
THE UNIVERSITY OF CHICAGO

Towards Continually Learning
Application Performance Models

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER

DEPARTMENT OF COMPUTER SCIENCE

BY

Ray A. O. Sinurat

CHICAGO, ILLINOIS

2024

Copyright © 2024 by Ray A. O. Sinurat

All Rights Reserved

Intentionally left blank.

Table of Contents

LIST OF FIGURES . VI

LIST OF TABLES . VII

ACKNOWLEDGMENTS . VIII

ABSTRACT . IX

1 INTRODUCTION . 1

2 DATASET . 3

3 CONTINUALLY LEARNING PERFORMANCE MODELS 6
3.1 DEFINITION . 6
3.2 FORMULATION OF LEARNING WITH REAL CONCEPT DRIFT 7
3.3 CONTINUAL LEARNING STRATEGIES . 8

4 EXPERIMENTAL SETUP . 10
4.1 METRICS . 10
4.2 MODELS IMPLEMENTATION . 11

5 RESULTS AND DISCUSSION . 13
5.1 IOR BENCHMARK . 14

5.1.1 POSIX API . 14
5.1.2 MPI-IO API . 15

5.2 HACC POSIX BENCHMARK . 16
5.3 DBSCAN MPI-IO BENCHMARK . 18
5.4 VPIC MPI-IO BENCHMARK . 19
5.5 DISCUSSION . 20

5.5.1 RQ1: HOW DOES THE PERFORMANCE OF THE CL METHODOLOGIES

COMPARE TO THE BASELINE MODEL? 20
5.5.2 RQ2: HOW DO THE DIFFERENT CL METHODOLOGIES PERFORM ON

OUR I/O PROFILING DATA? . 21

6 FUTURE WORK . 22

iv

7 CONCLUSION . 24

REFERENCES . 25

v

List of Figures

2.1 I/O performance as a function of time. I/O performance as a function of time for
all eight applications (bottom) and one of the applications (top); Magenta lines show
the temporal location of the software upgrade. 3

5.1 IOR Posix Data. IOR Read Posix (a) and IOR Write Posix (b) data. Red line shows
the temporal location of the software upgrade. 14

5.2 IOR Posix Result. Average Accuracy vs Remembering of CL methodologies on IOR
Read Posix (a) and IOR Write Posix (b). Best case is at the top right corner. 15

5.3 IOR MPI-IO Data. IOR Read MPI-IO (a) and IOR Write MPI-IO (b) data. Red line
shows the temporal location of the software upgrade. 16

5.4 IOR MPI-IO Result. Average Accuracy vs Remembering of CL methodologies on
IOR Read MPI-IO (a) and IOR Write MPI-IO (b). Best case is at the top right corner. 17

5.5 HACC Posix Data. HACC Read Posix (a) and HACC Write Posix (b) data. Red line
shows the temporal location of the software upgrade. 17

5.6 HACC Posix Result. Average Accuracy vs Remembering of CL methodologies on
HACC Read Posix (a) and HACC Write Posix (b). Best case is at the top right corner. 18

5.7 DBSCAN MPI-IO Data. Red line shows the temporal location of the software
upgrade. 18

5.8 DBSCAN MPI-IO Result. Average Accuracy vs Remembering of CL methodologies
on DBSCAN Read MPI-IO. Best case is at the top right corner. 19

5.9 VPIC MPI-IO Data. Red line shows the temporal location of the software upgrade. . 19
5.10 VPIC MPI-IO Result. Average Accuracy vs Remembering of CL methodologies on

VPIC Write MPI-IO. Best case is at the top right corner. 20

vi

List of Tables

2.1 Feature variables. Input features extracted from the I/O monitoring data. 5

4.1 Hyperparameter configurations. The configurations used in our experiments. . . . 11

vii

Acknowledgments

I thank Haryadi Gunawi and Sandeep Madireddy for their insights, feedbacks, and supports in

this work. Lastly, I express my gratitude to my family and friends for their love and support.

viii

Abstract

Machine learning-based performance models are increasingly being used to build critical job

scheduling and application optimization decisions. Traditionally, these models assume that data

distribution does not change as more samples are collected over time. However, owing to the

complexity and heterogeneity of production HPC systems, they are susceptible to hardware degra-

dation, replacement, and/or software patches, which can lead to drift in the data distribution that

can adversely affect the performance models. To this end, we develop continually learning perfor-

mance models that account for the distribution drift, alleviate catastrophic forgetting, and improve

generalizability. Our best model was able to retain accuracy, regardless of having to learn the new

distribution of data inflicted by system changes, while demonstrating a 2× improvement in the

prediction accuracy of the whole data sequence in comparison to the baseline approach.

ix

Chapter 1

Introduction

The complexity of leadership-class high-performance computing (HPC) systems is increasing

rapidly due to the need to handle diverse workloads and applications. In particular, storage systems

and I/O architectures are integrating different heterogeneous storage technologies to maximize the

price-performance trade-off. This complexity entails the need for sophisticated empirical/machine

learning models to accurately predict the application performance. The accuracy of the perfor-

mance model is crucial due to its use in making decisions about job scheduling, application opti-

mization, and capacity planning of facilities.

