
THE UNIVERSITY OF CHICAGO

ON ALPHA INVARIANCE AND THE INVERSE SCALING BETWEEN DISTANCE AND

VOLUME DENSITY IN NEURAL RADIANCE FIELDS

A THESIS SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

JOSHUA AHN

CHICAGO, ILLINOIS

APRIL 2024

Copyright © 2024 by Joshua Ahn

All Rights Reserved

Dedication Text

Epigraph Text

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 BACKGROUND . 4

3 RELATED WORK . 7

4 ALPHA INVARIANCE . 9

5 EXPERIMENTS . 14
5.1 How volume density changes in practice . 14
5.2 Vanilla NeRF with MLPs . 16
5.3 Voxel Variants: DVGO, Plenoxels and TensoRF 18
5.4 MLP and Hashgrid Hybrids . 20
5.5 Background Contraction / Disparity Sampling 21

6 CONCLUSION . 24

A APPENDIX . 29
A.1 Transmittance in Discrete Setting . 29
A.2 Additional Results . 29
A.3 Reproducibility . 31

v

LIST OF FIGURES

1.1 A discretized view of volume rendering. 1
1.2 ↵ as a function of the raw input x and d . 2

5.1 Volume statistics of � . 15
5.2 Surface statistics of �. 16
5.3 High transmittance initialization ablation in TensoRF 19
5.4 Plenoxels CDFs of the � distributions at different learning rates 20
5.5 Importance of high transmittance initialization in Nerfacto on different scenes . 21
5.6 Ablating the choice of transmittance offset in unbounded scenes 23

A.1 Additional ablations on the importance of high transmittance initialization . . . 30
A.2 Additional surface statistics of � . 34

vi

LIST OF TABLES

4.1 Example � values given a desired alpha level and interval size 10

5.1 Evaluating PSNR values of Vanilla-NeRF on Blender dataset 17
5.2 Evaluating PSNR values of TensoRF on Blender dataset 18
5.3 Plenoxels’ performance with different learning rates 18
5.4 Evaluating PSNR values of Nerfacto on Mip-NeRF 360 dataset 22
5.5 Comparing different heuristics for high transmittance in unbounded scenes . . . 22

A.1 Ablating DVGO’s design choice of fixing the local interval size 31
A.2 Evaluating PSNR values of Plenoxels on Blender dataset 32
A.3 Reproducing the failure modes of Vanilla-NeRF 33

vii

ACKNOWLEDGMENTS

Acknowledgements text

viii

ABSTRACT

Scale-ambiguity in 3D scene dimensions leads to magnitude-ambiguity of volumetric densities

in neural radiance fields, i.e., the densities halve when the scene size doubles, and vice versa.

We call this property alpha invariance. For NeRFs to better maintain alpha invariance, we

recommend 1) parameterizing both distance and volumetric density in log space, and 2)

using a discretization-agnostic initialization strategy to guarantee high transmittance and

consistently high rendering quality. We revisit several popular radiance field models from the

literature and find that these architectures use various heuristics to address issues arising

from scene scaling. We test their behaviors and demonstrate that our recipe is more robust

to changes in scene size.

ix

CHAPTER 1

INTRODUCTION

Figure 1.1: A discretized view of volume rendering. Top: a ray is cut into intervals, each
with a density �i � 0 and interval length di. Bottom: illustration of the weight given to
the 3rd interval, computed through alpha compositing. The rendered color is obtained by
weighting all the interval colors with their wis. If we scale each di by a constant k, scaling �i
by 1

k renders the identical color.

3D computer graphics and vision are fundamentally scale-ambiguous. Lengths of objects

and scenes are often unitless and measure up to a constant ratio. This is fine for routines

such as projection, triangulation, and camera motion estimation. A common practice is to

normalize the scene dimension or the size of a reference object to an arbitrary number.

Volume rendering [17] used by Neural Radiance Fields (NeRFs) [20] presents a complication

due to explicit integration over space. Since the distance scaling is arbitrary, the volumetric

density function �(x) must compensate for the multiplicative factor to render the same final

RGB color. In other words, if the scene size expands by a factor k, it is sufficient for the

learned � to shrink by 1/k to be invariant to the change. The same applies to integration

over cones or more general spatial data structures [1, 3]. Note that in addition to scene

dimensions, the magnitude of � is also influenced by the number of samples per ray and

ultimately the sharpness of change in local opacity.

1

�20 �15 �10 �5 0 5 10 15 20

x

0.0

0.2

0.4

0.6

0.8

1.0
↵

↵ = 1 � exp(�relu(x) · d)

d=1e3

d=1e2

d=1e1

d=1e0

d=1e-1

d=1e-2

d=1e-3

�20 �15 �10 �5 0 5 10 15 20

x

0.0

0.2

0.4

0.6

0.8

1.0

↵

↵ = 1 � exp(�softplus(x) · d) = 1 � sigmoid(�x)d

d=1e3

d=1e2

d=1e1

d=1e0

d=1e-1

d=1e-2

d=1e-3

�20 �15 �10 �5 0 5 10 15 20

x

0.0

0.2

0.4

0.6

0.8

1.0

↵

↵ = 1 � exp(� exp(x) · d) = 1 � GumbelCDF(�(x + log d))

d=1e3

d=1e2

d=1e1

d=1e0

d=1e-1

d=1e-2

d=1e-3

Figure 1.2: ↵ as a function of the raw input x and d. We focus on ↵ as a function of x, with
different activation functions �(x), for a set of fixed values of interval lengths d. The exp
activation (right plot) leads to a smooth, sigmoid-like transition from low to high ↵ values
regardless of the interval length d. The function exp(� exp(�x)) is the CDF of Gumbel
distribution, and it is a numerically stable recipe that we recommend over trunc_exp because
log density and log distance naturally cancel out each other before exponentiation.

There is no single “correct” size for a scene setup. A robust algorithm should be able to

perform consistently across different scalings. We investigate how this notion of invariance

manifests itself in practice, discuss how the hyperparameter decisions affect it, and propose a

solution that ensures robustness to distance scaling across the NeRF methods. We revisit

and experiment with a few popular NeRF architectures: Vanilla NeRF [20], TensoRF [6],

DVGO [30], Plenoxels [8], and Nerfacto [31], and find that many systems use tailored

heuristics that work well at a particular scene size. We analyze the impact of some critical

hyperparameters which are often overlooked or not highlighted in the original papers.

In our testing of these models we identify two main failure modes. When the scene is

scaled down (short ray interval d), some models struggle to produce large enough � values for

solid geometry. When the scene is scaled up (long interval length), the � at initialization is

often too large, resulting in cloudiness that traps the optimization at bad local optima. We

therefore propose 1) parameterizing both distance and volume densities in log space for easier

multiplicative scaling; 2) a closed-form formula for � value initialization that guarantees high

ray transmittance and scene transparency. We show that these two ingredients can robustly

handle various scene sizes. We are not the first to use exp activation for volumetric densities.

