
Leveraging AI for Faster Storage Access: a Graph-Neural-Network-Based Prefetcher

Zeyuan Yang

Advisor: Professor Haryadi Gunawi

Abstract

Despite the widespread adoption of SSDs in cloud environments, I/O access (disk reads

and writes) remains a significant performance bottleneck. To mitigate access latency,

various prefetching techniques have been developed. However, as servers increasingly

host multi-user workloads, the efficacy of traditional prefetchers diminishes. Fortunately,

with the ascendance of artificial intelligence, there is an escalating interest in utilizing

machine learning methods to predict access patterns more accurately. Nonetheless,

these methods face challenges: large model sizes, high inference latency, and unstable

hit rates. In this paper, we introduce “Spectral Prefetcher”, a spectral graph neural

network for rapid and precise predictions. This approach 1) reduces training and

inference latency by 79.9%, 2) decreases memory usage by 33.3%, and 3) achieves a

state-of-the-art hit rate, surpassing the baseline by 21.8%.



Section 1: Introduction

In the era of cloud computing, I/O (input/output) operations remain a significant

performance bottleneck [9]. When users request data from a server, the server must

retrieve it from the disk, a process that is notably slow. To address this, storage-level

caches were developed to store data likely to be accessed in the future. However, data

is only loaded into the cache upon a miss, resulting in a delay during the first access.

Prefetching was introduced to pre-load data into the cache, yet it faces challenges: 1)

non-sequential access patterns are hard to detect, 2) workloads have become

increasingly complex and irregular, 3) prefetching latency cannot be high.

01 - Non-sequential pattern detection. Traditional prefetchers, often based on

heuristic algorithms, struggle with non-sequential pattern detection [1]. For instance, the

prefetcher in the Linux kernel uses the last two cache misses to predict the next access

[10]. However, this method falters in complex, multi-user environments with interleaved

I/O streams, suggesting the potential of spatial feature analysis for pattern mining. Our

graph-based prefetcher leverages this approach to identify spatial patterns in access

history.

02 - A learning-based approach. As workloads grow more complex, machine

learning-based methods have emerged as superior solutions for adapting to any access

pattern without preconceived assumptions. They can learn an access pattern from any

workload without prior assumption to the trace. Thus, we employ a neural network to

conduct prediction.



03 - Achieving fast inference. Existing ML-based algorithms, such as DeepPrefetcher

[6], LSTM [3], and SGDP [5], suffer from high training and inference latency due to their

complex architecture and data processing. We seek to create a lightweight model that

can achieve similar performance. Our pipeline is depicted in the figure below.

[Figure 1: Spectral Prefetcher’s Architecture]

Our graph prefetcher's pipeline, depicted in Figure 1, begins by transforming a

sequence of raw addresses into deltas (offsets from previous addresses). We maintain

a sliding window, e.g., of length 32, of these address deltas. From there, we construct a

directed graph with vertices representing address deltas and edges representing

transitions. This graph is then processed by a spectral graph neural network

(SpectralGNN), outputting a node class that represents an address delta. Using this



delta, we calculate the real address to prefetch. Benchmarking on extensive production

server workloads from Microsoft, Alibaba, and Seagate Technology demonstrates that

our model significantly reduces inference overhead while maintaining state-of-the-art

prediction accuracy. We summarize our contributions as follows:

- To the best of our knowledge, Spectral Prefetcher is the first cache prefetcher

that utilizes a spectral graph network for prediction. It avoids local irregularities

and mines a global pattern.

- It surpasses the baseline (stride prefetcher) by 21.8% hit rate. It also maintains

high memory utilization and low overhead.

- It lowers inference latency by 79.9% and reduces model size by 33.3%

compared to the state-of-the-art ML-prefetcher (SGDP).



Section 2. Background and Related Works

Problem Formulation. In today's cloud environments, servers are increasingly

multi-tenant, handling interleaved requests from numerous concurrent users and

application streams. Consequently, even if an individual application's logical I/O

sequence results in physically sequential accesses, or if the application's pattern is

highly predictable, these patterns can be challenging to recognize at the storage system

level. This complexity is evident in scenarios such as concurrent execution of multiple

applications on a shared network-attached storage, as illustrated in Figure 1, and also in

single applications with multiple threads that exhibit varied access patterns, such as a

database application running multiple queries, as also depicted in [Figure 2].

