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ABSTRACT

Large language models (LLMs) like GPT-4 and Code Llama can convert natural-language de-

scriptions into computer code, inspiring many people to see them as a promising interface for

end-user programming. We undertake a systematic analysis of how people without program-

ming experience describe information-processing tasks (IPTs) in natural language, focusing

on the characteristics that make descriptions successful. In an online study, we paired 242

crowdworkers and asked one member of each pair (the sender) to communicate IPTs to the

other (the receiver) in natural language. Participants answered test cases (producing out-

puts for given inputs) based on these descriptions. We also fed these same descriptions to six

LLMs to see how they would answer the test cases. We found that participants both with and

without prior programming experience successfully communicated IPTs, though descriptions

written by senders with programming experience enabled both human receivers and LLMs

to answer more test cases correctly. Descriptions containing example test cases led human

receivers to answer 16.8% more test cases correctly, with similar gains by LLMs. Receivers

who asked certain clarifying questions (e.g., about edge cases) answered slightly more test

cases correctly. The best LLMs we tested narrowly outperformed humans in answering test

cases.
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CHAPTER 1

INTRODUCTION

Large Language Models (LLMs) are demonstrating remarkable gains in domain-specific task

performance, resulting in their rapid adoption. One such domain is writing computer code.

These models can generate entire functions when prompted. That is, LLMs enable humans

to write code using only natural language prompts. For example, a skilled engineer may

prompt a model as follows: “Compare the number of A’s and B’s before the letter C and

report which has more. When tied or no votes, report A.” The model would then output

lines of code that attempt to accomplish that task.

However, there is no guarantee that a human, especially one without any programming

experience, will communicate a task in a way that leads to successful code. Consider a non-

programmer attempting to communicate the same task: “Count the occurrence of letters

"A" and "B". It is not necessary to count the C’s. If A = B or A > B, then you report

"A". Otherwise, report "B". If a equals b or a is greater than b then report a.” While both

versions are technically correct, the programming expert’s version is more clear and precise.

We imagine a future in which LLMs enable end-user programming (i.e., by users with-

out any prior programming experience) in natural language. To this end, we investigated

how humans communicate computational tasks using only natural language as an interface.

Through a between-subjects online study, we compare how participants with and without

programming experience differ when communicating such tasks in natural language, in ad-

dition to examining facets and factors that improve this communication.

To be precise, this paper focuses on Information Processing Tasks (IPTs), which are

tasks that necessitate doing a calculation that involves a self-contained formal transformation

of input to output. The A/B task above is an IPT. Another example is, “You will be given

a list containing numbers. Report the sum of the positive elements.” In our study, the

communication of an IPT involves two parties: a sender, who substantially rephrases four
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different IPTs we provide, and a receiver, who interprets the sender’s description. To

measure understanding, we have both the sender and receiver answer test cases (specifying

the output for given inputs).

As part of our study, we randomly assign two elements that we hypothesized would

improve IPT communication. One is the inclusion of examples, which means the participant

includes appropriate input/output pairs for a given task when describing an IPT in natural

language. We also randomly assigned some sender-receiver pairs the ability to interact

via a chat window to clarify the IPT. Because we focused on the ability of end users to

program via natural-language communication, we further distinguish between end users

(non-programmers) and programmers. We consider a programmer to be any participant

who identifies as a programmer and can answer simple programming questions (Danilova

et al. [2021]). We also qualitatively explored the facets of successful IPT communication.

To this end, we investigated a number of research questions. RQ 1: What role does

programming experience play in successful IPT communication? Further, RQ 1a: Can

non-programmers successfully communicate an IPT? We found that individuals with pro-

gramming experience tended to be more successful at communicating IPTs. However, the

difference in overall performance on test cases was relatively small (8.1%). We believe this

suggests that while programming experience does help with IPT communication, the differ-

ence is not so stark as to suggest that non-programmers cannot successfully communicate

IPTs. We then delved into why programmers do better than non-programmers at com-

municating IPTs. RQ 1b asks what programmers do that end users do not do during

IPT communication. We find that programmers are more likely to include examples when

prompted than non-programmers. Additionally, programmers were less likely to interact or

request clarification than non-programmers.

We also investigated the effect of examples. RQ 2: What role do examples play in

successful IPT communication? We found that examples play a large, beneficial role in
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successful IPT communication. Receivers whose corresponding sender included examples

for at least half of their assigned IPTs performed 18% better in answering test cases than

those who did not. However, we found that participants sometimes gave incorrect examples,

impairing communication. We consequently investigated RQ 2a: What types of examples

benefit communication? We found that examples that were entirely original (i.e., not reused

from what we provided) and entirely correct correlated the strongest with successful IPT

communication. We also asked RQ 2b: Are there differences in the examples that pro-

grammers versus end-users include? We found that programmers were more likely to come

up with their own examples than non-programmers, and less likely to include explanations

along with their examples or add additional formatting.

Given that interaction (traditionally with a compiler) is an integral part of effective

programming, we investigated RQ 3: What types of interactions are beneficial when com-

municating a task in English prose? We ultimately found that the vast majority of receivers’

requests for clarification did not correlate with positive outcomes. However, requests to clar-

ify certain variables in the IPT, or the IPT’s expected input and output, were more likely

to result in positive outcomes, such as additional relevant information.

Finally, we investigated RQ 4: To what degree do the successful characteristics of a

natural language IPT description for humans also apply to LLMs? As such, we fed our

human senders’ natural language IPT descriptions to versions of popular LLMs: GPT-4,

Chat Llama, Code Llama, and Gemini. Like human receivers, LLMs performed best when

the descriptions included examples and, to a less extent, when they were written by a sender

with programming experience. If a human receiver did not fully understand the sender’s

description, there was a 73.3% chance that the LLM would also be incorrect. Notably, GPT-

4 performed comparably to a human receiver, and all but one of the LLMs we tested were

more successful in directly answering test cases than producing code to do so.

We conclude by noting that because the relative difference in successful IPT communi-
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cation is small between programmers and non-programmers, certain interventions may be

able to bridge this gap. Namely, designing interfaces that promote the inclusion of examples

and encourage specific types of clarification may help non-programmers communicate IPTs

as successfully as individuals with programming experience.
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CHAPTER 2

RELATED WORK

While there is little prior work on end-user programming using LLMs as a natural language

interface, we discuss related work on LLM-based tools for experienced programmers, other

interfaces for end-user programming, and the use of LLMs as educational tools.

2.1 End-User Programming

Over the past few decades, there has been substantial interest in designing systems and in-

terfaces that empower end users without training or experience in computer programming to

express computational tasks (Nardi [1993], Lieberman et al. [2006]). Many systems for end-

user programming rely on graphical user interfaces and visual programming (Myers et al.

[2006]) rather than forcing users to memorize complex syntax. For instance, the Blockly

(Fraser [2015]) and Scratch (Resnick et al. [2009]) languages let users express programs by

connecting blocks and include common programming concepts like loops and conditionals,

but presented graphically (Resnick et al. [2009]). Similarly, trigger-action programming gives

users a graphical user interface for defining event-driven rules (Ur et al. [2014], Huang and

Cakmak [2015]) and has been popularized in recent years via commercial services like Zapier

(Rahmati et al. [2017]) and IFTTT (Mi et al. [2017], Ur et al. [2016]). Current instantiations

of trigger-action programming enable end users to define automations in domains ranging

from smart homes (Ur et al. [2014]) to robotics (Leonardi et al. [2019]) to social media (Ur

et al. [2016]). Other systems, such as prototypes for creating web mashups (Wong and Hong

[2007]), ask users to specify workflows graphically. More broadly, a recent literature sur-

vey (Barricelli et al. [2019]) noted over a dozen types of end-user programming interfaces

discussed in the literature, including gesture-based, template-based, and spreadsheet-based

interfaces. Another recent literature survey (Kuhail et al. [2021]) characterized these inter-
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faces more abstractly as block-based, icon-based, form-based, or diagram-based.

While natural language has long been discussed as an interface for end-user program-

ming (Barricelli et al. [2019]), we expect that the recent advances in LLMs may reflect an

inflection point in enabling natural language to be practical in general domains for end-user

programming. Thus, we focus on how non-technical end users and trained programmers ex-

press IPTs in natural language, evaluating what characteristics of the sender, the description

they write, and the instructions they were given impact the ability of humans and LLMs to

interpret these descriptions. To our knowledge, prior work has not focused on LLM-based

natural language interfaces for end-user programming, though concurrent work prototyped

a system for doing so in the narrower context of robot programming (Karli et al. [2024]).

Programming by demonstration (PbD) or by example has also long been studied as a

type of end-user programming (Myers et al. [2006]). While not our main focus, we test a

condition in which senders are encouraged to augment their natural language description

with example test cases, following the PbD paradigm.

2.2 Code Generators

In this section, we discuss LLMs used for code generation, then cover relevant related work

for code-generating LLMs.

2.2.1 Background

The relationship between code and general natural language was brought to the forefront of

research attention during the development of GPT-3 (Brown et al. [2020]). Researchers found

that after being exposed to code during training, the model could produce new code with

startling clarity. This exciting result motivated researchers at OpenAI to further train, or

fine-tune, GPT-3 on public GitHub repositories. This resulted in Codex, an LLM specifically

designed to generate code (Chen et al. [2021]). Codex has since been incorporated as the
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backend of Github Copilot, and iterated upon considerably. Other companies like Google

and Meta have similarly produced their own LLMs capable of high performance on coding

tasks: Gemini and Code Llama, respectively (Google [2023], Rozière et al. [2024]).

Modern LLMs work by producing the most likely next bit of text, given an input string

(Radford et al. [2019], Brown et al. [2020], OpenAI [2022], Touvron et al. [2023], Google

[2023]). This enables humans to interact with, or prompt, LLMs by supplying them with

input strings. Because code-generating LLMs are developed by taking a model trained on

both natural language and code, the models can be prompted with both natural language

and/or code. For example, a user may prompt the model with “Write a line of python that

checks if a number is even or odd”, or “is_even = ” to which the model would produce the

appropriate completion. Prompting has led to LLMs being coupled with a UI and adopted

as interactive tools. These tools may be fully integrated into an IDE, such as Github Copilot,

or stand alone as web apps in the case of ChatGPT (Figure 2.1) and Code Llama (Figure

2.2).

2.2.2 LLMs As Programming Support Tools

Understanding LLMs as programming support tools has primarily been done through two

lenses: characterizing the human-LLM interactions themselves (to find more useful inter-

faces), or characterizing the correctness of produced code. Taking the former route, Lee et

al. develop an open-ended framework to understand human-LLM interactions across various

tasks (Lee et al. [2024]). However, many others adopt a more grounded approach towards

understanding human-LLM interactions. Liu et al., for example, develop a method of im-

proving natural language input to an LLM, called grounded abstraction matching, where

a natural language description is mapped to specific system actions and then returned to

the user for review (Liu et al. [2023]). McNutt et al. similarly map open-ended NLP to

specific outcomes by characterizing the potential design space for notebook-based code as-
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Figure 2.1: ChatGPT allows for a chatbot-based interface.

Figure 2.2: Meta Code Llama’s interface is a widget that delineates between the prompt
(top) and response (bottom).
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sistants (McNutt et al. [2023]). The authors note that the most useful interfaces differ based

on the task at hand. Ross et al. primarily investigate user satisfaction under different in-

terfaces (Ross et al. [2023]). Echoing the idea of self perception as a productivity metric,

(Vaithilingam et al. [2022], Kalliamvakou [2022], Meyer et al. [2021]) respectively investi-

gate perceptions of productivity when developers use LLMs as programming support tools,

and/or perceptions of productivity despite the fact that LLMs may not in fact improve the

task completion time or success rate.

Others have taken the approach of investigating LLM correctness during programming.

The de-facto method of determining code-generator correctness is functional correctness,

which essentially states that code is correct if it passes associated unit tests (Chen et al.

[2021], Google [2023], Rozière et al. [2024]). Model developer have primarily been investi-

gating code-correcteness during model development, however, others have been focusing on

the quality of produced code post model development (Tambon et al. [2024], Dakhel et al.

[2023], Döderlein et al. [2023], Nguyen and Nadi [2022]). Others investigate the tendency for

LLM code-generators to produce insecure code (Sandoval et al. [2023], Pearce et al. [2021],

Perry et al. [2022]), paying special attention to GitHub Copilot. The authors generally

find that the LLM does produce insecure code, yet the model does not introduce security

vulnerabilities at a rate greater than humans (Sandoval et al. [2023]).