It was described in Instant-NGP [21] and adopted by many subsequent works. However,

2

existing informal discussions for why exp should be used are somewhat unsatisfactory. We

believe that a clearer understanding of its needs would be of benefit. In addition, since distance

and densities compensate for each other, moving both to log space i.e. the GumbelCDF form

naturally provides numerical stability without the need for truncated exp [32].

Our contributions:

• We discuss the notion of alpha invariance, and clarify the relationship of inverse

multiplicative scaling between volumetric densities � and scene size. It is a basic

property that applies to volume rendering and radiance fields.

• We survey and ablate popular NeRF architectures on their modeling decisions related

to alpha invariance.

• We provide a robust, general recipe that enables NeRFs to achieve consistent view

synthesis quality across different scene scalings.

3

CHAPTER 2

BACKGROUND

Volume rendering. In a space permeated by fog, it is unlikely for a faraway photon to

arrive at the sensor. On a ray z(t) = o + td, the probability a photon comes from beyond t

i.e. (t, 1) is modelled by a decaying transmittance function T (t) = exp(�
R t
0 �(s) ds), which

vanishes with larger t. The volume density � is some local light blocking factor, and the

cumulative distribution function (CDF) is 1 � T (t). The prob. density w(t) of a photon

starting at exactly time t is thus @t(1 � T (t)). With an infinite number of photons, by law of

large numbers, the deposited color at the pixel is the sample mean which converges to the

expectation

E[c(t)] =

Z 1

0
w(t) c(t) dt =

Z 1

0
�(t) T (t)| {z }

=@t(1�T (t))

c(t) dt. (2.1)

A NeRF optimizes a mapping from spatial location z to color and volume density f✓ : (z, ⇤) !

(c, �), where ⇤ denotes auxiliary inputs such as viewing direction [20], time [27], scene specific

embeddings [16], etc. To render an image, we compute the expectation by integrating (c, �)

over points on each ray.

For a ray discretized into segments each with length di, assuming constant volume density

and color within the segment, volume rendering takes on the form of alpha compositing.

where the “over” operation [26] is applied in a back-to-front order. See 1.1 for a tree-branching

analogy.

↵i = 1 � e��idi with wi =
Y

j<i

(1 � ↵j) · ↵i. (2.2)

The final color is produced by the expectation w.r.t. the probability mass function
P

i wi ci.

Current practices on � parameterization. A scalar x predicted by the underlying neural

field is converted to volume density �(x) by a non-linear activation function. The choice of

4

Algorithm 1 Python pseudocode for our 1) GumbelCDF density activation and 2) high
transmittance initialization. It is numerically stable since log densities, log distances, and
high transmittance offset naturally cancel out one another when scene size L or the ray
sampling strategy changes.

class DensityField():
def __init__(self, L, tau=1.0, T=0.99):

L could be far ≠ near of a typical light ray
tau: expected std of the neural field output
self.offset = \

log(log(1/T)) ≠ log(L) ≠ (tau��2)/2
self.encoder = YourDensityEncoder()

def compute_volrend_ws(self, xyz_locs, deltas):
xyz_locs, deltas: shape [N_rays, N_samp]
log_densities = self.encoder(xyz_locs)
density_delta = exp(

log_densities
+ log(deltas) # GumbelCDF
+ self.offset # high transmittance

)
log(deltas) + offset invariant w.r.t. L
trans = append_zeros_in_front(

cumsum(density_delta[..., :≠1], dim=≠1),
dim=≠1

)
trans = exp(≠trans)
alphas = 1. ≠ exp(≠density_delta)
weights = alphas � trans
return weights

this activation is one of the differences between NeRF models, and the focus of our analysis.

It determines how ↵ in Eq. (2.2), which is a function of both d and �(x), depends on x.

MLP-NeRF [20] parameterizes the volume density �(x) with a ReLU activation. Mip-

NeRF [1] advocates for the use of softplus activation, out of concern that ReLU might get

stuck since there is no gradient if inputs are negative. DVGO [30] fixes the local interval size.

TensoRF [6] scales the local interval size by a constant. We refer the readers to GitHub issues

where these are discussed12. Plenoxels [8] uses ReLU with a very large learning rate on �(x)

1. https://github.com/sunset1995/DirectVoxGO/issues/7

2. https://github.com/apchenstu/TensoRF/issues/14

5

https://github.com/sunset1995/DirectVoxGO/issues/7
https://github.com/apchenstu/TensoRF/issues/14

at the beginning of optimization before decaying it as convergence improves3. Instant-NGP

uses exp activation. The motivation is not explained, besides a brief comment by the author

on GitHub4. Some of these decisions have been adopted by more recent works. For example,

HexPlane [5] and LocalRF [18] follow TensoRF’s interval scaling strategy, while works building

on top of Instant-NGP tend to use the truncated exp activation for numerical stability.

3. https://github.com/sxyu/svox2/issues/111

4. https://github.com/NVlabs/instant-ngp/discussions/577

6

https://github.com/sxyu/svox2/issues/111
https://github.com/NVlabs/instant-ngp/discussions/577

CHAPTER 3

RELATED WORK

Alpha and Bad Weather. Early works on weather modeling [22, 23] use volume rendering

to characterize the effect of rain and fog. Dehazing methods [7, 9], apart from separating

the base scene albedo from the foggy airlight, use the estimated alpha mask to compute an

up-to-scale depth map proportional to � log(1�↵). The notion of alpha invariance is implied

in this step.

NeRF vs MPI. NeRF uses volume rendering [17] for view synthesis [20] and other inverse

rendering tasks . Unlike prior works [25, 29, 39, 40] that directly model the alphas of a

fixed set of multi-plane images (MPI), NeRF optimizes the continuous volumetric densities

�(x). MPI fixes the discretization in advance, whereas the density parameterization in NeRF

makes it easy to adjust discretization and resample along a ray. The flipside of this flexibility,

however, is that the magnitude of �(x) is tied to the domain of integration. Our work

emphasizes that even though �(x) and distance change to compensate for each other, the

alpha value of a particular discretized segment should remain constant. The opacity is an

invariant property of local geometry.

Volume-rendered SDF. Signed distance function (SDF) is suitable for procedural content

authoring and surface extraction. SDF rendering used to rely on finding surface intersections

by sphere tracing [24, 36], but recent methods such as NeuS [33] and VolSDF [37] move to the

“fuzzier” volume rendering for easier optimization. To perform volume rendering, the distance

function is first transformed into volumetric densities before alpha compositing. VolSDF

learns scaling and shrinking coefficients on the distance-transformed volume densities. NeuS

instead demands the CDF of volume rendering to match the shape of a scaled, horizontally

flipped sigmoid i.e. 1 � T (t) = sigmoid(s · �SDF(t)), so that the CDF’s derivative, in other

words the weighting function w(t), has its local maxima located at SDF value 0 for precise

surface level-set extraction. The learned parameter s in the sigmoid acts as a global scaling
7

coefficient on the implied volume densities. In this sense both formulations are alpha invariant

by default, with the extra constraint that the magnitude of volume density function is globally

tied to its sharpness. The assumption is restrictive but fine for most use cases.

