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ABSTRACT

Continual learning is essential in fields with evolving data distributions, such as recommen-

dation systems, autonomous vehicles, and social media language processing. The increasing

cost of training advanced neural networks, with their growing parameters and data needs,

makes continual learning an attractive approach. A key challenge here is catastrophic forget-

ting, where models lose prior knowledge when exposed to new tasks. While various solutions

exist, this issue remains unresolved.

Knowledge editing in Large Language Models (LLMs), closely related to continual learn-

ing, involves making targeted changes to specific data points. The aim is to fix inaccuracies

or biases in these models without mistakenly altering other knowledge or skills. The re-

search of knowledge editing focuses on three key aspects: generalization (the model’s ability

to apply edited information across various contexts), locality (precise edits without affect-

ing unrelated information), and scalability (maintaining performance efficiency and stability

with increasing edits). It’s worth noting that the issue of locality is often a direct result of

catastrophic forgetting.

This thesis introduces two novel contributions: (1) a new knowledge editing benchmark

designed to overcome the limitations of existing benchmarks, which are inadequate for fine-

tuning and lack comprehensive evaluations, and (2) a novel external-memory-based approach

for knowledge editing that utilizes an embedding model with a vector store. Preliminary

results show that compact embedding models can effectively differentiate the edited and un-

related facts, maintaining high accuracy even when scaled to thousands of edits. Integrating

this approach with parameter-efficient fine-tuning strategies, this research aims to address

all three critical aspects of knowledge editing: generalization, locality, and scalability. The

findings of this study are poised to significantly advance knowledge editing in LLMs, con-

tributing to continual learning and addressing pivotal challenges in modern machine learning,

with potentially far-reaching impacts on the broader AI field.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

In an era where data constantly evolves, the ability of machine learning models to adapt

and learn continuously is indispensable. Continual learning, particularly in fields with non-

stationary data distributions, stands at the forefront of AI challenges, such as recommenda-

tion systems and autonomous vehicles. A primary challenge in this domain is overcoming

catastrophic forgetting, wherein a model abruptly loses knowledge from previous tasks when

exposed to new ones. The study of continual learning is frequently undertaken in the field

of Computer Vision (CV), where one or more image classes are treated as a single task.

The assessment of continual learning in this context involves sequentially training on these

tasks and consistently evaluating the model’s ability to maintain performance on tasks it has

previously learned.

In the realm of Natural Language Processing (NLP), the challenges of continual learning

take on an added dimension. The dynamic and ever-evolving nature of language, partic-

ularly evident in platforms like social media, necessitates LLMs that are capable not only

of continuous learning but also of effectively addressing issues such as misinformation and

biases. As LLMs increasingly become integral in disseminating information and facilitating

decision-making, their ability to remain factually correct and unbiased is crucial for ethical

applications. However, the sporadic nature of knowledge editing in LLMs and the opacity

of their knowledge storage mechanisms pose the question:

Given the unclear nature of how knowledge is stored in LLMs, how do we precisely edit

specific knowledge without impacting other knowledge and capabilities?

Knowledge editing in LLMs, a research field closely related to continual learning, emerges

as a solution. Unlike fine-tuning, which is computationally demanding, knowledge editing

aims to adjust a small subset of parameters or employ external memory/networks for edits.
1



However, existing methods fail to simultaneously achieve generalization, specificity/locality,

and scalability. Consider the task of editing LLMs to recognize "Joe Biden as the US pres-

ident in 2023." In this context, we must consider generalization to paraphrased or similar

prompts, specificity/locality to ensure unrelated facts like "Donald Trump is the US president

in 2020" remain unaffected, and textitscalability in terms of the number of allowable edits

as well as the extra computational resources or memory required. Moreover, current bench-

marks often fall short in comprehensive evaluation, suffering from an insufficient number of

samples and patterns for both generalization and specificity/locality assessments.

To address these challenges, this work proposes two novel contributions:

A new benchmark for knowledge editing in LLMs. This new benchmark augments

the existing benchmark in relation patterns, thereby multiplying the number of paraphrase

prompts and neighbor prompts for separate generalization and specificity/locality evalua-

tion. Additionally, the augmented pattern enables more effective fine-tuning by providing a

much larger number of tokens for training, whereas previous benchmarks only have a sin-

gle statement for fine-tuning, often yielding suboptimal results. The augmentation process

leverages both traditional NLP methods, such as back translation, and modern LLMs, like

GPT-3.5.

A novel method for knowledge editing in LLMs. This approach employs an addi-

tional embedding model to differentiate between prompts related to the edits and those that

are not. A routing technique is then used: if a prompt is related to an edit, it is directed

to the edited model; otherwise, the process remains unchanged. To minimize the addi-

tional memory and computational demands of each edit, we implement parameter-efficient

fine-tuning methods, significantly reducing the number of parameters per edit. Preliminary

results show promise in both embedding models (indicating effective specificity/locality) and

parameter-efficient fine-tuning (suggesting improved generalization and scalability). By inte-

grating these two components, we aim to achieve excellent generalization, specificity/locality,

2



and scalability simultaneously.

Furthermore, this proposal advocates for a more rigorous evaluation process, testing

knowledge editing methods across diverse benchmarks. Existing research often overlooks

the necessity for such comprehensive analysis, a gap we aim to fill. Given the complex

architecture of LLMs, even minor parameter modifications during knowledge editing can

lead to unforeseen consequences, including the risk of catastrophic forgetting beyond simple

factual updates. Our work seeks to meticulously assess the impact of these modifications,

using diverse benchmarks to evaluate the reasoning capabilities and stability of LLMs post-

editing. This in-depth analysis is crucial for ensuring the reliability and effectiveness of

knowledge editing techniques.

Following this introduction, the proposal will continue with a comprehensive chapter on

related works, which can be found in chapter 2. This chapter will provide an in-depth review

of the literature focusing on continual learning and knowledge editing in LLMs. Subsequently,

in chapter 3, we will delve into the specific challenges and open questions within this field.

The methods proposed to address these challenges, along with a discussion of our preliminary

results and key observations, will be detailed in chapter 4. Finally, the proposal will conclude

with chapter 5, which outlines the planned research timeline and the milestones we aim to

achieve.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

This chapter delves into the recent advancements in the fields of continual learning and

knowledge editing in LLMs. The landscape of continual learning in AI has evolved signifi-

cantly over the years, marked by a variety of approaches aimed at mitigating catastrophic

forgetting and enhancing adaptability in dynamic environments. These methods are typi-

cally evaluated using image classification benchmarks, where different classes are segmented

into sequential tasks to measure the model’s performance in continual learning scenarios.

More recently, the research of knowledge editing in LLMs has gained momentum, ad-

dressing the critical need for LLMs to stay factually correct and unbiased. Commonly used

techniques in this area include the use of external memory and parameters with routing,

locate-and-modify, and global optimization. To evaluate these methods, researchers have

repurposed question-answering benchmarks and, more innovatively, employed datasets of

counterfactual statements and their neighboring contexts. The latter presents more chal-

lenges due to the counterfactual nature of the information that requires editing.

In this chapter, we will examine the methodologies and evaluations in both fields, high-

lighting how they preserve learned knowledge while integrating new information, thereby

paving the way for our proposed benchmark and method.

2.1 Continual Learning

2.1.1 Introduction

Continual learning, also known as lifelong learning or incremental learning, is a fundamental

concept in machine learning and artificial intelligence where a model continuously learns

over time by accommodating new knowledge while retaining previously learned information.

This concept is crucial in dynamic environments where data continually evolves, such as
4



autonomous vehicles and surveillance in CV, and chatbots and language translation in NLP.

This chapter explores the fundamentals of continual learning, highlighting its practical

implementation and the challenges it faces in both CV and NLP. We begin by defining

continual learning and addressing its primary challenge: catastrophic forgetting, which is

the tendency of a model to overwrite old information with new data. We then discuss

various scenarios, related research fields, and key methodologies, such as rehearsal methods

and dynamic architecture. Following this, we delve into its application in CV and NLP,

examining notable research, common evaluation techniques, and potential future directions.

Finally, we discuss our contributions to the field, including an improved hard-attention-

to-the-task mechanism and the investigation of alternative continual learning scenarios in

computer vision. These contributions were recognized at the 4th continual learning workshop

during the CVPR conference, where our strategy won the workshop challenge, underscoring

its relevance and impact in the field.

2.1.2 Fundamentals of Continual Learning

Continual learning in machine learning is an approach where a model is progressively trained

on a sequence of data over time, distinct from traditional static machine learning methods.

This approach emulates the human capability to constantly acquire, refine, and transfer skills

and knowledge over a lifetime. The realm of continual learning in AI is extensive, covering

numerous scenarios, each presenting distinct challenges and requirements.

Definitions and Scenarios: The three primary scenarios in continual learning were

initially proposed in van de Ven and Tolias [2018], and these definitions remain widely

accepted:

1. Task Incremental Learning (TIL): In this scenario, the model sequentially learns

a variety of tasks, with the task IDs provided at test time. The primary focus is to

prevent forgetting during the learning of new tasks. A strong baseline approach in TIL
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is to train separate models for each task, however, it’s often impractical in real-world

applications due to resource constraints.

2. Domain Incremental Learning (DIL): Here, the model encounters data from dif-

ferent domains or distributions, while the predictive target remains consistent. The

task IDs are provided during training but not at test time. The primary focus is on

generalizing the acquired knowledge across these domains.

3. Class Incremental Learning (CIL): Similar to DIL, the model learns new tasks

over time. However, the predictive target includes the task IDs, meaning the model

must predict the target and infer which task the sample comes from. CIL, with its

task-agnostic approach, closely resembles real-world applications where models may

have to predict the domain shift during inference.

These three scenarios laid the foundation for continual learning, focusing on different

aspects of the learning, with increasing difficulty. Beyond these initial scenarios, continual

learning has evolved to include the following scenarios to further simulate real-world data

dynamics better:

• Online Continual Learning (OCL): Involves a continuous, one-pass stream of data,

where distinct tasks are not explicitly separated, and task IDs are not available during

both training and testing. This scenario, proposed in Aljundi et al. [2019b], represents

a significant challenge in adapting to new data without the guidance of task identifiers.

• Class-Incremental Learning with Repetition (CIR): Similar to traditional CIL,

but tasks have overlapping data labels, and task IDs are available during training but

not during testing. This scenario, proposed in Hemati et al. [2023], emphasizes the

model’s ability to handle ambiguities in data classification when task boundaries are

not given during the inference.
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• Task-Free Continual Learning (TFCL): Involves tasks with disjoint data labels,

with no task IDs provided during training or testing. This approach, proposed in

Aljundi et al. [2019a], is particularly relevant for scenarios where task identification is

either impossible or impractical.

• Blurry CIL or General Continual Learning (GCL): Characterized by blurred

task boundaries with overlapping data label spaces between tasks. Proposed in Buzzega

et al. [2020] and Bang et al. [2021], this scenario challenges models to adapt to a less

structured learning environment, closely mirroring many real-world applications.

There exists other scenarios focusing on niche applications, however the core objectives

and challenges remain the same. Generally speaking, there are two main objectives in

continual learning Lopez-Paz and Ranzato [2017]:

• Backward transfer (BWT) refers to the influence, positive or negative, that learning

a task has on the performance on previous tasks. A negative BWT indicates catas-

trophic forgetting, while a positive BWT shows the newly learned knowledge helps

with previous tasks.

• Forward transfer (FWT) refers to the influence that learning a task has on performance

on future tasks. A positive FWT signifies zero-shrt learning, usually indicating useful

features learned from past tasks.

Quantifying BWT and FWT involves evaluating the performance of a model on past and

future tasks, respectively, and is crucial for understanding the effectiveness of a continual

learning approach.

In continual learning, we aim to ensure the knowledge learned on any task has a positive

influence on both previous and future tasks, regardless of the settings and scenarios. Given

the myriad of scenarios in continual learning, it’s important to understand their respective

complexities and applicability. Furthermore, with advancements in fields like NLP, we may
7



anticipate the emergence of even more nuanced and complex continual learning scenarios.

The diversity in continual learning scenarios reflects the multifaceted nature of real-world

data and the evolving challenges in AI. Understanding these scenarios helps us develop more

adaptable, efficient, and robust AI systems.

2.1.3 Challenges in Continual Learning

Continual learning offers significant opportunities for creating adaptive and dynamic AI sys-

tems, but also poses unique challenges that are crucial to address for effective and sustainable

learning paradigms, especially in practical real-world deployments.