It is commonly assumed that the data used to learn the performance models do not undergo

any distribution shift. Under this stationarity assumption, the observation of more data on the

application performance in the HPC system should increase the predictive performance of these

machine learning models. However, as reported in recent works [27], factors such as hardware

degradation [16], replacement, anomalies [14] or software upgrades [20] can affect the state of

the system and, in turn, lead to a change/drift in the underlying distribution. Performance models

trained on the past data will be degraded due to this data distribution shift. Such distribution shifts

have been handled either by updating the model ad hoc without drift detection [12] using a sliding

window of data or by ignoring those data before the drift occurred. More recently, Madireddy et al.

[24] proposed a moment-matching transform to correct for data drift post-detection.

1

A more general approach to train/adapt the performance model in the presence of this drift

is using continual learning [31] algorithms, which acknowledge the presence of data distribution

shifts and are designed to prevent catastrophic forgetting of the models on the data observed before

the shift when training on data observed post-drift, thus generalizing across the distribution shifts.

The ability to learn continuously from an incoming data stream without catastrophic forgetting is

critical for designing intelligent systems.

Prior research in continuous learning has focused mainly on virtual concept drift [18] (or label

drift) where there exists drift in the distribution of targets (P(y)) without affecting the functional

relationship between the inputs and outputs (P(y|x)) of the model. For example, this scenario is

encountered in training classification models, which should learn a new class without forgetting the

previous ones when presented sequentially, one after the other. However, for performance model-

ing, we are interested in the real concept drift scenario in which learning occurs in a sequence of

tasks where the input distribution (P(x)) remains the same but the functional relationship (P(y|x))

changes across tasks due to the change in the state of the system. This scenario has been less

explored with few studies pertaining to image segmentation [8] and improvement in label preci-

sion [5].

To this end, we make the following contributions to this work:

1. We formulate performance modeling in the presence of data drifts as a real concept drift

continuous learning scenario.

2. We adapted several virtual concept drift continuous learning approaches to performance

modeling and compared to naive fine-tuned learning that ignores catastrophic forgetting.

3. Our results show a 2-fold improvement in the accuracy of the continual learning models

compared to their naive fine-tuned learning counterparts after learning all tasks on the real

performance data from the production clusters.

2

Chapter 2

Dataset

Figure 2.1: I/O performance as a function of time. I/O performance as a function of time for
all eight applications (bottom) and one of the applications (top); Magenta lines show the temporal
location of the software upgrade.

We collected our data from Cori, a production supercomputing system at the National Energy

Research Scientific Computing Center that is used to run high-performance applications (HPC)

tasks. Cori is a Cray XC40 system that comprises of 12,000 compute nodes and Lustre file systems

[3] with a 30PB capacity and peak performance of 700 GB/sec. The data used in our experiments
3

consist of eight production applications with diverse application workloads representative of the

science application typically run. Numerous applications employ distinct write and read variations,

with one typically being more intensive than the other, to measure the I/O performance of the

related tasks. The mentioned applications are as follows:

1. IOR Posix and IOR MPI-IO [2]: These tools perform read and write operations to assess

the I/O performance of parallel file systems. In total, 1.5 TB data were processed for IOR

benchmark.

2. HACC Posix [15]: This operates 8 TB data in read and write modes and is utilized for

simulating the formation of gravitational structures in collisionless fluids in an expanding

universe.

3. DBSCAN MPI-IO [29]: Processes 3 TB volume of data in read mode and is applied for

clustering extensive datasets.

4. VPIC MPI-IO [4]: Functions in write mode and serves as a versatile, particle-in-cell simu-

lation tool for kinetic plasma modeling with total amount of data reaching 4 TB.

To collect the I/O performance of these application, we used TOKIO (Total Knowledge of

I/O; [21]) framework for I/O performance profiling. As part of TOKIO, the application perfor-

mance statistics is provided by Darshan [7] logs, I/O traffic in Lustre file systems is obtained using

LMT [13] (Lustre Monitoring Tools), and scheduling information using Slurm [32].

All of these applications were run daily for one year. These benchmarks also executed con-

temporaneously on Cori; hence, the temporal location of the system changes should be consistent

across the applications. Specifically, two major software upgrades were performed during the

course of this study. Both upgrades affected the I/O performance of some applications. There-

fore, it can be assumed that the data are divided into three different windows by the two software

upgrades as seen in Figure 2.1 that show the normalized I/O performance for a single application

4

Table 2.1: Feature variables. Input features extracted from the I/O monitoring data.