Gaussian Splatting. Gaussian splatting [12, 15, 35] renders an image by alpha compositing

point primitives. Since the scene representation is by nature discrete, the concept of volume

density does not apply, as is the case with MPIs. These explicit primitives can be efficiently

rasterized using GPU pipelines. Whereas NeRF could use ray sampling strategies on the

continuous density field to refine local details and discover missing structures, 3D gaussians /

metaballs [12–14] are less flexible; it relies on SfM initialization in some cases, and needs to

explicitly optimize point shape, location, and periodically remove, repopulate and merge-split

the primitives. 3DGS [12] uses an exponent activation to scale the shape of each primitive,

and it shares a similar motivation in terms of handling arbitrary scene scaling.

8

CHAPTER 4

ALPHA INVARIANCE

As reviewed in Sec. 2, w(t) = �(t)T (t) forms a probability density function. However, due to

the scale-ambiguity of a 3D scene, the size of the support for w(t) is arbitrary. For example in

the original NeRF blender synthetic dataset, a light ray travels over [2.0, 6.0], corresponding

to ray length (scene scale) L = 4.0. If we were to expand the support by 2⇥ to L = 8.0, then

by change of variables, it is sufficient for the probability density w(t) and thus the volume

density �(t) to scale down by 1
2 to integrate to 1 and render the same color. Of course for a

given 3D scene, no matter how the distance unit changes, the cumulative opacity of a fixed

piece of ray segment is constant. In other words, a desired property of a model is that values

of ↵ in Eq. (2.2) should be invariant with respect to (arbitrary) scene scaling. We refer to

this desired property as alpha invariance.

The magnitude of volume density is also affected by the sampling resolution on each

ray. Most NeRF variants use some form of importance sampling to iteratively focus the

computation on the fine, detailed structures that would likely be missed by the initial uniform

samples. Consider an extremely coarse sampling with only 2 sampled points: each interval is

unusually large, and the density needed to achieve a high alpha would be small. On the other

hand, with fine-grained importance sampling, large densities are needed to create a sharp,

solid geometry within the small interval. We can calculate the volume density required to

achieve a certain alpha value by �1
d log(1 � ↵). Some example values are shown in Tab. 4.1,

where we set the overall ray length again to L = 4.0 and vary L, the sampling resolution,

and the alpha threshold.

The three activation functions mentioned in Sec. 2 as used in practice to compute �(x)

9

d = L
64 d = L⇥2

64 d = L
128 d = L

64⇥128

↵ = 0.5 11.1 5.5 22.2 1419.6
↵ = 0.99 73.7 36.8 147.4 9431.4
↵ = 0.999 110.5 55.3 221.0 14147.1

Table 4.1: Some example � values given desired alpha level and interval size, using � =
�1

d log(1 � ↵). Length of ray L is set to 4.0, which is blender synthetic dataset default, and
we vary the number of samples per ray. Doubling L halves the �, while higher sampling
resolution increases �. In the extreme case where all the 128 importance samples fall within
one of the initial 64 uniformly sampled bins, the magnitude of � can get very large.

lead to the following form for ↵ as a function of x and d:

ReLU : ↵ = 1 � exp(�ReLU(x) · d) (4.1a)

softplus : ↵ = 1 � sigmoid(�x)d (4.1b)

exp : ↵ = 1 � exp(� exp(x) · d) (4.1c)

where we use the identity exp(�softplus(x)) = sigmoid(�x). To more clearly compare the

effect of exp against ReLU and softplus, in Fig. 1.2 we visualize the behavior of ↵(x, d) with

these activations, for different segment length d from 10�3 to 103. When d is small, both

ReLU and softplus struggle to produce large ↵ values; the values of x that the networks

must predict become extreme. In contrast, with the exp activation � = exp(x) a constant

offset on x results in a direct scaling on �.

We also note that the function e�e�x
is the CDF of Gumbel distribution,

↵ = 1 � exp(� exp(x) · d)

= 1 � exp(� exp(x + log d))

= 1 � GumbelCDF(�(x + log d)). (4.2)

This connection is related to the fact that the volume rendering equation is a restatement of

10

the Exponential distribution. The PDF and CDF functions in Eq. (2.1) are the PDF and

CDF of the Exponential distribution assuming a constant “rate”. This can aid in numerical

stability, a commonly cited issue with using exp to parametrize �. Large density � is needed

primarily to create sharp opacity change in a small distance interval. If we move the distance

multiplication into the exp as a log d addition, then there should not be an overflow issue.

Note that the derivative of exp(� exp(x)) is not symmetrical about y-axis even though its

shape resembles sigmoid.

While exp activation has no problem producing large densities when scene scale L is

small, a different challenge occurs when L is large. Given the same sampling strategy, larger

L and therefore larger interval d, with the same initial volume density will produce larger

alpha values. This manifests as an opaque initial scene. Optimization frequently fails since

the images can be explained away by dense, cloudy floaters in front of each camera. It is

important to guarantee that upon initialization the scene is transparent, i.e. each ray has

high transmittance.

Since ray transmittance is related to volume density by T (L) = exp(�
R L
0 �(s) ds), we

may want the network predicting the density to be initialized so that the “average volume

transmittance” in the scene is T 0, a value like 0.99. In practice the initial volume density

value along a ray is not a constant, but a random variable produced by the underlying field

function such as voxels or an MLP. We make the simplifying assumption that the sampled

values are i.i.d. (admittedly imperfect, since neighboring values tend to be correlated by

feature or voxel sharing). The integral �
R L
0 �(s) ds gives the Monte Carlo estimate that

converges to �L · E[�]. Our recommendation can then be written as

exp(�L · E[�]) = T 0. (4.3)

In case of �(x) = exp(x), assuming the pre-activation field output x is drawn from N (µ, ⌧2), �

follows a log-normal distribution with mean E[�] = exp(µ + ⌧2

2). Plugging this into Eq. (4.3),

11

taking log, and rearranging, we get

exp(µ +
⌧2

2
) =

1

L
log

1

T 0 , (4.4)

and solving for µ we obtain

µ = log log
1

T 0 � log L � ⌧2

2
. (4.5)

This is the desired target for initializing the density-predicting network. Setting the mean µ of

the pre-activation field output to this value can be done with an additive offset. This strategy

is discretization agnostic, and a factor multiplied onto L can be undone by a logarithmic shift.

The merged expression for local alpha as a function of field output x and interval length d is

↵ = 1 � exp(� exp(x + log d + µ))

= 1 � exp
⇣
� exp(x + log d

L + log log 1
T 0 � ⌧2

2)
⌘

, (4.6)

where log d
L is invariant w.r.t. scene scaling. See Alg. 1 for Python pseudocode.

For a real-life scene where ray length varies, a possible choice is to set L to the longest ray

distance. One interpretation of log d
L is that we are working with distance ratios and are thus

effectively hardcoding the overall scene size to 1.0. But it’s only possible with the extra offset

terms, without which, assuming ⌧ = 1.0, T 0 = 0.99, the scene size L needs to be set to 0.006.

