference (i.e. the records present in the first dataframe, but

not the second). Each of these operators requires that the two input dataframes have

the same column entry types in the same order, returning an output dataframe of the

same format. Type checking τs are relatively straightforward, but the difficulty arises

in determining the resulting column variant κs. To proceed, we will need to consider

how uniqueness and optionality propagate through each of these operations. Formally,

we will define these behaviors in custom column variant operators ⃝∨ ,⃝∧ ,⊘ : κ×κ → κ,

which are used in our typing rules.

Beginning with UNION, we observe the following behaviors: (1) uniqueness is

never present in the output, regardless of input; (2) optionality is present in the output

if one of the input columns is optional. To observe (1), consider a case where both

input columns are unique, but contain copies of the same entry – the resulting column

may not be unique:

Figure 4.2: Column Union Uniqueness C/E

29

To observe (2), simply note that the union of two columns contain NULLs iff one of

the columns contains NULLs, i.e. one of the columns is optional. Combining (1) and

(2), we can enumerate the potential outputs of ⃝∨ via a table as below:

Table 4.1: ⃝∨ (Column Union) Behavior Table

2\1 ucol col ocol

ucol col col ocol

col col col ocol

ocol ocol ocol ocol

Next considering INTERSECTION, we observe the following behaviors: (1) unique-

ness is present in the output if one of the input columns is unique; (2) optionality is

present in the output if both of the input columns are optional. To observe (1), simply

note that the intersection of two columns is a subset of both columns – if one column

is unique, it must be that the intersection is as well. To observe (2), note that if both

columns contain NULLs, it is possible that a record with NULL in that column is

present in the intersection. If one of the columns is non-optional (i.e. does not contain

NULLs), clearly no NULL value is present in the intersection of the two.

When assigning these behaviors, note that we are considering the least specific

column variant as per the hierarchy ucol ⊆ col ⊆ ocol (see Chapter 2). For example,

we are not claiming that an intersection of two ’normal’ columns cannot be unique.

Rather, we note that we cannot guarantee uniqueness in such an intersection, but that

we can guarantee non-optionality. Hence intersecting two ’normal’ columns produces a

’normal’ column. Considering (1) and (2), we can derive a full behavior table below:

30

Table 4.2: ⃝∧ (Column Intersection) Behavior Table

2\1 ucol col ocol

ucol ucol ucol ucol

col ucol col col

ocol ucol col ocol

Finally, we move to the DIFFERENCE operator, noting the following interactions:

(1) The first input defines the ’minimum specificity’ for the output; (2) the second input

has no effect on the output. To see (1), note again that the output is a subset of the

first input. By our variant hierarchy, we can conclude that our output is at least as

’specific’ as the first input. To see (2), we can consider a counterexample second input

sharing no records with the first input. In this sense, we cannot guarantee that the

second input has an effect on the output. Combining (1) and (2) produces a behavior

table for ⊘:

Table 4.3: ⊘ (Column Difference) Behavior Table

2\1 ucol col ocol

ucol ucol col ocol

col ucol col ocol

ocol ucol col ocol

From here, generating typing rules is done by considering the behaviors of τ and

κ separately for each column type [τ , κ]. Column τs must be the same for both

input dataframes, and is always present in the output; column κs are combined via

the respective column combination operator, whose output is present in the output.

Following this strategy, we can generate typing rules for UNION, INTERSECTION,

and DIFFERENCE below:

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Union(t1, t2) : {[li : [τi, κ1i ⃝∨ κ2i]

i=1..n }]
(T− UNION)

31

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Intersection(t1, t2) : {[li : [τi, κ1i ⃝∧ κ2i]

i=1..n }]
(T− INTERSECTION)

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Diff(t1, t2) : {[li : [τi, κ1i ⊘ κ2i]

i=1..n }]
(T−DIFF)

4.3 PingPong’s Natural Join

Finally, we can move on to some more difficult operations. The JOIN operator will

require a similar strategy to that discussed in the previous section, plus a little more

groundwork. We will first type the CROSS operator as a preface, adding some more

tools to our toolkit before we cover the main topic of this section. The CROSS takes

in two dataframes, returning their Cartesian cross product – in essence, a dataframe of

every record concatenation generable from the two input frames:

Figure 4.3: CROSS Operator Behavior

Observe that our output dataframe type is just a concatenation of the two input

dataframe types, with one key change. We must remove uniqueness from every column

upon taking a cross product with another dataframe – the formal intuition for this is

clear, and the property itself is observable in the above example. We will denote N:

κ → κ as removing uniqueness from an input variant type. Specifically, we have the

following definition and typing rule for the CROSS operator:

32

N: κ → κ ::=

• N(ucol) = col

• N(col) = col

• N(ocol) = ocol

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : {[lj : [τj , κj]j=1..m }]
Γ ⊢ Cross(t1, t2) : {[li : [τi, N(κ1i)]

i=1..n, lj : [τj , N(κ2j)]
j=1..m }]

(T− CROSS)

Observe our output dataframe type {[li : [τi, N(κ1i)]
i=1..n, lj : [τj , N(κ2j)]

j=1..m }]

denotes a column-wise concatenation between the two input types via a comma inside

the dataframe enclosure. We will reuse this notation for later typing rules.

Now, we will move to tackling the JOIN operator. There are many variations of

relational database joins, and PingPong uses the ’Join’ keyword to denote a natural

join on a specified sequence of columns.2 The natural join takes two dataframes and a

sequence of column labels. For every generable record pair with identical entries in the

specified label sequence (note both dataframes must contain every label), the output

dataframe contains the record pair concatenated into a single record.

Figure 4.4: JOIN operator behavior

2. Theta joins are implicitly present within the language using a combination of CROSS and
SELECT. However, there are some restrictions on selection predicates that PingPong can encode,
which we discuss alongside the SELECT operator.

33

The above example shows two sample dataframes (represented as lists of records),

alongside their natural join on the shared column a. Note that by our definition above,

we would expect our final record type to contain two a columns. Because the ‘joining’

columns contain identical entries in the output dataframe (by definition), most natural

join implementations automatically drop the second copy, as will PingPong’s. Hence

our example above drops the second a column, and is left with columns a, b, and c.