2.2.3 Programming Education

Prior studies have also explored the application of code generators to programming education,

especially amid concerns that students may use LLMs to complete their assignments (Roose

[2024]). Approaches have stemmed from evaluating code-generating LLMs on introductory

programming tasks to determine the extent to which they may be used for either cheating or

educational support tools (Finnie-Ansley et al. [2022, 2023], Sarsa et al. [2022]). Researchers

generally found that a vast majority of auto-generated programming exercises and code
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explanations were sensible and ready to use except for minor mistakes that could easily

be corrected by an instructor. These results imply great potential for code generators in

creating introductory programming course material, whose abilities will likely improve over

time. Jayagopal et al. similarly take an optimistic approach towards code-generating LLMs

(Jayagopal et al. [2022b]). The authors investigate how LLMs may be more easily learnable

as tools by novice programmers, for the purpose of facilitating programming education.
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CHAPTER 3

METHODS

To better understand IPT communication in prose, we conducted an online user study. We

recruited sets of participants who either did or did not have prior programming experience

and had them complete a pre-survey. We then directed them to our custom-built web

application, where they were paired with one another in real time. We assigned them to a

condition indicating who would describe IPTs to the other, whether they were asked to add

examples to their description, and whether they were permitted to interact with each other.

Each pair communicated four IPTs, and each member of the pair answered four test cases

for each. Finally, participants completed a post-survey. This section details each of these

aspects.

3.1 Recruitment and Demographic Survey

We recruited 242 participants from the Prolific crowdworking service (Prolific [2023]). We

required participants to be (1) 18+ years old, (2) live in the United States, (3) speak English

fluently, and (4) have completed 20+ Prolific studies with a 95%+ approval rating. To gauge

the effect of prior computer programming experience on IPT communication, we reserved

half the slots on Prolific to users who indicated that they had programming experience when

registering for Prolific, and half who indicated that they did not. We compensated partici-

pants $8.00 USD if they completed the study, waited 20 minutes without being successfully

paired (see Section 3.2), or if their assigned partner became unresponsive (as detected by our

web app’s interface, they did not move their mouse or type for ten minutes, or they closed

the study window and did not rejoin within five minutes). Our study was approved by our

university’s IRB.

We then directed participants to an initial survey with standard demographic questions,
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which are reproduced in Appendix A.2.1.

3.2 Pairing and Conditions

At the end of the initial survey, we redirected participants to our web application with a

unique login link. They stayed on a waiting screen until another participant joined, at which

point they were paired. The first of the pair to land on the waiting screen was assigned

the role of sender, who would describe IPTs in prose. The second was assigned the role of

receiver, who would interpret the sender’s description. If no partner was found within 20

minutes, the session was terminated and the participant was paid as if they had completed

the study.

Our study had a between-subjects design. To answer RQ 2, we assigned each pair of

participants round-robin to either the interactive condition, in which the receiver was

permitted to ask clarifying questions of the sender about their IPT description in a chat

window we provided, or the non-interactive condition, in which they were not. To answer

RQ 3, we also randomly assigned each pair to either the examples condition, in which we

both gave senders example test cases when presenting them each IPT and asked them to

include different examples in their own description, or the no-examples condition, in which

we did neither.

3.3 Primary Study Task and Interface

The main study task was for the sender to describe an IPT in prose to the receiver. A key

challenge is that we needed to communicate a specific IPT to the sender in a way that would

minimally influence the way they described that IPT in prose. While presenting an IPT in

code and asking the sender to describe it in prose might be feasible if all senders were com-

puter programmers, we specifically wanted to compare programmers and non-programmers.
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Another option we considered was showing example inputs and their corresponding outputs,

but we worried that it would be infeasible to communicate even moderately complex IPTs

to senders by doing so.

Instead, we decided to give senders a verbose and context-specific prose description of

each IPT in an interface element that rendered it as an image to prevent copy-pasting.

We term this the verbose description. For instance, an IPT that was ultimately about

returning the maximum value in a list had a verbose description about finding the largest

number of days late someone could pay their rent when comparing apartments during a

move to San Francisco. Our instructions to senders asked them to rewrite the task more

simply and more generally (i.e., not specific to a context), which we termed the sender’s

description. We gave participants the sample of rewriting “sort a list of milk brands” as

“sort a list of words.” Section 3.4 describes our 12 IPTs and how we selected them.

After the sender and receiver were paired, our web application showed them a view cus-

tomized to their role and condition. The sender’s view (Figure 3.1) contained the verbose

description of the IPT (gray box), the task instructions (below the gray box), a text editor

in which the sender would rephrase the IPT (black), and a submit button. For pairs as-

signed to the examples condition, the verbose description also included example test cases

(input/output pairs), and the instructions specifically asked the sender to include their own

examples in their rephrasing.

The receiver’s view (Figure 3.2) contained instructions, a (non-editable) text box where

the sender’s rephrased description appeared, and a button to accept the procedure. In

the interactive condition, a second button for rejecting the description was also present.

Rejecting the description opened a text box for the receiver to explain what they found

unclear about the description. A chat window (Figure 3.3) then opened for both the sender

and receiver to discuss this request for clarification interactively. The sender could then

edit their description, pressing a button to resubmit it to the receiver. The receiver could
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Figure 3.1: The sender’s view in the non-interactive condition.

again accept or reject the modified description, repeating as many times as the receiver felt

necessary.

Once the receiver accepted the description, both the sender and receiver separately an-

swered four test cases, specifying the expected output for four different inputs we provided.

While the sender used the verbose description to answer these test cases, which were the same

for both participants (and fixed for each IPT), the receiver used the sender’s description. We

termed two of the test cases regular cases because they tested common, standard behaviors

(e.g., being asked to find the maximum given a well-formed list with a single largest number).

We termed the other two test cases edge cases because they tested less standard behaviors

(e.g., being asked to find the maximum when given an empty list or a list with multiple

largest numbers). We chose to test both kinds of test cases to gauge how comprehensive and
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precise the sender’s description was. The order of test cases was randomized.

After answering test cases, participants responded to two statements on 7-point Likert

scales: “I am confident my answers to the test cases are correct” and “I am confident I fully

understand the procedure above.” We repeated this process for a total of four IPTs per pair

with the roles (sender and receiver) and condition held constant.

Figure 3.2: The receiver’s view in the interactive condition.

3.4 Selection of IPTs

To inform problem selection, we examined IPTs from various sources, including four popular

LLM benchmarks (HumanEval, APPS, MBPP, and BigBench datasets (Chen et al. [2021],

Hendrycks et al. [2021], Austin et al. [2021], Srivastava et al. [2022]), a popular interview

prep tool (LeetCode (LeetCode [2023])), and an introductory programming course (MIT
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Table 3.1: Succinct descriptions of the 12 IPTs we tested. Appendix A.3 contains the
(verbose, domain-specific) text given to senders.

Name Short Summary of the IPT

max Given a list of numbers, report the max.
num_even Given a list of numbers, report how many even numbers are in the list.
sum_pos Given a list of numbers, report the sum of the positive numbers in the list.

reignfall Given a string containing As, Bs, and Cs, count the number of As and Bs, reading from
left to right. Stop counting once a C is reached. If there are more Bs than As once the
first C is reached, report B. Otherwise, report A.

palindrome Report T if a string is a palindrome. Otherwise, report F.
find_sum Given a list of numbers and a target number, report what pair of numbers from the list

have a sum equal to the target. Report the larger number of the pair first. If there is
no pair with sum equal to target, report [].

rmv_dup Given a list, report the list after all instances of duplicates are removed, preserving the
relative ordering.

str_diff Given two strings, report which letter has been added to the first string to arrive at the
second.

is_subseq Given two strings, report T if the first string is a subsequence of the other. Otherwise,
report F.

exact_chg Given three numbers (Small, Big, Goal), report T if Small times 1 plus Big times 5
equals Goal. Otherwise, report F.

fizzbuzz Given some number n, count and report the number of times the digit 7 appears in
whole numbers less than n that are divisible by 11 or 13 (or both).

xyz Given three numbers (x, y, z), if y > z, report the pair of numbers: [x + z, 0].
Otherwise, report the pair of numbers: [x + y, z - y].
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Figure 3.3: The chatbox shown in the interactive condition if a receiver rejects the sender’s
description.

(Canelake [2011])). We looked at these sources to understand how LLMs’, experienced

programmers’, and beginner programmers’ codes are judged. While we were inspired by

the tasks from all corpora, we chose to ultimately only pull tasks directly from HumanEval,

which was used to benchmark Codex (Chen et al. [2021]). We chose problems specifically

from HumanEval as their tasks were generally self-contained and often did not require formal

knowledge of data structures. Specifically, six of our tasks have been pulled from HumanEval,

while the other six are of our own making.

IPTs were selected such that they varied in complexity, ranging from simply finding

the maximum element in a list to describing a custom math function. Each IPT was then

associated with four test cases, two of which were edge cases. We phrased each of the IPTs so

as to eliminate computer science jargon. We further added text to contextualize each IPT,

such as framing the problem “find the max of a list” as “Given a list of days you can pay your

rent late, report the maximum number of days you can pay your rent late.” We additionally

added superfluous information to the IPT and asked participants to make it concise. This

forces participants to meaningfully read and engage with the IPT during rephrasing. We

finally note that while we did not consciously pull any problems from datasets other than

17



HumanEval, some of our problems exist in other datasets due to the generic nature of the

tasks; an example is our eighth task, which asks if a string is a substring of another string

(LeetCode [2023], Chen et al. [2021]). We believe this heavy overlap with problems in other

testing suites is a good indicator that our selected IPTs are common and general, and may

consequently reflect tasks that end-user programmers might do. All programming tasks and

their associated test cases are shown in Appendix A.3, but a shorthand name and descriptor

of those tasks are shown in Figure A.1.

3.5 Post-survey

Our post-survey primarily consists of questions relating to the participant’s experience in

the previous sections of the study, such as if they perceived the task to be difficult or not.

We include all questions in the post-survey in Appendix A.2.2. However, we also ask in our

post-survey questions to determine if a participant is a programmer or a non-programmer at

this point. Prior literature notes that there exists a considerable discrepancy in the degree to

which participants self-report programming knowledge and to what degree the participants

actually demonstrate programming knowledge (Balebako et al. [2014]). We also observed this

pattern, noting on many occasions that participants self-report that they have programming

experience on Prolific, but indicate that they do not have programming experience when

taking our post-survey.

We consequently used four questions to determine if a participant legitimately has pro-

gramming knowledge. We used three of the screening questions developed by Danilova et al.

[2021], and our fourth simply asks what programming languages the participant is profi-

cient in. We consider the fourth question to be correct unless the participant has typed

“none” there. Only participants who answer at least three questions correctly are counted

as programmers.
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3.6 Substituting LLMs For Human Receivers

To investigate how programmers and non-programmers communicate IPTs to LLMs, we per-

formed an additional sub-study using the communications collected in the main experiment.

Specifically, we took the final IPT wording as it was communicated from sender to receiver

and prompted an LLM with it. To be clear, if participants had communicated and clarified

the IPT in any way, we took the final phrasing of the IPT post-communication and fed it

to an LLM. Because LLMs can either directly answer test cases based on the final phrasing

or produce code, which can then be run on test cases, we prompt each LLM twice: once

to directly answer test cases, once asking the LLM to produce a Python function that im-

plements the IPT. Our prompt to directly answer test cases is identical to the prompt that

we use for human receivers, while the prompt to produce code has an additional sentence:

“Write a single Python function which is an implementation of the procedure above.”

We specifically query GPT-4, Chat Llama, Code Llama, and Gemini due to their state-

of-the-art performance (OpenAI [2024], et al. [2023], Google [2023], Rozière et al. [2024]).

GPT-4 and Gemini purport to have strong ability in both NLP as well as code generation, but

Llama 2 is split into two separate models: Chat Llama for natural language, and Code Llama

for producing code (Touvron et al. [2023]). We use default system messages and querying

parameters for all models, as provided in their documentation at the time of querying. When

models are directly answering test cases, we ensure that the test cases follow the same order

as the human receiver.