Analogous recipes can be made for ReLU and softplus, although it’s harder to write

down closed-form expressions [34]. We could attempt it using Monte Carlo estimates of their

mean. Recall our goal is to achieve E[�] · L = log(1
T 0). Assuming the pre-activation neural

field output is drawn from N (0, 1), the expectations of the post-activation random variables

can be approximated by sample mean. When T 0 = 0.99, the RHS is 0.001. We want to avoid

directly scaling down density or L to meet this target, since that would make it even harder

12

for relu and softplus to achieve large density needed at solid regions. Instead the high

transmittance should be achieved by shifting the activation function profile to the right, i.e.

adding negative offset to the input. The correct offset can be tuned numerically, and only

needs to be done once.

13

CHAPTER 5

EXPERIMENTS

Scene size L is fundamentally an arbitrary decision for NeRF optimization. A robust algorithm

should be able to achieve consistent view synthesis quality regardless of the value of L. We

analyze different types of NeRF systems including pure MLPs to Voxels to Hashgrid-MLP

hybrids by training them with a scaling factor k applied on the default scene size L, and

leave the rest of the optimization hyperparameters such as sampling strategies unchanged. In

our experiments, unless otherwise stated, we set the desired transmittance T 0 = 99% for the

longest ray in each scene, and set k to range from 0.1 to up to 25, report the PSNR metrics,

and provide qualitative visualizations. We find that these methods are unable to maintain

high rendering quality especially when k is more extreme, whereas our recipe achieves a

consistently high quality across all k.

5.1 How volume density changes in practice

Findings 1. Empirically � changes by a factor close to 1
k when scene size is changed by k.

It is most noticeable on object surfaces.

Inverse scaling between volume density and distance is sufficient to guarantee identical

renderings for a radiance field. However, this might not be necessary in practice if the end

goal is to achieve high PSNR values. A scene is typically dominated by either empty space or

solid regions; semi-transparent structures occur much less frequently, and volumetric densities

tend to take on extreme values. As such, a change in the scale of the interval length might

not substantially alter the local alpha values. To get a better understanding of their exact

empirical behaviors, we train vanilla-NeRF on the lego and drums scenes from the blender

dataset, and Nerfacto [31] on the garden and bicycle scenes from the Mip-NeRF 360 dataset,

with k = [0.1, 1.0, 10.0]. Here we use our proposed Alg. 1.

14

k = 0.1 k = 1.0 k = 10.0
distance scale

0

60

70

80

90

100

p
er

ce
nt

il
e

coarse fine coarse finecoarse fine

0

101

102

103

104

�
va

lu
e

(l
og

)

Figure 5.1: Distribution of volume density � in the lego bulldozer scene, queried via a
uniformly sampled dense grid of points from both the coarse (left columns) and fine (right
columns) MLP networks of vanilla-NeRF for different k. Color represents the average � value
in each percentile of the sorted � distribution. The fine MLPs produce larger � than the
coarse MLPs, and as k increases, the magnitude of � decreases for both networks.

Volume statistics. For the coarse and fine MLP networks in vanilla-NeRF, we query a

dense grid of 2003 uniformly sampled points in the scene box, and summarize the sorted �

distribution with bar plots depicting the average � value within each percentile in Fig. 5.1.

As most of the scene is empty (> 60%), we focus on the distribution of values in the upper

percentiles and observe that with increasing k values, the numerical range of � does decrease

as we hypothesized in both the coarse and fine MLP networks. In addition, we observe that

the fine MLPs produce a very small amount of significantly larger � values than the coarse

MLPs due to sharper geometry being captured by the importance sampler over the course of

optimization.

Surface statistics. Since large volume density occurs near the object surface, we visualize

the changing surface densities in Fig. 5.2. At a given camera pose, we shoot rays through

each pixel to obtain the density histograms {wi}, and query the spatial location at the 50-th
15

le
go

ground truth

� = 462.7

�1 (k=1.0)

� = 54.5

�2 (k=10.0)

� = 2961.7

�3 (k=0.1) � ratio (�1/�2) � ratio (�1/�3)
dr

um
s

� = 211.4 � = 10.4 � = 1741.2

10�4

10�3

10�2

10�1

100

101

102

103

104

�
(l

og
)

10�3

10�2

10�1

100

101

102

103

�
ra

ti
o

(l
og

)

ga
rd

en

� = 118.3 � = 11.3 � = 1010.3

bi
cy

cl
e

� = 413.0 � = 42.1 � = 3652.4

10�4

10�2

100

102

104

�
(l

og
)

10�3

10�2

10�1

100

101

102

103

�
ra

ti
o

(l
og

)

Figure 5.2: Values of volume density � on the object surface, with models trained under
different scene scalings k. On each ray, surface point is defined as the 50th percentile location
of volume rendering CDF. We annotate a few prominent points, and also produce two �
division images that show the overall ratio of the numerical range of � at different scaling
factors. The blender scenes are trained with vanilla NeRF, and the Mip-NeRF 360 scenes are
trained with Nerfacto. The ratio of � is empirically close to 1/k.

percentile of the probability CDF of each histogram for its � value. We also display heatmaps

of density ratio by dividing the � images coordinate-wise. Values below ✏ = 10�4 are rounded

up to ✏ for numerical stability. Based on these visualizations, we observe that inverse-scaling

between density and distance does hold to a significant degree, although the factor in practice

deviates from 1/k.

5.2 Vanilla NeRF with MLPs

Findings 2. MLPs are surprisingly robust with just ReLU activation but they can be

improved.

The canonical NeRF architecture uses an 8-layer MLP with a ReLU activation to produce

16

chair drums ficus hotdog

k = 0.1 30.98 / 31.19 24.25 / 24.37 28.72 / 29.26 32.22 / 34.84
k = 0.4 31.21 / 31.29 23.85 / 24.54 28.74 / 29.01 32.95 / 33.51
k = 1.0 31.26 / 31.26 12.04 / 24.58 28.76 / 28.85 33.59 / 33.71
k = 2.5 31.22 / 31.32 24.04 / 23.99 26.86 / 28.60 10.94 / 33.91
k = 10.0 14.04 / 31.36 23.84 / 24.43 28.97 / 28.92 10.39 / 33.23

lego materials mic ship

k = 0.1 30.90 / 30.64 28.27 / 28.45 28.31 / 30.96 26.70 / 27.56
k = 0.4 9.45 / 30.71 28.02 / 28.59 31.41 / 30.94 10.45 / 27.35
k = 1.0 30.71 / 31.36 13.89 / 28.57 31.35 / 31.05 25.65 / 27.21
k = 2.5 30.74 / 31.11 27.76 / 28.85 30.97 / 31.35 5.88 / 27.15
k = 10.0 30.55 / 30.84 27.97 / 28.25 31.04 / 31.44 5.88 / 26.99

Table 5.1: PSNR " for NeRF-Pytorch [baseline / ours] at different scene scaling k on Blender
synthetic dataset. Vanilla NeRF with ReLU activation is surprisingly capable of producing
large � values but the optimization does converge to poor local minima randomly. Using our
recommended recipe ensures consistent convergence across all k. Note that the NeRF-Pytorch
codebase is unable to exactly match the original NeRF [20] performance at 200k iterations.
See appendix for details on reproducing the random failures present here.