Henceforth, we will refer to joining columns as columns on which the two input

dataframes are joined, and non-joining columns as every other column in either input

dataframe. Because we are removing duplicate column types, some readers (and some

past work) may be tempted to use some form of union on the two dataframe types.

This ignores two key details: (1) we may not be joining on some shared columns, so we

may need duplicates; (2) we must preserve the following ordering in our final dataframe

type:

• Include every column of the first dataframe in record order

• Include every column of the second dataframe in record order without its join-
ing columns

This ordering is precisely a concatenation of the two input dataframe types with

redundant copies of joining columns removed as desired above. Now that we have estab-

lished the order of label-column type pairs, we must compute the output column types

as a function of two input column types. As with operators in the previous section,

handling τ in our [τ, κ] column types is relatively straightforward; the main difficulty

arises in handling κ. The key is to approach joining columns and non-joining columns

in two different ways.

Beginning with joining columns, we will need some form of combination function

κ × κ → κ to map pairs of variants to the equivalent join variant. We have covered

similar functions ⃝∨ ,⃝∧ ,⊘ for the UNION, INTERSECTION, and DIFFERENCE

34

operators respectively; we will denote an equivalent operator ⃝▷◁ for JOIN. We notice the

following interactions: (1) If both input columns are unique, the joined output column

will also be unique; (2) If either input column is non-optional, the joined output column

will also be non-optional. To see (1), note that if both input columns are unique, the

output column is a subset of their intersection and is thus unique. To see (2), note

that entries in the output column must be present in both input columns. If one input

column is non-optional, it contains no NULLs → the output column contains no NULLs.

Combining (1) and (2), we can construct the following behavior table:

Table 4.4: ⃝▷◁ (Column Join) Behavior Table

2\1 ucol col ocol

ucol ucol col col

col col col col

ocol col col ocol

For non-joining columns, it may seem that we can propagate the column type [τ, κ]

through the join unchanged. In fact, this is not true – uniqueness on non-joined columns

must be removed, for a similar reason as with the CROSS operator. To demonstrate

this, we construct a counterexample with a unique column converted to a non-unique

column:

Figure 4.5: Unique Join C/E

35

Observe that the second dataframe (green) has both a unique joining column and

unique non-joining column. However, because the joining columns in the first dataframe

(blue) is non-unique, the output dataframe has no unique columns. With this, we have

all of the information we need to construct a typing rule. To simplify our notation, we

condense the information into functions J1
[lk]

, J2
[lk]

: l → [τ, κ] taking a column label to

an output column type:

J1[lk]
(l̂) =

[τ̂ , κ̂1 ⃝▷◁ κ̂2] l̂ ∈ [lk]

[τ̂ , N(κ̂1)] l̂ /∈ [lk]

J2[lk]
(l̂) =

∅ l̂ ∈ [lk]

[τ̂ , N(κ̂2)] l̂ /∈ [lk]

Clarifying the above notation, our function J1
[lk]

, J2
[lk]

respectively handle the first

input and second input, with [lk] representing the joining columns. From here, we

proceed as discussed above. For the first input, we apply ⃝▷◁ with the corresponding

column types from both inputs on a joined column; otherwise, we apply our N operator

(defined in our discussion of CROSS) using our column type from the first input. For

the second input, we drop the second copy of a joined column and return nothing;

otherwise, we apply the N operator using our column type from the second input. Note

that for an input column label l̂, we expect the entry type τ̂ to be the same for both

input dataframes. Hence we use τ̂ to denote the singular entry type in both inputs,

whereas we use κ̂1 and κ̂2 in case of differing column variants. Finally, we can present

our typing rule using these notations above:

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : {[lj : [τj , κj]j=1..m }]
Γ ⊢ Join(t1, t2, [lk]) : {[li : J1[lk](li)

i=1..n, lj : J
2
[lk]

(lj)j=1..m }]
(T− JOIN)

36

4.4 Selection, Criterions, and UniqueWhere

Our final relational operator to cover is the SELECT operator, adding another layer

of complexity to PingPong’s design. In essence, the SELECT operator adds a ‘filter-

by-row’ functionality to dataframes. It takes an input dataframe and a predicate, and

returns an output dataframe containing all rows for which the predicate is true. Iron-

ically, SELECT appears to be very easy to type, with the output dataframe having

the same type as the input dataframe. However, the main difficulty arises in typing the

predicate. In theory, the predicate is typed as a function taking the dataframe’s record

type to a Boolean – however, PingPong does not enable arbitrary function typing. We

will need to find some sort of workaround, keeping the following two goals in mind: (1)

Capture the majority of use cases with a feasible design; (2) allow for ‘unique selection,’

i.e. pulling optional records when selecting for entry equality over a unique column as

in this example.

Starting with (1), we present a recursive criterion system as a substitute for true

selection predicates. In essence, the idea is to separate a predicate into conditions on

individual columns, which are far easier to represent. The criterion system consists of

two main portions: (1) base case criterions with a column label, comparison operator,

and term; (2) Boolean operators NOT, AND, OR for criterion combination:

Figure 4.6: PingPong Criterion(s)

c ::=
l > t
l < t
l == t
Not(c)
And(c c)
Or(c c)

As a basic example, consider our dataset Table 2.2 and suppose that we wanted to

select all students that got an A- or an A (but not an A+), while excluding students

37

named John. This is equivalent to the following criterion:

• And(Not(Name = ‘John’), Not(Or(Exam_Score < 90., Exam_Score > 97.)))

This criterion system is able to generate a wide variety of predicates, but it does

have its limits. For example, suppose we had two ’Exam_Score’ columns for two dif-

ferent exams, and we wanted to select all students with > 180 points total over the two

exams. Using the criterion system alone, this is effectively impossible3. In PingPong,

users could still do this by adding an Exam_Score_Sum column to their data.

With this criterion system, we can envision a means of type checking SELECT.

As we build a criterion, we keep track of its stipulated column types. For example, our

criterion above requires Name to contain Strings and Exam_Score to contain Floats.