When the model produces code, it will sometimes produce a function that takes a dif-

ferent number of arguments than the input. In these cases, we first check if the function is

particularly vulnerable to the order of arguments, such as IPT xyz (see Table 3.1). If so, we

simply count the produced function as incorrect. Similarly, code that takes excessively long

to execute (>10 seconds) or relies on input from the user (i.e., as through standard input)

instead of its function parameters is considered to be incorrect. If the function is more or less
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agnostic to the order of its arguments, such as IPT fizzbuzz or palindrome, we combina-

torially try all possibilities of formatting the test case such that the number of arguments in

the test cases is consistent with the number of arguments in the produced function header.

For example, if the test case took two inputs x, y and the function header only took one

input, we attempt to format the input as [x, y]. We then run the produced code with all

the possible input formats, and as long as one of the inputs produces the expected output,

we count the test case as correct.

Finally, at least one researcher manually verifies the results from code execution to en-

sure that the produced code legitimately attempts to solve the test cases instead of simply

guessing. Similar manual verification is performed to ensure that the correct output is being

graded. This step is crucial when the LLM output includes function calls as usage examples,

or has internal print statements in its function definition.

3.7 Data Analysis

The bulk of our quantitative analysis centered on linear regression models we built. The

dependent variable (DV) was the number of test cases answered correctly by the sender,

the receiver, or an LLM in place of the human receiver. These regression models’ indepen-

dent variables (IVs) included the assigned condition, the demographics and experiences of

the sender and/or receiver, as applicable, and which IPT was being tested. These linear

regressions enabled us to report on each factor (e.g., the impact of age or the impact of

being assigned to the examples condition) while controlling for the other factors. Because

we wanted to investigate the extent to which each of these factors (IVs) impacted the suc-

cess of IPT communication, we chose not to perform model selection, instead reporting the

coefficients and p-values for all IVs.

Beyond these main linear regression models, we wanted to examine specific sub-questions

(e.g., comparing receivers’ performance based on specific characteristics of the IPT descrip-
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tion they saw). For these one-off comparisons between two groups, we used Mann-Whitney

U tests (abbreviated MWU when reporting p-values) as the number of test cases answered

correctly does not follow a normal distribution, making the more common t-test inappro-

priate. For all statistical tests, we set α = .05, though we also report potentially relevant

results above this threshold as appropriate.

Note that senders assigned to the condition where they were instructed to send examples

did not always include examples for every IPT description. We marked a pair to have

consistently sent examples if at least two of their four IPT descriptions included examples.

We chose this threshold after observing negligible differences in average performance relative

to the 4/4 case.

We also performed qualitative analysis to assess the characteristics of participants’ pro-

cedures, examples, and interactions. Two researchers inductively developed a code book

following a thematic analysis approach. Procedures, examples, and interactions all had sep-

arate code books, although they were all developed inductively. The researchers regularly

met to discuss if new codes needed to be added. After coding, the researchers met and

resolved all differences between their respective codes. We grouped codes that had less than

five occurrences with thematically similar codes.

3.8 Limitations

While we made strong efforts to ensure that our study methods are robust, they still suffer

from some limitations. In particular, while we made good-faith efforts to ensure that our

selected IPTs were broadly representative of common programming tasks, it is ultimately

impossible to claim that they are representative of programming problems as a whole due

to their limited number. Similarly, while we study this subset of IPTs to inform the feasi-

bility of end-user programming with LLMs, there is no guarantee that end-users will choose

programming workloads consistent with the IPTs we chose to study. In this vein, we note

21



that we phrased IPTs specifically to study IPT communication. Namely, we couch IPTs in

non-programming-specific language, and include superfluous information to force senders to

meaningfully engage with them during IPT communication, rather than simply parroting

the phrasing we provided. This may not be representative of how non-programmers will

engage in communicating programming tasks to LLMs in general. Finally, we note that the

LLMs we query may have been trained on similar IPTs due to the common nature of some of

our problems, such as finding the maximum element of a list. Individuals who query LLMs

on less-common tasks may observe worse performance than what we report here.
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CHAPTER 4

RESULTS

We now describe the results of our user study and LLM experiments.

4.1 Participants

Initially, 258 participants completed our study. However, we found evidence that a few par-

ticipants may have used ChatGPT to rephrase IPTs. Two researchers independently coded

responses for ChatGPT usage based on indicators like beginning an IPT with “Certainly!

Here’s a simplified algorithm procedure” or ending it with “I hope this is more general and

easier to understand,” both hallmarks of ChatGPT, as well as idiosyncratic behaviors, like

listing all multiples of 11 and 13 from 0 to 1000 without being asked. Based on consensus

from the two researchers, we discarded the 8 pairs who seemed to use ChatGPT, leaving 242

individuals as our data set.

Among these 242 participants, 10.3% did not have any college education, 34.3% had some

college or an associate’s degree, 37.2% of participants held a bachelor’s degree, and 18.2%

held a graduate degree. In terms of age, 12.4% of participants were 18–24 years old, 35.5%

were 25–34 years old, 27.3% were 35–44 years old, and the remaining 9.5% were 45 years

old or older. Finally, 52.5% of participants identified as male, 42.6% identified as female,

and a total of 5.0% identified as non-binary/third gender, self-described, or preferred not to

say. For our regression models, we merged smaller categories and always used the largest

category as the baseline.

While we recruited our sample such that half of the participants reported prior program-

ming experience and half did not on Prolific’s platform filters (Section 3.1), a number of

self-reported programmers fared poorly on the standardized programming quiz (Danilova

et al. [2021]) we administered (Section 3.5). Based on both this quiz and self-reported
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experience, we categorized 72/242 participants (29.8%) as programmers and the rest as non-

programmers.

4.2 Overall Correctness

Recall that each pair was randomly assigned four IPTs with four test cases each. Across

their assigned IPTs, participants averaged 9.4/16 test cases correct (58.9%), with a median

of 10/16 (62.5%) and standard deviation of 4.4. However, this average does not account

for the participant’s role, type of test case, or experimental condition. As we detail in the

coming sections, each factor impacts correctness.

4.2.1 Senders vs. Receivers

Senders, who read the verbose descriptions we provided, answered more test cases correctly

than receivers, who read their corresponding sender’s description that rephrased, shortened,

and generalized the verbose description. As Figure 4.1 illustrates, senders answered an

average of 10.6/16 test cases correctly (66%), while receivers answered an average of 8.3/16

correctly (52%). This difference was significant (MWU, p < .001).

4.2.2 Regular vs. Edge Cases

Furthermore, participants did slightly better on regular test cases than edge cases, as shown

in Figure 4.2. This difference was also statistically significant (MWU, p = .030).

4.2.3 Performance By IPT

Participants’ performance varied substantially across the 12 IPTs we tested, which we chose

to span a range of difficulty. Figure 4.3 displays the performance per IPT; recall that each

had four test cases. Participants answered the most test cases correctly for max (mean=3.1/4,
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Figure 4.1: The distribution of how many of the 16 test cases each sender and receiver
answered correctly.
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Number of Correct Testcases

Regular Cases

Edge Cases

Figure 4.2: The distribution of how many of the 8 regular cases and 8 edge cases each
participant answered correctly.

median=4) and the least for fizzbuzz (mean=1.1, median=1.0). In general, participants did

well at answering test cases for prose descriptions of straightforward mathematical, string,

and list operations, such as identifying palindromes, summing only the positive numbers

in a list, counting the number of even numbers, or solving a variant of the subset sum

problem. Given that half of the participants were reading the sender’s description written

by another participant in the study, this high performance answering test cases for such IPTs

also indicates that most senders successfully communicated IPTs in prose, which is necessary

for LLM-based interfaces for end-user programming.
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Figure 4.3: The distribution of how many of the 4 test cases for each IPT participants
answered correctly.

That said, participants tended to do worse for more complex problems, notably xyz

(which involved defining a non-trivial pair of expressions) and fizzbuzz. Both required

multi-step mathematical calculations. However, rmv_dup also proved challenging for partic-

ipants, despite its lack of computational complexity. This task involved removing duplicates

from a list. In participants’ free-text responses, we observed trends stemming from the am-

biguities of natural language. That is, “remove duplicates” may require one to remove all

occurrences of duplicates, or to keep the first occurrence but remove subsequent occurrences.

While we precisely worded our verbose description to specify the former, many participants’

natural language descriptions were less precise. We observed a similar failure mode for

num_even, where many unsuccessful participants returned the set of even numbers in the

list, rather than the count of the even numbers in the list.
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4.2.4 The Contents of Senders’ Descriptions

To determine where unsuccessful descriptions might have gone wrong, we qualitatively coded

each pair’s final IPTs (i.e., reflecting any clarification in the interactive condition). Our codes

assessed the degree to which senders’ descriptions generalized IPTs, as well whether they

included all information we deemed necessary to answer the test cases. We omit 8 senders’

descriptions that were barely rephrased from the verbose descriptions we gave, leaving 476

descriptions.

Figure 4.4 summarizes the characteristics of senders’ descriptions. Senders usually in-

cluded the information needed to answer the test cases. Specifically, 246 of the senders’

descriptions (51.7%) included all information we deemed necessary, 152 (31.9%) included

some of this information, and only 72 (15.1%) included none of it. However, we found mixed

success in generalization, our instruction to senders to rewrite the context-specific verbose

descriptions (e.g., about keeping score in a sports game) to general form (e.g., about list

operations). While 163 senders’ descriptions (34.2%) followed instructions and were fully

generalized, and 76 (16.0%) were partially generalized, the remaining 231 (48.5%) were not

generalized.

Figure 4.5 shows how these two characteristics of senders’ descriptions corresponded to

the receivers’ performance answer test cases. Naturally, senders’ descriptions that included

more information relevant to the IPT correlated with better receiver performance. Specifi-

cally, senders’ descriptions that included all relevant information led to receivers answering

2.7 of the 4 test cases on average (67.5%). Senders’ descriptions that included only some

of the information led to receivers answering 1.6 of the 4 test cases on average (40.6%),

while those that included no information led to receivers answering 0.8 of the 4 test cases

on average (20.2%). While the generalization of the senders’ description had much less of

an impact on receivers’ success, we did observe that receivers tended to do better when the

IPT was either fully generalized or not generalized at all, rather than partially generalized.
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Figure 4.4: A heat map showing the degree to which senders’ descriptions generalized the
IPT alongside whether we felt they included all information needed to solve the test cases.
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Figure 4.5: A heat map showing the fraction of test cases receivers answered correctly based
on the characteristics of the sender’s description identified in our qualitative coding.

Specifically, full generalization led to receivers correctly answering 2.3 test cases on average

(57.5%), some generalization led to receivers correctly answering 1.8 test cases on average

(44.0%), and no generalization led to receivers answering 2.0 test cases on average (49.8%).

4.3 Regressions

In the remainder of this section, we report the results of a series of linear regression models

(see Section 3.7). For each, the DV is how many of the four test cases were answered correctly
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Table 4.1: Linear regression whose dependent variable indicates how many of the four test
cases senders answered correctly based on our verbose descriptions. R2 = 0.346.

Independent Variable Baseline β SE t p

(Intercept) – 3.115 0.237 13.136 <.001

Sender is Programmer Non-programmer 0.412 0.141 2.934 .004

Sender Age 18–24 25–34 0.038 0.207 0.183 .855
Sender Age 35–44 25–34 -0.015 0.144 -0.107 .915
Sender Age 44+ 25–34 -0.695 0.167 -4.163 <.001

Sender is Non-male Male -0.017 0.125 -0.135 .893

Sender Degree: None Bachelor’s -0.018 0.141 -0.125 .901
Sender Degree: Associate’s Bachelor’s 0.044 0.212 0.209 .835
Sender Degree: Graduate Bachelor’s 0.270 0.173 1.557 .120

Condition: Examples Non-examples 0.434 0.155 2.809 .005
Examples Sent None Sent 0.325 0.187 1.738 .083

Condition: Interactive Non-interactive 0.122 0.129 0.942 .346
Participants Interacted Did Not -0.523 0.234 -2.234 .026
Interaction Coded As Useful Was Not 0.678 0.311 2.179 .030

IPT: num_even max -0.840 0.277 -3.035 .003
IPT: sum_pos max 0.199 0.270 0.737 .461
IPT: reignfall max 0.060 0.294 0.203 .839
IPT: palindrome max -0.386 0.267 -1.447 .149
IPT: find_sum max -0.786 0.277 -2.837 .005
IPT: rmv_dup max -1.931 0.264 -7.325 <.001
IPT: str_diff max -0.590 0.266 -2.217 .027
IPT: is_subseq max -0.657 0.271 -2.421 .016
IPT: exact_chg max -0.491 0.262 -1.876 .061
IPT: fizzbuzz max -2.211 0.268 -8.255 <.001
IPT: xyz max -1.231 0.278 -4.432 <.001

for a given IPT. When presenting the IVs, such as the relevant participant’s demographics and

assigned condition, we report β (the coefficient) and the p-value for that IV. For categorical

variables, as most of our IVs are, β indicates how many more of the four test cases on average

were answered correctly relative to the baseline category.