�, and hence must output values in the range of hundreds near object surfaces as shown

in Fig. 5.2. This setup is somewhat against the conventional wisdom [4, 11] of fixing the

neural network output magnitude to unit variance for stable training. We test our recipe on

NeRF-PyTorch [38], train for 200k steps and present the results in Tab. 5.1. We make three

observations. First, NeRF-PyTorch uses PyTorch’s default linear layer initialization which

does not correct for the variance gain of ReLU, and produces raw outputs with mean 0 and

variance 0. There are random failure modes across all k. To address this, we initialize the

layers with Kaiming uniform initialization [10] with
p

2 gain. Interestingly, we still observe

random failure modes, even at k = 1. Finally, we tried parameterizing density with our

recipe (without applying the aforementioned Kaiming uniform initialization such that ⌧ = 0.0

initially, making the task more difficult), and observed consistent performance across all k

without any random failures.

17

chair drums ficus hotdog

k = 0.1 fail / 35.41 fail / 26.01 fail / 33.81 fail / 37.03
k = 0.4 35.74 / 35.96 26.04 / 25.91 fail / 34.00 37.31 / 36.93
k = 1.0 35.55 / 35.57 26.24 / 26.24 33.99 / 34.31 37.31 / 37.20
k = 2.5 35.71 / 35.88 26.26 / 26.14 34.05 / 34.15 37.09 / 37.14
k = 10.0 35.67 / 35.92 26.14 / 26.41 34.01 / 34.81 37.10 / 37.51

lego materials mic ship

k = 0.1 fail / 36.47 fail / 29.99 fail / 34.52 fail / 30.51
k = 0.4 36.20 / 35.93 30.14 / 30.10 fail / 34.31 30.81 / 30.09
k = 1.0 36.60 / 36.55 30.01 / 30.11 34.59 / 34.71 30.65 / 30.59
k = 2.5 36.66 / 36.51 30.11 / 30.21 34.48 / 34.61 30.71 / 30.80
k = 10.0 36.18 / 37.04 30.36 / 30.40 34.53 / 34.62 30.74 / 30.80

Table 5.2: PSNR values of TensoRF [baseline / ours] at different scene scaling k on Blender
synthetic dataset. TensoRF applies an input offset �10 before softplus, followed by an
interval multiplier of 25. The hardcoded decisions are less effective at k = 0.1. TensoRF is
quite robust at k = 10 since the �10 is a rather aggressive offset. See Fig 1.2 for the effect of
shifting the softplus activation.

lr_init = 30.0 lr_init = 0.3 lr_init = 0.003
blender 31.66 29.51 23.51
LLFF [19] 24.51 23.22 21.09

Table 5.3: Measuring Plenoxels’ performance with PSNR " on the Blender and LLFF datasets
with different learning rate schedules.

5.3 Voxel Variants: DVGO, Plenoxels and TensoRF

Findings 3. Voxel variants cannot converge with ReLU or softplus activations alone.

Hardcoded heuristics have been used for stable training.

Unlike MLPs, direct optimization of voxel NeRFs with ReLU or softplus activations does not

converge. We observe the same pattern across all three voxel model variants, and it shows

the benefit of having an MLP as a global inductive bias. DVGO uses softplus activation,

and to address the issue of divergence, it fixes a canonical scene size with the voxel size ratio

such that each interval has length 0.5 or 1.0 depending on whether it is in the coarse or fine

reconstruction stage. It then calculates a density offset such that every local cell’s alpha

value is small at initialization. We instead recommend initializing the density network based

18

10�2 10�1 100 101 102

distance scale (log)

0.0

0.2

0.4

0.6

0.8

1.0

p
er

ce
nt

ag
e

of
↵

<
0.

01

average w/o initialization

average w/ initialization

Figure 5.3: Querying a dense uniform grid of samples from TensoRF trained with exp
activation. We consider a location to be empty if the local alpha is below 0.01, and apply
distance scaling k ranging from 10�2 to 102. Each faint line corresponds to a scene from
the blender dataset; the solid line is the dataset average. With our high transmittance
initialization, we prevent over-densification even when k is large.

on overall ray transmittance. TensoRF applies a constant interval scaling of 25 with �10

offset on softplus input. We verify the robustness of our overall recipe in comparison with

TensoRF’s and provide numerical metrics in Tab. 5.2. We also ablate our initialization offset

on TensoRF. Applying exp alone is not enough to make TensoRF robust across scene scalings;

as k increases, we show that the distribution of alpha values everywhere in the scene tends

towards 1. Applying our high transmittance offset enables TensoRF to converge smoothly,

regardless of k. See Fig. 5.3. Plenoxels uses a total variation (TV) regularizer, and ReLU

activation with an unusually large initial learning rate of 30.0, in addition to a reverse cosine

decay on the � coefficients. Disabling it, i.e. reducing the learning rate to a lower value such

as 0.3 or 0.003, produces smaller �, and is directly correlated with worse rendering quality.

See Fig. 5.4 and Tab. 5.3.

19

10�2 10�1 100 101 102 103

� values (log)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0.96

0.98

1.00

�1 �2

�1 = 7.14

�2 = 52.22

lr init = 30.0

lr init = 0.3

lr init = 0.003

Figure 5.4: CDF of the � distributions produced by Plenoxels on the T-Rex scene from the
LLFF dataset with different learning rate schedules on the � voxels. The default high learning
rate schedule [red] is needed to produce large � values and high PSNR. Lower learning rates
lead to smaller � and ultimately worse performance.

5.4 MLP and Hashgrid Hybrids

Findings 4. The MLP+Hashgrid hybrid with exp activation makes the model robust at

small k. However, high transmittance offset is needed for large k.

Instant-NGP [21] and many follow-ups, including Nerfacto [31], already use exp activation to

parameterize �. Here we study the Nerfacto architecture, since it subsumes many of Instant-

NGP’s components and supports additional features like Mip-NeRF 360’s scene contraction [2].

While Nerfacto is robust at producing large � when k is small, the optimization gets stuck in

the “cloudiness trap” when k is large, since the increased ray distances cause the alpha values

to increase, leading to an initially opaque scene. See Tab. 5.4 for experimental results on the

Mip-NeRF 360 dataset. See Fig. 5.5 for RGB-image and depth-map comparisons. Our high

transmittance initialization strategy enables smooth optimization across k.

20

R
G

B
no initialization

de
pt

h
with initialization no initialization with initialization no initialization with initialization

R
G

B
de

pt
h

Figure 5.5: Image and depth maps produced by Nerfacto on the ballroom, auditorium, and
courtroom scenes from Tanks and Temples at k = 25, and the bonsai, room, and stump
scenes from the Mip-NeRF 360 dataset at k = 10. Not using high transmittance offset causes
the optimization to get stuck with cloudy floaters.