To type check SELECT, we verify that each column types stipulated in the criterion

is present and correct in the input dataframe. Henceforth, we will refer to a criterion’s

column type stipulations as its criterion type. In this sense, we are effectively trying to

predict a criterion’s expected type from a term representation. Because our criterion

system is recursive, it suffices to provide a full set of criterion typing rules, which we

will enumerate below:

We begin with typing our base criterions. In essence, a base criterion denotes a

comparison of a column’s entries against a term. For this to be valid, our column’s

entries must be of the same type as this term, which we can type check. So we have

the following typing rules:

Γ ⊢ t1 : τ1
Γ ⊢ l1 > t1 : Criterion(l1, τ1)

(C−GT)

Γ ⊢ t1 : τ1
Γ ⊢ l1 = t1 : Criterion(l1, τ1)

(C− EQ)

3. Supposing that scores are integers, it is doable with several hundred criterions, which is still
highly infeasible

38

Γ ⊢ t1 : τ1
Γ ⊢ l1 < t1 : Criterion(l1, τ1)

(C− LT)

Moving to the recursive terms, we will need some form of combining criterions.

Recall that a criterion can stipulate a type of more than one column. In our PingPong

shorthand, we introduced a notation (− li : τ i=1..m
i)− as a criterion stipulating the

column labelled l1 to have entry type τ1, the column labelled l2 to have entry type τ2,

etc. Applying Not to a criterion does not change its stipulated column types, leading

to the following typing rule:

Γ ⊢ c1 : (− li : τ
i=1..n
i)−

Γ ⊢ Not(c1) : (− li : τ
i=1..n
i)−

(C− NOT)

Finally, typing And and Or will require us to combine two criterion types into one.

Luckily, this ends up being very convenient: treating our input criterion types as sets

of label-type pairs, the output type is simply their union:

Γ ⊢ c1 : (− li : τ
i=1..n
i)− Γ ⊢ c2 : (− lj : τ

j=1..m
j)−

Γ ⊢ And(c1, c2) : (− li : τ
i=1..m
i)− ∪ (− lj : τ

j=1..m
j)−

(C− AND)

Γ ⊢ c1 : (− li : τ
i=1..n
i)− Γ ⊢ c2 : (− lj : τ

j=1..m
j)−

Γ ⊢ Or(c1, c2) : (− li : τ
i=1..m
i)− ∪ (− lj : τ

j=1..m
j)−

(C−OR)

Intuitively, the output criteria should contain every column stipulation from either

input criteria. We do not need duplicate label-type pairs – for example, something like

Or(Exam_Score < 90., Exam_Score > 97.) only requires Exam_Score to be a Float

once – making set union more applicable than concatenation.

Finally, we proceed to the typing rule for SELECT. To avoid ambiguity with Ping-

Pong’s column selection functionality, we will use SQL’s corresponding keyword Where

as our operator. In PingPong, Where takes as input a dataframe and a criterion. Upon

checking that every column stipulation in the criterion is met by the dataframe, our

output dataframe type is the same as the input dataframe type. This is equivalent

to stating that every l : τ pair in the criterion has an equivalent l : [τ, κ] pair in the

39

dataframe4, which we can represent via record subsetting. This allows us to succinctly

state the typing rule below:

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]

Γ ⊢ c1 : (− lj : τ
j=1..m
j)− {lj : τj}j=1..m ⊆ {li : τi}i=1..n

Γ ⊢ Where(t1, c1) : {[li : τ i=1..n
i }]

(T−WHERE)

Now that we have succesfully typed SELECT, we would like to implement the

unique selection functionality demonstrated in Chapter 2. In this example, close read-

ers may have noticed that our PingPong sample code contains a unqwhere operator.

PingPong designates a special selection UniqueWhere to select singular records when

selecting by equality over a unique column. UniqueWhere takes as input a dataframe

and a criterion. Type checking verifies that the criterion is of the form l == t and that

the corresponding label-type pair is present in the dataframe as a unique column. If

so, UniqueWhere returns the corresponding optional record type: if such a record is

present in the dataframe (there is at most one by uniqueness), UniqueWhere returns it

wrapped in Some; if not, UniqueWhere returns None.

To make this succinct, we will first define a function R : [τ, κ] → τ which brings a

column type to its respective entry type. Applying R to every column in the dataframe

will produce the dataframe’s corresponding record type. With this, we can encode the

discussion above as a formal typing rule:

R: [τ, κ] → τ ::=

• N([τ, ucol]) = τ

• N([τ, col]) = τ

• N([τ, ocol]) = Option[τ]

4. This requires additional care when κ = ocol. PingPong attempts to unwrap the optional term:
if successful, it performs the comparison; if not (i.e. the entry is NULL), PingPong assumes the result
to be false.

40

c1 : l1 == t1 Γ ⊢ t2 : {[li : [τi, κi]i=1..n }]
Γ ⊢ t1 : τ1 {l1 : [τ1, ucol]} ⊆ {li : [τi, κi]i=1..n}

Γ ⊢ UniqueWhere(t2, c1) : Option[{li : R([τi, κi])i=1..n}]
(T− UNQWHERE)

Because UniqueWhere is a PingPong-specific operation, we predict that users may

simply call Where in ‘unique selection’ scenarios. This is a valid application, returning

a dataframe of length 0-1 of the same type as the input; however, it misses out on

the functionality that UniqueWhere provides. To combat this, we include a built-in

type recommendation for UniqueWhere, informing users that they are missing out. We

discuss type recommendations and their implementation in the next chapter.

41

CHAPTER 5

IMPLEMENTATION AND DEMONSTRATION

In previous chapters, we built a dataframe-centered backend type system for PingPong.

However, we have yet to deliver the majority of the "domain-specific language" promised

in Chapter 2. Above, we presented a user experience flowchart, informing a framework

for a proof-of-concept PingPong system. We include an updated version of that diagram

below, updated to include corresponding sections in the paper:

Figure 5.1: User Experience Flowchart II

The majority of our novel contributions and system design choices were established

in our type checker. Implementing the remaining nodes in our flowchart is mostly a

matter of propagating these choices through preexisting PL systems. One notable ex-

ception is our type recommendation system, whose design we build from scratch – we

discuss our choices and implementation for this below.

The remainder of this chapter proceeds as per the above flowchart. We begin by

reintroducing type recommendations in the context of our presented type system. We
42

discuss exactly when and how type recommendation is carried out, and how type rec-

ommendations are integrated into PingPong. Then, we discuss implementation details

for term evaluation, scanning, and parsing, fleshing out PingPong from a standalone

type system to a full programming language. Finally, we present a proof-of-concept

PingPong implementation, plus a demonstration on the examples presented in Chap-

ter 2.