Table 4.1 presents our regression results for senders answering test cases based on our

verbose descriptions, while Table 4.2 presents the corresponding regression results for re-

ceivers answering test cases based on their paired sender’s description. Both regressions

include IVs for the assigned conditions, the IPT, and the demographics of the participant

answering test cases (respectively, the sender and the receiver). To better understand how

the characteristics of the person writing the description impacted another person’s ability to

29



understand the IPT, the regression for receivers also included IVs for the demographics of

the sender.

Echoing Section 4.2.3, we found that both senders and receivers answered fewer test cases

correctly for four of the IPTs—num_even, rmv_dup, fizzbuzz, and xyz—compared to our

regression baseline, max. Additionally, senders (but not receivers) also answered fewer test

cases correctly for find_sum than for max.

Controlling for all other factors represented by IVs, we found that the number of test

cases the sender answered correctly was significantly correlated with the number of test cases

the receiver answered correctly (β = 0.294, p < .001). Intuitively, this factor indicates that

senders who better understood the IPT as presented in our verbose description were better

able to rephrase and communicate that IPT to the receiver.

We also analyzed demographic correlations with performance. For both senders and

receivers, we found that the gender of the participant was not significantly correlated with

performance answering test cases. Compared to our baseline (largest) age category, 25–

34, both senders (β = −0.695, p < .001) and receivers (β = −0.347, p = .041) age 44+

answered fewer test cases correctly, as did receivers age 18–22 (β = −0.519, p = .017).

Furthermore, receivers who were given descriptions written by senders age 18–24 answered

fewer test cases correctly than receivers who were given descriptions written by senders in

our baseline group, those age 25–34 (β = −0.734, p = .003). For the most part, education

level was not a significant factor. The only exception was that receivers who were given a

description written by a sender with a graduate degree answered more test cases correctly

(β = 0.410, p = .033) than those given a description written by a sender with a bachelor’s

degree (our baseline). Appendix A.5 plots these demographic correlations.
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4.4 Programmers vs. Non-Programmers (RQ 1)

RQ 1 asked what role prior programming experience plays in successful IPT communication.

We found that senders with programming experience answered on average 0.412 more of the

4 test cases per IPT correctly than senders without programming experience (β = 0.412,

p = .004). While this effect was statistically significant, it was not completely overwhelming

(representing on average less than half a test case difference), highlighting that both pro-

grammers and non-programmers were able to answer test cases based on our verbose natural

language descriptions.

We observed a slightly different effect for receivers. Receivers with programming expe-

rience answered on average 0.218 more of the 4 test cases per IPT correctly than receivers

without programming experience, and this effect was not statistically significant (β = 0.218,

p = .136). What mattered somewhat more was whether the sender who wrote the descrip-

tion for the receiver had programming experience. Receivers whose corresponding sender

had programming experience answered on average 0.387 more of the 4 test cases per IPT

correctly than receivers whose corresponding sender did not (β = 0.387, p = .013).

In short, we conclude that it is feasible for non-programmers to both describe IPTs in nat-

ural language and interpret others’ natural language descriptions of IPTs with only slightly

worse performance (roughly an 8.1% absolute difference overall) compared to programmers.

Figure 4.6 plots these phenomena per participant (summing test cases across all 4 IPTs each

saw, leading to a maximum of 16).

However, observing the difference in distributions is insufficient to understand why pro-

grammers do better. To fully answer RQ 1b, “what do programmers do that end-users do

not do,” we look at both examples (Section 4.5) and interaction patterns (Section 4.6).
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Figure 4.6: The distribution of how many of the 16 test cases (across IPTs) each participant
answered correctly based on role and programming experience.

4.5 The Role of Examples (RQ 2)

RQ 2 asked what role the inclusion of example test cases (sample pairs of inputs and cor-

responding outputs) plays in successful communication. Senders who were shown examples

that we provided alongside their verbose descriptions answered on average 0.434 more of

the 4 test cases per IPT correctly than senders not shown examples (β = 0.434, p = .005).

Whether or not that sender subsequently chose to send examples to their corresponding re-

ceiver also correlated weakly (non-significantly) with how many test cases the sender them-

selves answered correctly (β = 0.325, p = .083).

Whether the sender chose to send examples to their corresponding receiver correlated

more strongly, however, with how many test cases their corresponding receiver answered

correctly (β = 0.506, p = .012). Figure 4.7 plots these phenomena, summing across all four

IPTs each participant saw. Notably, however, only 32 of the 48 senders randomly assigned

to our examples condition (in which our instructions asked them to provide examples to the

receiver), or 66.7%, did so. As such, future interfaces might consider automatically detecting

whether a natural language description includes examples. In any case, the inclusion of
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Figure 4.7: The distribution of receiver performance based on whether the sender included
examples. A pair was considered to have sent examples if they did so for at least 2 of their 4
assigned IPTs. Only one pair sent examples when they were not asked to; for visual clarity,
they are not shown.

examples alongside a natural language description of an IPT strongly correlates with better

IPT communication (roughly an 18.1% absolute difference).

4.5.1 What types of examples were sent?

RQ 2a asked what types of examples are beneficial to IPT communication. To this end, we

qualitatively coded the contents of examples participants provided, as well as their format.

We observed four emergent themes. First, we applied the format code to examples formatted

in a way that clearly define inputs and outputs, such as “Example: [’ghj’, ’gh’]; Report ’T’.”

Our reuse code indicated that at least one of the examples the sender provided the receiver

was originally given by us to the sender and reused verbatim. We also coded sets of examples

all correct, indicating that all provided input/output pairs are correct, because we noticed

that some senders sometimes provided incorrect examples. Finally, our explanation code

noted whether the examples included an explanation of why the output matched the input,

such as mentioning “just add together the positive numbers to get the total sum, and ignore

the negative points in the equation.”

We used these codes to answer RQ 2a quantitatively. We found that senders’ descriptions
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that contained examples that were entirely original, rather than copied from ours, resulted in

the receiver answering more test cases correctly (MWU, p = 0.030). Similarly, descriptions

whose examples were all correct, rather than including incorrect test cases, also resulted in

the receiver answering more test cases correctly (MWU, p = 0.008). Figure 4.8 visualizes

how these codes correlated with receivers’ correctness.

4.5.2 Do senders with programming experience use different types of

examples?

RQ 2b asked about differences in the types of examples senders included based on whether

the sender had prior programming experience. First, programmers were more likely overall

to send examples when assigned to the relevant condition. Specifically, programmers sent

examples when their condition instructed them to do so 57% of the time (39/68 IPTs), while

non-programmers sent examples only 38% of the time (56/148 IPTs). Programmers were

7% more likely to send original examples, 5% less likely to include explanations with their

examples, and (surprisingly, given programming’s precise nature) 8% less likely to format

their examples.

4.6 The Impact of Interactivity (RQ 3)

RQ 3 asked whether interactions between the receiver and sender, such as asking for clar-

ification, improved IPT communication. While we hypothesized that it would, we did not

observe this to be the case. In this section, we considered whether participants were assigned

to the condition where they could interact, as well as whether they actually interacted during

the survey.

Interaction was somewhat rare. While 64 of the 131 pairs were assigned to the interactive

condition, only 47 of those 64 pairs (73.4%) ever chose to interact. Furthermore, interaction
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did not appear to improve outcomes for the receiver; none of the relevant regression terms

were significant. Surprisingly, we instead observed interaction to have a more substantial

impact on senders. While pairs who interacted were associated with senders answering

fewer test cases correctly (β = −0.523, p = .026), this effect was completely offset by

that interaction being what we qualitatively coded as a useful interaction (β = 0.678, p =

.030). In other words, senders whose corresponding receiver asked for clarification tended to

perform slightly better at answering their own test cases only if their interaction meaningfully

exchanged information about the IPT. Otherwise, they tended to perform worse, which we

hypothesize to be because the senders’ description may have revealed to the receiver a lack

of understanding on the part of the sender.

4.6.1 What interaction outcomes were beneficial?

Because we observed interaction (either permitted by the condition or actually taken advan-

tage of) to have minimal impact on the receiver’s ability to answer test cases, we qualitatively

analyzed the interactions that did occur. Many of them did not seem to clarify the IPT.

In response, two researchers inductively developed a definition for useful interaction and

repeatedly met to refine this definition until they reached high levels of agreement (Cohens

κ = 0.772). They then qualitatively coded all procedures as useful or not, including rea-

sons why they were or were not useful. The researchers then met and jointly resolved all

differences.

Their ultimate definition of a useful interaction is one in which at least one of the

following happens: the sender makes the IPT structure clearer in response (e.g.„ by adding

headers to paragraphs); the sender responds with new, relevant information; the sender and

receiver correctly clarify the input and output for the IPT; or they discuss the IPT in a way

that clarifies ambiguities.
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4.6.2 What clarification requests led to good outcomes?

Receivers’ requests for clarification tended towards five main themes. Of the 84 requests, 14

(17.1%) clarified input/output pairs given the IPT phrasing, such as the outcome when given

a certain edge case (8/14). Another 27 requests (33.0%) asked about the characteristics of

certain variables. For example, for the IPT “report how many even numbers are in each

number sequence,” the receiver asked, “Even in terms of number count? ie. [1223] = one

because there are two 2’s. Or even in terms of the number itself? Ie. [1223] = two because

there are two 2’s.”

Other requests for clarification were less likely to lead to useful outcomes. Another 9

requests (11.0%) asked about the IPT’s framing, rather than information pertinent to the

computational task itself. An example for the find_sum task, framed as finding the right

lengths of scrap wood to make a door, was, “Do I have enough wood glue for such a project?”

Furthermore, 19 (23.2%) broadly reported that the IPT was unintelligible, or that they were

not clear on what they should report or how they should do so. For example, “It seems

very wordy and confusing. I still don’t know what two numbers in super to find or how i

am supposed to do that.” Finally, 13 requests (15.9%) did not neatly fall under the other

categories, such as grammatical edits, or confusion over math symbols (e.g., confirming that

> means “greater than”).

Figure 4.9 visually summarizes how these requests mapped to outcomes. We concluded

that requests to clarify variables and I/O were the most useful when describing an IPT

in English prose. These requests led to positive outcomes 48.1% and 61.5% of the time,

respectively. Pairs with at least one programmer were 12.2% less likely to interact than

pairs with no programmers. Namely, pairs with one programmer interacted 65.6% of the

time, while pairs with no programmers interacted 77.8% of the time.
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4.7 Communication to LLMs (RQ 4)

Because our study’s ultimate implications center on the ability for humans to communicate

IPTs to LLM-based chatbots, rather than human receivers, our final set of analyses replaced

the human receivers with a variety of modern LLMs. In other words, we fed the same IPT

descriptions written by senders in our study to GPT-4, Gemini, and two variants each of

Chat Llama and Code Llama. As described in Section 3.6, we tested both having the LLM

directly answer the same test cases as the human receiver, as well as having it produce code

that would then be used to answer the test cases.

Table 4.3 compares the performance of these LLMs against each other and against the

human receivers from our study. We observe that, of the tested LLMs, GPT-4 consistently

outperformed the other LLMs, so we primarily report on its behavior. We found that all

LLMs except Gemini were more adept at answering test cases directly, rather than producing

code to answer the test cases.

Furthermore, GPT-4 slightly outperformed human receivers, answering 59.8% of all test

cases correctly. The corresponding human receivers answered 58.9% correctly (absolute

difference <1%). However, this provides only a partial look at the LLMs’ abilities. We now

examine them through the lens of functional correctness, the de-facto standard for evaluating

code.