[Figure 2: Interleaved Access Pattern of Modern Workloads]



Related work. The literature on prefetching techniques can be categorized into two

main groups. The first category comprises sequential prefetchers, which analyze the

entire sequence as a single stream for prediction purposes. This includes Stride

Prefetcher, which we use as our baseline, and LSTM. The second category involves

graph-based prefetchers, which maintain a global historical view, like a Markov chain's

table, a probabilistic graph noting each address and recording the most probable

subsequent nodes. This category includes Markov Chain and SGDP.

01 - Stride Prefetcher. It uses a historical table to store 128 LBA (Logical Block

Address) streams. Each entry tracks the last 3 LBAs of that stream. When a new

request arrives, the prefetcher hashes the most significant bits of the request’s LBA and

puts it to one of the 128 streams. If the difference between the last 3 LBA accesses

matches, it will detect a stride and conduct a prediction [2].

02 - LSTM. It utilizes a long-term, short-term memory ML model to predict the next LBA

delta based on the last several (e.g. 128) LBA delta. It treats the addresses as a

sequence and conducts a RNN-like prediction [3].

03 - Markov Chain Prefetcher. It uses a state transition model to predict the next block

to be accessed. The transition model is a table that, for each block (LBA), records the

probabilities of all the next potential blocks [4].



04 - SGDP. It builds a graph out of the last several (e.g. 128) LBA deltas, treating each

delta as a node. Then it uses a gated graph neural network to transform each delta into

a vector. Finally, it uses the vectors to predict the next LBA delta. This is the

state-of-the-art ML model in terms of prefetching accuracy [5].



Section 3: Methodology

Why graphs can offer a global view of a sequence. Modeling the problem as a graph

provides a comprehensive perspective on the data. Focusing only on the immediate one

or two past accesses, discerning a discernible pattern becomes challenging. However,

by examining the historical stream of data, distinct clusters of addresses or streams

emerge. The graph-based approach leverages these patterns by representing them in a

structure that highlights the relationships and interactions between different data points,

thus providing a clearer understanding of the underlying trends and behaviors. See the

figure below for an illustration [Figure 3].

[Figure 3: Local view (left) doesn’t show a pattern versus the global view (right) does]

The initial insight. The initial approach involved maintaining a historical table that

recorded, for each address, which other addresses it was connected to. Expanding

upon this concept, it's akin to managing a linked list where, for each node, the

connected nodes are identified, and the edge weights could represent the probabilities.



This concept has inspired the use of graphs to model the I/O stream in recent studies,

such as Probabilistic Graph [11] and SGDP [5].

How to construct a graph from a sequence.We employ a sliding window of size 32,

meaning the graph can contain up to 32 vertices at any time. For example, if the access

sequence moves from address 10 to address 31, a directed edge from vertex 10 to

vertex 31 is created. Should there be another instance of transitioning from address 10

to address 31, the weight of the existing edge is incremented by one. This method

enables the modeling of I/O stream patterns in a graph, providing insights into the

frequency and likelihood of specific transitions. Notably, we use address deltas rather

than raw addresses for graph construction, which facilitates the creation of a

higher-order representation that captures the nuances of address sequences more

effectively.



[Figure 4: How to build a graph from data stream]

Why use address delta. Using address deltas instead of raw addresses for

constructing the graph offers significant advantages in the context of prefetching. Firstly,

a stream may contain 32 unique addresses, but the number of unique offsets (deltas)

between these addresses is typically lower, effectively reducing the graph's complexity.

This reduction in vertices simplifies the graph, making it more manageable for analysis

and prediction. Furthermore, predicting absolute addresses, which can range from 0 to

\(2^{64}\) in a 64-bit address space, creates an impractically large prediction space. By

focusing on the most frequent 1000 deltas as prediction classes, the approach narrows

down the prediction space, making it feasible for the model to generate accurate

predictions.



How Spectral GNN Works. After constructing the graph with a sliding window

technique, the resulting adjacency matrix is input into the neural network. Spectral

Graph Neural Networks (Spectral GNNs) operate on the principle of leveraging the

spectral properties of graphs, which are derived from the eigenvalues and eigenvectors

of their adjacency or Laplacian matrices. The output of a Spectral GNN, particularly a

two-layer Graph Convolutional Network (GCN), can be generalized by an equation that

integrates these spectral properties to perform convolution operations in the spectral

domain. These operations effectively capture the topological structure and node feature

information within the graph, enabling the network to learn and make predictions based

on the complex patterns of I/O stream accesses represented within the graph structure.

See formula below [Figure 5].

[Figure 5: Formula for Spectral GNN]

Where:

- X is the input feature matrix, where each row represents a node's features.

- W’s are the weight matrices for the first and second layer, respectively.

- A is the normalized adjacency matrix with self-loops.