5.1 Type Recommendations

Before we discuss our implementation, we first recap the core utility of type recom-

mendations. Our motivation for developing type recommendations is the link between

data specificity and data utility. On one hand, we have discussed how column vari-

ants can be organized into a hierarchy: ucols are a constrained version of cols, which

are a constrained version of ocols. As data becomes more constrained, more Ping-

Pong functionality becomes available for that data. Above, we introduced PingPong’s

UniqueWhere operator that only functions on ucols. PingPong’s ocol aggregators often

return optional types, adding a layer of complexity that non-optional columns do not

need to deal with. In order to maximize PingPong’s utility, we must maximize type

specificity upon reading in our data. If a user treats a unique column as a non-unique

column, they are missing out on data processing functionality they may find useful.

PingPong’s type recommendation system is a means of informing users about a missed

opportunity, without completely halting code execution. We provide an explanation

and example type recommendation in this example.

With this in mind, we can envision how a code execution involving type recom-

mendations might look. Users will write PingPong code, potentially involving some

external dataset on which they wish to do analysis. Recall that when reading in exter-

nal data, users must specify an expected dataframe type as discussed above. Supposing

this code passes type checking, PingPong will move to execution, actually reading

43

in the external dataset. Now we can calculate the actual column variant types (i.e.

check uniqueness/optionality), comparing each column’s encountered type against its

expected type. Our type recommendation system’s behavior for each column is sum-

marized by the following table:

Table 5.1: Type Recommendation System Behavior

(a) Expected Type (1) vs. Encountered Type (2)

2\1 ucol col ocol

ucol pass rec rec

col error pass rec

ocol error error pass

Suppose a column’s expected type is more specific than its encountered type, e.g. we

expect a non-optional column but receive an optional column. PingPong cannot deliver

non-optional column functionality on an optional column, so we should be throwing a

TypeError.1 However, suppose a column’s expected type is less specific than its encoun-

tered type. PingPong is perfectly capable of delivering the user’s desired functionality,

but also has more to offer. So although we again encounter a type mismatch, our type

recommendation should be more like a compiler warning than an error:

>>> Recommendation Found! Column [col] specified as [expected],

but could be [encountered].

Continue execution? (y/n)

If the user specifies ‘yes,’ PingPong continues executing the user’s code with no

type-related issues. If the user specifies ‘no,’ execution is halted and the user can rede-

1. Some readers may find discussions of compile errors during runtime somewhat odd. The issue is
indeed a type mismatch, but column variant types can only be distinguished upon actually reading the
data upon runtime. We liken data readin (usually at the beginning of execution) to a ‘second compile
phase’ where data-dependent types are checked.

44

fine their dataframe type as desired.

From here, type recommendations are ready to be integrated into PingPong as a

language. In addition to keywords corresponding to the various operators discussed in

previous chapters, PingPong includes read and write keywords for conversion between

CSV files on disk and DataFrame terms in PingPong. Type recommendations are part

of the read keyword, built into a custom CSV parser included as part of our proof-

of-concept implementation. Interested readers can consult the source code for further

details; for now, we provide a high-level summary of the parser’s function below:

• Parse column labels (first row of CSV) and compare against labels of expected
dataframe type. If correct, initialize DataFrame term with empty columns

• Split each row in CSV into entries, cast each entry to corresponding column entry
type, and append to corresponding column in DataFrame term

• Upon completion, find encountered type of each column and compare to expected
type. Issue recommendations/errors upon completing this check for all columns

• If all recommendations (if any) are ignored, terminate and return the DataFrame
term typed as the expected dataframe type.

Finally, PingPong’s proof-of-concept includes another form of type recommenda-

tions concerning UniqueWhere. While using Where in a unique selection scenario is

technically correct, it misses out on singular record selection provided by UniqueWhere.

Again, we have a situation where we wish to inform users about PingPong functionality,

without asserting that they have to change correctly-typed code. PingPong provides a

custom type recommendation message for this situation, looking something like this:

>>> Recommendation Found! where called on unique column [col] with base EQ

criterion -- using unqwhere is possible and returns singular records!

Continue execution? (y/n)

45

5.2 Term Evaluation

The following section covers term evaluation, continuing our brief discussion at the

beginning of Chapter 3. Although we expect readers to be familiar with typing/evalu-

ation rules as defined in Pierce, we will provide a brief explanation. Through repeated

application of evaluation rules (which we must define), we evaluate terms to one of two

possibilities: (1) we reach a value and terminate; (2) we become ’stuck’ on an incor-

rect/nonsensical term. We present a basic toy language (terms, values, and evaluation

rules), plus the evaluation of a sample term:

Figure 5.2: Small-Step Evaluation Example

t ::=
0
true
false
not t
if t then t else t

v ::=
0
true
false

t1 → t′1
not t1 → not t′1

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

not true → false

not false → true

if true then t2 else t3 → t2

if false then t2 else t3 → t3

• (not (if (not false) (if false (not true) true) false))

• → (not (if (not false) (if false (not true) true) false))

• → (not (if (not false) (if false (not true) true) false))

• → (not (if true (if false (not true) true) false))

• → (not (if true (if false (not true) true) false))

• → (not (if false (not true) true))

• → (not (if false (not true) true))

• → (not true)

• → false

[1]

[2]

[4]

[1]

[5]

[1]

[6]

[3]

Each bullet point corresponds to an application of one of six evaluation rules above.

For each, we note the rule number (with rules listed [1]-[6] in ascending order above),

46

as well as underlining the operator to which the rule is applied. As we see, out example

term evaluates to the value false and terminates. Alternatively, let us consider the

term not 0. Observe that not 0 corresponds to none of the evaluation rules above, nor

is it a value. Hence evaluation becomes stuck, indicating that the term is semantically

incorrect.