5.5 Background Contraction / Disparity Sampling

To represent unbounded scenes, Mip-NeRF 360 [2] applies a contraction of (2� 1
kxk) x

kxk if kxk2 >

1 so that distant points with insufficient camera coverage use less model capacity. Nerfstu-

dio [31] and MeRF [28] modify it to be more suitable for voxel grids. This scene contraction

is part of the underlying NN blackbox that is in principle orthogonal to how we do volume

rendering. What matters is the sampling strategy, which in this case is co-designed with

samples spaced linearly in disparity. Importantly, metric distances (in t-space) before the dis-

parity transform are used as the ray interval lengths d for volume rendering. Taking Nerfacto

for example, the metric ray travels from 0.05 to 1000, with the largest intervals d close to

700 for samples near the outer scene boundary. It provides an inductive bias that faraway

background regions have alpha values close to 1.0 at initialization. Note that Nerfacto’s ray

21

bicycle bonsai counter garden

k = 0.1 22.51 / 22.38 28.71 / 28.86 25.22 / 25.16 26.26 / 26.63
k = 0.4 22.52 / 22.53 28.39 / 28.43 24.76 / 25.24 26.62 / 26.87
k = 1.0 22.62 / 22.48 28.11 / 28.71 24.71 / 24.70 26.75 / 26.61
k = 2.5 22.61 / 22.52 28.81 / 28.40 24.96 / 24.96 26.76 / 26.67
k = 10.0 12.42 / 22.40 13.91 / 28.50 24.55 / 25.26 14.35 / 26.47

kitchen room stump

k = 0.1 28.04 / 28.24 28.70 / 28.71 23.42 / 23.48
k = 0.4 28.21 / 28.15 28.58 / 28.77 23.50 / 23.77
k = 1.0 27.31 / 28.15 28.90 / 28.91 23.45 / 23.62
k = 2.5 27.42 / 27.72 28.73 / 28.50 18.59 / 23.53
k = 10.0 27.69 / 28.21 11.27 / 28.89 15.91 / 23.81

Table 5.4: PSNR values of [baseline / ours] with different scene scalings k on the Mip-NeRF
360 dataset. The baseline is Nerfacto, which uses the exp activation, and thus performs well
even when k is small. Using a high transmittance initialization strategy like ours makes it
more robust at larger scene scalings.

bicycle bonsai counter garden kitchen room stump average

[Lin, Lout] = [20, 10000] 19.81 27.34 23.51 26.71 27.46 28.60 19.57 24.71
[Lin, Lout] = [20, 40] 22.27 28.41 25.19 26.23 28.23 28.72 23.74 26.11
[Lin, Lout] = [20, 20] 22.11 28.94 25.66 26.00 28.14 29.03 24.02 26.27
[Lin, Lout] = [20, 0] 22.25 28.46 25.03 26.11 27.77 28.44 18.42 25.21

Table 5.5: PSNR " for Nerfacto on the Mip-NeRF 360 dataset at k = 10. Lin = 2 · k = 20
(ignoring the small near-plane) and we explore different Lout for transmittance offset in
the outer dome. The metric ray distance 10000 removes the background inductive bias as
described in Sec 5.5 and degrades performance. Lout = Lin is the easiest to implement and
has good performance.

sampler applies uniform sampling in uncontracted space and disparity sampling in contracted

space. These locations are then further updated by importance sampling. Applying scene

scaling with a purely disparity based ray sampler is problematic since sample locations barely

move except for the last few bins. When applying the high transmittance offset of Eq. (4.5),

our initial attempt is to divide the scene based on the (max) norm of sampled location.

If kxk1  1 we calculate the offset with Lin = 2.0 as usual. If kxk1 > 1, we try using

Lout = 0.0, 2.0, 4.0 or 1000.0. Lout = 1000.0 would undo the background inductive bias and

in practice results in floaters in near-camera regions. Not applying any transmittance offset

22

(a) no density shift

(c) [Lin, Lout] = [20, 10000]

(b) [Lin, Lout] = [20, no o�set]

(d) [Lin, Lout] = [20, 20]

Figure 5.6: Depth maps from Nerfacto with various high transmittance offsets applied on a
scene with contracted background. The dataset is “Bicycle” from the Mip-NeRF 360 with
scaling k = 10. (a) No transmittance offset on foreground or background leads to divergence.
(b) Applying the offset only on the inner dome is fine for reconstructing the foreground
object, but leaves a “wall” of opacity on the background. (c) Setting Lout to be the metric
ray distance produces misty floaters in near-camera regions. (d) Lout = Lin performs well
and is easy to implement.

at all i.e. Lout = 0 is not good either when scene scaling factor k is large. See Tab. 5.5 and

Fig. 5.6 for comparisons of various Lout at k = 10. Our final recommendation is to simply

let Lout = Lin, so that there is no need to write branching logic in the implementation for

kxk1  1. The same offset is therefore applied to every point in the scene.

23

CHAPTER 6

CONCLUSION

We present and clarify the concept of alpha invariance. Volume density and scene size change

inversely in order to maintain identical local opacities in a radiance field. It is an implication

of the scale-ambiguity in a 3D scene. We recommend parameterizing both distance and

volume densities in log space, along with a high transmittance offset for robust performance

across scene sizes, and verify the approach on a few commonly used architectures in the

literature.

One future idea we hope to pursue is applying this formulation to the domain of level-of-

details (LoD) in computer graphics. VR and AR simulations operate at varying scales, and

we believe that an application of our formulation to here can enable smooth transitions from

large regions to zoomed-in objects without loss of reconstruction quality. In addition, we are

also interested in developing improved sampling strategies that take into account the current

scale of the scene in order to dynamically allocate more memory to under-observed regions

so that the overall fidelity can remain high.

24

REFERENCES

[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,

and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance

fields. In Int. Conf. Comput. Vis., 2021.

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman.

Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In IEEE Conf. Comput. Vis.

Pattern Recog., 2022.

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

Zip-NeRF: Anti-aliased grid-based neural radiance fields. In Int. Conf. Comput. Vis., 2023.

[4] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

[5] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In IEEE

Conf. Comput. Vis. Pattern Recog., 2023.

[6] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance

fields. In Eur. Conf. Comput. Vis., 2022.

[7] Raanan Fattal. Single image dehazing. ACM Trans. Graph., 2008.

[8] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo

Kanazawa. Plenoxels: Radiance fields without neural networks. In IEEE Conf. Comput. Vis.

Pattern Recog., 2022.

[9] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior.

IEEE Trans. Pattern Anal. Mach. Intell., 2010.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification, 2015.

25

[11] Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Normalization techniques in

training dnns: Methodology, analysis and application. IEEE Trans. Pattern Anal. Mach. Intell.,

2023.

[12] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian

splatting for real-time radiance field rendering. ACM Trans. Graph., 2023.

[13] Leonid Keselman and Martial Hebert. Approximate differentiable rendering with algebraic

surfaces. In Eur. Conf. Comput. Vis., 2022.

[14] Leonid Keselman and Martial Hebert. Flexible techniques for differentiable rendering with 3d

gaussians. arXiv preprint arXiv:2308.14737, 2023.

[15] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d Gaussians:

Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

[16] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Doso-

vitskiy, and Daniel Duckworth. NeRF in the wild: Neural radiance fields for unconstrained

photo collections. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[17] Nelson Max. Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph.,

1995.