Metric Description Units Tool

Perc OST Full Average % OST fullness – LMT

Ave OSS CPU Average OSS CPU load – LMT

Ave MDS CPU Average MDS CPU Load – LMT

Num Conc Jobs Number of concurrent jobs – Slurm

FS Read Vol Total read volume across FS GB LMT

FS Read Vol Total write volume across FS GB LMT

Num Mkdir Op Number of mkdir operations – LMT

Num Rename Op Number of rename operations – LMT

Num Rmdir Op Number of rmdir operations – LMT

Num Unlink Op Number of unlink operations – LMT

at the top and all eight applications at the bottom. The magenta line indicates the time that the

software updates were performed, and the top figure shows the shift in the I/O performance dis-

tribution. We consider metrics that capture filesystem traffic (using LMT) and system load (using

Slurm) as features used by the performance model to predict I/O performance. We also do not

preprocess these features to choose a subset of these metrics that are not collinear. A summary of

the adopted features is shown in Table 2.1.

5

Chapter 3

Continually Learning Performance Models

3.1 DEFINITION

The goal of continual learning (CL) is to improve the model over time while retaining prior knowl-

edge or experiences. CL came to fruition as a solution when the model forgets prior knowledge due

to a dynamic data stream that changes over time [18]. This change is typically in the data distri-

bution which leads to data drift/non-stationarity and ignoring it can lead to catastrophic forgetting

[11]. Formally, continual learning on a sequence of tasks (T t , t = 1,2, ..,N ∀T ∈ T) consisting of

ordered pairs of input data points and their corresponding targets {X t ,Y t} aims to maximize the

performance of a system across all tasks T , when trained sequentially. There are different kinds of

data drifts that introduce non-stationarity in learning and motivate the need for continual learning

approaches. Some well-known drifts that affect supervised learning include:

1. Real concept drift occurs when the distribution of inputs remain same across tasks, i.e,

Pt(x)=Pt+1(x),∀x∈X but the functional relation changes, i.e., Pt(y|x) ̸=Pt+1(y|x),∀(x,y)∈

(X ,Y).

2. Virtual concept drift happens when the distribution shifts only happen inside target vari-

ables (Pt(y) ̸= Pt+1(y)) without altering the relationship towards input variables.

6

3. Domain drift exists if the drift occurs in the input variables (Pt(x) ̸= Pt+1(x)) without af-

fecting the relationship towards target variables.

We observed that the I/O performance data undergoes real concept drift, which is much harder

and less studied in the context of continual learning. Most works have considered virtual concept

drift in the classification scenario where data from disjoint classes form new tasks. Although I/O

performance modeling is a regression problem, we formulate it as a classification problem by

dividing the continuous output range into an equally spaced interval for simplicity, in addition to

the potential to adapt the high-performing algorithms from the literature as well as software that

have been primarily targeting the classification scenarios.

3.2 FORMULATION OF LEARNING WITH REAL CONCEPT DRIFT

To this end, we adopt the classification-based continual learning settings to learn in the presence

of real concept drift. Specifically, we incorporated the class-incremental setting [26] from virtual

concept drift works but modified the learning so that each task’s output spans the entire space as

opposed to each of them accumulating from disjoint classes in the previous case. In addition to

that, we keep the task id in training and inference consistent with the traditional class-incremental

learning, where the task id is provided at training, but not inference. In this work, the task id is an

integer that provides essential information when the software upgrade occurs. We also note that as

we described in Chapter 2, we used the aggregation of performance statistics provided by Darshan

[7] as our target variable (y) which results in a single floating number that should be restricted to

regression problems. In this work, we converted regression problems into classification problems

by splitting the y, which infinitely spans from [0.0,1.0], into 10 regimes equally.

To train our model, we need to provide features (x), targets (y) at training time, and additional

task id (t) while splitting the data. We achieve this by providing task id (t) while loading the dataset

and treating each dataset with a different task id as a separate dataset. This separation of the dataset

7

is required to split the data correctly based on its performance shifts after upgrading software.

3.3 CONTINUAL LEARNING STRATEGIES

In this work, we adopt six different methodologies that are popular in continual learning as bench-

marks. These approaches include:

1. Elastic Weight Consolidation (EWC) [17], which is a regularization-based approach that

measures the importance of the parameters for the current task and penalizes future updates.

The regularization term of EWC consists of a quadratic penalty term for each previously

learned task, whereby each task’s term penalizes the parameters for how different they are

compared to their value directly after finishing the training on that task. The strength of each

parameter’s penalty depends for every task on how important that parameter was estimated

to be for that task, with higher penalties for more important parameters.

2. Synaptic Intelligence (SI) [33] is another regularization-based approach that consists of

only one quadratic term that penalizes changes to important parameters which are identified

by tracking each synapse’s credit assignment during the task. The importance parameter is

measured by computing the per parameter contribution to the change of loss for the current

task and thus strongly contributing parameters are heavily penalized in subsequent tasks.

3. Learning without Forgetting (LwF) [19] is a distillation-based approach towards continual

learning, wherein previous model outputs are used as soft labels for previous tasks. For this,

each input to be replayed is labeled with a “soft target”, which is a vector containing a

probability for each active class.