Recall that functional correctness deems code to be correct if it successfully passes all

associated test cases. In other words, human participants display functional correctness if

they answer all four of an IPT’s test cases correctly–in our data, this happens 34.7% of the

time. In contrast, GPT-4 displayed functional correctness 28.9% of the time when directly

answering test cases, or 36.0% of the time when producing code to answer test cases. We

observed that GPT-4 produced functionally correct code (per-IPT) 40.2% of the time when

given rephrased IPTs from senders with programming experience, as opposed to 34.4% for

senders without such experience.
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Parallel to our regression models for humans, we also built regression models for the

LLMs. Tables 4.4–4.5 in the body of the paper report those models for GPT-4, respectively:

the cases where GPT-4 answered test cases directly (Table 4.4) and where GPT-4 wrote code

(Table 4.5). The appendix contains parallel tables for Code Llama (Tables A.2–A.3) and

Gemini (Tables A.4–A.5). As with human receivers, we found that the inclusion of examples

in the sender’s IPT description was associated with better performance by the LLM (in all

six of these cases). Furthermore, in 4/6 cases, the sender being a programmer was associated

with better performance by the LLM.

We further observed that GPT-4 was much more likely to produce code that was func-

tionally correct when IPT communication was perfect (i.e., the corresponding human receiver

answered all four test cases correctly), as shown in Figure 4.10. Similarly, if the IPT com-

munication was not perfect (the corresponding human receiver did not answer 4/4 test cases

correctly), then we observed a 73.3% chance that the LLM would produce incorrect code.

4.8 Perceptions

We asked participants about their perceptions of confidence and comprehension in our sur-

veys. We observed a strong correlation between confidence in comprehension during the

survey and performance on test cases, both per IPT (ρ = 0.41) and overall (ρ = 0.45). We

found that programmers were typically better at predicting their performance on test cases

than non-programmers.

We also asked participants about their opinions of, and experiences with, LLMs. Pro-

grammers were more likely to have seen and used GitHub Copilot, but both programmers

and non-programmers had seen and used ChatGPT at similar rates. Both populations were

significantly more familiar with ChatGPT than GitHub Copilot. In addition, both groups

believed that LLMs could perform at least as well as humans, if not better, on the assigned

tasks. However, while programmers almost always demonstrated more faith in LLMs’ abil-
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ities than non-programmers, they were less likely to believe LLMs were capable of clear

communication.
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Table 4.2: Linear regression whose dependent variable indicates how many of the four test
cases receivers answered correctly based on the sender’s description. We included indepen-
dent variables about both the receiver (who answered test cases) and the sender (who wrote
the description). R2 = 0.340.

Independent Variable Baseline β SE t p

(Intercept) – 1.731 0.342 5.054 <.001

Receiver is Programmer Non-programmer 0.218 0.146 1.493 .136

Receiver Age 18–24 25–34 -0.519 0.216 -2.403 .017
Receiver Age 35–44 25–34 -0.260 0.186 -1.395 .164
Receiver Age 44+ 25–34 -0.347 0.169 -2.052 .041

Receiver is Non-male Male 0.165 0.130 1.268 .205

Receiver Degree: None Bachelor’s -0.021 0.170 -0.122 .903
Receiver Degree: Associate’s Bachelor’s 0.133 0.209 0.638 .524
Receiver Degree: Graduate Bachelor’s -0.028 0.186 -1.515 .130

Condition: Examples Non-examples -0.000 0.173 0.000 .999
Examples Sent None Sent 0.506 0.202 2.511 .012

Condition: Interactive Non-interactive 0.057 0.140 0.406 .685
Participants Interacted Did Not -0.157 0.250 -0.629 .530
Interaction Coded As Useful Was Not 0.037 0.333 0.112 .911

IPT: num_even max -0.695 0.297 -2.339 .020
IPT: sum_pos max 0.023 0.287 0.080 .936
IPT: reignfall max -0.072 0.312 -0.230 .818
IPT: palindrome max -0.169 0.284 -0.597 .551
IPT: find_sum max -0.571 0.296 -1.927 .055
IPT: rmv_dup max -1.033 0.296 -3.495 <.001
IPT: str_diff max -0.103 0.284 -0.363 .717
IPT: is_subseq max -0.249 0.290 -0.859 .391
IPT: exact_chg max -0.175 0.278 -0.630 .529
IPT: fizzbuzz max -1.041 0.307 -3.391 <.001
IPT: xyz max -1.133 0.301 -3.771 <.001

Sender # Test Cases Correct – 0.294 0.050 5.841 <.001

Sender is Programmer Non-programmer 0.387 0.156 2.482 .013

Sender Age 18–24 25–34 -0.734 0.242 -3.034 .003
Sender Age 35–44 25–34 -0.196 0.157 -1.248 .213
Sender Age 44+ 25–34 -0.203 0.194 -1.048 .295

Sender is Non-male Male -0.237 0.138 -1.713 .087

Sender Degree: None Bachelor’s 0.221 0.159 1.391 .165
Sender Degree: Associate’s Bachelor’s 0.172 0.229 0.751 .453
Sender Degree: Graduate Bachelor’s 0.410 0.192 2.133 .033
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Figure 4.8: The distribution of how many test cases the receiver answered correctly for a
given IPT based on qualitatively coded characteristics of senders’ descriptions.
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Figure 4.9: A sankey diagram connecting themes of receivers’ clarification requests about
senders’ IPT descriptions and their associated outcomes. For visual clarity, we dropped all
request-outcome pairs that only occurred once.

Table 4.3: Average performance of all tested LLMs and humans. "Direct Answering" indi-
cates that the LLM directly responded to the testcase, while "Code" indicates that the LLM
produced a Python function which was then run on testcases.

Directly Answering Writing Code
Test All Test All

Receiver Cases Correct Cases Correct

Human Participants 58.9% 25.6% - -
ChatLLaMA 7B 18.7% 2.9% 12.0% 6.0%
ChatLLaMA 13B 27.4% 4.3% 26.8% 17.1%
Code Llama 7B 33.4% 6.0% 32.8% 21.5%
Code Llama 34B 40.9% 9.3% 34.4% 22.5%
Gemini 27.1% 6.8% 38.3% 27.3%
GPT-4 59.8% 28.9% 45.6% 36.0%
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Table 4.4: Linear regression with the dependent variable indicating how many of the four
test cases GPT-4 answered correctly when directly answering test cases. R2 = 0.267.

Independent Variable Baseline β SE t p

(Intercept) – 2.701 0.249 10.860 <.001

Sender is Programmer Non-programmer 0.255 0.147 1.732 .084

Sender Age 18–24 25–34 -0.052 0.217 -0.239 .812
Sender Age 35–44 25–34 -0.129 0.151 -0.854 .393
Sender Age 44+ 25–34 -0.557 0.175 -3.179 .002

Sender is Non-male Male -0.138 0.132 -1.047 .296

Sender Degree: None Bachelor’s 0.084 0.148 0.570 .569
Sender Degree: Associate’s Bachelor’s 0.132 0.222 0.597 .551
Sender Degree: Graduate Bachelor’s 0.152 0.182 0.833 .405

Condition: Examples Non-examples 0.176 0.162 1.087 .277
Examples Sent None Sent 0.403 0.196 2.052 .041

Condition: Interactive Non-interactive -0.031 0.136 -0.229 .819
Participants Interacted Did Not -0.539 0.245 -2.194 .029
Interaction Coded As Useful Was Not 0.542 0.326 1.663 .097

IPT: num_even max -0.448 0.290 -1.542 .124
IPT: sum_pos max 0.865 0.284 3.050 .002
IPT: reignfall max -0.142 0.308 -0.460 .646
IPT: palindrome max 0.331 0.280 1.185 .236
IPT: find_sum max -0.293 0.290 -1.009 .313
IPT: rmv_dup max -1.429 0.276 -5.170 <.001
IPT: str_diff max -0.279 0.279 -1.001 .317
IPT: is_subseq max 0.113 0.284 0.396 .692
IPT: exact_chg max -0.036 0.274 -0.131 .896
IPT: fizzbuzz max -1.488 0.281 -5.300 <.001
IPT: xyz max -1.038 0.291 -3.565 <.001
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 Correct
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Figure 4.10: The probability of the LLM being functionally correct for an IPT (correctly
answering all four test cases) relative to the functional correctness of the receiver’s answers.
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Table 4.5: Linear regression with the dependent variable indicating how many of the four
test cases GPT-4 answered correctly when producing Python code. R2 = 0.294.

Independent Variable Baseline β SE t p

(Intercept) – 1.748 0.283 6.171 <.001

Sender is Programmer Non-programmer 0.336 0.168 2.004 .046

Sender Age 18–24 25–34 0.209 0.247 0.846 .398
Sender Age 35–44 25–34 -0.102 0.172 -0.594 .553
Sender Age 44+ 25–34 -0.928 0.200 -4.651 <.001

Sender is Non-male Male -0.225 0.150 -1.503 .133

Sender Degree: None Bachelor’s 0.076 0.168 0.452 .651
Sender Degree: Associate’s Bachelor’s 0.215 0.253 0.850 .396
Sender Degree: Graduate Bachelor’s 0.387 0.207 1.868 .062

Condition: Examples Non-examples 0.058 0.185 0.315 .753
Examples Sent None Sent 0.630 0.224 2.818 .005

Condition: Interactive Non-interactive -0.030 0.155 -0.193 .847
Participants Interacted Did Not -0.314 0.280 -1.122 .262
Interaction Coded As Useful Was Not -0.017 0.372 -0.046 .963

IPT: num_even max 1.033 0.331 3.122 .002
IPT: sum_pos max 1.790 0.323 5.541 <.001
IPT: reignfall max 0.842 0.351 2.398 .017
IPT: palindrome max 1.687 0.319 5.295 <.001
IPT: find_sum max 0.089 0.331 0.270 .788
IPT: rmv_dup max -0.771 0.315 -2.448 .015
IPT: str_diff max 0.076 0.318 0.238 .812
IPT: is_subseq max 0.159 0.324 0.489 .625
IPT: exact_chg max 0.226 0.313 0.723 .470
IPT: fizzbuzz max -0.640 0.320 -2.001 .046
IPT: xyz max 0.073 0.332 0.219 .827
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CHAPTER 5

DISCUSSION

We ultimately observe that communication of IPTs is possible for both programmers and

non-programmers. However, programmers are more likely to take actions that correlate with

positive outcomes. We believe this is most clear when examining clarification requests. Clar-

ification requests tended to have more positive outcomes when the requests concerned the

values that variables could take, or otherwise specified the I/O of an IPT. We speculate that

these have the most impact because they are specific enough to act upon (as opposed to

simply reporting that the IPT is unintelligible), and because IPTs are evaluated for correct-

ness based on whether their transformation of input to output is correct. Thus, any requests

to clarify I/O are inherently more likely to result in more successful IPT communication.

Part of programmers’ success may be due to a natural conception of IPTs as input-output

transformations.

We also note that examples play a key role in IPT communication between both humans

and LLMs. We hypothesize that being able to formulate examples serves as an effective

indicator of IPT comprehension, because it requires an individual to understand the essence

of an IPT: namely, the IPT’s transformation of input to output. We speculate that examples

have so much impact because understanding the input-to-output transformation is critical

to understanding the IPT itself. That is, input-output pairs may be the most concise and

accurate way to specify an IPT. This would explain why they are so impactful, both for hu-

mans who have the capacity to reason about the nature of the I/O transformation itself, and

for LLMs, which must simply probabilistically guess the most likely transformation during

code production. Our results suggest that making example generation a core component in

future end-user programming interfaces will encourage more accurate results.

Finally, we remark on the possibility of using LLMs as interfaces to enable end-user

programming. We ultimately find that communication with LLMs is more or less successful
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based on similar criteria to effective human-to-human IPT communication: namely, the pres-

ence of examples, the sender having programming experience, and the presence or absence of

useful interaction. We speculate that because we observe both programming experience and

sender/recipient designation to have small effects in comparison to the presence or absence of

examples, it is entirely possible for end users to program as effectively as those with program-

ming experience by using LLMs. Further, we hypothesize that differences in performance

caused by programming experience may be overcome through the development of interfaces

that encourage the inclusion of examples during LLM prompting. Additionally, promot-

ing certain types of clarification, such as those concerning I/O or function variables, during

human-LLM coding may have strong implications for recovery from initially unsuccessful

IPT communication.
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CHAPTER 6

CONCLUSION

In this paper, we examine the communication of information processing tasks, or IPTs. We

do so by examining the expected input and output of these IPTs, post-communication. In

particular, we examine how humans communicate IPTs to other humans, as well as how they

communicate them to code-generating LLMs. We find that a small amount of accuracy is lost

during transmission, as human senders tend to do better at answering test-cases than human

receivers (14% absolute difference). We further note a similar small difference in which human

programmers tend to do better than end-users (8.1% absolute difference), and in particular,

they are more likely to take certain actions that correlate with better IPT communication

such as sending examples. We find that allowing for interaction during IPT communication

enables participants who did a bad job rephrasing IPTs to fix their shortcomings, however,

positive outcomes tend to correlate with requests to clarify IPT I/O. Finally, we note that

LLMs seem to be sensitive to many of the same things as humans during IPT communication,

particularly the presence of examples, sender programming experience, and the presence of

useful interaction. We hypothesize that with the development of interfaces that encourage

certain types of interaction and the sending of examples during IPT communication, end-

users can program with LLMs as effectively as programmers.
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APPENDIX A

ADDITIONAL DETAILS

A.1 Additional Details About Selecting IPTs

We wanted to ensure that our programming tasks were appropriately representative of prob-

lems that programmers would be likely to face. As a sanity check, we randomly sampled

50 questions each from LeetCode, MIT introductory programming courses, and HumanEval.