The above schema is known as small-step evaluation, and would suffice for Ping-

Pong’s purposes. However, note that there is some redundancy in our example evalu-

ation. We repeatedly apply rule [1] to the outermost not, but do not actually process

it until the final evaluation step. Ideally, we want to traverse the term tree visiting

each keyword exactly once. In other words, we would somehow merge rules [1] and [2]

(which visit nots and ifs without processing them) into rules [3] - [6]. This is the idea

of big-step evaluation, which serves two purposes: (1) removing redundant visits

to the same keyword; (2) condensing of a language’s evaluation rules. We provide an

updated big-step evaluation schema for our toy language below:

Figure 5.3: Big-Step Evaluation Example

t ::=
0
true
false
not t
if t then t else t

v ::=
0
true
false

t1 ⇓ true

not t1 ⇓ false

t1 ⇓ false

not t1 ⇓ true

t1 ⇓ true t2 ⇓ v2
if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3
if t1 then t2 else t3 ⇓ v3

While the small-step symbol → denotes the application of a single evaluation rule,

the big-step symbol ⇓ denotes several applications of evaluation rules taking a term to

its final value. In English, we interpret [3] as: "If t1 evaluates to true, return the value

to which t2 evaluates." Using a big-step requires fewer evaluation rules and less evalu-

ation time, at the cost of losing step-by-step evaluation process as shown above. After
47

weighing these considerations, we decided to implement a big-step evaluation schema

in our PingPong proof-of-concept implementation. We summarize the structure of par-

ticularly interesting evaluation rules below. Readers interested in PingPong’s complete

big-step evaluation scheme can consult the appendix of this paper.

We begin with evaluation rules for our dataframe constituent terms, which are gen-

erally straightforward. Recall that columns and records are values when their respective

contents are values. In a big-step evaluation scheme, columns/records step to a value

state by stepping each of their contained terms to values. Column/record unwrap-

ping simply steps their first term to a column (record) value, and return the value

corresponding to the specified index (label):

for each i = 1..n, ti ⇓ vi
Column([t1, t2, ..., tn],_) ⇓ Column([v1, v2, ...vn],_)

(E− UCOL/COL/OCOL)

t1 ⇓ Column([v11, v12, ...v1n],_) t2 ⇓ i

ColumnIndex(t1, t2) ⇓ v1i
(E− UCOL/COL/OCOLIND)

for each i = 1..n, ti ⇓ vi
Record({l1, t1), (l2, t2), ..., (ln, tn)}) ⇓ Record({(l1, v1), (l2, v2), ..., (ln, vn)})

(E− REC)

t1 ⇓ Record({(l1, v11), (l2, v12), ..., (ln, v1n)})
RecordSelect(t1, li) ⇓ v1i

(E− RECSELECT)

Note that κ no longer has any purpose after type checking. We effectively discard κ

in the evaluation stage – in fact, some relational operators clear κ out automatically. In

other words, column evaluation for all column variants is identical and can be described

with a single rule. Recall that PingPong verifies that dataframe terms contain column

terms during type checking. Dataframes are records of columns, but any DF encoun-

tered during evaluations must contain column terms. In other words, PingPong’s DF

evaluation rules (wrapping and unwrapping) can be exactly identical to their record

48

equivalents. Hence we have the following rules:

for each i = 1..n, ti ⇓ vi
DF({[(l1, t1), (l2, t2), ..., (ln, tn) }]) ⇓ DF({[(l1, v1), (l2, v2), ..., (ln, vn) }])

(E−DF)

t1 ⇓ DF({[(l1, v11), (l2, v12), ..., (ln, v1n) }])
DFSelect(t11, l1i) ⇓ v1i

(E−DFSELECT)

From here, PingPong contains several operators that perform operations on dataframes.

Evaluation rules for each of these operators is quite straightforward. From type check-

ing, we already know that our inputs step to dataframe values. To perform a big-step,

we simply step each of the operator’s inputs to values, and perform the operation on

those. We provide a sample evaluation rule for JOIN (i.e. the natural join), with

other relational operators, aggregations, etc. following a similar pattern. We include

evaluation rules for all PingPong operators in the appendix:

t1 ⇓ v1 t2 ⇓ v2
Join(t1, t2, [lk]) ⇓ v1 ▷◁[lk] v2

(E− JOIN)

This paper presumes an understanding of natural joins and other dataframe-related

operators. As such, we use the standard notation ▷◁ to denote the natural join of two

tables, rather than describing its function via additional notation. Some readers may

have noticed that relational operators like JOIN require a set-of-records representation

for dataframes, rather than the record-of-column representation used in PingPong. Our

proof-of-concept system allows for implicit conversion between the two, which is used

in the backend implementation of these relational operators.

5.3 Scanning and Parsing

In previous sections, we have examined PingPong typing and evaluation via a term

grammar, with each term corresponding to an object/operator present within Ping-

Pong. Of course, we do not expect PingPong users to write code using these terms.

49

Like most languages, PingPong users interact with PingPong by writing code (text).

PingPong requires some way to ‘translate’ user code into the nested term representa-

tion used in our theory. In practice, we do this via applying two systems: we apply a

scanner to convert raw text into a list of tokens, then a parser to convert a list of

tokens into a nested term representation.

To illustrate this, we will run through the scanning and parsing of a simple example,

converting a text representation to a term representation. For the sake of continuity,

we will use a text representation of the sample term we evaluated in section 5.2:

• not(if(not(false), if(false, not(true), true), false))

We pass the above to our sample scanner as a string, i.e. a list of characters. In

essence, a scanner simply groups characters into tokens that have value in the parsing

stage. Our scanner should combine groups of sequential alphabetical characters (e.g.

’true’, ’if ’...) into their respective keywords. In addition, we will also need to keep

track of parentheses and commas, which will prove useful in parsing our tokens. As

such, our scanner would probably output the following list of tokens:

• [KW_not, LParen, KW_if, LParen, KW_if, LParen, KW_not, LParen, KW_false,

RParen, Comma, KW_if, LParen, KW_false, Comma, KW_not, LParen, KW_true,

RParen, Comma, KW_false, RParen, RParen]

We pass this list of tokens to our sample parser. In general, our final term repre-

sentation is recursive in nature, allowing us nest terms within other terms. As such,

our parser will need to employ some sort of recursive strategy. Without delving into

code implementation details, we will summarize this recursive strategy via a function

nextTerm. The function nextTerm takes a list of tokens as input. It reads through

the list of tokens until it creates a term, at which point it returns the term and any

remaining tokens. Naturally, our parser works by simply calling nextTerm on its to-

ken list. If nextTerm creates a term with the entire token list (i.e. with no remaining
50

tokens), we return the term; if nextTerm fails or we have leftover tokens, the token

list is malformed and parsing fails.