Graph Convolutional Networks (GCNs) leverage the spectral properties of graphs to

learn node representations that encapsulate both structural and feature information of

the graph. Utilizing the adjacency matrix and its normalization, GCNs perform

https://www.codecogs.com/eqnedit.php?latex=%20H%5E%7B(2)%7D%20%3D%20%5Csigma_2%5Cleft(%5Chat%7BA%7D%20%5Csigma_1%5Cleft(%5Chat%7BA%7D%20X%20W%5E%7B(0)%7D%5Cright)%20W%5E%7B(1)%7D%5Cright)#0


convolution operations that are inherently sensitive to the graph's topology. Through the

application of successive layers, these networks aggregate information from broader

neighborhoods, enabling the capture of global graph properties alongside local

connections. This approach enriches node representations, allowing GCNs to effectively

understand and predict complex relationships and patterns within graph-based data,

such as in I/O stream prediction tasks.



Section 4: Experimental Setup

Workload. Our dataset comprises traces from enterprise production servers of four

companies: Microsoft, Alibaba, Tencent, and Seagate. Notably, the Microsoft dataset,

collected by Microsoft Research Cambridge, includes a one-week sequence of logical

block addresses (LBAs) from live production servers. These workloads accurately

represent the multi-tenant, multithreaded computing environments prevalent in today's

cloud enterprises.

Model Architecture & Training.We developed our Spectral Prefetcher using PyTorch,

incorporating two graph convolution layers followed by a ReLU activation and dropout

layer. The chosen architecture, with a hidden layer size of 150, represents the optimal

minimal design for achieving high prediction accuracy. Our training configuration

includes a batch size of 128, the Adam optimizer, and cross-entropy loss, catering to

our model's classification of the most probable next deltas out of a compressed

prediction space of the 1000 most frequent deltas. This approach transforms the

problem into a classification task rather than regression, significantly enhancing

accuracy and efficiency by reducing the model's complexity.



Metrics.We use the following five metrics to evaluate our Spectral Prefetcher against

the baselines.

1. Duration refers to the total time required to execute a workload, encompassing

both the training phase and the inference phase of the model.

2. Model size indicates the complexity and memory footprint of a machine learning

model, quantified by the total count of its parameters. A larger model size

typically means higher memory consumption.

3. Hit rate is a performance metric that calculates the ratio of cache hits to the total

number of I/O requests. A higher hit rate signifies a more effective prefetching

strategy, as it indicates a greater proportion of successful cache accesses.

4. Memory utilization assesses the effectiveness of prefetched data by measuring

the proportion of prefetched blocks that are subsequently accessed (hits) in later

operations. Higher memory utilization reflects better prediction accuracy and

prefetching efficiency.

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BDuration%7D%20%3D%20%5Ctext%7Btime%20to%20run%20a%20workload%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BModel%20size%7D%20%3D%20%5C%23%5Ctext%7Bparameters%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BHit%20rate%7D%20%3D%20%5Cfrac%7B%5C%23%5Ctext%7Bhits%7D%7D%7B%5C%23%5Ctext%7Btotal%20I%2FO%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BMemory%20utilization%7D%20%3D%20%5Cfrac%7B%5Ctext%7Bbytes%20hit%7D%7D%7B%5Ctext%7Btotal%20prefetched%20bytes%7D%7D#0


5. Prefetch overhead is a measure of inefficiency in the prefetching process,

quantified by the amount of data prefetched into cache that is never accessed by

subsequent user operations. Lower prefetch overhead indicates a more precise

prefetching strategy, reducing wasted resources and cache pollution.

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BPrefetch%20overhead%7D%20%3D%20%5Cfrac%7B%5Ctext%7Bextra%20prefetched%20data%7D%7D%7B%5Ctext%7Buser%20requested%20data%7D%7D#0


Section 5: Experimental Results

01 Spectral Prefetcher saves inference time by 79.9%. Compared to SGDP, the

leading ML-based model, Spectral Prefetcher significantly lowering both training and

inference durations. This substantial efficiency improvement underscores the Spectral

Prefetcher's viability for deployment in high-performance cloud environments, where

minimizing latency is crucial.



02 Spectral Prefetcher saves memory space by 33.3%. Model size is crucial since

the model must be loaded into memory for inference. With a considerably smaller model

size measured by the number of parameters, Spectral Prefetcher's size (174,403

parameters) is significantly less than that of the state-of-the-art SDDP (261,800

parameters), highlighting its efficiency and suitability for memory-constrained

environments.