4. Averaged Gradient Episodic Memory (A-GEM) [9] uses episodic memory as an opti-

mization constraint to avoid catastrophic forgetting. The sample handling of A-GEM avoids

solving a quadratic optimization problem for handling samples in the buffer and, instead

8

uses the mean gradient of such samples from the buffer. The sample is selected, if they

point in the same direction in which the current gradient is applied, otherwise an orthogonal

projection to the averaged gradient is performed.

5. Gradient-based Sample Selection (GSS) Greedy [6] is a sample selection strategy for

a setup without task boundaries or at least knowledge about these. Each previously seen

sample is regarded as an individual constraint, to which every following sample must be

compatible. Sample selection in this context is identical to a constraint reduction problem

which is solved by a greedy strategy. This strategy selects n random samples from the

buffer and calculates the cosine-similarity between the gradient of the current sample and the

gradients of the selected samples Samples of the buffer are only replaced if the similarity falls

below a defined threshold, that is, the sample with maximal cosine-similarity is replaced.

6. Greedy Sampler and Dumb learner (GDumb) [30] greedily stores samples balanced over

the observed classes and at test time learns a new model from scratch with the rehearsal

memory. This approach consists of two components, namely the gradient balancing sampler

and learner. The sampler greedily creates a new bucket for that class and starts removing

samples from the old ones, in particular, from the one with a maximum number of samples.

For the baseline, a simple fine-tuning method without any optimization to prevent catastrophic

forgetting is used. We refer to this method as Baseline in this work. In Baseline, a model is

just incrementally fine-tuned depending on the new (drifted) data. Baseline is provided natively

inside Avalanche, with the name Naive, to give the lowest baseline of a model that suffers from

catastrophic forgetting and mimics typical (stationary) supervised learning.

9

Chapter 4

Experimental Setup

The following section defines the experiment setup and establishes the improvement induced by

the use of performance modeling as proposed. All experiments were carried out inside Chameleon

[1] bare metal machines with a single Intel (R) Xeon (R) CPU @ 2.00GHZ CPUs consisting of 8

cores with hyper-threading enabled, 12 GiB of memory, and 200 GB of disk space. We also use

RTX-6000 GPUs with 24 GB of memory for the deep learning.

4.1 METRICS

To evaluate the performance of the models, we use the metrics defined as follows:

1. Average Accuracy [25] is used to determine the accuracy of the trained model to predict

current and prior data after training. The formula is shown as follows:

Average Accuracy(Ai) =
1
i

i

∑
j=1

ai, j (4.1)

where i is current task and ai, j represents the accuracy assessed on the test set reserved for

task j after training the network on tasks from 1 to i.

10

2. Remembering [10] is used to measure how well model remembers the knowledge of previ-

ous tasks. The formula is shown as follows:

Remembering = 1−min

0,

∣∣∣∣∣∣∣∣∣
T
∑

i=2

i−1
∑

j=1
(ai, j −a j, j)

T×(T−1)
2

1

∣∣∣∣∣∣∣∣∣

 (4.2)

where T is the number of tasks and ai, j is as described (4.1).

4.2 MODELS IMPLEMENTATION

Table 4.1: Hyperparameter configurations. The configurations used in our experiments.

Parameters Value

General Epochs 60

Training Batch Size 4

Test Batch Size 4

Learning Rate 0.001

Optimizer Adam

Hidden Layers 3

Hidden Size 400

Synaptic Intelligence (SI) Lambda 1.0

Eps 1×10−7

EWC Mode Separate

Lambda 0.5

LwF Alpha 1.0

Temperature 2.0

AGEM Patterns Per Exp 2

GSS Greedy Mem Size 200

GDumb Mem Size 200

We use the API provided by Avalanche [22], a continual learning framework based on PyTorch

[28] which provides us with essential continual learning methodologies that are used in this work.

11

We used the class-incremental setting [26], as specified in Section 3.2, which provides task id at the

training time but omits the task id while performing inferences. Furthermore, Table 4.1 shows the

hyperparameters of neural network models, training and evaluation configurations, and continual

learning approaches parameter that are used through the experiments in this work. For memory-

based approaches such as GSS Greedy [6] and GDumb [30], we use the same memory size of 200

samples to ensure a fair comparison and avoid overfitting to the memory buffer.

12

Chapter 5

Results and Discussion

This section is dedicated to showcasing the outcomes of our experimental research on the I/O

performance modeling problem in Cori Cluster as specified in the Chapter 2. These results are

aimed at answering the research questions as stated below:

• RQ1: How does the performance of the CL methodologies compare to the baseline model?

• RQ2: How do the different CL methodologies perform on our I/O profiling data?

13

5.1 IOR BENCHMARK

5.1.1 POSIX API

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
50

100

150

200

250

300

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

IOR Read POSIX MaintenanceWindow 1 Window 2 Window 3 Maintenance

(a) IOR Read Posix Data

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

100

200

300

400

500

I/O
 P
er
fo
rm
an
ce
 (G

B/
s)

IOR Write POSIX MaintenanceWindow 1 Window 2 Window 3 Maintenance

(b) IOR Write Posix Data

Figure 5.1: IOR Posix Data. IOR Read Posix (a) and IOR Write Posix (b) data. Red line shows
the temporal location of the software upgrade.