Of course, we still must discuss exactly how nextTerm creates a term from a list

of tokens. The key is to map our term structure’s recursive nature into our cases for

nextTerm. We enumerate the various cases in our sample language, alongside their

corresponding token representation:

• 0
• true

• false
• not t

• if t then t else t

[KW_zero]
[KW_true]
[KW_false]
[KW_not, LParen, [term], RParen]
[KW_if, LParen, [term], Comma, [term], Comma, [term],
RParen]

Examining the first token tells the parser which ’case’ the term falls under. From

there, nextTerm effectively performs pattern matching for that case, replacing [term]

with a recursive call to itself. For our sample term above, nextTerm checks the first

token to be KW_not. It pattern matches the next token to be LParen (which passes),

then calls itself on the token list starting from index 2. The call to nextTerm will

have its own recursive calls to nextTerm, eventually returning a term t and a list of

remaining tokens. Upon verifying the token list is precisely [RParen], the original call

to nextTerm returns not t.

Readers may notice a resemblance between our sample text representation and the

sample PingPong code presented in Chapter 2. PingPong’s syntax is designed for ease

of scanning/parsing, and generally follows the approach described above. PingPong’s

proof-of-concept implementation includes custom scanner and parser; however, their

respective implementation details are neither particularly novel nor relevant to the

paper’s main focus, and are omitted. We will provide examples of PingPong’s syntax

in the next section, and encourage readers interested in low-level details to consult the

51

source code.

5.4 Proof-of-Concept PingPong System

Above, we have discussed everything we need to build a proof-of-concept PingPong

implementation. As such, we present alongside this paper a proof-of-concept PingPong

system, fully capable of typing and executing user code. In summary, the current

implementation supports the following features:

• [1] Scanning, parsing, type checking, and evaluating of user code, including all
operators discussed in this paper

• [2] A type system accounting for unique columns and optional columns in all
dataframe functionality discussed in this paper

• [3] Functionality for reading .csv files into PingPong runtimes with column type
recommendations

As a demonstration of our system, we show PingPong’s behavior on each of the

examples presented in Chapter 2. Our implementation’s syntax ended up being signif-

icantly more compact than originally envisioned above, which we consider an upside.

We encourage readers to compare the two versions, as they encode equivalent opera-

tions (and return equivalent results):

52

Example 1: Missing Dataframe Column

df1 = read("student_data.csv",

DF[{"FirstName" -> Col[S],

"LastName" -> Col[S],

"ID" -> Col[I],

"State" -> Col[S],

"Zip" -> Col[I]}])

dfselect(df1, "state")

>>> java.lang.Exception: ill-typed df select: column label "state" not present in df

Example 2: Different Column Types in Dataframe Join

df2 = read("student_data1.csv",

DF[{"ID" -> Col[S],

"Graduation_Year" -> Col[I],

"Classes_Taken" -> Col[I],

"Exam_Taken" -> Col[B],

"Exam_Score" -> Ocol[F]}])

join(df1, df2, ["ID"])

>>> java.lang.Exception: ill-typed column combination: attempting to

combine different col types TyInt and TyString

53

Example 3: Semantically Incorrect Dataframe Types

df1 = read("student_data.csv",

DF[{"FirstName" -> Col[S],

"LastName" -> Col[S],

"ID" -> Col[I],

"State" -> Col[S],

"Zip" -> Col[S]}])

agg(Mean, dfselect(df1, "Zip"))

>>> java.lang.Exception: ill-typed agg: aggregator Mean cannot be applied

to column with type TyString

Example 4: Missing Data and the Optional Column

df2 = read("student_data1.csv",

DF[{"ID" -> Col[S],

. . .

"Exam_Score" -> Ocol[F]}])

agg(Mean, dfselect(df2, "Exam_Score"))

>>> Some(94.0)

Example 5: Dataframe ’Keys’ and the Unique Column

student = unqwhere(df2, X("ID" == 1000))

Col([recselect(unwrap(student), "Exam_Score"),

agg(Mean, dfselect(df2, "Exam_Score"))]

>>> [Some(95.0), Some(94.0)]

54

Example 6: Column Type Recommendations

df3 = read("student_data2.csv",

DF[{"Name" -> Col[S],

. . .

"Exam_Score" -> Ocol[F]}])

>>> Recommendation found! Column "Name" is typed as col, but could be upgraded to ucol

Continue execution? [y/n]> y

Recommendation found! Column "Exam_Score" is typed as ocol, but could be upgraded to col

Continue execution? [y/n]> y

This proof-of-concept implementation shows that the features discussed in this paper

are feasible, and that PingPong is potentially expandable into a full-fledged domain-

specific language. However, the present version of PingPong is not competitive with

Pandas or other typed-dataframe modules. We propose two directions for further de-

veloping PingPong as future work: (1) improving functionality, and (2) improving user

experience. PingPong implements a groundwork and several useful operators for typed

dataframes, but there are plenty of useful operators (e.g. group by, column-wise oper-

ations...) that we didn’t have time to add. Future work could focus on adding these

or other useful operations, expanding PingPong’s functionality as a language. Second,

PingPong was designed to provide informative type errors, replacing some opaque Pan-

das runtime errors. However, PingPong’s error system is still far less developed than

that of other languages. Future work could flesh out the PingPong error system or

terminal, making PingPong more user-friendly. In this paper, we establish the ground-

work for PingPong as a type system and as a language. We believe that future work

could push these results further, perhaps even to the level of other competitors in the

field.

55

CHAPTER 6

APPENDIX: SYNTACTIC DEFINITIONS

6.1 Term, Value, and Type Definitions

Figure 6.1: PingPong Terms (Full)

t ::=
Bool(b)
Int(z)
Float(x)
String(s)

x
Some(t)
None(τ)

Column(seq(t), κ)
Record(seq((l, t)))
DataFrame(seq((l, t)))

ColumnIndex(t, t)
RecordSelect(t, t)
DFSelect(t, l)
DFInsert(t, l, t)

Agg(agg, t)
Proj(t, seq(l))
Union(t, t)
Intersection(t, t)
Diff(t, t)
Cross(t, t)
Join(t, t, seq(l))
Where(t, t)
UniqueWhere(t, t)

