
THE UNIVERSITY OF CHICAGO

OPTIMIZING COLLECTIONS OF BLOOM FILTERS WITHIN A SPACE BUDGET

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

GABRIEL MERSY

CHICAGO, ILLINOIS

APRIL 2024

Copyright © 2024 by Gabriel Mersy

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vi

ACKNOWLEDGMENTS . vii

ABSTRACT . viii

1 INTRODUCTION . 1

2 BACKGROUND AND PROBLEM STATEMENT 4
2.1 Bloom Filters . 4

2.1.1 Filter Collections . 5
2.1.2 Utility-Weighted False Positive Rate 5

2.2 Problem Statement . 5

3 TRUNCATED BLOOM FILTERS . 7
3.1 Key Differences . 7
3.2 False Positive Rate Analysis . 9

4 OPTIMIZING FILTER COLLECTIONS . 12
4.1 An Exact Optimization Problem . 12

4.1.1 Formulation . 12
4.1.2 Convexity . 13
4.1.3 Complexity Analysis . 16

4.2 A Faster Relaxation . 16
4.2.1 The Lower Bound . 17
4.2.2 Convexity . 17
4.2.3 Complexity Analysis . 18

4.3 Further Relaxations . 18

5 EVALUATION . 19
5.1 Implementation Details . 19
5.2 Data Skipping . 20

5.2.1 Experimental Setup . 21
5.2.2 Results . 23

5.3 Full-Text Search . 26
5.3.1 Experimental Setup . 28
5.3.2 Results . 30

5.4 Microbenchmarks . 32
5.4.1 Truncated Bloom Filters . 32
5.4.2 Optimization Latency . 34

iii

5.4.3 Alternative Algorithms . 36
5.4.4 Different Utility Distributions . 37

6 RELATED WORK . 39
6.1 Filters . 39
6.2 Bloom Filters in Key-value Stores . 39
6.3 Modular Bloom Filters . 39
6.4 Other Bloom Filter Applications . 40

7 CONCLUSION . 41

REFERENCES . 42

iv

LIST OF FIGURES

3.1 An overview of our method. 8

5.1 Average skip rate on RE, EV, and NASA at different size budgets (higher is
better). We generally outperform the in-memory methods and are similar to the
on-disk filter. 24

5.2 Average wasted time on RE, EV, and NASA at different index size budgets B
(lower is better). We outperform the in-memory methods. 25

5.3 Average query latency on RE, EV, and NASA at different index size budgets B
(lower is better). We are generally the lowest latency choice across all methods
and budgets. 26

5.4 Increasing compute-storage disaggregation can greatly magnify the cost of false
positives. 27

5.5 I&S (left) and MI (right). We have higher precision than the best-performing
baseline (TMII) at larger budgets and rival its performance at smaller budgets. 31

5.6 I&S (left) and MI (right). We are slower than the baselines besides scan but are
impeded by implementation. 32

5.7 FPR (left) and query latency (right) as a function of the truncation ratio p.
Latency is given as 95% confidence intervals, + and − are positive and negative
keys respectively. 33

5.8 Solving the relaxation scales to large inputs. The resulting throughput is approx-
imately 20 thousand filters per second on a resource-constrained machine. 35

5.9 Our method harmonizes the benefits of Top Utility and Equal Truncation. . . . 36
5.10 Skewed distributions imply better performance. 37

v

LIST OF TABLES

vi

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Sanjay Krishnan for his ongoing creativity and

guidance throughout the research process, my collaborator Professor Stavros Sintos who

helped make this work possible, and the ChiData group. I also thank Professor Aaron

Elmore and Professor Raul Castro Fernandez for joining my committee. Last but not least,

I extend my heartfelt gratitude to Izabella and the rest of my family for their support.

vii

ABSTRACT

With a single Bloom filter, one can approximately answer set membership queries within a

space budget. Practical systems often use collections of Bloom filters to facilitate applications

such as data skipping, sideways information passing, and network filtering. While the optimal

space-to-accuracy allocation is well-understood for a single filter, jointly optimizing how

space is used across a collection of filters is yet to be studied. We pose this problem in the

following way: (1) let’s assume that each Bloom filter has some likelihood of being queried,

and (2) given knowledge of this likelihood, how do we allocate space to minimize the expected

false positive rate? In other words, “hot” filters are allocated more space, and “cold” filters are

allocated less space. In this paper, we show how to solve this optimization problem. We first

develop the concept of a “truncated” Bloom filter and theoretically analyze its false positive

rate. We then formulate an optimization problem for a collection of truncated Bloom filters

that minimizes the false positive rate across a utility distribution while meeting a strict

space budget. Next, we show that the problem is convex and find a fast relaxation. Lastly,

we apply our method to data skipping and full-text search, demonstrating its effectiveness

across the range of possible space budgets when compared to the state of the art.

viii

CHAPTER 1

INTRODUCTION

A Bloom filter is a sketch that can approximately answer set membership queries within

a space budget. Bloom filters have a crucial property that does not yield false negative

results, which makes them highly valuable in database systems. The applications of Bloom

filters span key-value stores Dayan et al. [2017], Redis [2024], data skipping Databricks

[2023], Dageville et al. [2016], query optimization Gaffney et al. [2022], Zhu et al. [2017],

and search engines Goodwin et al. [2017]. Filters are often employed in these applications

to reduce storage reads by serving as an intermediary index structure that can short-circuit

data loading.

Let’s consider a typical use case for a Bloom filter. A data volume might be partitioned

across several different files. A user who is interested in identifying a particular record that

matches an equality condition (e.g., an employee identified by a social security number)

wants to query this data. On one hand, we can simply scan the entire data volume each

time we want to answer this query. This approach requires no indexing but is slow. Another

approach is to build an index over the search keys, which can require substantial additional

space and may be hard to operationalize in some environments (e.g., a write-heavy database

or a distributed system). A Bloom filter allows one to span these two extremes by annotating

each partition with a space-limited filter that determines if it needs to be processed or not

– the larger the filter, the more precise the skipping will be. This filter is straightforward to

maintain under insertions.

While the design space of a single Bloom filter is well-understood Mitzenmacher [2002],

use cases like the one above show that we often consider collections of such filters (i.e.,

filters on each partition). The standard approach is to uniformly size each filter in a filter

collection, which has a few key drawbacks. First, while a single Bloom filter has a fixed size

regardless of the number of insertions, the total size of a collection of filters will grow as more

1

filters are utilized (e.g., over new partitions of data). If we wish to cache the filter collection

in memory, the constant growth can be problematic. Next, not all partitions are equally

likely to be queried, and uniform sizing allocates the same precision to frequently queried

partitions as to rare ones. This paper studies the following problem: given an anticipated

query distribution and an overall space budget, can we optimally size each filter to maximize

the expected precision?

Let’s contextualize this problem statement in the example above, and make it much

more concrete. Consider a telemetry system, such as AWS CloudWatch, which can generate

a vast amount of unstructured log data. In systems like CloudWatch, log data is broken

up into temporal partitions of roughly the same size. Over this log data, users can run

keyword search queries. Bloom filters constructed on each partition can help skip partitions

that could not possibly contain the desired keyword. While in general, one needs to process

all partitions, we know that more recent data is more likely to be relevant to a user (the

anticipated query distribution). Often, users set a time interval restricting how far back

the search should go. The solution to the optimization problem above can construct an

in-memory filter collection with a fixed size that should automatically reduce the precision

of filters for the older partitions.

Going beyond this example, there is a broader data retrieval architecture that this algo-

rithmic problem enables. Data are stored in partitions on some form of slow storage, e.g.,

disk or a blob storage system. We wish to answer set membership queries over this data, e.g.,

keyword search. These partitions are indexed in memory on a query processing node with

a guaranteed max size for the entire collection of Bloom filters. Since the total size of all

Bloom filters is fixed via optimization, they can be predictably stored in memory. As more

data are added, we show how this in-memory index can be re-optimized to maintain a fixed

size (albeit with an increased error rate for some queries). The result is a fixed-size index

over growing data. While this implies that overall filtering accuracy goes down over time,

2

if there is a sufficient, known skew in the query distribution (e.g., a bias towards querying

more recent filters), then perhaps the query-weighted accuracy does not degrade as much.

We contribute the algorithms to make this architecture a reality. Assuming a query

distribution as a proxy for utility is not a new idea. For example, caching heavily leverages

this principle, as it persists certain data items that are accessed more frequently than others

Berg et al. [2020]. In particular, we will show how to find an optimal index structure of

Bloom filters that minimizes the false positive rate over a utility distribution, while adhering

to a strict space budget. This can be thought of as a form of “partial” caching, where rather

than evicting a low-utility filter completely from the cache, we simply reduce its precision.

Interestingly enough, this is actually the optimal thing to do in the case of a Bloom filter.

The contributions of this paper are as follows.

• We define the utility-compressed sketch problem, where a sketch collection is compressed

according to the utility values of its data objects (§2).

• We propose the truncated Bloom filter as a simple extension in which the filter is

shortened after construction, enabling the trade-off between space and false positive

rate to be traversed in a fine-grained fashion (§3).

• We formulate a constrained optimization problem for a collection of truncated Bloom

filters that assigns higher false positive rates to lower-utility filters by modulating filter

lengths, subject to a strict bit-level space budget (§4).

• We prove, at odds with intuition, that the resulting optimization problem is convex.

We further derive a relaxation of the original problem that is also provably convex and

features an objective function that runs in linear time (§4).

• We demonstrate the effectiveness of our method when compared to the state of the

art on two representative Bloom filter applications: data skipping and full-text search

(§5).