03 Spectral Prefetcher improves hit rate by 21.8%. In comparative analysis, the

Spectral Prefetcher reached a hit rate of 31.94%, surpassing the baseline stride

prefetcher's 10.1%. Graph-based prefetchers, including the Spectral Prefetcher,

demonstrate superior performance over sequential ones, validating the effectiveness of

graph-based algorithms in cache prediction. This improvement is reflected across

various company traces, with graph-based models achieving higher average hit rates.



04 Spectral Prefetcher improves memory utilization. By improving memory

utilization, the Spectral Prefetcher outperforms other models, notably the stride

prefetcher, which suffers from fetching many incorrect blocks into the cache. While

LSTM and other graph-based approaches show similar memory utilization levels, the

Spectral Prefetcher stands out as the top performer, indicating its precision in

prefetching relevant data.



05 Spectral Prefetcher maintains reasonable overhead. Despite generally higher

overhead observed among graph-based models, indicating a tendency to prefetch more

items into the cache, the Spectral Prefetcher maintains a reasonable overhead. This is

less of a concern with sufficient cache size or when prefetching occurs in the

background without competing for I/O bandwidth with ongoing requests. The Spectral

Prefetcher exhibits lower overhead compared to both SGDP and the Markov Chain,

underscoring its efficiency.



06 Spectral’s high hit rate across all traces. Across a range of workloads, each with

its own unique patterns, the Spectral Prefetcher consistently achieves the highest hit

rate, as evidenced by the red line in our analyses. This consistency in performance

across diverse workloads highlights the Spectral Prefetcher's robustness and

adaptability in various environments.



07 Spectral Prefetcher’s low latency across all traces. The Spectral Prefetcher

ensures low latency across all traces, accommodating both lengthy and brief workloads

effectively. This is illustrated by the green line in our analysis, which shows the Spectral

Prefetcher's ability to maintain significantly lower latency across different types of

workloads, further demonstrating its potential for enhancing performance in a wide

range of cloud computing scenarios.



Section 6: Conclusion

In this paper, we introduced the Spectral Prefetcher, an innovative spectral graph-based

model designed to accurately predict future I/O accesses by users. The Spectral

Prefetcher has demonstrated superior performance, achieving state-of-the-art results in

hit rate, memory utilization, and overhead management. Notably, it offers a substantial

79.9% reduction in latency and a 33.3% decrease in model size. Its efficacy has been

validated across diverse workloads from major cloud companies, including Microsoft

and Alibaba. The Spectral Prefetcher's design makes it a practical solution for

deployment in production storage servers, where it can deliver significant memory

savings and enhanced cache performance.



References

[1] J. Liao, F. Trahay, B. Gerofi, and Y. Ishikawa, “Prefetching on storage servers

through mining access patterns on blocks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 9, pp. 2698–2710, 2015.

[2] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in scalar

processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2, pp. 102–110, 1992.

[3] C. Chakraborttii and H. Litz, “Learning i/o access patterns to improve prefetching in

ssds,” ICML-PKDD, 2020.

[4] P. G. Harrison, S. Harrison, N. M. Patel, and S. Zertal, “Storage workload modelling

by hidden markov models: Application to flash memory,” Performance Evaluation, vol.

69, no. 1, pp. 17–40, 2012.

[5] Y. Yang, R. Li, Q. Shi, X. Li, G. Hu, Xing Li, M. Yuan. “SGDP: A Stream-Graph

Neural Network Based Data Prefetcher.” Available at https://arxiv.org/abs/2304.03864,

2023.

[6] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deep- prefetcher: A deep

learning framework for data prefetching in flash storage devices,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.

3311–3322, 2020.

https://arxiv.org/abs/2304.03864


[7] G. Soundararajan, M. Mihailescu, and C. Amza. “Context-Aware Prefetching at the

Storage Server.” In ATC'08: USENIX 2008 Annual Technical Conference, pages

377–390, June 2008.

[8] MSRC. Microsoft Research Cambridge. http://iotta.snia.org/traces/388.

[9] H. Kim and U. Ramachandran, “Flashfire: Overcoming the performance bottleneck of

flash storage technology,” Georgia Institute of Technology, Tech. Rep., 2010.

[10] H. Maruf and M. Chowdhury. “Effectively Prefetching Remote Memory with Leap.”

In Proceedings of the USENIX Annual Technical Conference (USENIX ATC), 2020.

[11] J. Griffioen and R. Appleton, “Reducing file system latency using a predictive

approach,” Proc. USENIX Summer 1994 Technical Conf., Jun. 6–10 1994.

http://iotta.snia.org/traces/388