The primary challenge in continual learning is catastrophic forgetting. This significant

issue, where learning a new task often results in a significant and abrupt degradation of per-

formance on previously learned tasks, is observed in neural networks using back-propagation

optimization McCloskey and Cohen [1989]. This effect typically occurs in scenarios where

data distribution changes over time, such as learning on a sequence of different tasks. These

scenarios defy the independent and identically distributed (IID) assumption of machine

learning and invalidate conventional learning methods, necessitating the development of

paradigms that operate under non-IID conditions.

Closely related to catastrophic forgetting, the stability-plasticity dilemma is central to

continual learning. This challenge involves balancing the ability to learn new tasks (plas-

ticity) with retaining knowledge of old tasks (stability) Mermillod et al. [2013]. These two

abilities are often in conflict: excessive stability can hinder the learning of new information,

while excessive plasticity may lead to rapid and severe forgetting. This dilemma is partic-

ularly challenging in scenarios where datasets from previous tasks are unavailable during

the learning of new tasks, or in situations requiring learning from scratch. In such cases, it

becomes difficult to leverage the power of retraining on previous samples or a pre-trained

representation that generalizes well across all tasks.
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Other challenges arise in applying continual learning to real-world scenarios. For example,

the computational demands for updating parameters to balance stability and plasticity may

be impractical in some cases. Scalability issues also emerge, particularly for methods that

require storing samples from previously trained tasks. Additionally, defining the continual

learning scenario itself poses a challenge, as there may be additional parameters and realistic

considerations not covered in existing scenarios.

2.1.4 Related Areas

Continual learning, as a paradigm, intersects with numerous other fields in machine learning,

each contributing uniquely to its core objectives. These fields address the challenges of

adapting to new data, retaining, altering or forgetting previously learned information, and

evolving in dynamic environments. This chapter delves into the intricate tapestry of related

fields that are integral to continual learning. Each of these research areas not only contributes

to the continual learning framework but also provides a unique lens through which we can

examine and enhance the adaptability and intelligence of AI systems.

Multi-Task Learning (MTL) is a vital field closely related to continual learning Craw-

shaw [2020], Zhang and Yang [2021]. It involves training a model on multiple tasks simulta-

neously, allowing it to learn shared representations that are beneficial across different tasks.

By learning commonalities between tasks, MTL methods can efficiently transfer knowledge

across tasks, improving their overall performance and adaptability. This approach is partic-

ularly relevant to continual learning as it fosters the development of versatile models capable

of handling a variety of tasks without needing separate training for each. Notably, the modu-

lar architecture of MTL is shared by continual learning methods, such as PathNet Fernando

et al. [2017]. Moreover, MTL is often considered an upper bound for continual learning due

to its unrestricted knowledge transfer in both directions.

Transfer Learning (TL) focuses on leveraging knowledge acquired from previously en-

9



countered tasks to enhance performance on the current task Zhuang et al. [2020]. Within the

context of continual learning, knowledge transfer operates in both directions: FWT utilizes

knowledge from past tasks to improve learning on the current task, while BWT strengthens

the model’s understanding of previous tasks after learning the current one. While continual

learning is more concerned backward transfer and the mitigation of catastrophic forgetting,

TL primarily emphasizes forward transfer and target task performance. However, specific

approaches within TL, such as feature and parameter -based ones, remain highly relevant to

continual learning. Feature representation transfer aims to discover representations that gen-

eralize across diverse tasks, while parameter transfer focuses on sharing parameters between

different tasks, ultimately promoting efficient knowledge transfer and enhanced performance.

Meta-Learning, also described as "learning to learn", optimizes models to adapt to

new tasks using past experiences Hospedales et al. [2021]. This methodology parallels con-

tinual learning’s aim to adapt through a series of tasks, although it primarily focuses on

rapid adaptation rather than addressing catastrophic forgetting. Nonetheless, several con-

tinual learning methods, such as MER Riemer et al. [2018], utilize meta-learning approaches,

particularly incorporating replay samples to mitigate the negative impact of new tasks on

previously acquired knowledge.

Selective Forgetting, also referred to as graceful or active forgetting, is an emerg-

ing field closely linked to continual learning Wang et al. [2023d]. This area focuses on

strategically discarding outdated, inaccurate, or irrelevant information, a crucial process for

maintaining a model’s learning capacity and generalization while safeguarding critical past

knowledge. By shedding light on how knowledge is stored within the model’s parameters,

selective forgetting offers valuable insights that can be leveraged to mitigate catastrophic

forgetting in continual learning scenarios.

Knowledge Editing (in LLMs) involves actively updating a model’s knowledge base

to reflect new or corrected information Mazzia et al. [2023], Wang et al. [2023c]. Similar
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to selective forgetting, this process helps identify and understand how knowledge is stored

within the model. While encompassing both knowledge updating and continuous learning

aspects, knowledge editing may not always involve explicit network training. Notably, the

core objectives of these continual learning and knowledge editng exhibit significant overlap,

albeit within distinct settings. Knowledge editing primarily focuses on specific edits without

altering the model’s predictive target, while continual learning often involves learning new

tasks encompassing different domains or data labels. Knowledge editing methods and contin-

ual learning methods can mutually benefit from each other, particularly within the context of

regularization-based approaches where both areas employ regularization to prevent the loss

of previously acquired knowledge. A more comprehensive discussion of knowledge editing

will be presented in Section 2.2.

In summary, these areas collectively contribute to the advancement of continual learning,

each offering unique strategies to enhance AI systems’ adaptability, knowledge retention,

and task versatility.

2.1.5 Common Approaches in Continual Learning

Various methods have been proposed to address the challenges in continual learning, particu-

larly focusing on backward transfer and mitigating catastrophic forgetting. We discuss com-

mon methodologies in continual learning, categorized into three approaches: regularization-

based, replay-based, architecture-based.

Regularization-based Approach

These methods involves adding explicit regularization terms or manipulating the optimiza-

tion process to accommodate both new and old tasks. They can be further divided into the

following three subcategories:

Prior-Focused Weight Regularization: These methods focus on regularizing the up-

11



dates of network parameters to preserve knowledge from previous tasks. By applying a

regularization or penalty term, they constrain the parameters deemed important for past

tasks. For instance, Elastic Weight Consolidation (EWC) determine importance in Bayesian

Framework based on the Fisher information matrix calculated after training each task Kirk-

patrick et al. [2017]. Synaptic Intelligence (SI) approximates parameter importance by mea-

suring the accumulated update distance during training Zenke et al. [2017]. Memory Aware

Synapses (MAS) assesses importance by the sensitivity of the predicted output to changes

in a parameter Aljundi et al. [2018]. Other variations such as Riemannian Walk Chaudhry

et al. [2018a], which combines EWC and SI principles, maintain the same goal: to minimize

changes in parameters crucial for the prediction of previous tasks. After assessing parameter

importance, a quadratic penalty is usually added to the loss function to penalize significant

variations in these important parameters.

Data-Focused Function Regularization: This approach aims to preserve previously

acquired knowledge by focusing on the predictive function of the model. It involves setting

constraints on the predictive outcomes of the intermediate or final layers of the network to en-

sure the model remains aligned with prior tasks, thereby preserving learned knowledge. This

is typically achieved through various forms of knowledge distillation Hinton et al. [2015]. No-

table among these is Learning without Forgetting (LwF), which proposes a training process

that focuses on new task samples while simultaneously constraining the predictive output for

samples from older tasks Li and Hoiem [2017]. To reduce the need for storing image samples

and lower memory requirements, Learning without Memorizing (LwM) was developed. This

method enables the model to emulate the attention patterns of a previously trained model

(teacher model) during training on a new task Dhar et al. [2019]. Extending the basic con-

cept of LwF, Encoder Based Lifelong Learning (EBLL) preserves the feature representations

of task-specific autoencoders trained on previous tasks, in addition to employing knowledge

distillation loss Rannen et al. [2017]. Deep Model Consolidation (DMC), involves training

12



a separate model for the new class and then consolidating it with the model trained on

previous tasks, achieving this integration through knowledge distillation Zhang et al. [2020].

Gradient Projection: This method alters the optimization process directly, eliminat-

ing the need for additional objectives or regularization terms. A key example is Gradient

Episodic Memory (GEM) Lopez-Paz and Ranzato [2017]. When training on a new task,

GEM assesses the gradient of the loss function for the current task against the gradients

of the samples from the previous tasks preserved in memory. It then adjusts the gradients

to ensure that the learning process does not increase the loss for earlier tasks. Averaged

Gradient Episodic Memory (A-GEM) relaxed this approach by using an average gradient

derived from samples of previous tasks in memory, which reduces computational intensity

Chaudhry et al. [2018b].

Replay-based Approach

Replay-based methods in continual learning focus on approximating and recovering old data

distributions by using stored or synthetic samples or representations from previous tasks.

By integrating the old data with the new during training, the model achieves replay or

rehearsal, thereby mitigating forgetting. Replay-based approaches can be divided into two

subcategories based on the nature of the replay samples:

Experience Replay: These methods store select training samples from previous tasks.

The primary challenge lies in managing the limited memory buffer to adhere to the prin-

ciples of continual learning, which discourages extensive reliance on past data. To fully

utilize the replay samples, experience replay methods are rarely standalone solutions, but

often paired with regulation-based methods for better results. The emphasis in experience

replay is on the strategic selection of samples and efficient memory utilization. For instance,

Incremental Classifier and Representation Learning (iCaRL) dynamically maintains a set of

exemplars, chosen for their class representativeness, and incorporates them into new task
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training Rebuffi et al. [2017]. It also utilizes distillation loss, integrating data-focused func-

tion regularization, and performs classification using Nearest-Mean-of-Exemplars, addressing

the issue of unusable classification heads from previous classes due to network representa-

tion updates. Dark Experience Replay (DER) and its variant DER++ blend knowledge

distillation with standard experience replay by storing and replaying not only past task sam-

ples but also the network’s predictions on this data Buzzega et al. [2020]. Another notable

method is Meta-Experience Replay (MER), which, like other replay methods, trains with

a mixed batch of past task samples Riemer et al. [2018]. However, MER also incorporates

meta-learning, assessing whether gradient updates impact performance on stored samples,

similar to GEM and A-GEM. It’s important to note that some literature such as Wang et al.

[2023a] categorizes these methods as regularization-based due to their extensive use of replay

samples during optimization.

Generative Replay or Pseudo Replay: Different from exact experience replay, this

method does not necessitate explicit storage of past learning samples. Instead, replay samples

are generated using advanced generative models such as variational autoencoder (VAE) or

generative adversarial network (GAN) Kingma and Welling [2013], Goodfellow et al. [2014].

This is particularly advantageous when training samples cannot be stored, due to concerns

like privacy, or the memory buffer size is too small for effective experience replay. Deep

Generative Replay (DGR) laid the foundation for generative replay methods, using a GAN

to continuously learn and generate replay samples, ensuring the classifier does not forget

previous tasks Shin et al. [2017]. Memory Replay GANs (MeRGAN) recognized that se-

quential fine tuning of generative models introduces forgetting, and thereby employs replay

alignment, which is essentially knowledge distillation, on the generative model, to prevent

the forgetting of the generative model, and thereby improve the performance of the classifier

Wu et al. [2018]. Additionally, FearNet uses a dual-memory system, akin to human memory

systems, where long-term memory is consolidated by generative replay with a VAE Kemker
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and Kanan [2017].

Architecture-based Approach

These methods rely on network architecture to prevent catastrophic forgetting. Often re-

ferred to as the parameter-isolation approach De Lange et al. [2021], these methods isolate

different parts of the network for different tasks. By restricting parameter updates associated

with previous tasks, they aim to significantly reduce or completely overcome catastrophic

forgetting in TIL scenario. However, they face challenges in scenarios where task IDs are

not available during testing, as it is challenging to select the appropriate network segment

for an given sample. Generally speaking, there are two distinct approaches on how to isolate

the network parameters:

Fixed Network Methods: In this approach, a fixed neural network structure is used,

maintaining the same structure throughout the continual learning process for scalability. On

the other hand, the learning capability is also limited. These methods segment the fixed

network into dedicated sections for different tasks, often using task-specific binary masks.

PathNet, for example, employs a genetic algorithm to find an optimal pathway for each task

Fernando et al. [2017]. PackNet achieves this segmentation by pruning and retraining post-

training to identify necessary parameters for the current task Mallya and Lazebnik [2018].

P iggyback, on the other hand, employs an end-to-end training approach on pre-trained

networks, using the gradient of the mask threshold as binary masks are non-differentiable

Mallya et al. [2018]. Hard Attention to the Task (HAT) differs by using trainable sigmoid

masks with a scale parameter to simulate binary masks, training the masks and backbone

parameters simultaneously, providing more task learning flexibility Serra et al. [2018].