Read(l, τ)

bool encapsulation, b ∈ {true, false}
int encapsulation, z ∈ Z
float encapsulation, x ∈ R
string encapsulation, s ∈ Σ∗

variable
optional some wrapping
optional none

column encapsulation
record encapsulation
dataframe encapsulation - record of columns

unwrapping, DF insertion – Chapter 3

aggregation, agg ∈ {max, min, mean}
relational operators – Chapter 4

dataframe join on specified columns
dataframe select on criterion c
dataframe unique selection

csv reader "term"

56

Figure 6.2: PingPong Values and Types

v ::=
[base terms]
Some(v)
None(τ)
Column(seq(v), κ)
Record(seq((l, v)))
DataFrame(seq((l, v)))

τ ::=
Bool
Int
Float
String

Option[τ]

Column([τ, κ])
Record(seq((l, τ)))
DataFrame(seq((l, [τ, κ])))

e.g. Bool(b), Int(z) . . .

boolean type
integer type
float type
string type

optional type

column type, κ ∈ {ucol, col, ocol}
record type, mapping labels to types
df type, mapping labels to column types

Figure 6.3: PingPong Criterion(s)

c ::=
l > t
l < t
l == t
Not(c)
And(c c)
Or(c c)

57

6.2 Typing Rules

Figure 6.4: Core Term Typing Rules

Γ ⊢ Bool(b) : Bool
[T− BOOL]

Γ ⊢ Int(z) : Int
[T− INT]

Γ ⊢ Float(x) : Float
[T− FLOAT]

Γ ⊢ String(s) : String
[T− STRING]

x : τ ∈ Γ

Γ ⊢ x : τ
[T− VAR]

Γ ⊢ t1 : τ

Γ ⊢ Some(t1) : Option[τ]
[T− SOME]

Γ ⊢ None(τ) : Option[τ]
[T− NONE]

Γ ⊢ for each i = 1..n, ti : τ

Γ ⊢ Column([t1, ..., tn], col) : Column([τ, col])
[T− COL]

Γ ⊢ for each i = 1..n, ti : Option[τ]

Γ ⊢ Column([t1, ..., tn], ocol) : Column([τ, ocol])
[T−OCOL]

Γ ⊢ for each i = 1..n, ti : τ ∀i, j, ti = tj → i = j

Γ ⊢ Column([t1, ..., tn], ucol) : Column[τ, ucol]
[T− UCOL]

Γ ⊢ for each i = 1..n, ti : τi

Γ ⊢ Record(li : t
i=1..n
i) : Record(li : τ

i=1..n
i)

[T− REC]

Γ ⊢ for each i = 1..n, ti : [τi, κi]

Γ ⊢ DataFrame(li : t
i=1..n
i)) : DataFrame(li : [τi, κi]))

[T−DF]

Γ ⊢ t1 : [τ, col] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : τ
(T− COLINDEX)

Γ ⊢ t1 : [τ, ucol] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : τ
(T− UCOLIND)

Γ ⊢ t1 : [τ, ocol] Γ ⊢ t2 : Int

Γ ⊢ ColumnIndex(t1, t2) : Option[τ]
(T−OCOLIND)

Γ ⊢ t1 : {li : τi}
Γ ⊢ RecordSelect(t1, lj) : τj

(T− RECSELECT)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]
Γ ⊢ DFSelect(t1, li) : [τi, κi]

(T−DFSELECT)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : [τn+1, κn+1]

Γ ⊢ DFInsert(t1, ln+1, t2) : {[li : [τi, κi]i=1..n+1 }]
(T−DFINSERT)

58

Figure 6.5: Advanced Utility Typing Rules

Γ,Γagg ⊢ t1 : [τ1, κ1] (agg, [τ1, κ1]) : τ2 ∈ Γagg
Γ,Γagg ⊢ Agg(agg, t1) : τ2

(T− AGG)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]
Γ ⊢ Proj(t1, seq(l)) : {[lj : [τj , κj]lj∈seq(l) }]

(T− PROJ)

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Union(t1, t2) : {[li : [τi, κ1i ⃝∨ κ2i]

i=1..n }]
(T− UNION)

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Intersection(t1, t2) : {[li : [τi, κ1i ⃝∧ κ2i]

i=1..n }]
(T− INTERSECTION)

Γ ⊢ t1 : {[li : [τi, κ1i]
i=1..n }] Γ ⊢ t2 : {[li : [τi, κ2i]

i=1..n }]
Γ ⊢ Diff(t1, t2) : {[li : [τi, κ1i ⊘ κ2i]

i=1..n }]
(T−DIFF)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : {[lj : [τj , κj]j=1..m }]
Γ ⊢ Cross(t1, t2) : {[li : [τi, N(κ1i)]

i=1..n, lj : [τj , N(κ2j)]
j=1..m }]

(T− CROSS)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }] Γ ⊢ t2 : {[lj : [τj , κj]j=1..m }]
Γ ⊢ Join(t1, t2, [lk]) : {[li : J1[lk](li)

i=1..n, lj : J
2
[lk]

(lj)j=1..m }]
(T− JOIN)

Γ ⊢ t1 : {[li : [τi, κi]i=1..n }]

Γ ⊢ c1 : (− lj : τ
j=1..m
j)− {lj : τj}j=1..m ⊆ {li : τi}i=1..n

Γ ⊢ Where(t1, c1) : {[li : τ i=1..n
i }]

(T−WHERE)

c1 : l1 == t1 Γ ⊢ t2 : {[li : [τi, κi]i=1..n }]
Γ ⊢ t1 : τ1 {l1 : [τ1, ucol]} ⊆ {li : [τi, κi]i=1..n}

Γ ⊢ UniqueWhere(t2, c1) : Option[{li : R([τi, κi])i=1..n}]
(T− UNQWHERE)

Γ ⊢ Read(l, τ) : τ
(T− READ)

59

Figure 6.6: Criterion Typing Rules

Γ ⊢ t1 : τ1
Γ ⊢ l1 > t1 : Criterion(l1, τ1)

(C−GT)

Γ ⊢ t1 : τ1
Γ ⊢ l1 = t1 : Criterion(l1, τ1)

(C− EQ)

Γ ⊢ t1 : τ1
Γ ⊢ l1 < t1 : Criterion(l1, τ1)

(C− LT)

Γ ⊢ c1 : (− li : τ
i=1..n
i)−

Γ ⊢ Not(c1) : (− li : τ
i=1..n
i)−

(C− NOT)