3

CHAPTER 2

BACKGROUND AND PROBLEM STATEMENT

We begin by covering some background and the problem statement.

2.1 Bloom Filters

A Bloom filter Bloom [1970] is a probabilistic data structure for representing a set that can

answer approximate membership queries. For convenience, we write B when we refer to a

Bloom filter throughout the paper. An m-bit Bloom filter B contains n elements and is

associated with k independent hash functions h1, h2, . . . , hk. We denote these parameters

as the 3-tuple (m, k, n). We will use the notation | · | to denote the size of a sketch. For a

Bloom filter, this is initially given by the parameter m.

The filter is initially an array of all zeros. When adding an element b to B a total of k

hashed positions in the filter B[h1(b)],B[h2(b)], . . . ,B[hk(b)] are set to 1. For a query key q

each of the k hashed positions in the filter is probed. If a position is not set to 1, then a

negative (−) result is returned. If all of the positions are set to 1, then a positive (+) result

is returned. If the key is in the filter, then it returns the correct answer. If the key is not

in the filter then it returns the correct answer with probability 1− ε for a small parameter

ε ∈ (0, 1). In other words, with probability ε the filter returns a positive result for a key

that is not in the filter (i.e., a false positive).

Denote q+ as a positive key that is in the filter and q− as a negative key that is not

in the filter. A Bloom filter by design has a false positive rate of P(+ | q−) = ε and a

zero false negative rate P(− | q+) = 0. The false positive rate ε is given as ε ≈
(
1 −

(
1 −

1
m

)kn)k. It has been shown that this characterization is a very close approximation but

is not quite correct due to a flawed bit independence assumption Bose et al. [2008]. Since

the alternative is an impractical combinatorial function, we exclusively make use of the

4

closed-form approximation, as is standard Dayan et al. [2017].

2.1.1 Filter Collections

A filter collection is a set of N Bloom filters {B1,B2, . . . ,BN} where each filter Bi represents

a data object Di. We further assume that there is a utility function u : D → R≥0 that maps

each data object to a non-negative real number. Throughout the paper, we write u to refer

to a utility value that has already been pre-computed by the function in question. A utility

function represents some notion of usefulness with respect to a particular Bloom filter in the

collection. For example, utility may represent the frequency at which a filter is queried when

compared to other filters, or the probability that a filter is queried.

2.1.2 Utility-Weighted False Positive Rate

In the same way that we can calculate the false positive rate ε for a single Bloom filter, we

can calculate the expected false positive rate for a filter collection using the individual false

positive rates ε1, ..., εN and utility values u1, u2, . . . , uN . We arrive at a final figure of merit

which is the utility-weighted false positive rate:

E =
N∑
i=1

ui · εi (2.1)

If one interprets the utility values as probabilities, this function measures the overall precision

of the filter collection, e.g., how accurately the collection skips data given known partition

query probabilities.

2.2 Problem Statement

We would like to produce a final index structure that allocates space to Bloom filters within

a space budget B by minimizing the utility-weighted false positive rate E .
5

Definition 1 (Problem Statement). We are given a space budget B, data objectsD1,D2, . . .DN

and corresponding utility values u1, u2, . . . , uN . The goal is to produce a filter collection such

that:
N∑
i=1

|Bi| ≤ B

by minimizing

min
N∑
i=1

ui · εi

where ui = u(Di) and εi = ϕ(Bi) with ϕ denoting the Bloom filter false positive rate formula.

This problem statement is very similar to a caching problem statement at first glance;

namely, identify the data items with the highest utility. The key difference when compared

to standard caching techniques is that items are not simply evicted or cached according to

a space budget. We now have the additional option of degrading the accuracy of an item.

It may very well be that the optimal solution in some cases is to allocate 0 bits to an item,

but that should only be a consequence of the optimization algorithm.

This formulation is further an instance of a broader problem that we call a utility-

compressed sketch. In the general case, the space for a particular data object’s sketch Xi is

allocated by minimizing a weighted sum across error functions of the form ϕ(|Xi|) subject to

a budget constraint
∑N

i=1 |Xi| ≤ B. In typical sketches, the error function ϕ is monotonic in

space. We can think of a utility-compressed sketch as an optimization over lossy data struc-

tures that represent data items at several different “resolutions”, which is related to similar

problems in data compression Barbarioli et al. [2023]. There are many possible definitions

of ϕ(|Xi|). In the case of a Bloom filter, ϕ(|Xi|) is the false positive rate as a function of

its size – we could apply the same reasoning to other sketches such as the count-min sketch

Cormode and Muthukrishnan [2005].

6

CHAPTER 3

TRUNCATED BLOOM FILTERS

To solve this problem, we will introduce a new sketch called a truncated Bloom filter. It is

based on the simple idea that previously-allocated space in a Bloom filter can later on be

revoked. This concept is useful for a few key reasons. First, it allows us to formulate the

optimization problem as a revocation of previously-allocated space; that is, we can start with

a uniform allocation of space and remove bits based on the optimization objective. Second,

it allows us to operate in an online setting where new data are added but we wish to keep a

fixed storage size. Finally, it allows for consistent querying across the entire filter collection

with a fixed set of hash functions.

The standard Bloom filter is inflexible when there are changing requirements for false

positive rates. Both the target false positive rate and the expected number of elements in

the filter are often specified prior to construction, which means that the Bloom filter must

be reconstructed from scratch if less space is desired in the future. While there has been

work on expanding filters Dayan et al. [2023], we study the opposite problem of contracting

filters.

3.1 Key Differences

We begin by highlighting the key differences between a truncated Bloom filter and a standard

Bloom filter.

Definition 2 (Truncated Bloom Filter). Let B be a Bloom filter with m bits, k hash func-

tions, and n added elements. A truncated Bloom filter is a new Bloom filter B′ formed by

removing the rightmost m−m′ bits from B. The truncated filter B′ satisfies B′[1, 2, . . . ,m′] =

B[1, 2, . . . ,m′].

7

Figure 3.1: An overview of our method.

The only notational difference is that a new parameter m′ is introduced to specify the

truncated filter length. To operationalize this definition, we show that simply considering

the subset of hash functions that fall before m′ is sufficient to query the filter.

Definition 3 (Valid Hash Function). We say that a hash function hs : U → [m] taking an

arbitrary object o ∈ U from universe U as input is a valid hash function if hs(o) ≤ m′. We

say that a hash function is an invalid hash function if hs(o) > m′, i.e., a hash function is

valid if it maps to the remaining region and is invalid if it maps to the truncated region.

These concepts are also highlighted visually in Figure 3.1. As we move to the right in the

figure, the filters exhibit increasing levels of truncation (i.e., smaller values of m′). Given a

negative query key q− the number of valid hash functions (solid arrows) decreases, while the

number of invalid hash functions (dotted arrows) increases.

Membership queries are issued to a truncated filter using the procedure described in

Algorithm 1. The key algorithmic difference in querying a truncated Bloom filter is that

there is an extra condition to check whether each hash function is valid or not.

There are also a few degenerate cases that are worth noting. First, if m′ = 0 then the

query always returns a positive result and has a 100% false positive rate. Second, if there

are no valid hash functions, then the query always returns a positive result and also has a

100% false positive rate. Third, if m′ = m then the false positive rate is unchanged and is

thus identical to the original filter.

8

Input: Query q, truncated Bloom filter B′ with m′ ≤ m bits, k hash functions
h1, h2, . . . , hk where hs : U→ [m]

for s ∈ [k] do
if hs(q) ≤ m′ ∧ B′[hs(q)] = 0 then

return −
end

end
return +

Algorithm 1: Querying a truncated Bloom filter.

3.2 False Positive Rate Analysis

Aside from the degenerate cases, the false positive rate of a truncated Bloom filter strictly

falls between 100% and the original false positive rate. To build intuition concerning the false

positive rate of a truncated Bloom filter, consider the first filter in Figure 3.1. Only 3 out of

the 4 hash functions are valid, and the false positive rate in this example is (1−(1− 1
m1

)4n1)3

which is strictly higher than the false positive rate (1− (1− 1
m1

)4n1)4 of the original filter.

In fact, the false positive rate is governed by the number of valid hash functions. Before a

particular query, we do not know precisely how many hash functions will be valid. Instead,

we define a random function (called the false positive function) ϕ(·), that returns a random

variable for the false positive rate, as shown in Proposition 1.

Definition 4 (False Positive Function). The false positive function ϕ(V) of a truncated

Bloom filter is:

ϕ(V) =
(
1−

(
1− 1

m

)kn)V
(3.1)

where V is a random variable for the number of valid hash functions defined on the sample

space Ω = {0} ∪ [k].

Proposition 1 (False Positive Rate). Given a collection of k independent and uniform hash

functions h1, . . . , hk and the fraction of remaining bits p = m′
m after truncation, the false

9

positive rate ε of a truncated Bloom filter assuming bit independence is:

ε = E[ϕ(V)] =
k∑

v=0

(
1−

(
1− 1

m

)kn)v
·
(
k

v

)
· pv(1− p)k−v (3.2)

with V ∼ Bin(k, p) represented as a binomial random variable.

Proof. Let B[1, 2, . . . ,m] be a Bloom filter and let B′ = B[1, 2, . . . ,m′] be its truncated filter.