Dynamic Architectures: This approach involves allocating extra parameters for each

new task, focusing on efficient parameter reuse and knowledge transfer. Progressive Neural

Networks (PNN) add new columns (subnetworks) for each task, connected laterally to pre-
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vious columns, to leverage past learning Rusu et al. [2016]. This approach, however, leads to

a parameter increase proportional to the number of tasks. Expert Gate also adopts a multi-

column approach, with each column specializing in a task and a routing module acting as a

gate Aljundi et al. [2017]. To control parameter growth, Dynamically Expandable Networks

(DEN) selectively retrain parameters, building sparse connections between layers Yoon et al.

[2017]. If performance is suboptimal, DEN expands by adding neurons. If the retrained

parameters deviate significantly, they are duplicated, maintaining one set for previous tasks

and updating the other for current tasks.

Each of these approaches presents distinct advantages and limitations. Currently, it is

challenging to identify a universally superior method, as the effectiveness often depends

on specific contextual factors. For example, replay-based approaches are straightforward

and effective but may be resource-intensive, requiring significant memory for replay samples

or generative models for pseudo replay. Conversely, architecture-based methods like HAT

excel when task labels are available during inference, achieving zero forgetting while accom-

modating new learning. This diversity, coupled with various continual learning scenarios,

underscores the field’s complexity and dynamism.

Moreover, these approaches are not mutually exclusive. In fact, many of the methods

discussed are combinations of different strategies. Generally, integrating various approaches

often yields better results than standalone solutions. In addition to these strategies, many

methods borrow ideas from related fields. Representation learning, for instance, enhances

continual learning methods by providing generalized representations across tasks. This often

bridges the gap, enabling architecture-based methods to perform task-agnostic predictions.

For example, Continual Learning based on Out-of-Distribution (OOD) detection and Task

Masking (CLOM) combines supervised contrastive learning (SupCon) Khosla et al. [2020]

with HAT Serra et al. [2018]. This combination creates a feature space robust for OOD

detection, facilitating task-agnostic inference Kim et al. [2022]. Methods like L2P Wang
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et al. [2022b] and DualPrompt Wang et al. [2022a] utilize vision foundation models, such as

pretrained Vision Transformers (ViTs) Dosovitskiy et al. [2020]. These models adapt based

on prompting, creating a dynamic prompt pool that adjusts to different tasks and achieves

state-of-the-art performance across multiple benchmarks. Notably, in methods like L2P and

DualPrompt, the training process primarily involves updating the prompt pool, while the

network remains unchanged, significantly minimizing forgetting during training.

Reflecting on these recent advancements, a prominent trend in the development of con-

tinual learning is the fusion of concepts from other disciplines, such as meta-learning and

representation learning, while adapting to recent architectural innovations like transformers

Vaswani et al. [2017].

2.1.6 Continual Learning in CV

Continual learning has seen extensive research in the domain of CV. The three commonly

used scenarios of continual learning (TIL, DIL, and CIL) van de Ven and Tolias [2018] and

most notable methods, such as EWC (Kirkpatrick et al. [2017]) , LwF (Li and Hoiem [2017]),

and HAT (Serra et al. [2018]), were all proposed in the context of CV. This is partially due

to the fact that image classification can be easily split into sequential tasks suitable for

continual learning. Furthermore, image classification models, often trained from scratch, are

easier to train and evaluate for continual learning.

The evaluation of continual learning methods in CV typically involves datasets like

MNIST LeCun et al. [1998], CIFAR Krizhevsky et al. [2009], and TinyImageNet Le and Yang

[2015], where images with different classes are split into separate tasks based on the scenario

requirement. Average accuracy across the sequence of tasks is the most common metric,

alongside forgetting measured by reductions in accuracy on previous tasks. For replay-based

and dynamic architecture methods, additional metrics include memory consumption and

computational requirements to ensure scalability. However, the focus of continual learn-
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ing research in CV has primarily been on mitigating catastrophic forgetting, neglecting the

evaluation for knowledge transfer, especially forward transfer (how knowledge gained from

previous tasks benefits future tasks).

More nuanced scenarios, such as OCL (one-pass data stream) Aljundi et al. [2019b]

and GCL (no task boundaries) Buzzega et al. [2020], Bang et al. [2021], have emerged

and gained traction in this field. Additionally, the rise of vision foundation models like

ViT Dosovitskiy et al. [2020] mark a shift towards pre-trained models in continual learning

research for CV. The generalized representations learned by these models naturally lend

themselves to continual learning due to their strong cross-task generalization capabilities.

This evolution in CV sets a precedent for continual learning in NLP, where LLMs have

recently become mainstream Bommasani et al. [2021].

2.1.7 Continual Learning in NLP

Continual learning is crucial for NLP tasks due to the rapidly evolving nature of language

and constantly emerging new information. While it shares some similarities with continual

learning in CV, continual learning in NLP presents unique challenges and opportunities.

• Domain-incremental learning: In NLP, continual learning predominantly focuses

on domain-incremental learning, with or without task IDs. Unlike CV, where the

predictive target varies with image classes, in NLP, it’s the domain shift of input data

that’s pivotal, since the predictive target remains constant across tasks.

• Scalability Issue: NLP faces unique scalability challenges, such as the computational

cost of processing large text corpora and the memory requirements for the training

and inference of LLMs. These factors make some methods, like gradient projection or

dynamic network structures, much less feasible in NLP compared to CV.

• Pre-trained LLMs: The rise of pre-trained LLMs like BERT and GPT-3 provides a
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powerful foundation for NLP Bommasani et al. [2021]. These LLMs, with their general-

izable representations of language, require less fine-tuning for specific tasks compared

to traditional CV models. This enables researchers to focus on knowledge transfer

and leverage the power of pre-training for continual learning. Additionally, the abil-

ity of LLMs to perform in-context learning paves the way for new continual learning

approaches specifically tailored to them.

Several methods have been proposed for continual learning in NLP, often adapting ideas

from CV Ke and Liu [2022]. For instance, Regularized Memory Recall with Domain Shift

Estimation (RMR_DSE) employs EWC-based Kirkpatrick et al. [2017] regularization to

address catastrophic forgetting Li et al. [2022a]. ExtendNER Monaikul et al. [2021], Lifelong

Intent Detection (LID) Liu et al. [2021], and Continual Few-shot Intent Detection (CFID) Li

et al. [2022b] utilize knowledge distillation, similar to LwF Li and Hoiem [2017]. Parameter

isolation methods, such as BERT-based Continual Learning (B-CL) Ke et al. [2021] and

Continual Post-Training (CPT) Ke et al. [2022], uses task-specific binary masks proposed

in HAT Serra et al. [2018] to prevent catastrophic forgetting by assigning parameters for

different tasks. Replay methods have also been adapted for NLP. For instance, Continual-T0

(CT0) reserves a small proportion of training data, typically up to 1%, from previous tasks for

exact experience replay Scialom et al. [2022]. Prompt Conditioned VAE for Lifelong Learning

(PCLL) employs a conditional variational autoencoder (CVAE) to generate representative

samples for pseudo replay Zhao et al. [2022].

An approach unique to continual learning in NLP is the instruction-based approach, lever-

aging the in-context learning capability of LLMs. This approach, exemplified by Continual

Learning from Task Instructions (ConTinTin) Yin et al. [2022], uses specific instructions for

each task to enable knowledge transfer by sharing the same trained LLM, thus offering a

novel pathway for continual learning.

Despite these advancements, a standardized benchmark for evaluating continual learning
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in NLP is yet to be established. This highlights the ongoing need for comprehensive frame-

works to assess these novel methodologies effectively. While accuracy is a common metric

for continual learning in CV, it is often insufficient for NLP tasks that has different objec-

tives, such as named entity recognition, summarizing, intent classification, etc.. Developing

effective metrics for evaluating knowledge transfer and catastrophic forgetting remains an

ongoing challenge. Currently, most evaluation strategies involve sequencing standard NLP

tasks, a method that is often limited by the similarity of these tasks, complicating the as-

sessment of catastrophic forgetting. A potential solution to this issue could be the creation

of benchmarks that encompass a more diverse array of NLP tasks, varying in both similarity

and complexity, to provide a more robust evaluation of continual learning methods.

The field of continual learning in NLP, particularly with LLMs, is rapidly advancing but

faces notable challenges like catastrophic forgetting and scalability issue. Empirical studies

reveal that LLMs often lose their broad knowledge base and reasoning skills during intensive

domain-specific fine-tuning. This raises a critical question: how can we fine-tune LLMs on

specific datasets without compromising their general capabilities? Addressing this question

involves exploring strategies that maintain a balance between the specialized performance in

specific domains and the preservation of the broad, generalist nature of LLMs. Additionally,

delving into how these models scale with increasing data size or complexity is crucial. Overall,

continual learning in NLP continues to be a dynamic research area, with significant potential

for breakthroughs in model robustness, adaptability, and scalability.

2.1.8 Our Contributions

Our contributions to continual learning are twofold. First, we implemented a new Hard-

Attention-to-the-Task (HAT) library called HAT-CL, which offers improved performance,

versatile application, and seamless integration with existing frameworks and libraries. Sec-

ond, we tackled the Class-Incremental Learning with Repetition (CIR) scenario, integrating
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HAT-CL with other strategies to address the issue of catastrophic forgetting in such a real-

istic dynamic data environment.

HAT-CL: An Improved Hard-Attention-to-the-Task Implementation

To implement the forward pass of HAT, each weighted layer L is coupled with an embedding

etl . These embeddings control the network’s output during the forward pass by an attention

mechanism, where the layer output hl is modulated by a mask atl :

atl(s) = σ(setl)

h′l = atl(s)⊙ hl

(2.1)

Here, the attention gate σ is represented by the sigmoid function, which modulates

the mask’s selectivity, referred to as the ’hardness’ of the mask. During the forward pass,

the scaling factor s is adjusted within the range of 0 to a predefined upper limit smax.

This adjustment is crucial as it balances the learning focus between the mask embeddings

themselves etl and the network weights modulated by these masks. A smaller s leads to a

"smoother" mask, promoting the training of the mask embeddings, while a larger s results

in a "harder" mask, focusing the training more on underlying weights.

During the backward pass, to prevent interference with previously learned tasks, we zero

out the gradients of parameters associated with the previous tasks, by ultilizing the masks

from the previous tasks. Specifically, a parameter is preserved (by nullifying the gradient) if

it was not masked in any of the previous tasks. Mathematically, the process is represented

as:

a
≤(t−1)
l = max

(
a
(t−1)
l , a

≤(t−2)
l

)
, where s = ∞

g′tl,ij =
[
1−min

(
a
≤(t−1)
l,i , a

≤(t−1)
l−1,j

)]
gtl,ij

(2.2)

Unlike the original implementation, where s takes a maximum finite value (smax), we
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propose setting s to infinity during the backward pass. This change yields strictly binary

masks, enforcing complete isolation of task-specific parameters and reducing interference

between tasks to absolute zero.

The HAT mechanism, as defined by equations (2.1) and (2.2), effectively isolates task-

specific parameters and controls gradient flow to prevent interference from new tasks. To

address the slow training of masks due to smaller gradients, Serra et al. [2018] introduce an

adjusted gradient for the mask embeddings ql,i:

q′l,i =
smax

[
cosh

(
setl,i

)
+ 1
]

s
[
cosh

(
etl,i
)
+ 1
] ql,i (2.3)

To ensure, numerical stability, Serra et al. [2018] clamps the mask embeddings etl,i. And

to ensure a balance between the training of mask embeddings and the associated weights,

the scale of masks increases linearly from a really small number to smax during each training

epoch:

s =
1

smax
+
(
smax −

1

smax

) b− 1

B − 1
(2.4)

However, this original scaling strategy proposed in Serra et al. [2018] might result in slow

convergence, especially in smaller neural networks, demonstrated in Duan [2023]. To prevent

such issue, we propose to use the following scaling strategy to promote faster convergence:

s =
smax

2
·
(
1 + cos (p ∗ 2π)

)
(2.5)

where p ∈ [0, 1], indicating the progress in the current unit training time. The new scaling

strategy, coupled with the dense initialization the embeddings (initialized to constant of 1s)

ensures that the weights are properly aligned to the target before the training of masks,

leading to much faster convergence, demonstrated in Duan [2023].