In this section, the outcomes of the IOR benchmark utilizing the POSIX API are detailed. Ref-

erencing Fig. 5.1, it is observed that the IOR Read Posix (5.1a) lacks a distinct trend in performance

decline. Conversely, the IOR Write Posix (5.1b) exhibits a marked performance deterioration sub-

sequent to the software update. As indicated in Figure 5.2, the GSS Greedy method demonstrates

superior performance in IOR Read Posix, achieving an average accuracy of 0.54, surpassing the

baseline model’s lower average accuracy of approximately 0.31. In the context of IOR Write

Posix, GDumb exceeds the baseline model and other CL strategies, achieving an average accuracy

of 0.69, in contrast to the baseline model’s average accuracy of around 0.46. These findings sug-

14

gest that the CL methodologies effectively detect performance degradation following the software

upgrade in scenarios where IOR Read Posix exhibits no obvious performance decline and where

there is a noticeable performance decline in IOR Write Posix.

0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
Ac
cu
ra
cy

IOR Read POSIX
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(a) IOR Read Posix Result

0.5 0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
Ac
cu
ra
cy

IOR Write POSIX
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(b) IOR Write Posix Result

Figure 5.2: IOR Posix Result. Average Accuracy vs Remembering of CL methodologies on IOR
Read Posix (a) and IOR Write Posix (b). Best case is at the top right corner.

5.1.2 MPI-IO API

Within this section, the outcomes of the IOR benchmark employing the MPI-IO API are elaborated.

The IOR Read benchmark (5.3a) demonstrates a pronounced pattern of performance degradation

following the second software update. Conversely, the IOR Write benchmark (5.3b) exhibits slight

performance decline after the initial software update but reverts to normal performance post the

second upgrade. This phenomenon is widely known as reoccuring concepts [23]. Once more, GSS

Greedy emerges as the most effective methodology for IOR Read MPI-IO, delivering an average

accuracy of 0.82, markedly surpassing the baseline model’s average accuracy of 0.31. In the case of

IOR Write MPI-IO, GDumb proves to be the superior methodology, achieving an average accuracy

of 0.75 and remembering rate of 0.84, albeit not outperforming GSS Greedy, which has an average

accuracy of 0.67 and remembering rate of 0.91. Notably, A-GEM seems to excel above all other

CL methodologies in retaining prior knowledge in IOR Read MPI-IO. However, this is attributed

to the observation that A-GEM’s accuracy remains constant at 0.3 throughout the experiment, not
15

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
0

20

40

60

80

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

IOR Read MPI-IO MaintenanceWindow 1 Window 2 Window 3 Maintenance

(a) IOR Read MPI-IO Data

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
0

10

20

30

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

IOR Write MPI-IO MaintenanceWindow 1 Window 2 Window 3 Maintenance

(b) IOR Write MPI-IO Data

Figure 5.3: IOR MPI-IO Data. IOR Read MPI-IO (a) and IOR Write MPI-IO (b) data. Red line
shows the temporal location of the software upgrade.

showing improvement. The reasons behind this phenomenon warrant further investigation and are

designated as a subject for future research. Nevertheless, the results from other CL methodologies

are not as promising as those from GSS Greedy and GDumb.

5.2 HACC POSIX BENCHMARK

This section focuses on the outcomes related to HACC Posix. Specifically, the HACC Write Posix

(5.5) demonstrates a distinct performance drift subsequent to the second software update, while the

HACC Read Posix (5.5b) does not exhibit any notable performance drift. As depicted in Figure

5.6, both GSS Greedy and GDumb maintain their performance within the 0.5-0.6 range for both

HACC Read Posix and HACC Write Posix, outperforming the baseline model, which is susceptible

to drift in both instances. The baseline model exhibits an average accuracy of approximately 0.5 in

16

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac
cu
ra
cy

IOR Read MPI-IO
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(a) IOR Read MPI-IO Result

0.0 0.2 0.4 0.6 0.8 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
Ac
cu
ra
cy

IOR Write MPI-IO
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(b) IOR Write MPI-IO Result

Figure 5.4: IOR MPI-IO Result. Average Accuracy vs Remembering of CL methodologies on
IOR Read MPI-IO (a) and IOR Write MPI-IO (b). Best case is at the top right corner.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

100

150

200

250

300

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

HACC Read POSIX MaintenanceWindow 1 Window 2 Window 3 Maintenance

(a) HACC Read Posix Data

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

100

200

300

400

500

I/O
 P
er
fo
rm
an
ce
 (G

B/
s)

HACC Write POSIX MaintenanceWindow 1 Window 2 Window 3 Maintenance

(b) HACC Write Posix Data

Figure 5.5: HACC Posix Data. HACC Read Posix (a) and HACC Write Posix (b) data. Red line
shows the temporal location of the software upgrade.

both cases, with a retention rate of 0.65 for HACC Read Posix and approximately 0.57 for HACC

Write Posix. Nevertheless, it’s observed that other CL methodologies also do not exhibit learning

17

in these drift scenarios.