Let H = {h1, . . . , hk} be the set of k hash functions used in filter B. Let B′(q) ∈ {−,+} be

the result of Algorithm 1. The false positive rate is defined as ε = Pr[B′(q) = + | q /∈ B],

where q is a key that is not stored in Bloom filter B. From the query algorithm we have

that B′(q−) = + if for every h ∈ H with h(q) ≤ m′ it holds that B′[h(q)] = B[h(q)] = 1. Let

I ⊆ H be a subset of the hash functions and let q /∈ B be a key that is not stored in the

filter. We define the random variables:

• AI : Given that q /∈ B, if
∧
h∈I B[h(q) = 1] then AI = 1, otherwise AI = 0.

• CI : if h(q) ≤ m′ for every h ∈ I and h(q) > m′ for every h ∈ H \ I then CI = 1,

otherwise CI = 0.

We have,

ε = Pr[B′(q) = + | q /∈ B] = Pr

 ∨
I⊆H

(
AI
∧

CI)
)

=
∑
I⊆H

Pr
[
AI
∧

CI
]
=

k∑
v=0

∑
I⊆H,|I|=v

Pr
[
AI
∧

CI
]

=
k∑

v=0

∑
I⊆H,|I|=v

Pr[CI] · Pr[AI | CI]

=
k∑

v=0

∑
I⊆H,|I|=v

pv(1− p)k−v · Pr

∧
h∈I
B[h(q) = 1] | q /∈ B

10

=
k∑

v=0

∑
I⊆H,|I|=v

pv(1− p)k−v ·
∏
h∈I

Pr [B[h(q) = 1] | q /∈ B]

=
k∑

v=0

∑
I⊆H,|I|=v

pv(1− p)k−v
(
1−

(
1− 1

m

)kn
)v

=
k∑

v=0

(
k

v

)
pv(1− p)k−v

(
1−

(
1− 1

m

)kn
)v

= E[ϕ(V)]

11

CHAPTER 4

OPTIMIZING FILTER COLLECTIONS

In this section, we formalize a constrained optimization problem that produces a utility-

compressed sketch of truncated Bloom filters. We first prove that the optimization problem

is convex and can thus be solved using a standard algorithm for convex optimization. We

then derive a relaxation that is also shown to be convex. Crucially, the relaxation can be

solved faster than the original problem both in theory and in practice.

4.1 An Exact Optimization Problem

We are given a space budget B, utility values u1, u2, . . . , uN and Bloom filters B1,B2, . . . ,BN

constructed with parameter tuples of the form (mi, ki, ni).

4.1.1 Formulation

We begin with a simple description of the optimization problem. The basic intuition is

that a higher false positive rate is assigned to a filter that has a lower utility value, and a

lower false positive rate is assigned to a filter with a higher utility value. To achieve this

desired property, we write u · E[ϕ(V)]. The false positive rate of a truncated Bloom filter

is modulated by setting the number of remaining bits m′ prior to the truncation operation.

Therefore, our variables are simply the truncated filter lengths m′1,m
′
2, . . . ,m

′
N across our

collection of Bloom filters. Referring back to Figure 3.1, we can see how the utility values

affect the truncated filter lengths in our optimization routine.

Following this intuition, the objective is to minimize the dot product between the utility

values and the false positive rate terms by finding an optimal assignment of truncated filter

lengths, subject to a few constraints. First, the sum of the m′i must not exceed the budget

B. Second, each m′i must fall between 0 and the original filter length mi. Using the false

12

positive rate from Equation (3.2), we define our constrained optimization problem as follows:

min
m′

1,...,m
′
N

N∑
i=1

ui · E[ϕ(Vi)]

s.t.
N∑
i=1

m′i ≤ B

0 ≤ m′i ≤ mi

where B is the target budget, and each variable m′i corresponds to a truncated length. Note

that each truncated filter length m′i ∈ R≥0 is currently treated as a continuous optimization

variable. Of course, a fractional truncated filter length is not possible, so we simply take the

optimal solution and for each i ∈ [N] round down to the nearest integer; m′i ← ⌊m
′
i⌋. This

ensures that the budget constraint is still satisfied. We can also substitute a budget equality

constraint
∑N

i=1m
′
i = B for the budget inequality constraint

∑N
i=1m

′
i ≤ B.

4.1.2 Convexity

In order to establish convexity, we need to verify that the objective and constraint functions

are all convex. By inspection, the constraint functions in the above formulation are linear

and therefore convex. Hence, it suffices to establish the convexity of the objective function.

In Lemma 2, we show that the false positive function ϕ(·) as written in Equation (3.1) is

convex on R≥0 which is a superset of the feasible region (i.e., polytope) defined by the

constraints.

Lemma 2 (Convexity of ϕ). ϕ(x) =
(
1−

(
1− 1

m

)kn)x is convex on x ≥ 0 for m, k, n > 0.

Proof. By the definition of convexity, we want to show that the second derivative d2ϕ(x)
dx2

is

non-negative. Let x ≥ 0 and m, k, n > 0. Define w = 1 −
(
1 − 1

m

)kn which is a strictly

13

positive value by construction. We differentiate twice to obtain:

d2ϕ(x)

dx2
= wx log2(w) ≥ 0.

It has now been shown that the truncated Bloom filter false positive function is convex

under mild conditions. We now prove a more surprising result concerning the convexity of the

objective function. Intuition derived from a plot of the binomial probability mass function

may suggest that the objective function is unlikely to be convex in the optimization variable.

On the contrary, we find that the function is indeed convex, as presented in Proposition

3. The structure of the proof relies the observation that the binomial distribution is an

exponential family, which allows us to employ properties of such families to infer that our

objective function is convex.

Proposition 3 (Objective Convexity). The objective function f(m′) =
∑N

i=1 ui · E[ϕ(Vi)]

is convex in m′i on 0 ≤ m′i ≤ mi.

Proof. We first note the symmetry of the objective function and reduce the problem to the

univariate case. This is a valid argument because if d2

dm′
i
2E[ϕ(Vi)] ≥ 0 then, by linearity

of differentiation and the non-negative utility values, the Hessian Hf must be a diagonal

matrix exclusively composed of non-negative entries (and f is convex). The core idea is to

show that the base function E[ϕ(Vi)] is convex in a single variable m′i and then deduce that

the objective function is composed of a convexity-preserving operation on multiple instances

of the base function with distinct variables.

We borrow from the statistics literature the known fact that the binomial distribution is

an exponential family for a fixed number of trials (the number of hash functions in our case).

In particular, this means that the binomial probability mass function can be rewritten in a

canonical form. Let X be an exponential family random variable X : Ω→ E with probability
14

density function PX(x; θ) that depends on the parameter θ. Assuming that ϕ(·) is convex on

the sample space Ω and the expectation E[X] is linear in the parameter θ, then it is known

that E[ϕ(X)] is convex in the parameter θ Shaked [1980], Schweder [1982].

Let mi, ki, ni > 0 and 0 ≤ m′i ≤ mi for all i ∈ [N]. Each Vi : Ω → E is a binomial

random variable from an exponential family with probability mass function PVi(vi; pi). The

sample space Ω of a binomial random variable is non-negative. By Lemma 2, it then follows

that the function ϕ(·) is convex on the sample space of Vi. The expectation E[Vi] = kipi

is linear in the parameter pi Brown [1986]. Therefore, we have that the function E[ϕ(Vi)]

is convex in the success probability parameter pi. This implies that the second derivative

with respect to pi is non-negative d2E[ϕ(Vi)]
dp2i

≥ 0. We differentiate Equation (3.2) twice with

respect to the success probability pi and obtain:

d2E[ϕ(Vi)]
dp2i

=

ki∑
vi=0

ϕ(vi) ·
(
ki
vi

)[
vi(vi − 1)pi

vi−2(1− pi)
ki−vi

−2vi(ki − vi)pi
vi−1(1− pi)

ki−vi−1

+(ki − vi)(ki − vi − 1)pi
vi(1− pi)

ki−vi−2
]

It remains to show that E[ϕ(Vi)] is also convex in the truncated filter length variable m′i.

Notice that dpi
dm′

i
= 1

mi
> 0. We now differentiate E[ϕ(Vi)] twice with respect to m′i and find

that the following holds:

d2E[ϕ(Vi)]
dm′i

2
=

1

mi
2
· d

2E[ϕ(Vi)]
dp2i

≥ 0

Specifically, the second derivative with respect to our desired variable m′i can be rewritten

as a positive constant multiplied by the second derivative with respect to pi. Hence, E[ϕ(Vi)]

is convex in the variable m′i since d2E[ϕ(Vi)]
dm′

i
2 ≥ 0. Lastly, a weighted sum with non-negative

coefficients ui ≥ 0 is known to preserve convexity, so the objective function f is convex in

15

m′i on the interval 0 ≤ m′i ≤ mi which concludes the proof.

4.1.3 Complexity Analysis

The time complexity of computing the objective is quadratic O(N maxi∈[N] ki). To solve

such convex optimization problems, interior-point methods convert constrained problems to

unconstrained problems via the introduction of barrier functions Boyd and Vandenberghe

[2004]. Additionally, these solvers often rely on Newton’s method as a crucial subroutine.

When objective functions are computationally expensive, the evaluation of gradient vectors

and Hessian matrices at high-dimensional points in space can become a critical bottleneck.

In our case, linearity of differentiation suggests that the run time of the underlying solver

will be highly dependent on the time complexity of the objective function. For example,

each entry of the gradient would contain a summation that mirrors the inner summation

over ki in the objective function, combined with the terms for the barrier functions. While

a quadratic time objective is likely acceptable for many applications, in the next section we

explore how to find a close approximation of the optimal solution with an objective function

that can be computed in only linear time O(N). In doing so, we remove the dependency on

the number of hash functions and eliminate the O(ki) factor.