Moreover, our approach incorporates a layer-wise regularization term with a task quota.
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This term encourages efficient utilization of masks across multiple tasks, ensuring each task

contributes optimally to the model’s knowledge base:

Rt =
L−1∑
l=0

max

(∑
i a

t
l,i(1− a<t

l,i )∑
i(1− a<t

l,i )
− 1

T
, 0

)
(2.6)

Finally, our implementation leverages PyTorch hooks, offering a more flexible and stream-

lined approach. This allows for easier integration with various network architectures and

simplifies the optimization process, making HAT-CL a versatile tool for continual learning

research and applications.

Tackling CIR with HAT and Other Strategies

During the Computer Vision and Pattern Recognition (CVPR) continual learning workshop,

we were awarded the first prize in the challenge focused on CIR Hemati et al. [2023]. This

challenge aims to simulate more realistic learning scenarios by requiring models to learn on

a stream of data with randomly reappearing classes, without forgetting previously acquired

knowledge. Our strategy combines SupCon’s contrastive learning Khosla et al. [2020], the

HAT model Serra et al. [2018], Duan [2023], and a new technique we developed: momentum-

based test-time logit averaging. The training is divided into two phases, similar to the

approach in CLOM Kim et al. [2022].

Contrastive Learning Phase: In this phase, we train the HAT model using SupCon’s

contrastive loss function. This function aims to make the model’s feature vectors more similar

for the same class and more different for different classes. The loss function is defined as:

L =
N∑
i=1

max
(
0, D(f(xai ), f(x

p
i ))−D(f(xai ), f(x

n
i )) + α

)
(2.7)

Here, f(x) represents the HAT backbone model, generating an embedded feature vector

for input x, which includes the training image and the task index. The HAT mechanism
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segments the backbone model, isolating task-dependent parameters, and therefore preserving

the exact weight for any specific task. D(x, y) is a distance function, while xai , x
p
i , and xni

denote the anchor, positive, and negative samples, respectively. α is a margin parameter,

and N signifies the number of samples in a batch.

Classification Phase: Subsequently, the backbone is fine-tuned with a task-specific

classification head. For each task t, the model focuses on the classes present in the current

task, keeping the knowledge of other classes intact by freezing the corresponding classification

head.

A key feature of our method is how we use the model’s learned information from past

tasks. After the model learns from each new task, we save its current state, which we call a

"snapshot." These snapshots act as reference points for the model’s knowledge at different

stages. We use either the Hard Attention to the Task (HAT) approach or copies of the model

to save these snapshots, depending on how much memory we have available. The HAT

method is particularly useful here because it ensures that the specific parameters related to

each task are kept intact. This means our model can accurately recall and reproduce the

outcomes from any previous task. Additionally, our enhanced version of HAT, which we refer

to as HAT-CL, has shown superior performance. This is mainly due to improvements in the

initialization and scaling strategy. It’s especially effective for smaller models and achieves

better results in fewer training cycles, which is crucial for this challenge.

During the prediction, we carefully examined the generated logits from each snapshot.

We discovered that the model’s performance improves significantly when we average these

logits from the most recent snapshots for each class. We call this method "momentum-based

test-time logit averaging." To predict for a specific class, we take the logits from the latest

snapshots that were trained on that class. We then calculate a weighted average, giving

more importance to the most recent snapshots. This technique helps to counter any bias

that might come from a single snapshot, which may not be fully representative if it was
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trained on a limited set of classes.

By combining this logit averaging with other techniques, like test-time augmentation,

our model’s prediction accuracy significantly improved. This shows the effectiveness of our

approach in managing the complex and changing nature of CIR in computer vision.

2.2 Knowledge Editing in LLMs

2.2.1 Introduction

LLMs have emerged as powerful tools in artificial intelligence, demonstrating remarkable ca-

pabilities in understanding and generating human language Brown et al. [2020], Bommasani

et al. [2021]. LLMs are being applied in various domains, including reasoning, question an-

swering, chatbot, document embedding, and more. As we rely increasingly on LLMs for daily

tasks, the consequences of their errors become increasingly significant. A critical challenge

lies in the frequent occurrence of outdated or inaccurate information within LLMs, often

stemming from their outdated training data. The dynamic nature of information necessi-

tates the development of effective techniques to update and correct such information.

Complete re-training of the entire LLM to update its knowledge base is often compu-

tationally expensive, time-consuming, and energy-intensive, posing a significant barrier to

continuous improvement. This is especially true for large models with billions of parameters,

where re-training can take days or even weeks. Knowledge editing offers a more efficient and

resource-friendly alternative by directly modifying specific knowledge within the LLM’s pa-

rameters. This ensures that LLMs remain current and provide accurate information, essential

for their reliability and usefulness in various applications.

However, implementing knowledge editing is not without its challenges. Similar to con-

tinual learning, even minor modifications can potentially lead to performance degradation on

previously learned tasks or trigger catastrophic forgetting McCloskey and Cohen [1989]. Nu-
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merous empirical studies, such as Meng et al. [2022b], Wang et al. [2023b], Yao et al. [2023]

have shown that fine-tuning on a single fact can significantly increase the LLM’s probability

to make mistakes on related, but unchanged, facts.

Further complicating matters, unlike traditional knowledge base systems that explicitly

store and manage information, LLMs implicitly encode knowledge and tasks within their pa-

rameters. This makes it difficult to directly access, interpret, or alter their internal processes

and memory without triggering unwanted changes, posing a significant barrier to accurate

and effective knowledge editing.

This chapter delves into the intricacies of knowledge editing in LLMs. The next section

delves into the historical and current research in knowledge editing, outlining key devel-

opments and contributions in the field. Then, we are going to discuss the evaluation and

benchmarks used to assess the performance of knowledge editing techniques.

2.2.2 Related Works

Knowledge editing in LLMs has attracted growing attention in recent years. Existing ap-

proaches can be broadly categorized into three distinct categories based on how new knowl-

edge is incorporated into the system: external memorization, global optimization, and local

modification Wang et al. [2023c]. Each category exhibits unique advantages in addressing

the challenges of knowledge editing in LLMs.

External Memorization Approach

External memorization methods employ additional memory components or parameters to

store new information, thereby avoiding changes to the pre-trained model’s weights.

• Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model

(SERAC) exemplifies this approach, employing a scope classifier and a counterfactual

model, both trained on edited knowledge Mitchell et al. [2022]. When a new prompt
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comes in, SERAC will determine if the prompt is relevant to the edited knowledge

by the scope classifier. If so, the completion task will be routed into a counterfactual

model, which is another LLM but usually smaller compared to the original one.

• In-Context Knowledge Editing (IKE) utilizes a similar retrieval-augmented ap-

proach Zheng et al. [2023]. By prompting the LLMs with up to 32 demonstrations

of the edited knowledge, they alter the completion trajectory and learn to edit their

knowledge in context. This approach has been adapted in various works like Mem-

Prompt Madaan et al. [2022] and Memory-based Editing for Large Language Mod-

els (MeLLo) Zhong et al. [2023] for user-instruction-based feedback and multi-hop

question-answering (QA) scenarios.

• Transformer-Patcher (T-Patcher) diverges from the aforementioned memory-based

methods, shifting the model’s behavior by adding one neuron in the last feed-forward

layer of the transformer model for each edit Huang et al. [2023]. This concept resembles

other parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA) Hu

et al. [2021]. T-Patcher has also proven effective for sequential editing scenarios with

thousands of edits.

• General Retrieval Adaptors for Continual Editing (GRACE) embeds a re-

trieval component within a transformer layer by recording edit-specific activations

Hartvigsen et al. [2022]. When a prompt triggers a match with a stored activation, the

corresponding adapter is activated, altering the network’s behavior and completing the

edit. GRACE has shown promising results in sequential editing scenarios.

Overall, the external memorization approach stands out for its simplicity, as it avoids

direct modifications to the base model’s parameter weights, which could be instrumental in

mitigating catastrophic forgetting. This approach also exhibits strong scalability in sequen-

tial editing scenarios, such as the one proposed in Zhong et al. [2023], primarily due to the
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ease of isolation of edits in external memory components or parameters. However, this ap-

proach is not without its drawbacks. The addition of extra memory elements or parameters

can lead to increased computational cost and routing demands, potentially prolonging infer-

ence times. Moreover, its impact on language processing remains for further investigation,

particularly in complex scenarios.

Global Optimization Approach

Global optimization approach in knowledge editing involves updating all or a significant por-

tion of the parameters in LLMs. This approach does not specifically locate where knowledge

is stored within LLMs, but rather treats the model as a holistic entity during the editing

process.

• Fine-tuning (with Constraints) A common method in this category is fine-tuning.

Naive fine-tuning could serve as a baseline for knowledge editing, such as Zheng et al.

[2023]. However, it often leads to suboptimal knowledge retention, as related but

unedited knowledge could be affected. To address this issue, L2 or L∞ constraints

are introduced to regularization the updates in the model’s parameters Mazzia et al.

[2023], Meng et al. [2022b]. Additionally, methods employing the Kullback–Leibler

(KL) divergence in loss functions have been used to regulate the network’s weights by

reducing the divergence between the network’s output on prior and new tasks Mazzia

et al. [2023], Mitchell et al. [2021]. Another strategy involves limiting updates to specific

layers or components in the LLMs. For instance, fine-tuning a single feedforward

network (FFN) layer in LLMs has proven to be a stronger baseline compared to naive

fine-tuning, as seen in Meng et al. [2022b], Huang et al. [2023].

• KnowledgeEditor is a meta-learning-based method De Cao et al. [2021]. It trains a

bidirectioanl-LSTM Schmidhuber et al. [1997] as a hypernetwork Ha et al. [2017] via
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constrained optimization to predict the weight update for a specific FFN layer of the

LLMs at the inference time. However, it has been primarily experimented with single

batch edits, as sequential edits with accumulated updates from the meta-learner can

deviate the model significantly from its original weights.

• Model Editor Networks with Gradient Decomposition (MEND) implements a

method similar to KnowledgeEditor but utilizes a collection of multilayer perceptrons

(MLPs) instead of a single meta-learner Mitchell et al. [2021]. Another significant

difference is its use of low-rank decomposition and parameterization of the gradients,

rather than direct gradient updates, which yields better results on multiple datasets.

Despite these advancements, global optimization methods face significant challenges

Mazzia et al. [2023], Yao et al. [2023]. They generally show moderate performance on simpler

datasets but underperform in more complex scenarios. Notably, these methods struggle to

scale with an increasing number of edits in a single batch, often failing when edits exceed

a certain threshold (e.g., 100 edits). Sequential editing, involving a series of batched edits,

also poses a problem for these methods. Moreover, meta-learning or hypernetwork-based

methods like KnowledgeEditor and MEND tend to be memory-intensive during training and

inference, posing a disadvantage in certain applications.

Local Modification Approach

Local modification approach is another approach that involves parameter change. However,

unlike global approaches, which update an untargeted portion of parameters of the LLM,

local modification approaches leverage a "locate and modify" methodology, aiming to identify

and modify only the parameters relevant to the specific target knowledge being edited. This

targeted approach aims to minimize unnecessary changes in the network, thereby mitigating

catastrophic forgetting.

29



• Knowledge Neuron (KN) identifies the neurons relevant to an edited statement

by altering the weights of neurons in FFN layers from 0 to their original weights Dai

et al. [2021]. This process assesses the cumulative change in the probability of the tar-

get statement, identifying neurons with higher saliency towards the edited statement.

Updates to these salient neurons are conducted via a scaled vector based on the word

embeddings of the original and the edited target. Notably, the authors observed that a

significant portion of knowledge neurons reside in the top layers of the LLM, occupying

up to 40% of the neurons in a single FFN layer.

• Rank-One Model Editing (ROME) takes a different approach by treating the

update of an FFN layer as a whole Meng et al. [2022b]. Based on the theoretical

premise that the second MLP layer in an FFN encodes the knowledge subject to

editing, ROME modifies the weight matrix of this specific layer to enforce the desired

key-value pair association. The key is constructed using the neuron activations of the

text containing the subject over multiple passes, while the value is derived from the

optimization process that minimizes predictive loss and the KL divergence to control

output deviation from the original model.

• Mass-Editing Memory in a Transformer (MEMIT) extends ROME’s capabil-

ities to support batched editing of multiple FFN layers within the LLM Meng et al.

[2022c]. This overcomes the inherent limitation of ROME, which restricts editing to

single facts at a time. By incorporating multiple optimization objectives corresponding

to multiple facts, MEMIT allows for efficient batched updates, leading to significantly

improved performance compared to the sequential editing of ROME.