0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac
cu
ra
cy

HACC Read POSIX
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(a) HACC Read Posix Result

0.5 0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac
cu
ra
cy

HACC Write POSIX
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

(b) HACC Write Posix Result

Figure 5.6: HACC Posix Result. Average Accuracy vs Remembering of CL methodologies on
HACC Read Posix (a) and HACC Write Posix (b). Best case is at the top right corner.

5.3 DBSCAN MPI-IO BENCHMARK

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

50

100

150

200

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

DBSCAN Read MPI-IO MaintenanceWindow 1 Window 2 Window 3 Maintenance

Figure 5.7: DBSCAN MPI-IO Data. Red line shows the temporal location of the software
upgrade.

In this benchmark, a significant I/O performance dropped was noted after the second software

upgrade, as illustrated in Figure 5.7. Figure 5.8 reveals that GSS Greedy and GDumb are closely

matched in terms of average accuracy and retention rate, with both methodologies demonstrating

equivalent memory of past information. Nevertheless, GSS Greedy exhibits higher average accu-

racy than GDumb, with values of 0.64 and 0.60, respectively. It is also noted that the baseline
18

model, along with other CL methodologies, struggle to adapt in this scenario of drift, achieving

only about 0.3 in average accuracy and a remembering rate ranging between 0.4 and 0.5.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac
cu
ra
cy

DBSCAN Read MPI-IO
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

Figure 5.8: DBSCAN MPI-IO Result. Average Accuracy vs Remembering of CL methodologies
on DBSCAN Read MPI-IO. Best case is at the top right corner.

5.4 VPIC MPI-IO BENCHMARK

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

20

30

40

50

60

I/O
 P
er
fo
rm

an
ce
 (G

B/
s)

VPICIO Write MPI-IO MaintenanceWindow 1 Window 2 Window 3 Maintenance

Figure 5.9: VPIC MPI-IO Data. Red line shows the temporal location of the software upgrade.

In the VPIC MPI-IO benchmark, a significant improvement in performance was observed fol-

lowing the first software upgrade, as indicated in Figure 5.9. However, after the second software

upgrade, the performance reverted to its original levels, exemplifying a case of recurring concept

drift [23]. According to Figure 5.10, GSS Greedy and GDumb emerge as the leading method-

ologies for this benchmark, achieving average accuracies of 0.69 and 0.71 respectively, with both

maintaining a remembering rate of around 0.9. In contrast, the baseline model and other CL
19

methodologies again fail to adapt effectively, achieving only between 0.2 to 0.5 in average accu-

racy and a retention rate in the range of 0.3 to 0.6.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Remembering

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac
cu
ra
cy

VPICIO Write MPI-IO
Baseline
EWC
A-GEM

LwF
SI
GSS

GDumb
Best Case

Figure 5.10: VPIC MPI-IO Result. Average Accuracy vs Remembering of CL methodologies on
VPIC Write MPI-IO. Best case is at the top right corner.

5.5 DISCUSSION

Having gathered and analyzed all the results, we are now equipped to respond to the questions

presented in 5. This step is essential for fulfilling the objectives of our study and provides clarity

on the research inquiries initially proposed.

5.5.1 RQ1: HOW DOES THE PERFORMANCE OF THE CL METHODOLO-

GIES COMPARE TO THE BASELINE MODEL?

It has been observed that two out of three memory-based Continual Learning (CL) algorithms,

notably GSS Greedy and GDumb, exhibit superior performance across all benchmark applications

used in this study. A-GEM, on the other hand, performed poorly on every benchmark results. GSS

and GDumb surpass the baseline model and other CL methodologies significantly, demonstrating

at least a two-fold improvement in remembering rate and an average accuracy that is about 1.5

times better. The success of memory-based CL algorithms can be attributed to their ability to re-

call past knowledge through techniques involving sampling and data storage in memory. These
20

algorithms are better in adapting to recurring drift also due to its ability to retain the knowledge.

In contrast, methodologies like Elastic Weight Consolidation (EWC), Learning without Forgetting

(LwF) and Synaptic Intelligence (SI), which primarily rely on regularization to mitigate catas-

trophic forgetting, do not perform as well. These methods continue to struggle with catastrophic

forgetting, leading to poorer predictions despite strategies aimed at updating the model to pre-

vent memory loss. Further investigation is required to ascertain the reasons behind the inadequate

performance of these methodologies in our experiments. A potential factor could be the lack for

proper tuning of their hyperparameters. Addressing these issues and optimizing the performance

of these methodologies remain areas for future research.

5.5.2 RQ2: HOW DO THE DIFFERENT CL METHODOLOGIES PERFORM

ON OUR I/O PROFILING DATA?