4.2 A Faster Relaxation

In this section, we describe a relaxation of the optimization problem that features an ap-

proximate objective function. In particular, the objective function is a lower bound of the

original objective function from the previous section. When minimizing a lower bound, we

are able to simplify and speed up the optimization problem by paying the price of an exact

optimal solution. Such lower bound methods are often applied when the original problem

is intractable. We find that, while our original problem is certainly tractable, minimizing

a lower bound is an elegant solution that benefits both theory and practice. We will also

16

demonstrate these observations empirically in the experiments.

4.2.1 The Lower Bound

We now derive a lower bound for the objective function. Since Lemma 2 states that ϕ is a

convex function, we invoke Jensen’s inequality E[ϕ(V)] ≥ ϕ
(
E[V]

)
and write the following

lower bound for the false positive rate term using the fact that E[V] = kp:

ϕ
(
E[V]

)
=
(
1−

(
1− 1

m

)kn)kp
(4.1)

Hence, we can reformulate the objective function to yield a relaxation by substituting the

lower bound in Equation (4.1) for the original false positive rate term from Equation (3.2).

We can verify that the new problem is a relaxation of original problem, since
∑N

i=1 ui ·

ϕ
(
E[Vi]

)
≤
∑N

i=1 ui · E[ϕ(Vi)] and the feasible region remains the same.

4.2.2 Convexity

In a similar fashion to the previous section, we now confirm that the approximate objective

function is convex in our optimization variable. This brings us to Proposition 4.

Proposition 4 (Relaxation Convexity). The objective function g(m′) =
∑N

i=1 ui · ϕ
(
E[Vi]

)
is convex in m′i on 0 ≤ m′i ≤ mi.

Proof. We show that the desired function can be constructed from a base function ϕ(·)

that is known to be convex and a convexity-preserving operation. Let mi, ki, ni > 0 and

0 ≤ m′i ≤ mi for all i ∈ [N]. Define xi = kipi and compute dxi
dm′

i
= ki

mi
> 0. By Lemma 2,

the base function ϕ(xi) is convex in xi since xi ≥ 0. This means that its second derivative

is non-negative. Then, we have:

d2ϕ(xi)

dm′i
2

=
k2i
m2

i

· d
2ϕ(xi)

dx2i
≥ 0

17

Therefore, the function ϕ(xi) is convex in m′i since the second derivative with respect to m′i

is non-negative. Finally, the weighted sum of the base function with non-negative coefficients

ui ≥ 0 preserves convexity, so we conclude that g is convex in m′i over the interval 0 ≤ m′i ≤

mi.

4.2.3 Complexity Analysis

The key difference in complexity when comparing the lower bound to the original objective

function is that the O(ki) factor in the running time is replaced with O(1) time to compute

the binomial expected value E[Vi] = kipi. The overall time complexity for computing the

objective function is reduced to linear O(N) with respect to the number of Bloom filters.

The run time of many interior-point solvers that rely on Newton’s method would also be

reduced, as was discussed previously.

4.3 Further Relaxations

We can further simplify the lower bound in Equation (4.1) observing that 1−
(
1− 1

m

)kn
≈

1− e−kn/m and using the optimal value of k in the Bloom filter, k = m
n ln 2. The objective

function becomes minm′
∑N

i=1 ui · 0.618m
′
i/ni , which is also a convex function. We can

further simplify the function observing that usually m′i ≤ 4ni, so the function 0.618m
′
i/ni

can be approximated with the line −0.213m
′
i

ni
+ 1. Hence, the objective function becomes

minm′
∑N

i=1−0.213 ·
ui
ni
m′i. Equivalently, the objective can be written as maxm′

∑N
i=1

ui
ni
m′i.

Notice that it is trivial to optimize this function while satisfying the size constraints of the

truncated filters. We sort and traverse all Bloom filters in descending order of ui
ni

. For each

Bloom filter Bi, we assign the maximum value of m′i ≤ mi that does not violate the total size

constraint. When the total size becomes B, then for all the remaining filters we set m′i = 0.

The overall running time of the algorithm is O(N logN).

18

CHAPTER 5

EVALUATION

In this section, we evaluate our method on two applications and several microbenchmarks.

We begin with the hardware and software configurations for the evaluation (Section 5.1).

We then show that our method can be applied to data skipping Sudhir et al. [2023], Sun

et al. [2014] in modern column-oriented query engines (Section 5.2), as well as to full-text

queries Goodwin et al. [2017] that underlie search engines (Section 5.3). Conditioned on the

assumption of skewed utility distributions, the results show that we outperform the state

of the art on key metrics across the range of possible memory budgets. Additionally, we

find that our method displays minimal performance degradation under very tight budgets.

We end by characterizing the performance of the proposed data structure and optimization

routine (Section 5.4).

5.1 Implementation Details

We first give some details about the hardware and software characteristics that form the basis

of the evaluation. Experiments were run on a single machine that has a 1.4 GHz Quad-Core

Intel i5 processor, 8 GB of RAM, and a 256 GB SSD.

The research prototype for our method was written in Python 3.10. The truncated Bloom

filters were built using the bitarray package Schnell [2023]. Filters were constructed with

the standard procedure that is commonly used in practice. Specifically, the construction

algorithm takes in a target false positive rate 0 < ε < 1 (in our case ε = 1e − 4) and the

number of elements n > 0 that will be added to the filter. It then calculates an estimate

for the optimal filter length m and number of hash functions k given these parameters. We

employed the efficient murmurhash3 hash function family Appleby [2015].

The optimization code was implemented in CVXPY Diamond and Boyd [2016], and the

19

optimal solution was found by an embedded conic solver (ECOS) Domahidi et al. [2013]. ECOS

is an interior-point method for second-order cone programs. The relaxation formulation

was implemented, since the original objective function contains the non-convex binomial

probability mass function, which is outside the scope of the solver. The implementation

additionally featured a budget equality constraint, as well as floor function rounding to map

the optimal solution onto the natural numbers.

5.2 Data Skipping

The first application that we evaluate our method on is data skipping Sun et al. [2014], Kipf

et al. [2020], Sudhir et al. [2023], Tong et al. [2023]. Data skipping is a technique employed by

several query engines Databricks [2023], Clickhouse [2024], Armbrust et al. [2020], Dageville

et al. [2016], PostgreSQL [2024] to reduce read operations, often when tables are stored

in a horizontally-partitioned columnar file format Stonebraker et al. [2005] such as Apache

Parquet. In the conventional case, a partition (i.e., row group) is associated with attribute

metadata that enables a query to skip certain partitions when the metadata index reveals

that there are no matching tuples. By filtering out irrelevant data with a lightweight index,

data skipping can significantly accelerate queries that have highly-selective predicates Ta-

Shma et al. [2020].

A Bloom filter is often the core data structure underlying point queries over categorical

attributes. This is because we can make a determination whether at least one tuple that

satisfies the predicates is either certainly not in the partition or is likely in the partition

with a small probability of being wrong (i.e., false positive). In our evaluation, we associate

a Bloom filter with each categorical attribute in a row group. This yields a total of N · p

Bloom filters in the full index. Each attribute filter collection is given a space budget that

is a fraction of the original collection size (e.g., 20% of the original). The filters are then

truncated according to the mean utility of the tuples contained in a row group.

20

The metric of success for data skipping with Bloom filters is minimizing the time that is

wasted due to false positives. Therefore, the goal in this setting is to produce a truncated

Bloom filter index that has only a negligible impact on wasted time and falls within a space

budget.

5.2.1 Experimental Setup

The setup for the data skipping experiments is now described in detail.

Datasets. We evaluate our approach on 3 datasets. First, Connecticut real estate sales

(RE) contains 997,162 tuples and 2 categorical attributes Connecticut [2023]. Each tuple

corresponds to a real estate sale in the State of Connecticut over a 20-year period. Second,

Washington electric vehicle registrations (EV) contains 162,637 tuples and 6 categorical

attributes Washington [2023]. Each tuple is a current electric vehicle registration. Third,

NASA HTTP web server logs (NASA) contains 3,452,337 tuples and 1 categorical attribute

Laboratory [1995]. Tuples consist of log entries from a web server that hosted the NASA

website.

Each dataset has an additional temporal attribute that is used to compute utility values.

These attributes are List Year (RE), Model Year (EV), and Timestamp (NASA) respectively.

Utility values are calculated as a deterministic exponentially-decaying function of time, with

a small amount of additional stochastic noise added. We sort the tuples by utility value

before writing the result to a Parquet file. This assumption serves the purpose of simulating

a realistic pattern of data arrival. Row group size is systematically determined according to

the total number of tuples in a table.

Query Model. Every query on a table T is associated with a set of p equality predicates

formed over categorical attributes A1, . . . Ap that have the structure Ai = ai. We further

restrict our evaluation to the class of conjunctive queries that limit their result set to the

cardinality k. The form of the queries is as follows:

21

SELECT ∗ FROM T

WHERE A1 = a1 AND . . . AND Ap = ap

LIMIT k ;

We assume that during the execution of a query, we visit partitions in decreasing order of

utility until k tuples have been added to the result set, or we reach the lowest utility partition.

In the present case, utility is correlated with time, and the likelihood that a particular tuple

is added to the result set decreases with tuple age.

Query Generation. We employ a statistical algorithm to generate 250 queries that

conform to the structure given above. We compute the joint probability mass function over

the p predicates. Our query generation algorithm then builds a set of queries by choosing

the most common predicate combinations. We globally set the parameter k for the number

of query results to ensure that the distribution of the k-th tuple’s position closely mirrors

the utility distribution.