Local modification methods, particularly MEMIT, have demonstrated competitive per-

formance in various comparative studies Yao et al. [2023], Wang et al. [2023b], Mazzia et al.

[2023]. They offer valuable insights into the interpretability of LLMs by isolating the spe-
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cific targeted factual association from the vast amount of knowledge and skills embedded

within the model. However, the computation cost of each edit could be significant, and often

requires hyperparameter search for different LLM architectures.

These three distinct approaches—external memorization, global optimization, and local

modification—lay a robust foundation for advancing the field of knowledge editing in LLMs.

Each contributes unique insights and strategies to the goal of making specific edits while

striving to preserve the integrity of the model’s extensive knowledge base. Among these, the

external memorization approach, particularly exemplified by SERAC, demonstrates superior

performance across various metrics Yao et al. [2023]. However, it’s crucial to acknowledge

that the field of knowledge editing is still evolving. Future research should not only address

the current limitations of each approach but also focus on integrating these strategies to

create more robust and versatile knowledge editing solutions. Additionally, the exploration

of novel methodologies that leverage different properties of LLMs is essential.

2.2.3 Evaluation and Benchmarks

Evaluating and benchmarking knowledge editing in LLMs is essential for understanding their

effectiveness and applicability. This section delves into existing metrics and benchmarks,

highlighting their limitations and proposing avenues for future research.

Knowledge editing can be generally represented as changing an object from O to O∗

within the context of a fixed subject S and a relation R. Here, the probability of the LLM

predicting X in the context of Y is denoted as P (X|Y ). The decomposition and notation

help in measuring the following aspects of knowledge editing:

• Reliability, sometimes referred to as accuracy or efficacy, measures the direct per-

formance of knowledge updates, quantified by comparing probabilities of original and
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edited targets after training prompts. Suppose that we have N training prompts, then

Reliability =
1

N

N∑
i=1

bool(P (O∗
i |Si, Ri) > P (Oi|Si, Ri)) (2.8)

• Generality evaluates the model’s ability to consistently apply edited knowledge to

semantically similar prompts (e.g., paraphrases of training prompts). Suppose that we

have M semantically similar prompts, then generality is defined as:

Generality =
1

M

M∑
i=1

bool(P (O∗
i |Si, Ri, contexti) > P (Oi|Si, Ri, contexti)) (2.9)

• Locality, also known as specificity, measures the unintended impact on related, yet

distinct, prompts, which are often called neighbor prompts. These neighbor prompts

often share the same relation R but retain the original object O. Suppose that we have

K neighbor prompts, locality is measured as:

Locality =
1

K

K∑
i=1

bool(P (Oi|S′
i, Ri) > P (O∗

i |S
′
i, Ri)) (2.10)

While reliability, generality, and locality are established metrics, they have certain limi-

tations. Recently, additional metrics like Retainability and Scalability have been intro-

duced. Retainability, as discussed in Huang et al. [2023], Mazzia et al. [2023], evaluates

the model’s ability to preserve performance across multiple edits. Scalability, highlighted in

Mitchell et al. [2022], Meng et al. [2022c], examines the capacity to manage large-scale edits.

Additionally, evaluating computational resources required for each edit (in both training and

inference times) is crucial for a comprehensive assessment of knowledge editing techniques.

The evaluation of knowledge editing in Large Language Models (LLMs) primarily uti-

lizes QA benchmarks with clearly defined relations. A prominent example is the Zero-Shot
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Relation Extraction (ZsRE) dataset, which is characterized by explicit factual statements

encompassing relations R, subjects S, and objects O Levy et al. [2017]. ZsRE is particularly

useful for evaluating generalization due to its inclusion of paraphrased prompts. However,

two significant issues arise with ZsRE:

First, the reliance on WikiData as a data source renders the edits superficial and ineffec-

tive Vrandečić [2012]. Well-trained LLMs might already possess the relevant knowledge for

ZsRE statements, rendering the "edited" responses more of a reinforcement than a correc-

tion. This reduces the effectiveness of ZsRE in measuring the true and profound impact of

knowledge editing.

Second, the lack of objective comparisons hinders comprehensive evaluation. Since all

statements are true, there is no inherent notion of "original" and "edited" objects. This

limits the evaluation metrics to a non-comparative approach, failing to capture the nuances

of different associations of P (O∗
i |Si, Ri) and P (Oi|Si, Ri).

To address these issues, the CounterFact benchmark was introduced. It modifies the sub-

ject and object associations in ParaRel (also sourced from WikiData) Elazar et al. [2021],

Vrandečić [2012] to emphasize the editing aspect through factually incorrect statements.

This ensures that LLMs are unlikely to have encountered these specific edits during training,

providing a more meaningful test of their knowledge editing capabilities. Additionally, Coun-

terFact enables comparative evaluation of associations, offering a more nuanced assessment

than the single-target accuracy used in ZsRE.

More recently, the Multi-hop Question Answering for Knowledge Editing (MQuAKE)

benchmark has emerged Zhong et al. [2023]. Like ZsRE and CounterFact, it sources data

from WikiData but introduces the complexity of multi-hop QA. This benchmark challenges

edited LLMs to integrate multiple pieces of knowledge to answer questions. Most knowledge

editing methods struggle, revealing their inconsistencies in handling complex information

flow.
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Despite the valuable insights provided by these benchmarks, the evaluation of knowl-

edge editing methods for LLMs remains incomplete. The reliance on a single data source

(WikiData) raises concerns about potential overfitting and other generalization issues. Fur-

thermore, the benchmarks predominantly utilize short, structurally simple sentences and fail

to capture the complexities of real-world language use. Finally, the lack of post-edit evalua-

tion neglects the broader impact of knowledge editing on the LLMs’ overall knowledge and

capabilities beyond factual QA tasks.
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CHAPTER 3

OPEN PROBLEMS AND PROPOSAL

Building upon the background and related work discussed in the previous chapter, this

chapter dives into several open problems and challenges in the realm of knowledge editing

in LLMs. These challenges highlight the current limitations and open doors to new research

opportunities. Some of these challenges are within the scope of this proposal, while others

are reserved for future research.

3.1 Open Problems

Fine-tuning Methods Are Underexplored

Despite its frequent use as a baseline in knowledge editing research, fine-tuning is surprisingly

underexplored. Existing works, such as De Cao et al. [2021], Mitchell et al. [2021], Meng

et al. [2022c], often criticize fine-tuning due to its susceptibility to overfitting, stemming from

the limited training data compared to the vast parameter space to update. Additionally,

catastrophic forgetting, the degradation of unrelated knowledge and skills during training,

further reduces its effectiveness.

To mitigate the issues, some continual learning methodologies have been adapted for

knowledge editing. For example, external memorization knowledge editing methods resemble

architecture-based methods in continual learning, aiming to prevent catastrophic forgetting

by separating parameters for previous and current tasks. This comparative study Mazzia

et al. [2023] also considers EWC as a knowledge editing method due to its ability to regularize

weights and prevent forgetting during fine-tuning.

Yet, numerous other continual learning methods remain unexplored for knowledge editing

tasks. Notably, replay-based continual learning, despite the availability of training datasets

for LLMs, has not been extensively applied in this field. By mixing training material from
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the original dataset with edited facts, we can provide more tokens for fine-tuning and par-

tially mitigate catastrophic forgetting. However, selecting appropriate original training data

is non-trivial, given the sheer size of NLP datasets. Additionally, the ratio of original data to

edited facts requires careful consideration. Neighbor fact associations offer another avenue

for replay-based methods. By incorporating them as training material, we can significantly

mitigate forgetting of related knowledge. Generative replay, leveraging the generative capa-

bilities of some LLMs, also presents an opportunity. By generating content related to the

edited fact, this method can potentially help preserve relevant knowledge during fine-tuning

while also providing training tokens of desirable distribution.

In summary, while naive fine-tuning with typically no more than ten tokens per edit has

limitations, including insufficient tokens for training and significant catastrophic forgetting,

ideas from continual learning, particularly replay-based approaches, offer promising solutions

to these challenges.

Lack of Comprehensive Evaluation

The evaluation of the ramifications of knowledge editing in LLMs remains a critical but

under-explored area. While existing benchmarks like CounterFact Meng et al. [2022a] provide

a simple framework for knowledge editing and evaluation, they fall short in capturing the

full impact of edits on related knowledge and general LLM capabilities.

To evaluate the locality of edits, CounterFact classifies knowledge associations with iden-

tical relations and original objects as neighbor facts. For example, if the fact "New York

City is located in the United States" is edited to "New York City is located in the United

Kingdom," then "Seattle is located in the United States" would be deemed a neighbor fact

due to the shared relation "is located in" and the original object "the United States." While

this approach is straightforward, it overlooks other knowledge dependencies and potential

unintended consequences. For instance, facts about New York City, such as ’In New York
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City, people speak English’ or ’New York City has a 24-hour subway system,’ should also be

considered neighbor facts and remain unchanged after the edit. However, constructing such

neighbor prompts is could be challenging.

Furthermore, existing benchmarks predominantly employ short QA or completion for-

mats, which lack contextual depth. This format limits the robust evaluation of the gener-

alization and locality. For instance, after the edit about New York City’s location, existing

benchmarks might pose questions like "Where is New York City located?" or provide prompts

such as "New York City, located in." However, in scenarios with additional context, such

as "Philadelphia is famous for its American-Italian cuisine, a legacy of the early Italian

immigrants in the 1900s. New York City, located in", the question remains whether these

knowledge editing methods still generalize effectively. Such contexts, potentially lengthier

and more complex, mirror real application scenarios. The resilience of these knowledge

editing methods to contextual noise is yet to be explored.

Moreover, the impact of these knowledge editing methods on other NLP capabilities,

such as reasoning, summarization, or translation, remains untested. The closest evaluation

in existing works is the assessment of fluency and semantic consistency in ROME Meng

et al. [2022b], which reveals that some knowledge editing methods, e.g., KnowledgeEditor

De Cao et al. [2021], experience repetitive nonsense word generation post-edit. However,

these terms are based on output entropy or word distribution, which do not directly evaluate

the LLM’s other abilities.

In summary, current benchmarks are inadequate for assessing the broader impacts of

knowledge editing, particularly on neighbor knowledge and overall LLM capabilities in com-

plex scenarios.
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A Thought Experiment on Counterfactual Editing

Current approaches to knowledge editing in LLMs treat fact associations as homogenous indi-

vidual entities, disregarding their inherent diversity and connections. The current approach

to knowledge editing overlooks the intricate connection between language and the world it

represents. LLMs, built as world models through language, are susceptible to inconsistencies

when this connection is simplified.

To demonstrate, we perform a thought experiment by asking the question: what hap-

pens to an LLM when we edit a counterfactual association perfectly? By achieving

such a perfect edit, we essentially introduce a deliberate error into the model’s representa-

tion of reality, triggering a cascade of potential inconsistencies within its internal knowledge

base. Consider the example of editing the statement "New York City is located in the United

States" to "New York City is located in the United Kingdom." This single edit leads to a

series of logical issues. When a counterfactual association within an LLM is edited perfectly,

the model should integrate this change as if the fact were true in our reality, triggering a

cascade of changes to the LLM. Consider the edit "New York City is located in the United

States" to "New York City is located in the United Kingdom." What happens to the people

living in New York City? Do they magically change nationalities to become British citizens?

Where does this leave iconic landmarks like Times Square and the Statue of Liberty? If the

Statue of Liberty is still located in New York City, UK, the proposition that France gifted

the Statue of Liberty to the UK after the independence of New York City from the UK

exposes the absurdity that a simple edit can lead to.

These inconsistencies reveal the inherent limitations of manipulating factual associations

through counterfactual edits. Such edits essentially construct an alternative reality within

the LLM, a process fraught with imperfections, leading to either inconsistencies or superficial

changes that lack true depth and coherence. This raises critical questions about the ideal

approach to counterfactual knowledge editing in LLMs:
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• Localized Editing vs. Accepting Contradictions: Should we strive for highly

localized edits to minimize internal inconsistencies, even if it means sacrificing certain

logical connections? Or should we accept certain contradictions as inevitable conse-

quences of manipulating factual associations?

• Editing Fundamental Knowledge: This line of inquiry leads us to consider extreme

scenarios. What if we edit the fundamental statement "one plus one equals three"?

Should an ideal knowledge editing method alter all the rules of mathematical addition

to accommodate this change? Should it simply accept the edited statement as an

exception? Or should such edits be rejected altogether due to their potential to disrupt

the underlying logical coherence of the LLM’s knowledge representation?