In the context of retaining past knowledge, GSS Greedy and GDumb have proven to be the most

effective, particularly in situations where data drift recurs. Such scenarios are common in computer

systems following multiple maintenance activities, which may involve hardware replacement or

software upgrades. The advantage of these Continual Learning (CL) methodologies lies in their

ability to capitalize on recurring patterns, as they are adept at remembering past knowledge and

updating the model in response to these changes. However, their performance is not as robust when

faced with non-recurring data drifts or data that contains significant noise. In these instances,

CL methodologies still face challenges due to the increased variability in the data. To improve

predictions in such scenarios, further exploration and processing of the data are essential. This

approach would enable a more accurate adaptation to the variations in the data, enhancing the

overall efficacy of the CL models.

21

Chapter 6

Future Work

In this work, we focus on modeling applications performance inside HPC production systems

which usually suffer from catastrophic forgetting due to data distribution drifts as a result of sys-

tem changes over time. We highlight that the distribution drift for performance modeling follows

real concept drift and present a continual learning-based approach to performance modeling that

is able to retain prior knowledge while maintaining the ability to learn new data. We incorpo-

rate real concept drift within the Avalanche framework to evaluate on various continual learning

benchmarks. We propose a novel approach towards modeling continuous concept drift as a class

incremental learning problem, and observe that the best performing GDumb model provides a 2×

improvement in accuracy over the naive fine-tuning approach.

In this study, we have not yet undertaken an extensive optimization of hyperparameters for both

the baseline model and the various continual learning approaches employed. It is our hypothesis

that the model’s performance could be significantly enhanced through meticulous hyperparame-

ter tuning. This process involves adjusting parameters such as learning rate, batch size, network

architecture, and continual learning algorithms specific parameter, such as memory size, which

are crucial for optimizing the model’s efficiency and accuracy. Our future work will focus on this

aspect to fully realize the potential of our models in continual learning scenarios.

As of now, the task identification process, as outlined in Section 3.2, relies on manual collec-

22

tion by server operators. This manual approach, while effective, introduces potential delays and

inaccuracies in data acquisition. To enhance efficiency and accuracy, the integration of an auto-

mated system based on the concept drift-aware modeling technique [24] is needed. This technique

is capable of autonomously detecting instances of concept drift in near real-time. The integration

of this automated system with our existing predictive models offers significant promise. It will

enable our models to continuously and adaptively learn from data within production environments,

thereby optimizing performance and reducing the reliance on manual processes. This integration

is anticipated to substantially improve the responsiveness and precision of our system in adapting

to changing data patterns in real-world scenarios.

In the upcoming phase, our goal is to implement the enhanced model within operational sys-

tems. For the model to accurately capture and adapt to the evolving behaviors of applications, it

is essential to gather a more extensive set of data, particularly data that exhibits varying concept

drifts. Additionally, the insights derived from our model have the potential to significantly assist

related software tools, such as job schedulers and monitoring utilities. By supplying these tools

with comprehensive information, our model aims to support and refine their decision-making pro-

cesses. In essence, by embedding our model into the operational infrastructure and its associated

software components, we strive to elevate the efficiency of managing and optimizing tasks across

these systems.

23

Chapter 7

Conclusion

In this research, we have pioneered the application of continual learning to real-world system I/O

performance data. Our study utilizes I/O performance data sourced from Cori, a production super-

computer located at the National Energy Research Scientific Computing Center (NERSC). This

data serves as a basis for demonstrating the efficacy of continual learning in forecasting I/O per-

formance. The findings reveal that, in the context of system changes, continual learning surpasses

traditional fine-tuning methods by approximately 1.5 to 2 times in terms of average accuracy.

Moreover, it demonstrates a two to threefold improvement in retaining previous knowledge. This

highlights the significant potential of continual learning methodologies in adapting to and accu-

rately predicting performance in dynamic, real-world computing environments.

24

References

[1] Chameleon. https://www.chameleoncloud.org.

[2] IOR Benchmark. https://github.com/hpc/ior.

[3] Lustre File System. http://lustre.org/.

[4] PIOK: Parallel I/O Kernels. https://github.com/hpc-io/PIOK.

[5] Mohamed Abdelsalam, Mojtaba Faramarzi, Shagun Sodhani, and Sarath Chandar. IIRC:
Incremental Implicitly-Refined classification. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11033–11042, June 2021.

[6] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample
selection for online continual learning. Advances in neural information processing systems,
32, 2019.

[7] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham,
and Robert Ross. Understanding and improving computational science storage access
through continuous characterization. ACM Trans. Storage, 7(3):1–26, October 2011.

[8] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò, Elisa Ricci, and Barbara Ca-
puto. Modeling the background for incremental learning in semantic segmentation. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9230–
9239, June 2020.

[9] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Effi-
cient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[10] Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t
forget, there is more than forgetting: new metrics for Continual Learning. In Continual
Learning Workshop at NeurIPS 2018, 2018.