[18] Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang, Changil Kim, Min H. Kim, and

Johannes Kopf. Progressively optimized local radiance fields for robust view synthesis. In IEEE

Conf. Comput. Vis. Pattern Recog., 2023.

[19] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi

Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis

with prescriptive sampling guidelines. ACM Trans. Graph., 2019.

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,

and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Eur.

Conf. Comput. Vis., pages 405–421, 2020.
26

[21] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics

primitives with a multiresolution hash encoding. ACM Trans. Graph., 2022.

[22] Srinivasa G Narasimhan and Shree K Nayar. Chromatic framework for vision in bad weather.

In IEEE Conf. Comput. Vis. Pattern Recog., 2000.

[23] Shree K Nayar and Srinivasa G Narasimhan. Vision in bad weather. In Int. Conf. Comput.

Vis., 1999.

[24] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable

volumetric rendering: Learning implicit 3d representations without 3d supervision. In IEEE

Conf. Comput. Vis. Pattern Recog., 2020.

[25] Eric Penner and Li Zhang. Soft 3d reconstruction for view synthesis. ACM Trans. Graph., 2017.

[26] Thomas Porter and Tom Duff. Compositing digital images. In Proceedings of Computer graphics

and interactive techniques, 1984.

[27] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF:

Neural radiance fields for dynamic scenes. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[28] Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger,

Jon Barron, and Peter Hedman. MERF: Memory-efficient radiance fields for real-time view

synthesis in unbounded scenes. ACM Trans. Graph., 2023.

[29] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi Ramamoorthi, Ren Ng, and

Noah Snavely. Pushing the boundaries of view extrapolation with multiplane images. In IEEE

Conf. Comput. Vis. Pattern Recog., 2019.

[30] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast

convergence for radiance fields reconstruction. In IEEE Conf. Comput. Vis. Pattern Recog.,

2022.

27

[31] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang,

Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and

Angjoo Kanazawa. Nerfstudio: A modular framework for neural radiance field development.

arXiv preprint arXiv:2302.04264, 2023.

[32] Jiaxiang Tang. Torch-ngp: a PyTorch implementation of instant-ngp, 2022.

https://github.com/ashawkey/torch-ngp.

[33] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.

Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. In

Adv. Neural Inform. Process. Syst., 2021.

[34] Wikipedia. Rectified Gaussian distribution — Wikipedia, the free encyclopedia. http://en.wik

ipedia.org/w/index.php?title=Rectified%20Gaussian%20distribution&oldid=1140140064, 2023.

[35] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi

Tian, and Xinggang Wang. 4d Gaussian splatting for real-time dynamic scene rendering. arXiv

preprint arXiv:2310.08528, 2023.

[36] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron

Lipman. Multiview neural surface reconstruction by disentangling geometry and appearance.

In Adv. Neural Inform. Process. Syst., 2020.

[37] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit

surfaces. In Adv. Neural Inform. Process. Syst., 2021.

[38] Lin Yen-Chen. NeRF-Pytorch. https://github.com/yenchenlin/nerf-pytorch/, 2020.

[39] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnifi-

cation: Learning view synthesis using multiplane images. In SIGGRAPH, 2018.

[40] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard

Szeliski. High-quality video view interpolation using a layered representation. ACM Trans.

Graph., 2004.
28

http://en.wikipedia.org/w/index.php?title=Rectified%20Gaussian%20distribution&oldid=1140140064
http://en.wikipedia.org/w/index.php?title=Rectified%20Gaussian%20distribution&oldid=1140140064
https://github.com/yenchenlin/nerf-pytorch/

APPENDIX A

APPENDIX

A.1 Transmittance in Discrete Setting

In Sec. 4, we write down the expression for high transmittance initialization in the continuous

setting. The expression is the same when the ray is cut into discrete intervals. The tree-

branching analogy in Fig. 1.1 shows that the transmittance / survival probability for each

segment is 1 � ↵i, with overall survival probability
Q

(1 � ↵i) =
Q

e��idi = e�
P

�idi =

exp (�
R L
0 �ds). The same steps as Eq. (4.3) from Sec. 4 follow.

A.2 Additional Results

Surface Statistics. We provide additional visualizations verifying alpha invariance in Fig. A.2.

Similar to Fig. 5.2, we shoot rays through each pixel to obtain the density histograms {wi},

and query the spatial location at the 50-th percentile of the probability CDF of each histogram

for its � value. Here, we showcase various scene types from different datasets, and generate

these visualizations with different architectures, demonstrating how inverse scaling between

distance and volume density is a generalizable phenomenon in radiance fields.

Voxel Variants, continued. DVGO has a strategy of fixing the scene size to some canonical

scale where the interval length between each sampled point is dependent on the current

voxel grid resolution’s ratio to the base resolution, which empirically equates to either 0.5 or

1, depending on the stages of optimization progress. We also note that DVGO’s sampling

procedure is stochastic, as each ray has a potentially unique number of samples. The

implication is that every ray will have a different ray length purely determined by its number

of samples as the interval length between any two contiguous samples is hardcoded to either

0.5 or 1. As such, the term “ray length” loses its meaning in DVGO’s context as there are

no deterministic near and far planes; every ray is simply deconstructed into its constituent
29

R
G

B
no initialization

de
pt

h
R

G
B

de
pt

h
with initialization no initialization with initialization no initialization with initialization

Figure A.1: RGB-image and depth-maps produced from TensoRF on the lego, mic, chair,
ship, materials, and hotdog scenes from the Blender dataset at a large scene scaling k = 25.
When using exp activation to parameterize �, not using our high transmittance initialization
strategy causes the optimization to get stuck with cloudy floaters.

samples. We observe that disabling this heuristic (i.e., setting the interval lengths to be the

true physical distances and forcing each ray to be bounded within a predetermined global

near and far plane) produces significantly worsened rendering quality, as shown in Tab. A.1.

For Plenoxels, only rectifying � with exp is insufficient to maintain convergence at

various scene scales; a high transmittance offset is needed even at k = 1. See Tab. A.2 for

numerical results. We note that our results are worse (⇠ 2-3 dB) than the results presented

in Plenoxels [8]. We had to significantly lower the learning rate to be more suitable for the

exp activation, and believe that other changes in the hyperparameters are also needed to

match the default performance. We leave this as future work; our results still demonstrate

30

chair drums ficus hotdog lego materials mic ship

disabled fail fail fail fail fail fail fail fail
default 34.10 25.40 32.56 36.67 34.53 29.71 33.23 28.76

fern flower fortress horns leaves orchids room trex

disabled 15.74 17.38 20.77 20.62 16.96 11.77 21.44 20.62
default 24.49 27.61 29.91 27.01 20.41 19.95 30.87 26.41

bicycle bonsai counter garden kitchen room stump

disabled fail fail fail fail fail fail fail
default 21.98 27.33 25.41 24.41 25.81 28.14 23.51

Table A.1: PSNR " values of DVGO on the Blender (top row), LLFF (middle row), and
Mip-NeRF 360 (bottom row) datasets. DVGO sets the interval lengths d to the ratio of
the current voxel grid resolution to the base voxel grid resolution in order to to make the
model independent of scene size; this is referred to as ‘default’ in the table. We observe that
disabling this heuristic (i.e., setting the interval lengths in the volume rendering equation
to be the true physical distances between any two sample points) results in DVGO failing
to render at a high quality. These failure modes are marked with red in the rows titled
‘disabled’.

consistent rendering quality and a need for our high transmittance initialization strategy.