This thought experiment underscores the challenges in using counterfactual knowledge

associations as a benchmark for knowledge editing. However, the CounterFact dataset still

holds significant value, as it presents scenarios unlikely to be encountered in the training

process, thereby providing a more robust evaluation of knowledge editing capabilities. To

enhance the effectiveness of this dataset, it’s recommended to include closely related facts

that may change during the edit, and to rigorously monitor the LLM’s predictions on these

prompts. This approach will help assess the impact of counterfactual edits on the LLM’s

overall performance, including its language processing and logical reasoning capabilities.

Challenges in Knowledge Representation

Knowledge representation plays a crucial role in enabling large language models (LLMs)

to acquire, store, and manipulate information. A common approach involves representing

factual statements through a triplet structure consisting of Relation R, Subject S, and

Object O. While this approach provides a basic framework, it presents several challenges for

knowledge editing.
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One critical challenge is the reversibility issue seen from the one-directional knowledge

association from R, S to the editted object O∗. For instance, in fine-tuning methods where

the prompt constituted of R and S is trained to predict O∗, the edited model struggles to

infer the subject S when prompted with R and O∗. For instance, if the fact "Tim Cook is

the CEO of Apple" is edited, the reciprocal fact "The CEO of Apple is Tim Cook" requires a

separate edit. This phenomenon highlights a significant limitation in the current knowledge

editing methods and affects the model’s ability to infer complete bidirectional associations

Berglund et al. [2023].

Moreover, the simplistic R, S, and O format, derived from WikiData Vrandečić [2012],

may not effectively represent complex or nuanced facts. This format’s simplicity could

restrict the scope of knowledge editing in LLMs, particularly for statements that do not

conform to this structure. Exploring alternative knowledge representation formats could

provide insights into more versatile and comprehensive editing methods.

3.2 Proposed Method

To address the open questions and challenges identified in this chapter, we propose two major

contributions to the field of knowledge editing in LLMs: (1) an improved benchmark that

can provides better training and evaluation prompts, and (2) a novel method for knowledge

editing in LLMs using RAG and parameter-efficient fine-tuning methods. We will then

outline our approach to method evaluation, focusing on generalization and locality of the

knowledge editing method.

3.2.1 Improved Benchmark for Knowledge Editing in LLMs

The existing benchmarks, such as CounterFact Meng et al. [2022b], are insufficient in cap-

turing the full impact of edits on related knowledge and general LLM capabilities, and lack

in assessing the locality of edits and the model’s resilience to contextual noise, as detailed
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in Appendix 6.1. Our improved benchmark focuses on diversifying the patterns, neighbors,

and contexts within the dataset.

Our proposed improvements are structured as follows:

• Augmented Relation Patterns : We will employ a mix of traditional NLP methods

and advanced techniques using GPT-4 to enrich training materials and evaluation

prompts. This not only increases the number of tokens for fine-tuning but also makes

the evaluation of generalization and locality more rigorous with a greater variety of

evaluation prompts. CounterFact’s current structure, offering a minimal variety of

sentence patterns for each edit, limits both the fine-tuning process and the evaluation.

We aim to rectify this by introducing a wider array of relation patterns, significantly

broadening the scope for model training and evaluation.

• Additional Neighbor Associations : By expanding the dataset to include a broader

range of neighbor knowledge with the same subject, relation, or object, and querying

WikiData Vrandečić [2012], we aim for a more comprehensive assessment of edits on

related facts. This approach generates more evaluation prompts for locality and allows

us to look into the impact of an edit on different types of neighbors with varying

approximates to our subject. Currently, each entry in the CounterFact dataset only

has 10 neighbors, without clear differentiation. We plan to enhance this by using the

WikiData query service to retrieve a balanced mix of the most closely related neighbors

and those more peripherally connected, based on the shared number of relations in

the WikiData database. Additionally, we will differentiate these neighbors further by

their frequency of mentions in WikiData, thus capturing a spectrum from frequently

mentioned to rarely noted neighbors. This stratified approach allows a more detailed

investigation of the aftermath of knowledge editing on various neighbor categories,

which helps with the understanding of the edit’s impact across a knowledge base.

• Various Context in Paraphrase and Neighbor Prompts : We plan to introduce vari-
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ous contexts in prompts, allowing us to measure generalization and locality against

contextual noise. This approach offers a more realistic evaluation resembling practical

applications and will consider different linguistic structures and language variations. In

contrast to CounterFact’s limited contextual scope, our approach will involve crafting

generic contexts applicable to any statement and designing noisy contexts that might

challenge the model’s paraphrasing and neighborhood statement completion. This will

offer a more realistic and rigorous evaluation framework.

In summary, we will use the existing LLMs and other NLP methods to construct a more

enriched version of CounterFact that includes a wider variety of relation patterns, a diverse

array of neighbor associations for comprehensive impact assessment, and a set of generic and

noisy contexts to rigorously validate the model’s performance in realistic scenarios.

3.2.2 Novel Method for Knowledge Editing in LLMs

Current fine-tuning methods, often overlooked in existing works, are prone to overfitting and

catastrophic forgetting due to the lack of training material and technique used to overcome

the effect of catastrophic forgetting. Our approach involves applying a continual learning

approach, specifically a replay-based approach, to knowledge editing in LLMs. We propose

to tackle the problem of knowledge editing by experimenting with the following methods:

• External Memorization with Context Differentiation: Our approach utilizes embedding

models with a vector store to meticulously differentiate between contexts related to

edits and those that are not. When prompted, the LLM first checks the vector store

to determine if the prompt relates to any of our edits. If so, the corresponding edited

version of the LLM is activated, otherwise, the LLM’s behavior remains unchanged.

This selective activation ensures the LLM’s behavior is unchanged unless a specific

edited knowledge becomes relevant, effectively mitigating the issue of catastrophic

forgetting in most cases.
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• Parameter-Efficient Fine-Tuning: We plan to refine our fine-tuning process for each

edit using parameter-efficient methods such as LoRA Hu et al. [2021], as these methods

have been shown to limit the risk of overfitting by reducing the number of parameters

that need updating. This strategy not only allows our system to scale in terms of

computational resources and required training/inference time but also ensures that

only a small, targeted part of the network is altered for each edit, preserving the

overall knowledge and skills of the LLM.

• A Replay-Based Method for Fine-Tuning: We will enhance our knowledge editing by

incorporating a replay method, which involves training on both the counterfactual

statements and their neighbors or even original training material. This strategy aims

to minimize forgetting and preserve the LLM’s original knowledge and skills. To our

knowledge, this approach is yet to be experimented with.

These proposed knowledge editing techniques aim to effectively solve the problem of

catastrophic forgetting by integrating an external memorization approach and directly ap-

plying existing continual learning methods to knowledge editing. Ultimately, we aim to

create a model that can be edited on demand without compromising the existing knowledge

and skills of the model.

The process of knowledge editing is conceptualized as modifying a statement from (R, S,O)

to (R, S,O∗), where S represents the subject, and O and O∗ represent the object states be-

fore and after the edit, respectively. Our primary training objective aims to minimize the

cross entropy loss associated with the updated object representation, O∗, in the context of

multiple prompt patterns for each relation, denoted as PR,1, PR,2, ..., PR,N , which are pro-

vided by our newly proposed benchmark. We utilize a tokenizer T to transform each prompt

PR,i it into a format suitable for model training. The initial loss function, termed the naive

edit loss, is defined as:
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Lnaive = − 1

N

N∑
i=1

log prob
(
T (O∗)

∣∣∣ T(PR,i(S)
))

(3.1)

To incorporate the original object into the loss, we add a penalty term that punishes the

model for predicting the original object:

Lpenalty =
1

N

N∑
i=1

log prob
(
T (O)

∣∣∣ T(PR,i(S)
))

(3.2)

Moreover, we propose to incorporate knowledge from neighboring subjects, defined as Nj

for each j, to control the loss term. The neighbor subjects are the entities that shares the

relation (R,Nj , O), which are often affected by the editing process. The loss function for

these neighbor subjects is:

Lneighbors = − 1

M ·N

M∑
j=1

N∑
i=1

log
(
prob

(
T (O) | T (PR,i(Nj))

))
(3.3)

So, in the end, our loss function will be in the form of the following equation:

L = Lnaive + λ1Lpenalty + λ2Lneighbors (3.4)

Note that while Lnaive is commonly used in existing works, the other two terms were not

used and are yet to be evaluated. Moreover, we could potentially add in the original training

material for the LLMs into the loss function to further mitigate the forgetting caused by

fine-tuning. However, this could be beyond the scope of this thesis as it demands a huge

number of tokens for fine-tuning, which is computationally very expensive.

These proposed research directions aim to address the key challenges in knowledge editing

for LLMs, enhance evaluation benchmarks, and introduce innovative methods for fine-tuning

and knowledge representation. This proposal seeks to advance the field of knowledge editing,

paving the way for more accurate, ethical, and trustworthy applications of LLMs.
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We acknowledge the inherent challenges associated with knowledge editing. The current

limitations of knowledge representation formats and the difficulty in capturing the nuances

of human language pose significant obstacles. Additionally, the issue of reversibility and po-

tential inconsistencies when editing counterfactual associations require careful consideration

in future knowledge editing methods. These challenges are beyond this proposal’s scope and

are reserved for further research.

Ultimately, while significant progress has been made in recent years, knowledge editing in

LLMs remains an open research area with vast potential. By tackling the challenges outlined

in this chapter and pushing the boundaries of existing methods, we can pave the way for a

future where LLMs can be effortlessly edited and adapted to diverse scenarios, and able to

fulfill diverse tasks with accuracy, leading to more ethical and trustworthy applications.
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CHAPTER 4

PRELIMINARY RESULTS AND OBSERVATIONS

This chapter presents preliminary results and observations closely related to the challenges

outlined in Chapter 3. We have made significant progress on multiple aspects of our proposed

benchmark and method, substantiating the feasibility of our research goals. We categorize

these results and observations into individual sections, analyzing each section’s findings and

their implications for the broader field of knowledge editing in LLMs.

4.0.1 CounterFact Relation Pattern Augmentation

Our augmentation process begins with the ParaRel dataset, which offers multiple rephrasings

for each relation pattern found in CounterFact. We then employ GPT-4 to further diversify

these patterns by generating as many paraphrases as possible. This step involves feeding

ParaRel prompts to GPT-4 with other contextual information such as the restrictions on

the subject and the object. Please see 6.2 for more information on the prompt. The temper-

ature of GPT-4 was set to 0.2 for minor variations in phrasing while maintaining the core

informational content.

We iteratively used the same prompt 50 times, collecting all generated patterns. These

patterns underwent a meticulous manual selection process to discard any with altered mean-

ings, strange word usage, unneutral tone, or unsuitable sentence structures—particularly

those where the object were not at the end of the prompts. This selection process was criti-

cal for ensuring that only the most relevant and coherent patterns were retained as training

or evaluation prompts. Additionally, we incorporated more diverse patterns manually, such

as the ones in a question-answer format, to further enrich the dataset.

During the pattern selection phase, we identified certain relations as unsuitable for knowl-

edge editing, and therefore removed them from the dataset. A relation was deemed unsuitable

if it was too vague for effective paraphrasing. For example, the relation "A is located in B,"
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without specific context, poses paraphrasing challenges. Conversely, specifying "A" as a city

and "B" as a country enables more precise paraphrasing.

The concept of exclusivity also played a crucial role in evaluating relations. For example,

the WikiData relation P108 (employer) illustrates a non-exclusive relationship, where editing

"A’s employer is B" to "A’s employer is C" does not inherently negate the original state-

ment, rendering the edit ambiguous. Instead, the relation should be structured for ensure

exclusivity, such as indicating that "A" was only employed by "B" or "C" at specific times.

Here, we removed any relations that might pose the problem of ambiguity.

The results of the augmentation process is shown in Table 4.1. In summary, our aug-

mentation process enriched the CounterFact dataset with an average of 82.7 new

patterns per valid relation, effectively multiplying the original dataset’s training

and evaluation prompts by over 80 times. This augmentation not only enables fine-

tuning methods proposed in this work, but also sets a new benchmark for the depth and

diversity of relation patterns in knowledge editing research. Please refer to the appendix on

CounterFact dataset augmentation (6.2) for more details.