Metrics. Three key evaluation metrics are defined.

• Skip rate: The ratio # skipped
visited between the number of partitions that are skipped by

the indexes and the total number of partitions that are visited by a query.

• Wasted time: The total amount of time that is wasted due to index false positives.

Wasted time captures when the index returns a positive result for a partition, and the

query result set is then found to be empty. This metric is a proxy for false positive

rate but is also correlated with predicate selectivity.

• Query latency: The execution time of a query. Query latency includes the time from

reading the indexes from disk (if applicable), checking the query against the indexes,

reading partitions from disk, and running queries on partitions.

Baselines. We define the baselines below.

22

• Alphabetical Range (Range): In each partition, the values for an attribute are

first sorted in lexicographical order y1 ≤ y2 ≤ . . . ≤ yl. The query attribute value yq

is tested in the predicate y1 ≤ yq ≤ yl. If the predicate evaluates to true, the partition

is read from disk and is skipped otherwise.

• On-disk Filters (Disk): Each filter is stored at full resolution (i.e., no truncation)

on disk Databricks [2023]. When a partition is visited, the filter is read into main

memory, and the query is checked against the index.

• Equal Truncation: Each filter is truncated according to the policy m′i = ⌊B/F ·mi⌋

where F is the full-resolution (original) size of the index. This approach is an analog

of a modular Bloom filter Mun et al. [2022], since we are effectively constructing a

collection of smaller in-memory modules.

• Top Utility: A policy is applied that closely resembles those commonly used for

cache eviction (e.g., least recently used or least frequently used) Chou and DeWitt

[1985]. Full-resolution filters are incrementally added to the cache C in decreasing

order of utility until the budget is reached, and then the remaining filters are allocated

0 bits. Formally, this greedy algorithm finds the subset of filters C ⊆ {B1, . . . ,BN}

that maximizes
∑

c∈C uc subject to
∑

c∈C mc ≤ B.

5.2.2 Results

We measure the performance of each method across the three metrics. For each dataset, we

evaluate several budgets that fall in regular increments between 10% and 90% of the original

index size. The baselines that guarantee the desired budgets are plotted as curves, while the

baselines that have a fixed size are represented as points. We report the median metric for

each budget across 5 independent trials.

Equal Truncation and Top Utility have distinct scenarios in which they produce increased

23

Figure 5.1: Average skip rate on RE, EV, and NASA at different size budgets (higher is
better). We generally outperform the in-memory methods and are similar to the on-disk
filter.

false positives. On the one hand, Equal Truncation is utility-oblivious in that it has a similar

increase in false positive rate across all of the filters in the index. On the other hand, Top

Utility is utility-aware but struggles in the setting of long-tailed queries, since it exclusively

produces false positives (i.e., cache misses) past a certain point. The goal of our method is

to mitigate these two drawbacks and thereby maintain satisfactory performance across the

range of possible budgets.

Skip Rate. In Figure 5.1, we see that our method achieves a similar skip rate to the full-

resolution filters stored on disk, while generally improving upon the in-memory baselines.

Alphabetical range has a near-zero skip rate, which shows that such a strategy is a poor

choice for point queries. For this reason, we will omit further discussion about alphabetical

range. Notably, the skip rate of Equal Truncation falls sharply at budgets of less than 30%,

while our method maintains only a modest reduction in skip rate. Additionally, at a 10%

budget, Top Utility falls sharply on two datasets, while our method again maintains a modest

reduction.

Wasted Time. Most importantly, we find in Figure 5.2 that our method wastes less time

on false positives than the other in-memory baselines. In particular, the distinct points of

24

Figure 5.2: Average wasted time on RE, EV, and NASA at different index size budgets B
(lower is better). We outperform the in-memory methods.

failure for Equal Truncation and Top Utility result in significant wasted time in scenarios

with tight budgets. Consider the NASA dataset as a representative example. It is observed

that at a 10% budget, our method wastes less time than both Equal Truncation and Top

Utility by a factor of 3. The performance advantage holds until Top Utility catches up to

our method at a budget of 40% of the original index size. Equal Truncation also eventually

catches up at a budget of 60% of the original index size.

Furthermore, our method performs better than the alternatives under varying attribute

counts and predicate selectivity. Indeed, low predicate selectivity can lead to increased

wasted time, a conclusion that can be reached by examining the adversarial EV dataset

(middle). The reason for the increased wasted time is because there are many partitions

that contain all of the attribute values, even though few tuples jointly satisfy the predicates.

The performance gap between our method and the in-memory baselines is smaller in this

specific instance.

Query Latency. We show in Figure 5.3 that our method is generally the fastest overall

when compared to each of the baselines. The reason for this is two-fold. First, by minimizing

the false positive rate in an optimal fashion, we reduce the impact that the failure modes

of Equal Truncation and Top Utility have on wasted time, as aforementioned. Second, our

25

Figure 5.3: Average query latency on RE, EV, and NASA at different index size budgets B
(lower is better). We are generally the lowest latency choice across all methods and budgets.

index sits in memory, which accelerates our queries in most instances when compared to

disk.

Disaggregation. Although our experiments were run on a machine with physically-

collocated compute and storage, we run an additional experiment on the NASA dataset to

simulate the effect of increasing resource disaggregation. It is assumed that disaggregation

applies a linear multiplicative cost factor δ to the wasted time. Each factor gets its own

curve. In Figure 5.4, it is shown that when storage and compute are increasingly separated,

the cost of time wasted on false positives can rise, leading our method to outperform the

other baselines by larger margins. We reach this conclusion by examining the shaded region

between the pairs of cost factor curves.

5.3 Full-Text Search

Full-text search is a fundamental problem in information retrieval. In the context of search

engines, the task is to find the documents that match the search terms (i.e., tokens), and

then rank the matching documents according to some notion of relevance. If we represent

each document as a set of tokens, we find that the matching problem is no different than

issuing membership queries to the document. Following this intuition, a document can

26

Figure 5.4: Increasing compute-storage disaggregation can greatly magnify the cost of false
positives.

be represented as a Bloom filter (i.e., a signature file). Provided that the Bloom filters

are constructed with the same hash functions and filter lengths, we can compute the set

intersection between a query filter and a document filter in O(m) time by simply applying

a bit-wise AND.

The state-of-the-art approach for full-text search is the inverted index. In its most basic

form, an inverted index maps a search term to a list of documents that contain the term.

Since documents are represented as fixed-length integer identifiers, the total size of an in-

verted index grows quickly, even with documents that are rarely returned in a search result.

The prevailing space-reduction technique for inverted indexes is lossless compression (e.g.,

Ottaviano and Venturini [2014]), which does not exploit document utility skew. In addition,

caching often loads the full document lists into memory for frequent search tokens Zhang

et al. [2008]. This means that in the absence of careful optimization, cache space is wasted

on low-utility documents.

If instead each document is represented as a Bloom filter, we can derive a lossy variable-
27

length signature for each document by directly applying our method. Taking inspiration

from BitFunnel Goodwin et al. [2017], a commercial search engine that employs a Bloom

filter index in place of an inverted index, we will demonstrate how our method can be used

to effectively optimize a collection of Bloom filter signatures according to utility.

5.3.1 Experimental Setup

Our setup for full-text search is different from data skipping, so we will again walk through

each of the points individually.

Datasets. We use Amazon review datasets that are from two product categories Ni et al.

[2019], Ni [2018]. The first category is industrial and scientific (I&S) with 49,595 cleaned doc-

uments, and the second product category is musical instruments (MI) with 160,523 cleaned

documents. We remove punctuation and stopwords before tokenizing the documents. We

remove the minority of documents that do not contain between 5 and 100 tokens to produce

a realistic document shard Goodwin et al. [2017].

Query Model. We assume that each document in the corpus has a utility derived from

a PageRank-like algorithm Brin and Page [1998]. In this setting, we adopt a top-k query

model. In particular, the probability that a given document appears in the top-k query

results is proportional to its utility. The underlying skewness assumption is that only a

small number of documents from the corpus end up appearing in the top-k search results.

Similar to data skipping, our method enumerates documents in descending order of utility.

Query Generation. We consider the case of k = 1 and generate 250 queries using the

following procedure. Given the utility values u1, . . . , uN we first normalize to a probability

distribution like so: Pi = ui/
∑

j∈[N] uj . To generate a query, we sample a document from

the probability distribution and choose n terms from the selected document. The specific

terms are chosen so that they are only jointly present in a few documents on average.

Metrics. We begin the discussion of metrics with some notation. Let D be the document

28

corpus. Tq is defined as the set of tokens in query q and Td is the set of tokens in document

d. The set R contains the documents retrieved by a particular query. The match set of

a query M = {d : Td ∩ Tq = Tq} captures the documents that contain every token in the

query Goodwin et al. [2017]. Following this definition, the set G ⊆M represents the ground

truth top-k matching documents in terms of utility. Finally, we denote the utility value of

document d by ud. We are now ready to define the metrics.

• Precision@k: |R∩G|k . For a Bloom filter index, precision is a salient metric for false

positives. For other indexes, precision is higher when there are fewer false negatives.

• Query latency: The execution time of a query.

• Average utility: 1
k

∑
d∈R ud.

• Average overlap coefficient: 1
k

∑
d∈R

|Td∩Tq|
min(|Td|,|Tq|)

. For a Bloom filter, the overlap

coefficient measures the average token-wise effect of false positives.

Baselines. The baselines are defined below.