Benefit of High Transmittance Initialization. We provide additional RGB-image

and depth-map visuals in Fig. A.1 demonstrating the benefits of our high transmittance

initialization in handling large scene scales when using exp activation.

A.3 Reproducibility

In Tab. 5.1, we observe random failure modes when training the vanilla 8-layer MLP on

various scenes using NeRF-Pytorch [38] at git commit hash 63a5a63. To get a better sense

of the frequency of these failure modes, we train Vanilla-NeRF on chair and ship scenes 5

times for each k-value, comparing the default ReLU parametrization on � against our high

transmittance initialization in combination with exp. Full results are provided in Tab. A.3.

We attribute the random failure modes to poor initialization of the MLP layers (the initial

output distribution has 0 mean and 0 variance) and the inability of ReLU to provide a smooth

31

chair drums ficus hotdog

k = 0.1 31.80 / 31.89 24.23 / 24.26 29.41 / 29.58 34.12 / 34.31
k = 0.4 30.33 / 31.83 23.61 / 24.23 27.65 / 29.12 31.76 / 34.46
k = 1.0 27.06 / 32.00 21.66 / 24.37 24.77 / 29.39 27.31 / 34.56
k = 2.5 17.49 / 32.43 17.24 / 24.44 18.89 / 29.83 20.20 / 34.72
k = 10.0 13.05 / 32.25 10.84 / 24.45 11.40 / 30.23 13.03 / 34.93

lego materials mic ship

k = 0.1 31.20 / 31.31 28.21 / 28.41 31.11 / 31.31 28.16 / 28.25
k = 0.4 29.61 / 31.22 26.06 / 28.02 29.04 / 31.13 27.01 / 28.13
k = 1.0 26.22 / 31.35 23.14 / 28.31 24.85 / 31.29 24.58 / 28.19
k = 2.5 16.64 / 31.53 15.51 / 28.64 15.89 / 31.61 16.67 / 28.22
k = 10.0 11.64 / 31.69 9.57 / 28.79 15.89 / 31.61 11.27 / 28.21

Table A.2: PSNR " for Plenoxels [baseline / ours] at different scene scaling k on the Blender
dataset. By default, Plenoxels applies a very large learning rate directly on the coefficients
of a voxel grid, where � is queried via trilinear interpolation, followed by ReLU to ensure
non-negative density values. The baseline Plenoxels model here replaces ReLU with exp
activation and uses a reduced learning rate (⌘init = 0.05, ⌘final = 0.005) with no reverse
cosine delay. Our model in addition applies a high transmittance offset. As shown, this
transmittance offset is required for high rendering quality at various scene sizes, even at
k = 1.

transition from low to high ↵ values. See Fig. 1.2 for a visualization. However, even with

such a poorly initialized MLP, our parametrization on � is enough to guarantee convergence

on all runs across all tested k values.

We train NeRF-Pytorch for only 200k iterations. A longer training schedule of 500k

iterations would push the NeRF-Pytorch performance closer, but still slightly below the

original NeRF numbers. The overall conclusions do not change.

32

Default Ours

C
H

A
I
R

k = 0.1 31.20 31.14 31.04 14.04 28.82 31.20 31.27 31.07 30.99 31.25
k = 0.4 28.96 31.32 31.26 31.17 31.26 31.00 31.29 31.02 31.24 31.09
k = 1.0 14.04 31.32 14.04 14.04 28.82 31.24 31.30 31.11 31.39 31.23
k = 2.5 14.04 31.37 28.99 31.38 31.32 31.14 31.23 31.15 31.03 31.23
k = 10.0 14.04 30.97 28.76 31.00 9.75 31.29 31.19 31.16 31.10 31.22

average 25.76 ± 7.79 31.18 ± 0.10

Default Ours

S
H

I
P

k = 0.1 5.88 5.88 27.59 27.61 5.88 27.20 27.06 27.56 27.51 27.31
k = 0.4 27.57 27.46 27.59 27.35 27.49 27.11 27.14 27.00 27.11 27.84
k = 1.0 27.56 25.64 27.27 25.57 27.60 27.18 26.99 27.16 27.30 27.11
k = 2.5 27.50 27.45 5.88 27.49 27.56 27.56 27.31 27.35 27.18 27.16
k = 10.0 5.88 27.57 27.35 24.12 27.43 26.99 27.00 27.16 27.27 27.28

average 22.89 ± 8.54 27.23 ± 0.20

Table A.3: PSNR " values of Vanilla-NeRF on the chair and ship scenes from the Blender
dataset. Here, we run 5 experiments for 5 different k-values, and compare the results from
the default NeRF baseline against our exp parametrization on � and high transmittance
initialization. We observe consistent rendering quality across all runs for both scenes with
our method, but identify inconsistent rendering quality for the default configuration, with
failure modes and poor convergence marked here in red.

33

fic
us

ground truth �1 (k=1.0) �2 (k=10.0) �3 (k=0.1) � ratio (�1/�2) � ratio (�1/�3)

sh
ip

10�3

10�2

10�1

100

101

102

103

�
(l

og
)

10�3

10�2

10�1

100

101

102

103

�
ra

ti
o

(l
og

)

fe
rn

ho
rn

s

10�2

10�1

100

101

102

�
(l

og
)

10�2

10�1

100

101

102

�
ra

ti
o

(l
og

)

ba
llr

oo
m

m
us

eu
m

10�4

10�3

10�2

10�1

100

101

102

103

104

�
(l

og
)

10�3

10�2

10�1

100

101

102

103

�
ra

ti
o

(l
og

)

Figure A.2: Visualization of �-image produced at the 50-th percentile location of each ray’s
density histogram CDF. We produce a division image that shows the global difference of
numerical range across different scene scaling factor k. The first four rows are produced
from the TensoRF architecture (the top two rows are the ficus and ship scenes from the
blender dataset; the middle two rows are the fern and horns scenes from the LLFF dataset).
The bottom two rows are produced from the Nerfacto architecture on the ballroom and
museum scenes from the Tanks-and-Temples dataset. Across a variety of scenes and NeRF
architectures, these visualizations demonstrate that the phenomenon of alpha invariance
holds to a very strong degree.

34

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Alpha Invariance
	5 Experiments
	5.1 How volume density changes in practice
	5.2 Vanilla NeRF with MLPs
	5.3 Voxel Variants: DVGO, Plenoxels and TensoRF
	5.4 MLP and Hashgrid Hybrids
	5.5 Background Contraction / Disparity Sampling

	6 Conclusion
	A Appendix
	A.1 Transmittance in Discrete Setting
	A.2 Additional Results
	A.3 Reproducibility