4.0.2 Neighbor Subject Query and Selection

To retrieve and categorize the neighbors for an in-depth evaluation of the ramifications of

knowledge editing, we utilized the WikiData query service Vrandečić [2012] to query and

select the neighbors. For each counterfactual statement, we queried the database, retrieving

at most 2,000 neighbors of the subject to maintain efficiency. We categorized the neighbors

based on predetermined criteria, choosing 4 distinct types with 10 examples each, as follows:

• close neighbors (share many properties with subject)

• distant neighbors (share few properties with subject)

• important neighbors (has many properties in WikiData)
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Table 4.1: ParaRel/CounterFact Relation Pattern Augmentation Results

ID Label # of Patterns Note

P17 country 99
P19 place of birth 91
P20 place of death 94
P27 country of citizenship 122
P30 continent 66
P36 capital 84
P37 official language 39
P39 position held 117
P101 field of work 138
P103 native language 75
P106 occupation - removed (similar to P39/P101)
P108 employer - removed (ambiguous)
P127 owned by 24

P131 located in the administrative
territorial entity 84

P138 named after 107 subject may include object
P140 religion or worldview 72
P159 headquarters location 138
P176 manufacturer 61 subject may include object
P178 developer 66
P190 twinned administrative body - removed (ambiguous)

P364 original language of film or
TV show 29

P407 language of work or name - removed (vague)

P413 position played on team /
speciality 62

P449 original broadcaster 138
P463 member of - removed (vague)
P740 location of formation 30
P937 work location - removed (vague)

• obscure neighbors (has few properties in WikiData)

We hypothesize that knowledge editing methods will particularly affect close and impor-

tant neighbors due to their higher similarity and integration within the LLM’s knowledge

base, a hypothesis that will be rigorously tested in our proposed work. Similarly, we metic-

ulously collect surrogate subjects, entities that share the edited object’s new relation, to
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comprehensively assess the knowledge editing’s impact from multiple perspectives.

Besides querying neighbors, we also evaluated the constraints on the statement. We

excluded samples that (1) contain outdated knowledge, (2) have an insufficient number of

neighbors or surrogate subjects, or (3) are ambiguous in terms of reference, making it difficult

to verify against the updated WikiData. Furthermore, we removed samples associated with

relations excluded from the CounterFact dataset.

During dataset construction, we established a standalone WikiData query service, select-

ing the knowledge cutoff date of 2023/12/27 to align with the most current and relevant data

while ensuring a manageable dataset size for effective analysis. Notably, many knowledge

triplets are no longer valid according to the updated WikiData, due to updates in relations

and/or entities. For instance, Danielle Darrieux’s mother tongue was no longer French ac-

cording to WikiData. Additionally, we restricted some relations; for example, for relation

P27 (citizenship), we limited the object strictly to countries, thus excluding entities like

colonies or empires.

In the end, we extracted 11,192 out of 23,000 samples from the CounterFact

dataset. We applied stringent safety measures in our sample selection process to ensure the

highest integrity and reliability of our research findings. As of now, the number of samples

seems sufficient for knowledge editing research downstream, but we will further carefully

investigate the elimination process and make changes if necessary.

To summarize the work done with regard to the dataset construction, the table 4.2

compares the CounterFact dataset and our improved dataset.

4.1 Context Differentiation using RAG

The proposed knowledge editing method relies heavily on a module that differentiates be-

tween relevant and irrelevant contexts for each specific edit. This module determines when

to activate the fine-tuned parameters associated with a particular edit, thereby altering the
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Table 4.2: Training & Evaluation Material of CounterFact and Our Improved Dataset

Material CounterFact Our Improved Dataset

Training 1 sentence (N × 0.8) sentences a

Generalization 2 sentences (N × 0.2) sentences without context
(N × 0.2×M) sentences with generic context b

Locality 10 sentences (40×N) sentences without context c

(40×N ×M) sentences with context

Generalization+ d Not available (40×N2 × 0.2) sentences

Locality+ e Not available (40×N2 × 0.2) sentences
a N denotes the number of patterns per relation, which averages to 82.67 in our dataset. 80% of

the patterns are used for training, and the remaining 20% are reserved for evaluation tasks.
b M denotes the total number of generic contexts in our dataset, currently standing at 25.
c For locality evaluation, each entity is associated with 40 neighbors, divided into 10 close, 10

distant, 10 important, and 10 obscure neighbors.
d Generalization+ evaluates the ability of the system to complete the counterfactual prompt within

noisy or misleading context. Here, we use one of the neighborhood statements.
e Locality+ evaluates the ability of the system to complete the neighborhood prompt within noisy

or misleading context. Here, we use one of the counterfactual statements.

LLM’s behaviors and predictions. Its accuracy directly impacts the overall performance of

the proposed knowledge editing system.

The context differentiation module comprises two components:

• Embedding Model converts sentences (edit knowledge) into embedding vectors.

• Vector Store stores the embeddings, allowing for similarity comparisons.

During an edit, each statement is converted into an embedding vector and saved in the

vector store. When predicting the next token for a given prompt, the system retrieves the

most similar embedding from the store by comparing it to all stored vectors. If the similarity

exceeds a predefined threshold, the parameters fine-tuned with that specific edit are activated

for prediction. Otherwise, the original LLM parameters are used.

We decided to use single-edit training instead of batch training for our knowledge editing

system for several reasons based on the observations. First, single-edit training ensures that
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edits are independent. This is important because it allows us to isolate different edits and

ensure that our system can scale up to thousands of edits. Second, fine-tuning works less

effectively for multiple edits. This is noted in MEMIT Meng et al. [2022c], where batched

edits resulted in significantly lower generalization accuracy (64.8% over 10,000 samples) com-

pared to single edits (96/6% in Meng et al. [2022b]). Batched edits in our system struggled

to even reach 80% reliability, demonstrating the suboptimal nature of this approach. Fi-

nally, despite individual edit processing, our system still allows handling a large number of

edits. The isolated nature of edited parameters minimizes the impact of sequential edits, as

long as the context differentiation module can effectively scale up to handle the expanding

knowledge base.

Initially, we explored using generative LLMs directly for context differentiation. This

would have simplified the proposed architecture and eliminated additional computational

overhead because we can use the same model for both context differentiation and generation.

However, extracting attention from intermediate or last layers of models like GPT-2, GPT-

J, or the embedding output of T5 encoders yielded unsatisfactory results. The context

differentiation accuracy remained below 50% with merely 100 entries in the vector store,

suggesting ineffective retrieval and subsequent parameter activation.

Switching to specialized embedding models, even those with significantly fewer param-

eters, dramatically improved performance. Models like BAAI/bge-large-en (355 million pa-

rameters) achieved top-1 counterfact retrieval accuracy of 97.3% over 5,000 entries

Xiao et al. [2023]. This significant improvement was achieved by segmenting the input into

overlapping pieces and utilizing FAISS for vector storage and retrieval Johnson et al. [2019].

The similarity is measured by Euclidean similarity. Please refer to Figure 4.1 for the com-

parative results between different embedding models. Furthermore, applying augmented

patterns of counterfactuals instead of single training prompts holds promise for further en-

hancing performance.
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In sum, our embedding-based context differentiation method achieves high performance

with minimal overhead, making it a valuable and scalable solution. This approach effi-

ciently handles large knowledge bases and seamlessly integrates with any LLM architecture,

demonstrating the feasibility and practicality of our proposed knowledge editing system.

4.2 Fine-Tuning on Single Counterfactual Statement

Given the limited training corpus from a single counterfactual statement, directly modifying

millions or billions of parameters in a large language model (LLM) can be impractical and

inefficient. This section explores the potential of fine-tuning only specific portions of the

LLM to update its knowledge based on counterfactual information.

Preliminary results, based on the ROME approach, suggest that training a single FFN

of a transformer architecture can be sufficient for updating knowledge associations while

maintaining good generalization. This approach significantly reduces the number of trainable

parameters, enhancing scalability and enabling faster training compared to fine-tuning all

layers.

Our experiments, using the AdamW optimizer with a learning rate of 0.0001

for 10 epochs on 100 samples, demonstrate that fine-tuning a single feedfor-

ward layer can achieve a generalization accuracy of 83.5%. This accuracy can

be further improved with more training epochs, suggesting the potential of this

method. Additionally, utilizing techniques like LoRA (Hu et al. [2021]) achieves

even better generalization accuracy (93.0%) while minimizing the trainable pa-

rameter count to a mere 0.06% of the total. The results are shown in Table 4.3.

The relatively low locality observed for all fine-tuning experiments might raise concerns

about the model’s ability to restrict the editing to related prompts only. However, this is

mitigated by the differentiation module introduced in the previous section. This module

ensures that the fine-tuned parameters are only utilized when the prompt is directly relevant
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to the specific counterfactual statement used for training. This effectively isolates the impact

of fine-tuning, preventing it from affecting the model’s responses to unrelated prompts.

Therefore, despite the low locality without the context differentiation mdoule, the overall

performance of our approach should remain robust.

Though promising, this approach comes with certain caveats. CounterFact, the evalu-

ation metric used in this study, may not adequately capture the potential ramifications of

fine-tuning on a single counterfactual statement. Training on a single counterfact for ex-

tended periods can disrupt the LLM’s reasoning and other cognitive abilities. The method

may lead to "word pairing," where the network associates subjects with new objects with-

out considering the underlying relational patterns. Moreover, identifying the optimal layer

for fine-tuning can be a computationally expensive process, as demonstrated by the ROME

approach. These factors underscore the necessity for further exploration for fine-tuning

methods.

Training Parameters Generalization (%) Locality (%) Trainable Param (%)
None 16.5% 83.4% -

All layers 88.0% 12.8% 31.1%
One layer 83.5% 27.8% 1.11%

One layer (LoRA) 93.0% 31.7% 0.06%

Table 4.3: Comparative results of different training parameters

4.3 Proposed Knowledge Editing Method

This section outlines a novel knowledge editing method that integrates the strengths of

embedding and LoRA tuning, combining the capacity for neighborhood differentiation with

high generalization accuracy and inherent scalability. The method consists of two key phases:

1. During the Editing: We construct a vector store by embedding various augmented

versions of the edit statement for the context differentiation module. This vector store,
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using BAAI/bge-large-en for embedding and FAISS for storage, is tagged with specific

edit IDs Xiao et al. [2023], Johnson et al. [2019]. For each edit, we fine-tune our

LLM with LoRA on a specified FFN layer, associating the LoRA parameters with the

corresponding edit ID.

2. During the Inference: We employ a similarity threshold to determine if a given

prompt relates to any of our edits. If the similarity between the prompt and any entry

in the vector store surpasses this threshold, we select the highest similarity entry,

retrieve its edit ID, and activate the fine-tuned LoRA parameters of that ID Hu et al.

[2021]. Otherwise, the original LLM parameters are used for prediction.

The specifics of this approach may evolve based on further empirical evaluation. Our

method, illustrated in Figure 4.2, merges the ability for neighborhood differentiation, as

seen in embedding methods, with the high generalization accuracy typical in fine-tuning

approaches. The use of LoRA, focusing on the feedforward part of a single layer, contributes

to the scalability of our method. The additional parameters required for each edit are

minimal, making this a viable approach for large-scale knowledge editing.

4.4 In-Context Learning for Knowledge Editing

In-context learning is emerging as a promising approach for knowledge editing in LLMs.

This method involves training the model to make predictions directly based on the context

provided in the input, offering an alternative baseline for our experiment.

We designed an idealized experiment to assess the capabilities of In-context learning for

knowledge editing. The LLM utilized the context of the edited knowledge statement for each

completion task, enabling us to evaluate its capacity for generalization and locality handling

edits within a specific context. For instance, consider the counterfactual statement "The

mother tongue of Danielle Darrieux is English". In our experiment, this context was added
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to the beginning of the evaluation prompt for both generalization and locality assessments.

In a generalization evaluation, the prompt might be completed as "The mother tongue

of Danielle Darrieux is English. ... Danielle Darrieux, a native". A higher generalization

accuracy indicates a better learning ability for counterfactual contexts. For locality evalua-

tion, the model might complete an unrelated prompt such as "The mother tongue of Danielle

Darrieux is English. The native language of Montesquieu is", where the context acts as a

distractor. A higher locality accuracy indicates that the LLM can complete the neighbor

prompts despite the presence of misleading context.

This experimental setup, while not fully representative of real-world scenarios, offers

valuable insights into the ideal capabilities of in-context learning.

Generalization (%) Locality (%)
without context 16.5% 83.4%

with context 87.0% 60.1%

Table 4.4: In-Context Learning Results with GPT-J on 100 CounterFact Samples

Table 4.4 demonstrates that while in-context learning enhances generaliza-

tion, it does not achieve the high accuracy levels of advanced methods like

SERAC and ROME (Mitchell et al. [2022], Meng et al. [2022b]), both of which

report 99% accuracy in paraphrase completion. However, it seems that better

prompt might solve this issue, as in Zheng et al. [2023]. The inclusion of the

counterfactual context reduces locality accuracy from 83.4% to 60.1%, indicating

that the LLM is sometimes misled by the context. Nonetheless, this accuracy still

surpasses most fine-tuning-based approaches, suggesting that in-context learning possesses

robustness perform knowledge editing without affect neighbor knowledge associations.