We did not sample problems from APPS, MBPP, and BigBench because of either high prob-

lem complexity (as in the case of APPS) and/or high tendency to invoke mathematical or

algorithmic definitions (as in the case of MBPP and BigBench). The set of n=150 ques-

tions was then randomly ordered. Two researchers inductively developed the codebook in

Table A.1 to describe the types of problems, and qualitatively coded the questions. The

researchers then met to resolve coding differences.

Table A.1: Primary attributes on which we categorized potential IPTs.

Category Description

List Operations The task involves list manipulation and/or working with a list to compute a
value (e.g., find the minimum of a list of values). 1D arrays are lists.

String Operations The task involves string manipulation and/or working with a list to compute a
value (e.g., given a string, determine if something is a substring).

Simple Filtering The task involves simple "filtering": given a number of values, find a specific
value (e.g., find a max, remove values that meet a certain criteria).

Optimization The task involves finding an optimal value (e.g., shortest path). This is distinct
from filtering in that the sub-tasks required are nontrivial.

Two Dimensional The task involves 2D arrays, and/or thinking in with a "grid" pattern (e.g.,
moving around obstacles in a grid, battleship).

Simple Arithmetic The task involves simple arithmetic operations (addition, subtraction, division,
modulo etc).

Complex Arithmetic The task involves more complex arithmetic operations (computing derivatives,
efficiently checking if a number is prime).

Examples The task includes examples of intended input/output.
Data Structures The task involves some manipulation of a data structure (e.g., a binary tree or

linked list).
Boolean/Branching The task revolves around using conditionals or other boolean logic.

Following that, the researchers qualitatively coded our selected 12 programming tasks
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using the codebook developed over the set of 150. The researchers similarly met to resolve

coding differences. We then calculated the relative frequency of these labels among our

randomly sampled 150 programming problems and 12 programming tasks, and compared

the ratios against each other to ensure that the qualities of our chosen programming tasks

were appropriate. We note that the task types varied significantly based on the problems

source. We ultimately concluded that many common programming tasks may be too difficult

for a novice to understand. In particular, N-dimensional arrays, data structure questions, and

optimization problems were all common, but would be too difficult for an individual without

programming experience to understand. We consequently chose our tasks to emphasize

simple arithmetic and simple logic.

A.2 Survey Instrument

A.2.1 Pre-survey

The aim of this study is to examine how people communicate computational tasks, or struc-

tured processes that can be automated by a computer program. No programming experience

is required to participate in this study. After completing the demographic questions on the

next page, you will be directed to another website, where the main portion of the study will

take place.

Please answer the following demographic questions.

1. How old are you? • Under 18 • 18-24 years old • 25-34 years old • 35-44 years old • 45-54

years old • 55-64 years old • 65+ years old

2. What is the highest level of education you have completed? • Some high school or less

• High school diploma or GED • Some college, but no degree • Associates or technical

degree • Bachelor’s degree • Graduate or professional degree (MA, MS, MBA, PhD, JD,

MD, DDS, etc.) • Prefer not to say
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3. How do you describe yourself? • Male • Female • Non-binary / third gender • Prefer to

self-describe • Prefer not to say

This next portion of the study will evaluate how people communicate programming tasks to

each other. Here is some relevant terminology:

• A procedure will describe something to do. For example, a procedure might be “Pick the

cheapest price in the list of food item prices.”

• A test case is an input which you will be asked to compute an answer for, given a

procedure. In the above example of a procedure, a test case is a list [1.00, 2.00, 0.50]. The

correct answer to this test case is “0.50”.

You will now be directed to another website. At this site, you will be paired with another

participant. You will interpret four procedures of randomized difficulty and answer test

cases. If the redirection fails to work, please return your submission, as this is indicative of

a larger technical error caused by your browser configuration.

A.2.2 Post-survey

We will now ask you several follow-up questions regarding your experience participating in

our study.

1. I feel that I understood what I was supposed to be doing in this study. • Strongly disagree

• Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree

• Strongly Agree

2. (If Strongly disagree, Disagree, Somewhat disagree selected) If any part of the study pro-

cess was hard to understand, please elaborate.

We will now ask questions about your experience relating to the procedures and test

cases you saw during the study.

3. I felt that it was easy to answer test cases using the procedures • Strongly disagree •

Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree •
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Strongly Agree

4. (If Strongly disagree, Disagree, Somewhat disagree selected) What did you find to be

difficult about using the procedures provided to answer the test cases?

5. (If Strongly agree, Agree, Somewhat agree selected) What did you find to be easy about

using the procedures provided to answer the test cases?

6. What information that you might have found useful, if any, was missing from the four

procedures you were given?

This block of 5 questions was shown only to participants assigned to be a receiver

1. I believe that the procedures provided to me initially, before the other participant

made any clarifications I requested, were clearly understandable. • Strongly disagree

• Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree

• Strongly Agree

2. I believe that the procedures provided to me after the other participant made any

clarifications I requested, were clearly understandable. • Strongly disagree • Disagree

• Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly

Agree

3. I believe that the procedures provided to me were clearly understandable. • Strongly

disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree

• Agree • Strongly Agree

4. I was sometimes confused by the four procedures the other participant wrote. • Strongly

disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree

• Agree • Strongly Agree

5. (If Strongly agree, Agree, Somewhat agree selected) What was confusing about the other

participant’s procedures?

This block of 12 questions was shown only to participants assigned to be a sender

The next two questions aim to understand your approach to rephrasing the procedure.

51



1. What information did you make sure to include in your rephrasing of the procedures?

2. Please describe how you structured your rephrasing of the procedures.

These next questions relate more generally towards your experiences with the procedures

and test cases you encountered during this study.

3. I believe that the procedures provided to me were clearly understandable. • Strongly

disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree

• Agree • Strongly Agree

4. (If Strongly disagree, Disagree, Somewhat disagree selected) What about the procedures

made them difficult to understand?

5. (If Strongly agree, Agree, Somewhat agree selected) What about the procedures made

them easy to understand?

6. I believe that the rephrased procedures I sent the other participant were clearly un-

derstandable. • Strongly disagree • Disagree • Somewhat disagree • Neither agree nor

disagree • Somewhat agree • Agree • Strongly Agree

7. I believe that the other participant would have difficulty answering test cases correctly

using my rephrased procedures. • Strongly disagree • Disagree • Somewhat disagree •

Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree

8. What did you find to be easy about rephrasing the procedures?

9. What did you find to be difficult about rephrasing the procedures?

10. (If assigned to the interactive condition) Interacting (chatting, revising procedures) with

the other participant improved my rephrased version of the procedure. • Strongly disagree

• Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree

• Strongly Agree

11. (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the

other participant not help you improve your rephrasing of the procedure?

12. (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other
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participant help you improve your rephrasing of the procedure?

This block of 6 questions was shown only to participants assigned to the interactive condition

1. Interacting (chatting, revising procedures) with the other participant improved my under-

standing of the procedure. • Strongly disagree • Disagree • Somewhat disagree • Neither

agree nor disagree • Somewhat agree • Agree • Strongly Agree

2. (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the

other participant not improve your understanding of the procedure?

3. (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other

participant improve your understanding of the procedure?

4. Interacting (chatting, revising procedures) with the other participant did not help me

avoid mistakes • Strongly disagree • Disagree • Somewhat disagree • Neither agree nor

disagree • Somewhat agree • Agree • Strongly Agree

5. (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other

participant help prevent you from making mistakes?

6. (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the

other participant not help prevent you from making mistakes?

The following questions are meant to test your knowledge of programming. If you’ve never

programmed before, you likely will not know the answer; in that case, please make your best

guess.

1. Which of these values would be most fitting for a Boolean? • Small • I don’t know •

Solid • Quadratic • Red • True

2.
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What is the parameter of the function? • String out • String in • I don’t know • int

i = x− 1; i >= 0; i−− • Outputting a String • int x = len(in)

3. What is your experience with computer programming? Please select as many or as few

options that apply. • I have completed a course (in-person or online) focused on computer

programming • I hold a degree in computer science, computer engineering, IT, or similar

• Computer programming has been part of my responsibilities for a job • I have used

computer programming for a hobby (i.e., non-academic, non-work) project • I don’t have

any of the experience listed above

4. Please list all programming languages you are proficient in. Write "none" if you are not

proficient in any programming language.

In recent years, great strides have been made in advancing artificial intelligence (AI),

and AI-powered chatbots are no exception. Some of these chatbots are capable of taking

a description of a problem and providing answers based on that description, similar to the

exchange you just experienced.

5. In this study, you were paired with another human participant. Would you have done

anything differently, regarding any aspect of the study, if you were paired with an AI

rather than a person?

6. Do you expect that an AI or a human would be better at clearly communicating procedures

like those in this study? • Definitely an AI • Probably an AI • Possibly an AI • They
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would be equal • Possibly a human • Probably a human • Definitely a human

7. Do you expect that an AI or a human would be better at understanding procedures like

those in this study? • Definitely an AI • Probably an AI • Possibly an AI • They would

be equal • Possibly a human • Probably a human • Definitely a human

8. Do you expect that an AI or a human would be better at correctly solving test cases like

those in this study? • Definitely an AI • Probably an AI • Possibly an AI • They would

be equal • Possibly a human • Probably a human • Definitely a human

9. (Attention check) For this question, please mark “They would be equal” • Definitely an AI

• Probably an AI • Possibly an AI • They would be equal • Possibly a human • Probably

a human • Definitely a human

10. Do you expect that an AI or a human would be better at writing procedures? • Definitely

an AI • Probably an AI • Possibly an AI • They would be equal • Possibly a human •

Probably a human • Definitely a human

11. How familiar are you with Github Copilot/Github Copilot-X? • Very unfamiliar • Mod-

erately unfamiliar • Somewhat unfamiliar • Neither familiar nor unfamiliar • Somewhat

familiar • Moderately familiar • Very familiar

12. Have you used Github Copilot//Github Copilot-X? • Yes • No

13. (If Yes selected) What was your experience using Copilot/Github Copilot-X like?

14. How familiar are you with ChatGPT? • Very unfamiliar • Moderately unfamiliar • Some-

what unfamiliar • Neither familiar nor unfamiliar • Somewhat familiar • Moderately

familiar • Very familiar

15. Have you used ChatGPT? • Yes • No

16. (If Yes selected) What was your experience using ChatGPT like?

17. (Optional) If there’s anything else you’d like to tell us about this study, please enter it

here.
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A.3 Verbose Descriptions of IPTs Given to Senders

This appendix reports the full text of each IPT as given to senders. Below each IPT are the

test cases, with edge cases italicized. We also indicate each IPT’s relationship to problems

in the humaneval benchmark (Chen et al. [2021]).

1. max (humaneval 35 reworded, including how to specify how to handle an empty list)

You are moving to San Francisco, California. You are looking to rent an apartment

and have found a number of similar apartments. You unfortunately have some bad

spending habits and already have a lousy credit score of <600, so being able to pay

rent as late as possible is a huge plus. Each apartment has a different number of days

that you can pay your rent late without penalty. Report the maximum number of days

you could potentially pay your rent late. Note that you should make sure to report the

maximum, not the minimum or any other number. If there is no maximum number,

report -1.

• Given the task above, and input [30, 40, 10, 50, 25, 40], what should be reported?

[Answer: 50]

• Given the task above, and input [100, 200, 300, 400], what should be reported?