• Inverted Index (II): The standard approach Brin and Page [1998] where the in-

dex maps from a term t to the documents that contain the term such that t →

[d1, d2, . . . , dr]. Documents are represented as integer identifiers. The size of each

document d is O(|Td|). The size of the index grows quickly, even with low utility

documents.

• Top-M Inverted Index (TMII): Documents are added to the inverted index until

the budget is reached using the same general approach as Top Utility. The greedy

algorithm finds the highest-utility subset of documents with cardinality M . Note that

a document either exists in the index with all of its terms, or does not exist at all.

• Top-k Inverted Index (TKII): The value k is first specified. A full inverted index

is constructed using the procedure described above. Each term’s document identifier
29

list l is sorted in descending order of utility and then truncated to contain only the

top-k highest-utility documents. The key difference from the Top-M Inverted Index is

that token false negatives are possible, since only a (potentially empty) subset of the

terms for each document is now stored.

• Top-M Document Set (TMDS): A forward index is maintained over the M highest-

utility documents, where every document is stored as the set of terms Td. A query

enumerates the documents from high to low utility and directly checks if Tq ∩Td = Tq.

• Scan (SCN): Each document is stored in a forward index on disk and is sequentially

read at query time. Upon completion of the scan, the matching documents are sorted

by utility, and then the top-k are returned.

5.3.2 Results

We select a range of space budgets by first calculating the smallest index size between the

inverted index, forward index, and Bloom filter index. The budget is then varied from 10%

to 90% of the smallest index size in regular increments, just like in the previous application.

We find that the smallest index size is either the inverted index or the Bloom filter index.

We evaluate the approaches on in-memory performance (solid lines), but we also include a

version of our method that checks an on-disk forward index when the filter returns a positive

result (dotted line). We also add a basic Bloom filter index that is not truncated as an

additional point of comparison. The results for precision and latency across the two datasets

are highlighted in Figures 5.5 and 5.6 respectively. We defer the rest of the metrics to the

microbenchmarks.

In Figure 5.5, we observe that our method has higher precision than the other in-memory

baselines at larger budgets and rivals the Top-M Inverted Index at smaller budgets. It is

clear that the Top-M Document Set (forward) index is highly space-inefficient, which results

30

Figure 5.5: I&S (left) and MI (right). We have higher precision than the best-performing
baseline (TMII) at larger budgets and rival its performance at smaller budgets.

in reduced performance. When comparing the inverted index approaches, it is evident that

the Top-M Inverted Index is strictly better than the naive strategy undertaken by the Top-k

Inverted Index where the document identifier lists are truncated. At the lone space budget

of the Top-k Inverted Index, the Top-M variant is up to 60% higher in terms of precision.

Next, in Figure 5.6 our method is found to be slower than the other approaches, besides

the full scan. The reason for this result is two-fold. First, inverted indexes are able to reduce

the search space rather significantly, which avoids the need for sequential iteration through

the document corpus. This is not so much a surprising result, but it is worth noting that

a combination of algorithmic optimizations and careful implementation can be undertaken

to make Bloom signatures faster than conventional inverted indexes Goodwin et al. [2017].

Second, the implementation style that we ultimately chose likely had a sizable impact on

latency.

31

Figure 5.6: I&S (left) and MI (right). We are slower than the baselines besides scan but are
impeded by implementation.

5.4 Microbenchmarks

Lastly, we evaluate the main characteristics of our method. In particular, we highlight the

truncated Bloom filter, our optimization routine, as well as several alternative algorithms

for constructing a Bloom filter collection within a space budget.

5.4.1 Truncated Bloom Filters

As a reminder, the parameter p = m′
m is the ratio between the number of bits that are

kept after truncation (m′) and original filter size (m). In Figure 5.7, we show the effect of

truncation on both the false positive rate and filter query latency. We generate an equal

number of positive q+ and negative q− keys (20,000 each). The keys are generated in such

a way that the intersection between the positive and negative sets is empty.

After adding the positive keys, we query the filter with the negative keys at each trun-

cation ratio, and the false positive rate is measured empirically. We compare the empirical

false positive rate to the expected false positive rate from Equation (3.2) and the lower

32

Figure 5.7: FPR (left) and query latency (right) as a function of the truncation ratio p.
Latency is given as 95% confidence intervals, + and − are positive and negative keys respec-
tively.

bound from Equation (4.1). We observe that given a sufficiently large number of negative

queries, the empirical false positive rate (blue) is practically identical to the expected false

positive rate (red), which is consistent with the law of large numbers. It is also evident that

the gap between the expected false positive rate (red) and the lower bound (green) as given

by the function E[ϕ(V)] − ϕ
(
E[V]

)
converges to 0 as p → 1. This indicates that the lower

bound approximation is better when fewer bits are truncated. Equivalently, the optimality

gap between the relaxation and original formulation would generally be smaller under larger

budgets.

Next, the truncated filter is queried with both negative and positive keys to measure

query latency. The result is compared to a standard filter. We see that there are two sources

of overhead. First, the extra condition in Algorithm 1 that checks for valid hash functions

introduces a small amount of latency overhead when compared to the standard filter, which

is seen in the vertical distance between the rightmost truncated measurements and each

33

standard measurement. Second, as the filter is increasingly truncated, the probability p

of observing a valid hash function decreases, leading to additional latency overhead in the

negative case only. We also see that the latency for the positive case decreases slightly, since

fewer filter positions are probed in total.

These results suggest that our proposed data structure is particularly suitable in the high

truncation regime m′ ≪ m for applications where downstream costs far exceed the cost of

querying the filter. For example, in one of the applications that we presented, the cost of

checking a partition is several orders of magnitude higher than querying the filter. However,

given a collection of truncated Bloom filters with varying utility values, we would expect

that the latency overhead is minimal in expectation. This is because a truncated filter that

operates in the low truncation regime m′ ≈ m exhibits only a slight increase in latency on

negative queries when compared to the standard filter.

We can also confirm the latency result with a theoretical argument. Let X ∼ G(p) be

a geometric random variable for the number of hash functions that are checked to observe

a valid hash function with mean E[X] = 1
p . We find that, in expectation, the number of

required probes increases for negatives and stays the same for positives, since only Ω(1) hash

functions are required for a negative while Θ(k) hash functions are required for a positive.

However, if we treat a truncated Bloom filter as a set signature like in full-text search,

then the intersection and union operations are computed in reduced time, provided that the

filters were constructed with shared hash functions. For example, given two sets S1 and

S2 represented as truncated Bloom filters, an approximation of S1 ∩ S2 can be found in

O(min(m′1,m
′
2)) time via bitwise operations.

5.4.2 Optimization Latency

We now evaluate our lower bound optimization approach by measuring the solver latency at

a budget of half the original collection size and different quantities of Bloom filters. We gen-

34

Figure 5.8: Solving the relaxation scales to large inputs. The resulting throughput is ap-
proximately 20 thousand filters per second on a resource-constrained machine.

erate N synthetic parameter tuples of the form (mi, ki, ni) by sampling from a multivariate

probability distribution. We then measure the solver latency as the number of Bloom filters

N is varied from 1 thousand to 1 million in increments of 50 thousand. We report the solver

latency as the mean across 5 runs with the same input parameters.

As seen in Figure 5.8, the solver run time scales linearly with N and the optimization

problem can be solved quickly even on a resource-constrained machine. For example, an

(approximate) optimal solution can be found for a collection of half a million Bloom filters

in around 30 seconds. This observation highlights the work that was done in Section 4.2 to

reduce the time complexity of the objective function.

We reach the conclusion that the optimization overhead of our method is small, and we

can quickly adapt the collection under changing utility values, or as new filters are added.

In other words, this is a desirable property in the online case. Crucially, if we store a copy

of the original filters on disk, we can re-optimize without having to reconstruct the Bloom

filters from scratch. This is one of the key advantages of our method.

35

Figure 5.9: Our method harmonizes the benefits of Top Utility and Equal Truncation.

5.4.3 Alternative Algorithms

We now explore several alternative algorithms for constructing a filter collection that respects

a space budget. These techniques broadly fall into two categories: sampling and truncation.

A sampling algorithm finds a smaller subset of full-resolution filters, whereas a truncation

algorithm constructs a lower-resolution version of each filter. The difference between these

two categories is exemplified by Equal Truncation and Top Utility, as defined in Section

5.2.1. The two remaining sampling methods are Random Uniform, which samples filters

with equal probability, and Random Utility, which samples filters according to the utility

distribution.

We evaluate the in-memory performance of these alternative algorithms on the I&S

dataset. The reader is referred to Section 5.3.1 for a review of the evaluation metrics for full-

text search. Note that the utility distribution is highly skewed. The results are presented

in Figure 5.9. In general, we find that our method effectively harmonizes the benefits of

Top Utility and Equal Truncation, while simultaneously mitigating the drawbacks of both

approaches. Like Top Utility, our method maintains satisfactory performance at smaller

budgets, precisely where Equal Truncation fails. Like Equal Truncation, we achieve near-

perfect performance at larger budgets, while Top Utility misses the documents in long-tailed

queries.

It is evident that our method generally has a higher overlap coefficient than precision.

This means that when false positives do occur, they are often with respect to only a few

36

Figure 5.10: Skewed distributions imply better performance.

tokens, as opposed to many tokens. Additionally, we find that with our method, the average

utility value quickly converges to the true value. Notice that the uptick in average utility

at smaller budgets for truncation stems from false positives. On the contrary, the decline in

average utility at smaller budgets for sampling is a consequence of false negatives. Finally,

it is observed that truncation slightly reduces the in-memory query latency when compared

to the alternative of full-resolution filters.