In summary, in-context learning offers a promising alternative for knowledge editing

in LLMs. While further research is needed to address its limitations, in-context learning

demonstrates significant potential for effective and robust knowledge manipulation within

the context of LLMs.
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4.5 Other Results and Observations

Further investigation into fine-tuning reveals intriguing variations in how different Coun-

terFact samples respond to the training process. Notably, some counterfactual statements

are trained more easily than others, with certain ones requiring only 2-3 epochs, while oth-

ers demand over 10 epochs. Considering that all counterfactual statements in the dataset

are essentially one-sentence structures with a similar number of tokens, the differing train-

ing difficulty levels are intriguing. This variation might be influenced by factors traceable

to WikiData Vrandečić [2012], such as the types of relations, entities/objects involved, the

number of training tokens, and the connection to other knowledge associations. Understand-

ing what most significantly impacts the fine-tuning process could provide valuable insights

into the design and optimization of counterfactual datasets.

Furthermore, it has been observed that some counterfactual statements impact neighbor-

hood prompts less than others. This could be related to the relation pattern, the proximity

between the counterfactual statements and its neighborhood facts, or the specific pragmatics

of the counterfactual itself and its potential for world-building or altering perspectives. If

there’s a significant distance between a counterfactual statement and its neighbors, propos-

ing better neighbors could improve the quality and effectiveness of the CounterFact dataset.

This aspect warrants further research to better understand the dynamics of counterfactual

training and its influence on related facts.

Incorporating statistical analysis or formulating hypotheses regarding these observations

could provide more clarity and depth to our understanding of the fine-tuning process in large

language models.
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Figure 4.1: Top-1 retrieval accuracy for different top 8 embedding LLMs.
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Figure 4.2: Design of the proposed knowledge editing method.
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CHAPTER 5

SCHEDULE AND MILESTONES

In the proposed timeline in 5.1, each milestone has been carefully planned to align with

the overarching objectives of the research. The initial phase, focusing on continual learning,

includes tasks like literature review and various implementations of Hard Attention (HAT)

in different scenarios. These foundational milestones, set from March 2022 to December

2023, lay the groundwork for understanding and addressing catastrophic forgetting in neural

networks, an essential aspect of this research.

The second phase, dedicated to knowledge editing, begins in September 2023. It starts

with augmenting the dataset using GPT-3.5 and nlpaug, crucial for creating a robust dataset

for training and evaluation. The subsequent development of the neighborhood prompt gen-

eration using ParaRel in October 2023 allows for a more comprehensive evaluation for knowl-

edge editing.

Progressively, the timeline includes the development of a vector store, in-context learning

evaluation, and fine-tuning methods, culminating in the proposal of a new knowledge editing

method by February 2024. This method aims to integrate the strengths of embedding and

LoRA tuning, addressing scalability and generalization challenges.

Finally, the timeline extends to evaluations on the new CounterFact dataset and other

benchmarks, ensuring the method’s effectiveness and applicability across various scenarios.

This comprehensive approach ensures a balanced progression from foundational understand-

ing to practical application, making the timeline reasonable and attainable.
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Table 5.1: Schedule and Milestones

Phase Task ECD Finished %

Improved HAT for Continual Learning

Literature Review Mar. 2022 90%
Generalized HAT Implementation Sep. 2022 100%
HAT with ResNets on CIL/TIL Oct. 2022 100%
HAT with Transformers May. 2023 100%
Optimized Initialization & Scaling May. 2023 100%
⋆ Task-agnostic ViTs with HAT Dec. 2023 50%

CIR Scenario in Computer Vision

HAT for CIR Scenarios April. 2023 100%
Test-Time Logits Averaging May. 2023 100%
Replica-Based Continual Learning for CIR May. 2023 100%
CVPR 4th Workshop Challenge Report May. 2024 90%

Knowledge Editing for Counterfacts

Dataset Augmentation Sep. 2023 100%
Neighborhood Prompt Generation with ParaRel Oct. 2023 90%
Literature Review Sep. 2023 90%
Vector Store with Embedding Sep. 2023 100%
In-Context Learning Evaluation Sep. 2023 80%
Fine-Tuning Method Development Oct. 2023 80%
Replay-based Fine-Tuning Method Jan. 2023 20%
Proposed Method Development Feb. 2024 50%
Evaluation on New CounterFact Dataset Feb. 2024 10%
⋆ Evaluation on Other Benchmarks Apr. 2024 10%
⋆ In-Context Learning for Knowlege Editing May. 2024 10%
⋆ Counterfact Impact Analysis May. 2024 0%

⋆ indicates an aspirational goal. ECD stands for (expected) completion date.
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CHAPTER 6

APPENDIX

6.1 CounterFact Dataset Overview

CounterFact, introduced by Meng et al. [2022b], is a novel dataset specifically designed for

evaluating methods for knowledge editing in LLMs. Sourced from Wikidata Vrandečić [2012],

it offers a distinct advantage over existing benchmarks like ZsRE Levy et al. [2017] through

its inherent counterfactual nature. The strength of CounterFact lies in its ability to clearly

distinguish whether an LLM has successfully incorporated edited knowledge. By strategi-

cally swapping object entities within factual statements, the dataset generates objectively

false statements that LLMs would not encounter during pretraining. If the LLM completes

prompts with the false object, it serves as a strong indicator that the editing process has

been successful.

The dataset comprises 21,919 samples, each containing a counterfactual statement, two

paraphrase prompts, and ten neighborhood prompts. For example, the following counterfac-

tual statement

The mother tongue of Danielle Darrieux is English.

is crafted by replacing the accurate object entity French with English. The dataset’s evalua-

tion methodology on generalization involves testing the edited LLM on 2 paraphrase prompts

like:

- "(an unrelated sentence). Danielle Darrieux, a native"

- "(an unrelated sentence). Danielle Darrieux spoke the language"

Each paraphrase includes an unrelated sentence from WikiData and a trimmed and para-

phrased version of the counterfactual statement for prompting. The dataset also employs 10
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neighbor prompts, with the same relation (native language and the factual target (French),

to evaluate locality:

- "The mother tongue of L\u00e9on Blum is",

- "The native language of Montesquieu is",

- "Fran\u00e7ois Bayrou, a native",

...

The drawbacks of CounterFact, mainly due to limited context and phrasing variety, are

touched upon in chapter 3. Here, we provide a detailed critique specific to CounterFact,

addressing these key issues more comprehensively:

• Insufficiency of Training Material: The core of the dataset, the counterfactual

statements, may not provide enough tokens for effective fine-tuning of LLMs, which

typically require a substantially larger corpus. Moreover, some training prompts pro-

vides no context with regard to the relation. For instance, "Toko Yasuda, the" is the

training prompt for case #2, and the model is supposed to predict "piano" instead

of "guitar" after the edit. The lack of tokens that reflects the relation between the

subject "Toko Yasuda" and the object "piano" might only creates a strong connection

between these two entities, but the model cannot fully understand the full context of

the edit.

• Limited Number of Paraphrase Prompts: The limited number of paraphrase

prompts per counterfactual statement hinders a comprehensive analysis of the LLM’s

generalizability. A more extensive set of paraphrase prompts with diverse phrasing and

context would enable a more thorough evaluation of the trade-off between generaliza-

tion and locality.

• Lack of Different Neighbor Prompts: The current neighbor prompts, sharing the

same relation and object with the original factual statement, might not fully reveal
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the consequences of knowledge editing. Adding a wider variety of neighbor prompts,

including those with different relations involving the edited object, could provide a

more comprehensive evaluation of locality and ensure that the LLM’s understanding

of related information remains intact.

• No Contextual Diversity: The absence of contextual noise in locality evaluation

may not accurately reflect real-world applications.

• Untested Capabilities: The CounterFact dataset currently only evaluates the LLM’s

ability to recall and utilize edited factual knowledge. Other aspects, such as reasoning

and mathematical operations, remain untested. Evaluating the LLM’s performance on

a wider range of NLP tasks would provide a more complete picture of its post-editing

capabilities.

Overall, CounterFact provides a valuable tool for evaluating knowledge editing methods

in LLMs. However, acknowledging its limitations and incorporating potential improvements

will ensure a more comprehensive and accurate assessment of edited LLM capabilities.

6.2 CounterFact Dataset Augmentation

This section presents the augmentation process for a statement using an example from the

CounterFact dataset Meng et al. [2022b]. Here is the counterfactual statement with case ID

28 from the CounterFact dataset:

Pidgeon Island belongs to the continent of Antarctica

Here, the subject is Pidgeon Island, the object is Antarctica, and the relation is "belongs

to the continent of". The WikiData relation ID is P30, which has 4 pattern variations in

ParaRel that can be used to construct full sentences Elazar et al. [2021]:
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{"pattern": "[X] is located in [Y].", ...}
{"pattern": "[X] is located in the continent [Y].", ...}
{"pattern": "[X] belongs to the continent of [Y].", ...}
{"pattern": "[X] is a part of the continent of [Y].", ...}

There are usually less than 10 prompts for each relation in ParaRel. These patterns are

augmented by GPT-4 with the following prompt:

Please write a diverse set of linguistic patterns that accurately represent
the relationship between elements [X] and [Y], as defined by a specific
WikiData relation.

↪→

↪→

**Relation**
WikiData ID: \{\{relation_id\}\}
Description: \{\{relation_description\}\}

**Example Patterns**
\{\{patterns\}\}

**Guidelines for Pattern Writing**
1. **Preserve Original Meaning**: Each pattern should accurately reflect the

relation between [X] and [Y], similar to the example patterns.↪→

2. **Maintain Neutral Tone and Sentiment**: Keep the tone and sentiment of
the example patterns, and make sure that the your patterns are not
overly positive or negative. Additionally, refrain from using uncommon
words, phrases or sentence structures.

↪→

↪→

↪→

3. **Explore Diverse Structures**: Use a variety of grammatical structures,
such as normal sentence structures, appositive phrases (e.g., '[X], a
... [Y], ...'), and relative clauses (e.g., '[X], which/who/where ...
[Y], ...'). Note: For phrases or clauses, a complete sentence is not
required, but the pattern should accurately reflect the relation between
[X] and [Y].

↪→

↪→

↪→

↪→

↪→

4. **Aim for Creativity and Variety**: Generate a wide range of patterns to
showcase different ways of expressing the same idea.↪→

**Response Format:**
Provide your patterns in the following JSON format:
```json
\{

"patterns": [
"pattern 1",
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"pattern 2",
"pattern 3",
... // additional patterns

]
\}
```

Here, the relation ID is the same as the property ID from WikiData Vrandečić [2012].

The description is obtained from WikiData Query Service with the following query:

SELECT ?property ?propertyLabel ?propertyDescription WHERE {
BIND(wd:{relation_id} AS ?property)
SERVICE wikibase:label { bd:serviceParam wikibase:language

"[AUTO_LANGUAGE],en". }↪→

}

The augmentation process with GPT-4 was repeated 50 times, generating around 1,000

patterns per relation. Then we manually selected the patterns by establishing clear criteria to

ensure they maintained semantic integrity, linguistic coherence, and thematic relevance to the

original ParaRel patterns. This approach systematically removed patterns that significantly

diverged in meaning, structure, or context, or were substantially duplicated, using both

manual review and automated tools to prioritize pattern uniqueness and relevance.

Below are examples of the final augmented patterns, showcasing the diversity and quality

achieved:

...
{

"lemma": "be",
"extended-lemma": "be-part-of",
"texts": [

"{subject} is part of {value}",
"{subject} is part of the continent of {value}",
"{subject}, which is part of {value}",
"{subject}, which is part of the continent of {value}",
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"{subject}, a part of {value}",
"{subject}, a part of the continent of {value}"

]
},
{

"lemma": "be",
"extended-lemma": "be-in",
"texts": [

"{subject} is in {value}",
"{subject} is in the continent of {value}",
"{subject}, which is in {value}",
"{subject}, which is in the continent of {value}",
"where is {subject}? It is in {value}",
"where is {subject}? It is in the continent of {value}"

]
},
...

While not explicitly demonstrated in this example, conventional NLP augmentation

methods like back translation can complement the proposed approach. However, such meth-

ods introduce few novel patterns and, therefore, were not used during our dataset construc-

tion.
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