[Answer: 400]

• Given the task above, and input [], what should be reported? [Answer: -1]

• Given the task above, and input [80, 80, 80, 80], what should be reported? [An-

swer: 80]

2. num_even (closely related to humaneval 68, 104, 110, and 155; additionally, humaneval

37, 85, 88, 98, 100, 102, 106, 107, 121, 123, 130, 131, 138, and 163 use even-ness as

a subroutine) You are the babysitter of two very troublesome twins who want to eat

saltwater taffy. You will be given a list of the number of taffy pieces for a collection of

bags of candy. You know that if the pieces in the bag cannot be evenly divided among

the twins, the twin that receives fewer pieces will throw a tantrum, which you’d like
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to avoid. Report the number of bags that contain an even number of taffy pieces.

• Given the task above, and input [2000, 4003, 10342, 505431], what should be

reported? [Answer: 2]

• Given the task above, and input [3053, 10643342, 545345, 2879209, 100432,

345082], what should be reported? [Answer: 3]

• Given the task above, and input [-100, -245, 3432, 15432], what should be re-

ported? [Answer: 3]

• Given the task above, and input [81, 45, 11, 1313, 777, 904329], what should be

reported? [Answer: 0]

3. sum_pos (related to humaneval 8, 40, 108, 43, 122, 142, 145, and 151. Less closely

related to humaneval 42, 71, 72, 84, 94 114, 121, 128, and 133 ) Every summer in July

there is an annual Spügelkömpf sports festival. You will be given a list of points athletes

scored in a competition. The points are the result of the annual Hugenhömfpfhen

competition at the festival. Report the sum of the positive points.

• Given the task above, and input [3, 5, 7, 10, 2], what should be reported? [An-

swer: 27]

• Given the task above, and input [100, 5, 20, 543, 12, 1, 6], what should be

reported? [Answer: 687]

• Given the task above, and input [], what should be reported? [Answer: 0]

• Given the task above, and input [3.4, -8.2, 1.2, -123, 2.6], what should be reported?

[Answer: 7.2]

4. reignfall (no close matches in humaneval) You are part of a group of friends who

like to go out drinking on Friday nights, and who attempt to elect a designated driver

democratically. There is a vote between two candidates, "Alice" and "Brooke". Alice

has the nicer car, but Brooke always lets you pick the music. A vote for "Alice" is

denoted with an "A", while a vote for "Brooke" is denoted with a "B". Votes are held
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on Wednesday evenings. The vote was called at a certain cutoff time, denoted "C".

You have been chosen by your friends to determine who is the next designated driver.

Read the sequence of letters from left to right, stopping the voting count when you

see "C". Your friend group uses a sort of buggy app to record votes, so sometimes

votes come in after the cutoff time. Count the occurrences of "A"s and "B"s. It is

not necessary to count the number of "C"s. If there are the same number of "A"s

and "B"s, or more "A"s than "B"s, report "A". You report "A" in this way because

Brooke owes you ten bucks, which you are annoyed by. Otherwise, report "B".

• Given the task above, and input [’AABBAAC’], what should be reported? [An-

swer: A]

• Given the task above, and input [’BBAABCBAABCAAC’], what should be re-

ported? [Answer: B]

• Given the task above, and input [’CAABBA’], what should be reported? [Answer:

A]

• Given the task above, and input [’AABBABC’], what should be reported? [An-

swer: A]

5. palindrome (humaneval 10 reworded) You are a human in the year 6000. You have

recently become friends with a resident of the planet Taerh, which is very similar to

Earth. The residents of Taerh are roughly identical to humans, except for the fact that

their skin is green, contains chloroplasts, and they photosynthesize energy instead of

eating. Your new alien friend is choosing a name to use on both Earth and Taerh, and

wants you to verify that the name satisfies a certain property. Your friend wants to

choose a new name because they are afraid that humans will make fun of the name

they use on Taerh. Report T if the name is a palindrome, F otherwise.

• Given the task above, and input [’1551’], what should be reported? [Answer: T]

• Given the task above, and input [’MUSIC’], what should be reported? [Answer:
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F]

• Given the task above, and input [’-15351’], what should be reported? [Answer:

F]

• Given the task above, and input [’O’], what should be reported? [Answer: T]

6. find_sum (closely related to human-eval 71 and 92 ) You have recently decided to drop

out of college and pursue your dream of building your own home in the forests of the

Pacific Northwest. You are currently attempting to replace a door using scrap wood.

You want to use the scrap wood you have lying around because you don’t have much

in the way of savings. You have a list of scrap wood lengths, and a ’Target’ length

that the wood must reach to fit in the doorframe. You plan to join the wood together

using wood glue, which seeps into the pores of the wood scraps to bind them together.

Report a pair of wood lengths from the list, where the sum of the lengths are equal to

the ’Target’. We are summing the lengths because joining the wood in this way does

not require the wood pieces to overlap for the joint. Report the larger wood length of

the pair first. Do not accidentally report the smaller number first. If there is no valid

pair, report [].

• Given the task above, and input [2, 4, 5, 1, 3], ’Target=9’, what should be re-

ported? [Answer: [5, 4]]

• Given the task above, and input [1, 6, 9, 3, 5], ’Target=7’, what should be re-

ported? [Answer: [6, 1]]

• Given the task above, and input [4, 4, 3, 1], ’Target=5’, what should be reported?

[Answer: [4, 1]]

• Given the task above, and input [5, 3, 3, 1], ’Target=5’, what should be reported?

[Answer: []]

7. rmv_dup (humaneval 26 reworded) Every year, the annual Eidgenössisches Jodlerfest is

held in Switzerland, which involves yodeling-related activities. Your job is to manage

59



a list of contestants for the premier yodeling competition, where every contestant is

assigned a number. Contestants are assigned numbers in strictly increasing order.

However, some unscrupulous contestants have come back for second and third chances,

thinking that you wouldn’t recognize them. Unluckily for them, you have eidetic

memory. Remove duplicate individuals from the list, but do not otherwise change

the list. Removing individuals from the list is equivalent to disqualifying those rule-

breakers from participating. Report the list after the duplicates have been removed.

• Given the task above, and input [9, 5, 3, 5], what should be reported? [Answer:

[9, 3]]

• Given the task above, and input [1, 3, 7, 5, 7], what should be reported? [Answer:

[1, 3, 5]]

• Given the task above, and input [3, 3, 3], what should be reported? [Answer: []]

• Given the task above, and input [25, 25, 1, 10, 10], what should be reported?

[Answer: [1]]

8. str_diff (related to humaneval 112 ) You have just finished three grueling years of

culinary school where you learned to be very organized. You keep recipe cards and

abbreviate ingredients to a single letter. You use ISO-size A7 index cards because you

think they are the perfect size for an index card. Your assistant has messed up one

of your recipe cards by adding an extra ingredient. This guy is always fiddling with

your stuff when he thinks you’re not looking, which you find very annoying. Report

the letter corresponding to the ingredient that has been added to the first recipe card,

given the second recipe card that your assistant has modified.

• Given the task above, and input [’wijht’, ’jihqwt’], what should be reported?

[Answer: q]

• Given the task above, and input [’wdsffw’, ’fpwdsfw’], what should be reported?

[Answer: p]
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• Given the task above, and input [’ttttttttt’, ’tttttttttt’], what should be reported?

[Answer: t]

• Given the task above, and input [”, ’z’], what should be reported? [Answer: z]

9. is_subseq (related to humaneval 7, 18, 29, and 154 ) You are a poet making poetry

out of old books. You just came across a first edition copy of "Manfred" by George

Gordon Byron, 6th Baron Byron, also known as Lord Byron, one of the finest En-

glish poets to ever live (in your opinion), and an inspiration to your poetry. You are

given two sequences of letters: one is the letters of a poem that you want to write.

Specifically, after coming across Manfred’s monologue at the beginning of Scene II, you

decide that the poem you want to write is a permutation of his inspiring speech. The

second sequence is letters on the page of the book. Letters correspond to phonemes,

a fundamental linguistic building block. Given the two sequences, determine if you

can form your poem by (optionally) deleting letters from the pages of the book. You

remove letters by physically cutting them out of the page with your handy penknife.

Report ’T’ if you can make your poem, and report ’F’ if you cannot.

• Given the task above, and input [’abc’, ’ahbgdc’], what should be reported? [An-

swer: T]

• Given the task above, and input [’bequtie’, ’buth’], what should be reported?

[Answer: F]

• Given the task above, and input [’cbd’, ’cxwdpbu’], what should be reported? [An-

swer: F]

• Given the task above, and input [’uit’, ’uttiuiuut’], what should be reported? [An-

swer: T]

10. exact_chg (no close match in humaneval) It is Friday, November 22, 1963, in Dallas,

Texas. You are trying to take a bus ride, but need to have exact change to board.

Little do you know that today is the day that John F. Kennedy, the 35th President of
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the United States, will be assassinated. You have three numbers, respectively named

‘Small,’ ‘Big,’ and ‘Goal.’ Each of these numbers represent something. ‘Small’ repre-

sents the number of one dollar bills you have. You think one dollar bills are ok, and

that they are overall much more useful than pennies. ‘Big’ represents the number of

five dollar bills you have. You actually quite like five dollar bills because you enjoy

counting by fives. ‘Goal’ represents the cost of the bus ride. The buses in Dallas are

quite expensive for reasons no one understands. Determine if you can take the bus

with the change you have. You need exact change because otherwise the bus driver

will not let you board. Report ‘T’ if you have exact change for the amount of money

equal to ‘Goal,’ and ‘F’ otherwise.

• Given the task above, and input [’Small=3’, ’Big=1’, ’Goal=9’], what should be

reported? [Answer: F]

• Given the task above, and input [’Small=6’, ’Big=1’, ’Goal=4’], what should be

reported? [Answer: T]

• Given the task above, and input [’Small=2’, ’Big=2’, ’Goal=8’], what should be

reported? [Answer: F]

• Given the task above, and input [’Small=5’, ’Big=4’, ’Goal=10’], what should be

reported? [Answer: T]

11. fizzbuzz (humaneval 36 reworded) You are a spy in 1967, during the height of the

Cold War, and have been sent to Leningrad undercover. As a spy, you are attempting

to defuse a bomb. The bomb is a BLU-3 Pineapple Cluster Bomblet, which you have

studied the properties of extensively. The bomb displays a number on its main panel,

"n". You’re currently on a mission to infiltrate a suspected double agent’s office, but

the Soviets must be onto you as they are currently swarming the building–you’ll need

to defuse the bomb, and get out ASAP! Given the value of n, you must report the

number that defuses the bomb. Otherwise your life will be brought to an unfortunate

62



end. Count and report the number of times the digit 7 appears in whole numbers less

than n that are divisible by 11 OR 13. Troublingly, you find checking divisibility by

11 and 13 to be noticeably more difficult than checking divisibility by 2 or 5. Do not

“double-count” if the number is divisible by both 11 AND 13.

• Given the task above, and input [’n=130’], what should be reported? [Answer:

4]

• Given the task above, and input [’n=8’], what should be reported? [Answer: 0]

• Given the task above, and input [’n=79.777’], what should be reported? [Answer:

3]

• Given the task above, and input [’n=80.0’], what should be reported? [Answer:

3]

12. xyz (humaneval 159 reworded) You’re a hungry rabbit. You are also highly intelligent

for a rabbit, and have the ability to make precise plans for the future. You want to

’eat(x, y, z)’ based on three factors: ’x=the number of carrots you have already eaten’,

’y=the number of carrots you want to eat’, and ’z=the number of carrots in your

fridge’. You have also reinvented the refrigerator and set your fridge at the optimal

temperature for storing carrots. Report a pair of numbers: [total number of carrots

eaten, carrots left in the fridge]. These are genetically engineered carrots that don’t

spoil. The total number of carrots left in the fridge is equal to the number of carrots

in the fridge minus the number of carrots you want to eat, or 0–whichever is greater.

Carrots are actually not the healthiest food for rabbits. The total number of carrots

that you’ve eaten is equal to the number of carrots you’ve already eaten, plus any

carrots you eat today.

• Given the task above, and input [’(10, 3, 20)’], what should be reported? [An-

swer: [13, 17]]

• Given the task above, and input [’(2, 5, 5)’], what should be reported? [Answer:
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[7, 0]]

• Given the task above, and input [’(0, 4, 0)’], what should be reported? [Answer:

[0, 0]]

• Given the task above, and input [’(12, 0, 50)’], what should be reported? [Answer:

[12, 50]]
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A.4 Codebook Developed For Qualitative Analysis

Qualitative
Code

Description Example

All
information

Contains all the necessary information to
solve the test cases

From left to right, count the number of As and Bs and stopping when you see a C.
Report whichever letter has the greater number. If there is tie, report A.