5.4.4 Different Utility Distributions

Our method is sensitive to the specific utility distribution. To evaluate the performance in

this setting, we carefully construct a set of utility distributions that differ from one another.

We begin with a uniform and normal distribution that have a shared mean and variance.

We then create a sequence of right-skewed utility distributions by generating mixtures of

normal distributions that exhibit increasing distance between the means of the constituent

density functions (governed by the parameter ρ).

37

In Figure 5.10, we see the effect of the utility distribution on precision (again the I&S

dataset). Shape is the first factor, as seen by contrasting the uniform distribution against

the normal distribution with the exact same mean and variance. Referring back to Figure

5.9, when utility values are concentrated around the mean and the budget is tight, our

method reduces to truncating the filters equally. As the parameter governing the skewness

ρ increases, we observe that the performance in the tight budget regime gradually improves

until we mirror Top Utility.

38

CHAPTER 6

RELATED WORK

6.1 Filters

There are several filter variants such as learned filters Kraska et al. [2018], Deeds et al.

[2020], expanding filters Dayan et al. [2023], and compressed filters Mitzenmacher [2002].

Other examples include the cuckoo filter Fan et al. [2014] and quotient filter Pandey et al.

[2017]. While truncation may be a valid operation on some of these filter variants, we leave

that possibility to future work.

6.2 Bloom Filters in Key-value Stores

The most similar body of work to our method is the application of Bloom filters in key-value

stores. Key-value stores are represented as log-structured merge (LSM) trees, where each

level in the LSM tree is associated with Bloom filters to prevent unnecessary reads from

slower storage. Previous work such as Monkey Dayan et al. [2017] and ElasticBF Zhang

et al. [2018] has shown that it is suboptimal to assign filter false positive rates uniformly

across the different LSM tree levels. This is a restricted case of the framework that we

present in this work.

6.3 Modular Bloom Filters

The closest data structure to the truncated Bloom filter is the modular Bloom filter Mun

et al. [2022] which in turn is similar to the blocked Bloom filter Putze et al. [2010]. Like a

modular Bloom filter, we employ a smaller in-memory filter at the expense of a higher false

positive rate and do not require re-indexing. Unlike a modular Bloom filter, we are better

able to navigate the space versus accuracy trade-off, since truncation removes one bit at a

39

time in a fine-grained fashion. A modular Bloom filter is limited to the product of false

positive rates across several coarse-grained modules.

6.4 Other Bloom Filter Applications

There are many applications of Bloom filters besides those that we presented in this paper.

As one example, Bloom filters are often used to optimize joins Gaffney et al. [2022], Zhu

et al. [2017], Services [2020], Ting and Cole [2021]. As another example, Bloom filters are a

vital data structure for in-memory data stores such as Redis Redis [2024].

40

CHAPTER 7

CONCLUSION

We presented an approach that optimizes a collection of Bloom filters across a utility distribu-

tion to satisfy a space budget. It was shown that truncating a Bloom filter after construction

can lead to a subtly different trade-off between accuracy and space that benefits optimiza-

tion. Fittingly, we developed a convex optimization problem that admits a fast relaxation to

navigate this trade-off. Moving from theory to practice, we demonstrated on two separate

applications that our method effectively mitigates the limitations of existing approaches.

41

REFERENCES

Austin Appleby. murmurhash3, 2015. URL https://github.com/aappleby/smhasher/b
lob/master/src/MurmurHash3.cpp.

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,
Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak, Michał Świtakowski,
Michał Szafranski, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz, Ali Ghodsi,
Sameer Paranjpye, Pieter Senster, Reynold Xin, and Matei Zaharia. Delta lake: high-
performance acid table storage over cloud object stores. Proc. VLDB Endow., 13(12):
3411–3424, aug 2020. ISSN 2150-8097. doi:10.14778/3415478.3415560. URL https:
//doi.org/10.14778/3415478.3415560.

Bruno Barbarioli, Gabriel Mersy, Stavros Sintos, and Sanjay Krishnan. Hierarchical residual
encoding for multiresolution time series compression. Proc. ACM Manag. Data, 1(1), may
2023. doi:10.1145/3588953. URL https://doi.org/10.1145/3588953.

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory R.
Ganger. The CacheLib caching engine: Design and experiences at scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages 753–768.
USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL https://www.us
enix.org/conference/osdi20/presentation/berg.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, jul 1970. ISSN 0001-0782. doi:10.1145/362686.362692. URL https:
//doi.org/10.1145/362686.362692.

Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason
Morrison, Michiel Smid, and Yihui Tang. On the false-positive rate of bloom
filters. Information Processing Letters, 108(4):210–213, 2008. ISSN 0020-0190.
doi:https://doi.org/10.1016/j.ipl.2008.05.018. URL https://www.sciencedirect.co
m/science/article/pii/S0020019008001579.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1):107–117, 1998. ISSN 0169-7552.
doi:https://doi.org/10.1016/S0169-7552(98)00110-X. URL https://www.sciencedir
ect.com/science/article/pii/S016975529800110X. Proceedings of the Seventh
International World Wide Web Conference.

Lawrence D. Brown. Fundamentals of statistical exponential families with applications in
statistical decision theory. Lecture Notes-Monograph Series, 9:i–279, 1986. ISSN 07492170.
URL http://www.jstor.org/stable/4355554.

42

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/3588953
https://doi.org/10.1145/3588953
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/https://doi.org/10.1016/j.ipl.2008.05.018
https://www.sciencedirect.com/science/article/pii/S0020019008001579
https://www.sciencedirect.com/science/article/pii/S0020019008001579
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
http://www.jstor.org/stable/4355554

Hong-Tai Chou and David J. DeWitt. An evaluation of buffer management strategies for
relational database systems. In Proceedings of the 11th International Conference on Very
Large Data Bases - Volume 11, VLDB ’85, page 127–141. VLDB Endowment, 1985.

Clickhouse. Understanding clickhouse data skipping indexes, 2024. URL https://clickh
ouse.com/docs/en/optimize/skipping-indexes.

State of Connecticut. Real estate sales 2001-2020 gl, 2023. URL https://catalog.data.g
ov/dataset/real-estate-sales-2001-2018.

Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005. ISSN 0196-6774.
doi:https://doi.org/10.1016/j.jalgor.2003.12.001. URL https://www.sciencedirect.co
m/science/article/pii/S0196677403001913.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon
Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Al-
lison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg
Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The snowflake elastic data
warehouse. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, page 215–226, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450335317. doi:10.1145/2882903.2903741. URL https:
//doi.org/10.1145/2882903.2903741.

Databricks. Bloom filter indexes, 2023. URL https://docs.databricks.com/en/optimiz
ations/bloom-filters.html.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable key-
value store. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD ’17, page 79–94, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450341974. doi:10.1145/3035918.3064054. URL https://doi.or
g/10.1145/3035918.3064054.

Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh. Infinifilter: Expanding filters
to infinity and beyond. Proc. ACM Manag. Data, 1(2), jun 2023. doi:10.1145/3589285.
URL https://doi.org/10.1145/3589285.

Kyle Deeds, Brian Hentschel, and Stratos Idreos. Stacked filters: Learning to fil-
ter by structure. Proc. VLDB Endow., 14(4):600–612, dec 2020. ISSN 2150-8097.
doi:10.14778/3436905.3436919. URL https://doi.org/10.14778/3436905.3436919.

Steven Diamond and Stephen Boyd. Cvxpy: a python-embedded modeling language for
convex optimization. J. Mach. Learn. Res., 17(1):2909–2913, jan 2016. ISSN 1532-4435.

Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embed-
ded systems. In 2013 European Control Conference (ECC), pages 3071–3076, 2013.
doi:10.23919/ECC.2013.6669541.

43

https://clickhouse.com/docs/en/optimize/skipping-indexes
https://clickhouse.com/docs/en/optimize/skipping-indexes
https://catalog.data.gov/dataset/real-estate-sales-2001-2018
https://catalog.data.gov/dataset/real-estate-sales-2001-2018
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://docs.databricks.com/en/optimizations/bloom-filters.html
https://docs.databricks.com/en/optimizations/bloom-filters.html
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3589285
https://doi.org/10.1145/3589285
https://doi.org/10.14778/3436905.3436919
https://doi.org/10.14778/3436905.3436919
https://doi.org/10.23919/ECC.2013.6669541

Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo filter:
Practically better than bloom. In Proceedings of the 10th ACM International on Confer-
ence on Emerging Networking Experiments and Technologies, CoNEXT ’14, page 75–88,
New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450332798.
doi:10.1145/2674005.2674994. URL https://doi.org/10.1145/2674005.2674994.

Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp, Dan Kennedy, and
Jignesh M. Patel. Sqlite: past, present, and future. Proc. VLDB Endow., 15(12):
3535–3547, aug 2022. ISSN 2150-8097. doi:10.14778/3554821.3554842. URL https:
//doi.org/10.14778/3554821.3554842.

Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh El-
nikety, and Yuxiong He. Bitfunnel: Revisiting signatures for search. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’17, page 605–614, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350228. doi:10.1145/3077136.3080789. URL
https://doi.org/10.1145/3077136.3080789.

Andreas Kipf, Damian Chromejko, Alexander Hall, Peter Boncz, and David G. Andersen.
Cuckoo index: a lightweight secondary index structure. Proc. VLDB Endow., 13(13):
3559–3572, sep 2020. ISSN 2150-8097. doi:10.14778/3424573.3424577. URL https:
//doi.org/10.14778/3424573.3424577.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18, page 489–504, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450347037. doi:10.1145/3183713.3196909. URL
https://doi.org/10.1145/3183713.3196909.