[11] R M French. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci., 3(4):
128–135, April 1999.

[12] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.
A survey on concept drift adaptation. ACM Comput. Surv., 46(4):1–37, March 2014.

25

https://www.chameleoncloud.org
https://github.com/hpc/ior
http://lustre.org/
https://github.com/hpc-io/PIOK

[13] Garlick and Morrone. Lustre monitoring tools. https://github.com/LLNL/lmt.

[14] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher, Swaminathan Sundarara-
man, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey,
Deepthi Srinivasan, Biswaranjan Panda, Andrew Baptist, Gary Grider, Parks M Fields, Kevin
Harms, Robert B Ross, Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H Birali
Runesha, Mingzhe Hao, and Huaicheng Li. Fail-Slow at scale: Evidence of hardware perfor-
mance faults in large production systems. ACM Trans. Storage, 14(3):1–26, October 2018.

[15] Salman Habib, Vitali Morozov, Hal Finkel, Adrian Pope, Katrin Heitmann, Kalyan Kumaran,
Tom Peterka, Joe Insley, David Daniel, Patricia Fasel, Nicholas Frontiere, and Zarija Lukic.
The Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q. In Proceed-
ings of International Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012.

[16] Michael P Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. Black-Box problem
diagnosis in parallel file systems. In FAST, pages 43–56, 2010.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 114(13):3521–3526, 2017. ISSN 0027-8424. doi:
10.1073/pnas.1611835114.

[18] Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding continual learning settings
with data distribution drift analysis. April 2021.

[19] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[20] Glenn K Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and Nicholas J
Wright. A year in the life of a parallel file system. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 931–943, November
2018.

[21] Glenn K Lockwood, Nicholas J Wright, Shane Snyder, Philip Carns, George Brown, and
Kevin Harms. TOKIO on ClusterStor: Connecting standard tools to enable holistic I/O per-
formance analysis. Technical report, Lawrence Berkeley National Lab. (LBNL), Berkeley,
CA (United States), January 2018.

[22] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti,
Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin
Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, Ger-
man I. Parisi, Fabio Cuzzolin, Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai
Amhad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide

26

https://github.com/LLNL/lmt

Bacciu, and Davide Maltoni. Avalanche: an end-to-end library for continual learning. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2nd Continual
Learning in Computer Vision Workshop, 2021.

[23] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, Guangquan Zhang of reoccuring con-
cepts, and etc. Learning under Concept Drift: A Review. In IEEE Transactions on Knowledge
and Data Engineering, 2018.

[24] Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert Latham, Glenn K Lock-
wood, Robert Ross, Shane Snyder, and Stefan M Wild. Adaptive learning for concept drift in
application performance modeling. In Proceedings of the 48th International Conference on
Parallel Processing, New York, NY, USA, August 2019. ACM.

[25] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. On-
line continual learning in image classification: An empirical survey. Neurocomputing, 469:
28–51, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.10.021. URL
https://www.sciencedirect.com/science/article/pii/S0925231221014995.

[26] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer. Class-
incremental learning: Survey and performance evaluation on image classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(05):5513–5533, may 2023.
ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3213473.

[27] Martin Mundt, Yong Won Hong, Iuliia Pliushch, and Visvanathan Ramesh. A wholistic view
of continual learning with deep neural networks: Forgotten lessons and the bridge to active
and open world learning. arXiv preprint arXiv:2009.01797, 2020.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, and Others. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst., 32,
2019.

[29] Md. Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish, Narayanan Sundaram,
Zarija Lukic, Vadim Roytershteyn, Michael J. Anderson, Yushu Yao, Prabhat, Pradeep
Dubey BD-CATS: big data clustering at trillion particle scale. In Proceedings of Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis (SC),
2015.

[30] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In European Conference on Computer Vision,
pages 524–540. Springer, 2020.

[31] Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer Science & Business Media,
December 2012.

[32] Andy B Yoo, Morris A Jette, and Mark Grondona. SLURM: Simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing, pages 44–60. Springer
Berlin Heidelberg, 2003.

27

https://www.sciencedirect.com/science/article/pii/S0925231221014995

[33] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 3987–3995. JMLR. org, 2017.

28

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Dataset
	3 Continually Learning Performance Models
	3.1 Definition
	3.2 Formulation of learning with real concept drift
	3.3 Continual Learning Strategies

	4 Experimental Setup
	4.1 Metrics
	4.2 Models Implementation

	5 Results and Discussion
	5.1 IOR Benchmark
	5.1.1 POSIX API
	5.1.2 MPI-IO API

	5.2 HACC Posix Benchmark
	5.3 DBSCAN MPI-IO Benchmark
	5.4 VPIC MPI-IO Benchmark
	5.5 Discussion
	5.5.1 RQ1: How does the performance of the CL methodologies compare to the baseline model?
	5.5.2 RQ2: How do the different CL methodologies perform on our I/O profiling data?

	6 Future Work
	7 Conclusion
	References