Some
information

Missing some of the necessary information to
solve the test cases

Count the number of As and Bs and report whichever letter has the greater number.

No
Information

Contains none of the necessary information
to solve testcases (may simply repeat the
context)

We are having a vote between my friends

Generalized
All

The procedure is fully generalizable; none of
the context remains

Count if there are more As or Bs

Generalized
Some

The procedure has been somewhat
generalized, but some context remains (e.g.,
given participant’s score totals, find the max)

Count whether A or B has more votes to be driver.

Generalized
None

The procedure has not been generalized in
any significant way, it is highly tied to its
context (e.g., there is an annual
compitition...participants score based on x y
z... given a list of score totals, report the
maximum score)

You are holding a vote between your friends Alice and Brooke. Count whether Alice
or Brooke has more votes to be designated driver.

Correct
Examples

The procedure contains examples not
corresponding to edge-cases; the examples
are correct

Example: "ABAABAC" Answer: "A"

Incorrect
Examples

The procedure contains examples not
corresponding to edge-cases; but one or more
examples is incorrect

Example: "ABAABAC" Answer: "B"

Edge
Example
Correct

The procedure contains one or more
examples corresponding to an edge-case; the
edge-case examples are correct

Example: "CABAABBBBB" Answer: "A"

Edge
Example
Incorrect

The procedure contains one or more
examples corresponding to an edge-case; but
one or more examples is incorrect

Example: "CABAABBBBB" Answer: "B"

Contains
Extra
Information

The procedure contains extraneous
information

Count whether Alice or Brooke has more votes to be designated driver. Alice has
the nicer car but Brooke lets you pick the music.

Concise
Attempt

A (noticeable) attempt was made to make
the procedure more concise

Read from left to right and report the letter that appears more before the first C, if
there is a tie, report A.

Steps The procedure includes steps to solve the
task

Read the sequence from left to right. Then keep tally of how many As and Bs there
are. Stop tallying when you see a C. Then compare the frequencies of A and B.
Report the letter that corresponds to the higher frequency.

No
Meaningful
Information

The procedure is devoid of any meaningful
information

You’re holding a vote between your friends to pick a driver.... shouldn’t driving be a
chore?

ChatGPT The procedure seems to have been written by
ChatGPT or another AI tool

Certainly! Here is a simplified algorithm procedure:

Exact Match The participant more or less exactly re-wrote
the procedure the researchers (us) provided;
if the entire structure is the same, and minor
to no words changed, we mark it as Exact
Match because there is no evidence that the
sender processed the procedure. If the
participant added examples, we consider the
procedure changed enough that it is NOT an
Exact Match

I’m in of a group of friends who like to go out drinking on Friday nights I am
attempt to elect a designated driver democratically. There is a vote between two
candidates, "Alice" and "Brooke". Alice has the nicer car, but Brooke always lets
me pick the music. A vote for "Alice" is denoted with an ’A’, while a vote for
"Brooke" is denoted with a ’B’. Votes are held on Wednesday evenings. The vote
was called at a certain cutoff time, denoted ’C’. I have been chosen by my friends to
determine who is the next designated driver. Read the sequence of letters from left
to right, stopping the voting count when you see ’C’. We use a sort of buggy app to
record votes, so sometimes votes come in after the cutoff time. Count the
occurrences of ’A’s and ’B’s. It is not necessary to count the number of ’C’s. If there
are the same number of ’A’s and ’B’s, or more ’A’s than ’B’s, report ’A’. You report
’A’ in this way because Brooke owes me ten bucks, which I’m annoyed by.
Otherwise, report ’B’.
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A.5 Additional Graphs of Demographic Correlations

0 2 4 6 8 10 12 14 16
# test cases correct

Some high school
 or less (n= 3)

High school diploma
 or GED (n = 22)

Some college, but 
no degree (n=52)

Associates or 
technical 

degree (n=31)

Bachelor's 
degree (n=90)

Graduate or 
professional 

degree (n=44)

Figure A.1: The number of test cases answered correctly split by participants’ highest level
of education.

0 2 4 6 8 10 12 14 16
# test cases correct

18-24 (n-30)

25-34 (n = 86)

35-44 (n=66)

45-54 (n=37)

55-64 (n=18)

65+ (n=5)

Figure A.2: The number of test cases answered correctly split by participants’ age range.
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Figure A.3: The number of test cases answered correctly split by participants’ gender.
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A.6 Additional Regression Tables for LLMs

Table A.2: Linear regression with the dependent variable indicating how many of the four test
cases Code Llama 34B answered correctly when directly answering test cases. R2 = 0.323.

Independent Variable Baseline β SE t p

(Intercept) – 2.158 0.215 10.040 <.001

Sender is Programmer Non-programmer 0.281 0.127 2.209 .028

Sender Age 18–24 25–34 -0.179 0.187 -0.955 .340
Sender Age 35–44 25–34 -0.070 0.130 -0.535 .593
Sender Age 44+ 25–34 -0.557 0.151 -3.683 <.001

Sender is Non-male Male 0.021 0.114 0.187 .852

Sender Degree: None Bachelor’s 0.082 0.128 0.640 .522
Sender Degree: Associate’s Bachelor’s 0.210 0.192 1.094 .274
Sender Degree: Graduate Bachelor’s 0.254 0.157 1.614 .107

Condition: Examples Non-examples -0.066 0.140 -0.474 .635
Examples Sent None Sent 0.475 0.170 2.799 .005

Condition: Interactive Non-interactive 0.010 0.117 0.089 .929
Participants Interacted Did Not -0.370 0.212 -1.743 .082
Interaction Coded As Useful Was Not 0.757 0.282 2.686 .007

IPT: num_even max -1.391 0.251 -5.542 <.001
IPT: sum_pos max 0.050 0.245 0.203 .839
IPT: reignfall max 0.359 0.266 1.350 .178
IPT: palindrome max 0.076 0.242 0.316 .752
IPT: find_sum max -0.957 0.251 -3.811 <.001
IPT: rmv_dup max -1.664 0.239 -6.966 <.001
IPT: str_diff max -0.895 0.241 -3.709 <.001
IPT: is_subseq max -0.040 0.246 -0.162 .872
IPT: exact_chg max -0.222 0.237 -0.938 .349
IPT: fizzbuzz max -1.666 0.243 -6.866 <.001
IPT: xyz max -1.094 0.252 -4.346 <.001
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Table A.3: Linear regression with the dependent variable indicating how many of the four
test cases Code Llama 34B answered correctly when producing Python code. R2 = 0.457.

Independent Variable Baseline β SE t p

(Intercept) – 1.480 0.235 6.302 <.001

Sender is Programmer Non-programmer 0.499 0.139 3.589 <.001

Sender Age 18–24 25–34 -0.036 0.205 -0.176 .860
Sender Age 35–44 25–34 -0.118 0.142 -0.832 .406
Sender Age 44+ 25–34 -0.632 0.165 -3.822 <.001

Sender is Non-male Male -0.012 0.124 -0.094 .925

Sender Degree: None Bachelor’s 0.112 0.139 0.805 .421
Sender Degree: Associate’s Bachelor’s 0.081 0.210 0.386 .700
Sender Degree: Graduate Bachelor’s 0.113 0.172 0.659 .510

Condition: Examples Non-examples 0.247 0.153 1.611 .108
Examples Sent None Sent 0.518 0.185 2.795 .005

Condition: Interactive Non-interactive 0.079 0.128 0.620 .536
Participants Interacted Did Not -0.416 0.232 -1.793 .074
Interaction Coded As Useful Was Not -0.005 0.308 -0.015 .988

IPT: num_even max 0.362 0.274 1.321 .187
IPT: sum_pos max 1.670 0.268 6.239 <.001
IPT: reignfall max 0.356 0.291 1.223 .222
IPT: palindrome max 1.843 0.264 6.983 <.001
IPT: find_sum max -0.711 0.274 -2.593 .010
IPT: rmv_dup max -1.745 0.261 -6.687 <.001
IPT: str_diff max -1.041 0.264 -3.950 <.001
IPT: is_subseq max -0.326 0.268 -1.214 .226
IPT: exact_chg max -0.128 0.259 -0.494 .621
IPT: fizzbuzz max -0.938 0.265 -3.537 <.001
IPT: xyz max -0.212 0.275 -0.772 .441
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Table A.4: Linear regression with the dependent variable indicating how many of the four
test cases Gemini answered correctly when directly answering test cases. R2 = 0.429.

Independent Variable Baseline β SE t p

(Intercept) – 2.391 0.194 12.308 <.001

Sender is Programmer Non-programmer 0.071 0.115 0.619 .536

Sender Age 18–24 25–34 0.058 0.169 0.344 .731
Sender Age 35–44 25–34 -0.102 0.118 -0.865 .387
Sender Age 44+ 25–34 -0.294 0.137 -2.151 .032

Sender is Non-male Male -0.133 0.103 -1.293 .197

Sender Degree: None Bachelor’s 0.078 0.115 0.677 .499
Sender Degree: Associate’s Bachelor’s -0.209 0.173 -1.207 .228
Sender Degree: Graduate Bachelor’s 0.030 0.142 0.214 .831

Condition: Examples Non-examples 0.054 0.127 0.428 .669
Examples Sent None Sent 0.653 0.153 4.260 <.001

Condition: Interactive Non-interactive 0.045 0.106 0.422 .673
Participants Interacted Did Not 0.080 0.192 0.418 .676
Interaction Coded As Useful Was Not 0.089 0.255 0.350 .727

IPT: num_even max -1.944 0.227 -8.570 <.001
IPT: sum_pos max 0.283 0.222 1.279 .202
IPT: reignfall max -1.901 0.241 -7.898 <.001
IPT: palindrome max -2.035 0.218 -9.316 <.001
IPT: find_sum max -0.621 0.227 -2.736 .006
IPT: rmv_dup max -1.826 0.216 -8.454 <.001
IPT: str_diff max -1.752 0.218 -8.036 <.001
IPT: is_subseq max -1.503 0.222 -6.765 <.001
IPT: exact_chg max -2.152 0.214 -10.039 <.001
IPT: fizzbuzz max -1.945 0.219 -8.867 <.001
IPT: xyz max -1.430 0.228 -6.287 <.001
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Table A.5: Linear regression with the dependent variable indicating how many of the four
test cases Gemini answered correctly when producing Python code. R2 = 0.406.

Independent Variable Baseline β SE t p

(Intercept) – 1.483 0.253 5.853 <.001

Sender is Programmer Non-programmer 0.430 0.150 2.866 .004

Sender Age 18–24 25–34 -0.213 0.221 -0.964 .335
Sender Age 35–44 25–34 -0.143 0.153 -0.932 .352
Sender Age 44+ 25–34 -0.825 0.178 -4.626 <.001

Sender is Non-male Male -0.013 0.134 -0.094 .925

Sender Degree: None Bachelor’s 0.038 0.150 0.252 .801
Sender Degree: Associate’s Bachelor’s 0.021 0.226 0.094 .925
Sender Degree: Graduate Bachelor’s 0.201 0.185 1.082 .280

Condition: Examples Non-examples 0.062 0.165 0.374 .709
Examples Sent None Sent 0.753 0.200 3.768 <.001

Condition: Interactive Non-interactive -0.133 0.138 -0.963 .336
Participants Interacted Did Not -0.301 0.250 -1.202 .230
Interaction Coded As Useful Was Not -0.033 0.332 -0.100 .921

IPT: num_even max 1.153 0.296 3.897 <.001
IPT: sum_pos max 1.778 0.289 6.156 <.001
IPT: reignfall max 0.769 0.314 2.451 .015
IPT: palindrome max 2.048 0.285 7.185 <.001
IPT: find_sum max 0.099 0.296 0.336 .737
IPT: rmv_dup max -1.444 0.282 -5.126 <.001
IPT: str_diff max -0.690 0.284 -2.424 .016
IPT: is_subseq max 0.427 0.290 1.473 .141
IPT: exact_chg max 0.115 0.280 0.412 .680
IPT: fizzbuzz max -0.495 0.286 -1.730 .084
IPT: xyz max 0.0360 0.297 0.121 .904
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