Γ ⊢ c1 : (− li : τ
i=1..n
i)− Γ ⊢ c2 : (− lj : τ

j=1..m
j)−

Γ ⊢ And(c1, c2) : (− li : τ
i=1..m
i)− ∪ (− lj : τ

j=1..m
j)−

(C− AND)

Γ ⊢ c1 : (− li : τ
i=1..n
i)− Γ ⊢ c2 : (− lj : τ

j=1..m
j)−

Γ ⊢ Or(c1, c2) : (− li : τ
i=1..m
i)− ∪ (− lj : τ

j=1..m
j)−

(C−OR)

60

6.3 Evaluation Rules

Figure 6.7: Core Term Evaluation Rules

Bool(b) ⇓ Bool(b)
[E− BOOL]

Int(z) ⇓ Int(z)
[E− INT]

Float(x) ⇓ Float(x)
[E− FLOAT]

String(s) ⇓ String(s)
[E− STRING]

t1 ⇓ v1
Some(t1) ⇓ Some(v1)

[E− SOME]

None(τ) ⇓ None(τ)
[E− NONE]

for each i = 1..n, ti ⇓ vi
Column([t1, t2, ..., tn],_) ⇓ Column([v1, v2, ...vn],_)

(E− UCOL/COL/OCOL)

for each i = 1..n, ti ⇓ vi
Record({l1, t1), ..., (ln, tn)}) ⇓ Record({(l1, v1), ..., (ln, vn)})

(E− REC)

for each i = 1..n, ti ⇓ vi
DF({[(l1, t1), ..., (ln, tn) }]) ⇓ DF({[(l1, v1), ..., (ln, vn) }])

(E−DF)

t1 ⇓ Column([v11, v12, ...v1n],_) t2 ⇓ i

ColumnIndex(t1, t2) ⇓ v1i
(E− UCOL/COL/OCOLIND)

t1 ⇓ Record({(l1, v11), ..., (ln, v1n)})
RecordSelect(t1, li) ⇓ v1i

(E− RECSELECT)

t1 ⇓ DF({[(l1, v11), ..., (ln, v1n) }])
DFSelect(t11, l1i) ⇓ v1i

(E−DFSELECT)

Γ ⊢ t1 ⇓ DF({[(l1, v11), ..., (ln, v1n) }]) t2 ⇓ v1(n+1)

Γ ⊢ DFInsert(t1, ln+1, t2) ⇓ DF({[(l1, v11), ..., (l(n+1), v1(n+1)) }])
(E−DFINSERT)

61

Figure 6.8: Advanced Utility Evaluation Rules

t1 ⇓ v1
Agg(agg, t1) ⇓ agg(v1)

(E− AGG)

t1 ⇓ v1
Proj(t1, seq(l)) ⇓ πseq(l)(v1)

(E− PROJ)

t1 ⇓ v1 t2 ⇓ v2
Union(t1, t2) ⇓ v1 ∪ v2

(E− UNION)

t1 ⇓ v1 t2 ⇓ v2
Intersection(t1, t2) ⇓ v1 ∩ v2

(E− INTERSECTION)

t1 ⇓ v1 t2 ⇓ v2
Diff(t1, t2) ⇓ v1 − v2

(E−DIFF)

t1 ⇓ v1 t2 ⇓ v2
Cross(t1, t2) ⇓ v1 × v2

(E− CROSS)

t1 ⇓ v1 t2 ⇓ v2
Join(t1, t2, [lk]) ⇓ v1 ▷◁[lk] v2

(E− JOIN)

t1 ⇓ v1
Where(t1, c1) ⇓ σc1(v1)

(E−WHERE)

t1 ⇓ v1
UniqueWhere(t1, c1) ⇓ σ′c1(v1)

(E− UNQWHERE)

Read(l, τ) ⇓ read(l)
(E− READ)

62

BIBLIOGRAPHY

Paolo Atzeni and Valeria De Antonellis. Relational Database Theory. Benjamin/Cum-
mings Publishing Company, Inc., 1993. ISBN 0805302492.

Anthony Cowley. Frames: Data frames for working with tabular data files, 2014. Ac-
cessed: 2024-1-20.

Ulrik Jorring and William L. Scherlis. Compilers and staging transformations. POPL
’86’, pages 86–96, January 1986.

Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo,
Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. Towards scalable dataframe systems, 2020.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, February 2002.
ISBN 0262162091.

The Frameless Project. Frameless: Expressive Types for Spark, 2017. Accessed: 2024-
1-20.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database system concepts.
McGraw-Hill, New York, 6 edition, 2010. URL http://www.db-book.com/.

Ehsan Totoni, Wajih Ul Hassan, Todd A. Anderson, and Tatiana Shpeisman. Hiframes:
High performance data frames in a scripting language, 2017.

Tufts University. Pads documentation. https://pads.cs.tufts.edu/doc.html, May
2009. Accessed: 2024-1-20.

Yungyu Zhuang and Ming-Yang Lu. Enabling type checking on columns in data
frame libraries by abstract interpretation. IEEE Access, 10:14418–14428, 2022.
doi:10.1109/ACCESS.2022.3146287.

63

http://www.db-book.com/
https://pads.cs.tufts.edu/doc.html
https://doi.org/10.1109/ACCESS.2022.3146287

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Example 1: Missing Dataframe Column
	2.2 Example 2: Different Column Types in Dataframe Join
	2.3 Example 3: Semantically Incorrect Dataframe Types
	2.4 Example 4: Missing Data and the Optional Column
	2.5 Example 5: Dataframe 'Keys' and the Unique Column
	2.6 Example 6: Column Type Recommendations
	2.7 PingPong Design Roadmap

	3 Typed Dataframes in PingPong
	3.1 Core Terms, Values, and Types
	3.2 Dataframe Constituents and Operators
	3.3 Column Variants

	4 Advanced Operations
	4.1 Column Aggregation
	4.2 Simple Relational Operators
	4.3 PingPong's Natural Join
	4.4 Selection, Criterions, and UniqueWhere

	5 Implementation and Demonstration
	5.1 Type Recommendations
	5.2 Term Evaluation
	5.3 Scanning and Parsing
	5.4 Proof-of-Concept PingPong System

	6 Appendix: Syntactic Definitions
	6.1 Term, Value, and Type Definitions
	6.2 Typing Rules
	6.3 Evaluation Rules

	References