Lawrence Berkeley National Laboratory. Nasa-http, 1995. URL https://ita.ee.lbl.gov
/html/contrib/NASA-HTTP.html.

Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Networking,
10(5):604–612, 2002. doi:10.1109/TNET.2002.803864.

Ju Hyoung Mun, Zichen Zhu, Aneesh Raman, and Manos Athanassoulis. Lsm-trees under
(memory) pressure. In Rajesh Bordawekar and Tirthankar Lahiri, editors, International
Workshop on Accelerating Analytics and Data Management Systems Using Modern Pro-
cessor and Storage Architectures, ADMS@VLDB 2022, Sydney, Australia, September 5,
2022, pages 23–35, 2022. URL https://cs-people.bu.edu/mathan/publications/adm
s22-mun.pdf.

Jianmo Ni. Amazon review data (2018), 2018. URL https://cseweb.ucsd.edu/~jmcaule
y/datasets/amazon_v2/.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng,

44

https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.1145/3077136.3080789
https://doi.org/10.1145/3077136.3080789
https://doi.org/10.14778/3424573.3424577
https://doi.org/10.14778/3424573.3424577
https://doi.org/10.14778/3424573.3424577
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://doi.org/10.1109/TNET.2002.803864
https://cs-people.bu.edu/mathan/publications/adms22-mun.pdf
https://cs-people.bu.edu/mathan/publications/adms22-mun.pdf
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi:10.18653/v1/D19-1018. URL
https://aclanthology.org/D19-1018.

Giuseppe Ottaviano and Rossano Venturini. Partitioned elias-fano indexes. In Proceedings of
the 37th International ACM SIGIR Conference on Research & Development in Information
Retrieval, SIGIR ’14, page 273–282, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450322577. doi:10.1145/2600428.2609615. URL https://doi.or
g/10.1145/2600428.2609615.

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A general-
purpose counting filter: Making every bit count. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, page 775–787, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450341974.
doi:10.1145/3035918.3035963. URL https://doi.org/10.1145/3035918.3035963.

PostgreSQL. F.7. bloom — bloom filter index access method, 2024. URL https://www.po
stgresql.org/docs/current/bloom.html.

Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-, and space-
efficient bloom filters. ACM J. Exp. Algorithmics, 14, jan 2010. ISSN 1084-6654.
doi:10.1145/1498698.1594230. URL https://doi.org/10.1145/1498698.1594230.

Redis. Bloom filter, 2024. URL https://redis.io/docs/data-types/probabilistic/b
loom-filter/.

Ilan Schnell. bitarray, 2023. URL https://pypi.org/project/bitarray/.

Tore Schweder. On the dispersion of mixtures. Scandinavian Journal of Statistics, 9(3):165–
169, 1982. ISSN 03036898, 14679469. URL http://www.jstor.org/stable/4615873.

Amazon Web Services. Amazon redshift now leverages bloom filters to improve data lake
query performance by up to 2x, 2020. URL https://aws.amazon.com/about-aws/wha
ts-new/2020/05/amazon-redshift-now-leverages-bloom-filters-to-improve-dat
a-lake-query-performance/.

Moshe Shaked. On mixtures from exponential families. Journal of the Royal Statistical
Society. Series B (Methodological), 42(2):192–198, 1980. ISSN 00359246. URL http:
//www.jstor.org/stable/2984960.

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex
Rasin, Nga Tran, and Stan Zdonik. C-store: a column-oriented dbms. In Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB ’05, page 553–564.
VLDB Endowment, 2005. ISBN 1595931546.

45

https://doi.org/10.18653/v1/D19-1018
https://aclanthology.org/D19-1018
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1145/3035918.3035963
https://www.postgresql.org/docs/current/bloom.html
https://www.postgresql.org/docs/current/bloom.html
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://redis.io/docs/data-types/probabilistic/bloom-filter/
https://redis.io/docs/data-types/probabilistic/bloom-filter/
https://pypi.org/project/bitarray/
http://www.jstor.org/stable/4615873
https://aws.amazon.com/about-aws/whats-new/2020/05/amazon-redshift-now-leverages-bloom-filters-to-improve-data-lake-query-performance/
https://aws.amazon.com/about-aws/whats-new/2020/05/amazon-redshift-now-leverages-bloom-filters-to-improve-data-lake-query-performance/
https://aws.amazon.com/about-aws/whats-new/2020/05/amazon-redshift-now-leverages-bloom-filters-to-improve-data-lake-query-performance/
http://www.jstor.org/stable/2984960
http://www.jstor.org/stable/2984960

Sivaprasad Sudhir, Wenbo Tao, Nikolay Laptev, Cyrille Habis, Michael Cafarella, and Samuel
Madden. Pando: Enhanced data skipping with logical data partitioning. Proc. VLDB
Endow., 16(9):2316–2329, may 2023. ISSN 2150-8097. doi:10.14778/3598581.3598601.
URL https://doi.org/10.14778/3598581.3598601.

Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. Fine-grained par-
titioning for aggressive data skipping. In Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’14, page 1115–1126, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450323765.
doi:10.1145/2588555.2610515. URL https://doi.org/10.1145/2588555.2610515.

Paula Ta-Shma, Guy Khazma, Gal Lushi, and Oshrit Feder. Extensible data
skipping. In 2020 IEEE International Conference on Big Data (Big Data),
pages 372–382, Los Alamitos, CA, USA, dec 2020. IEEE Computer Society.
doi:10.1109/BigData50022.2020.9377740. URL https://doi.ieeecomputersociety.
org/10.1109/BigData50022.2020.9377740.

Daniel Ting and Rick Cole. Conditional cuckoo filters. In Proceedings of the 2021 In-
ternational Conference on Management of Data, SIGMOD ’21, page 1838–1850, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383431.
doi:10.1145/3448016.3452811. URL https://doi.org/10.1145/3448016.3452811.

Yulai Tong, Jiazhen Liu, Hua Wang, Ke Zhou, Rongfeng He, Qin Zhang, and Cheng Wang.
Sieve: A learned data-skipping index for data analytics. Proc. VLDB Endow., 16(11):
3214–3226, jul 2023. ISSN 2150-8097. doi:10.14778/3611479.3611520. URL https://do
i.org/10.14778/3611479.3611520.

State of Washington. Electric vehicle population data, 2023. URL https://catalog.data
.gov/dataset/electric-vehicle-population-data.

Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of compressed inverted
list caching in search engines. In Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, page 387–396, New York, NY, USA, 2008. Association
for Computing Machinery. ISBN 9781605580852. doi:10.1145/1367497.1367550. URL
https://doi.org/10.1145/1367497.1367550.

Yueming Zhang, Yongkun Li, Fan Guo, Cheng Li, and Yinlong Xu. Elasticbf: Fine-grained
and elastic bloom filter towards efficient read for lsm-tree-based kv stores. In Proceedings of
the 10th USENIX Conference on Hot Topics in Storage and File Systems, HotStorage’18,
page 11, USA, 2018. USENIX Association.

Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. Looking ahead makes
query plans robust: making the initial case with in-memory star schema data ware-
house workloads. Proc. VLDB Endow., 10(8):889–900, apr 2017. ISSN 2150-8097.
doi:10.14778/3090163.3090167. URL https://doi.org/10.14778/3090163.3090167.

46

https://doi.org/10.14778/3598581.3598601
https://doi.org/10.14778/3598581.3598601
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.1109/BigData50022.2020.9377740
https://doi.ieeecomputersociety.org/10.1109/BigData50022.2020.9377740
https://doi.ieeecomputersociety.org/10.1109/BigData50022.2020.9377740
https://doi.org/10.1145/3448016.3452811
https://doi.org/10.1145/3448016.3452811
https://doi.org/10.14778/3611479.3611520
https://doi.org/10.14778/3611479.3611520
https://doi.org/10.14778/3611479.3611520
https://catalog.data.gov/dataset/electric-vehicle-population-data
https://catalog.data.gov/dataset/electric-vehicle-population-data
https://doi.org/10.1145/1367497.1367550
https://doi.org/10.1145/1367497.1367550
https://doi.org/10.14778/3090163.3090167
https://doi.org/10.14778/3090163.3090167

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 Bloom Filters
	2.1.1 Filter Collections
	2.1.2 Utility-Weighted False Positive Rate

	2.2 Problem Statement

	3 Truncated Bloom Filters
	3.1 Key Differences
	3.2 False Positive Rate Analysis

	4 Optimizing Filter Collections
	4.1 An Exact Optimization Problem
	4.1.1 Formulation
	4.1.2 Convexity
	4.1.3 Complexity Analysis

	4.2 A Faster Relaxation
	4.2.1 The Lower Bound
	4.2.2 Convexity
	4.2.3 Complexity Analysis

	4.3 Further Relaxations

	5 Evaluation
	5.1 Implementation Details
	5.2 Data Skipping
	5.2.1 Experimental Setup
	5.2.2 Results

	5.3 Full-Text Search
	5.3.1 Experimental Setup
	5.3.2 Results

	5.4 Microbenchmarks
	5.4.1 Truncated Bloom Filters
	5.4.2 Optimization Latency
	5.4.3 Alternative Algorithms
	5.4.4 Different Utility Distributions

	6 Related Work
	6.1 Filters
	6.2 Bloom Filters in Key-value Stores
	6.3 Modular Bloom Filters
	6.4 Other Bloom Filter Applications

	7 Conclusion
	References

