
THE UNIVERSITY OF CHICAGO

TRANSFORMER MODELS FOR PROTOCOL ANALYSIS: A CASE STUDY IN TLS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCE

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

ANDREW CHU

CHICAGO, ILLINOIS

NOVEMBER 9, 2023



Copyright © 2023 by Andrew Chu

All Rights Reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 TRAINING MODELS ON TLS DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Model Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Fine-Tuning to Classify Misconfiguration . . . . . . . . . . . . . . . . . . . . . . 8

4 CAN TRANSFORMER MODELS EXPLAIN TLS MISCONFIGURATION? . . . . . . 11
4.1 Visualizing Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Fine-Tuned Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 DISCUSSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



LIST OF FIGURES

3.1 Overview of the pre-training (yellow) and fine-tuning (purple) stages in our model
training pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 t-SNE plots of the embeddings of our fine-tuned models. . . . . . . . . . . . . . . . . 12

iv



LIST OF TABLES

4.1 Optimal hyperparameters for fine-tuning tasks and corresponding classification metrics. 13

v



ABSTRACT

Achieving generalizable, detailed methods for protocol analysis is difficult: Existing tools and

approaches are not protocol-agnostic, and are typically specifically tailored for analyzing a specific

protocol. Further, for sub-tasks of protocol analysis such as detecting and mitigating misconfig-

uration, tools detect errors only individually, and cannot provide insight into common patterns

across protocol deployments that cause misconfiguration at large. In this paper, we perform a case

study using transformer models for protocol analysis, specifically towards detecting and mitigating

misconfiguration in the Transport Layer Security (TLS) protocol, examining if these models can

(1) effectively detect TLS misconfiguration and (2) provide a different perspective towards more

generalizable and proactive reasoning of errors in TLS implementation. To do so, we train a

BERT-based model that learns semantically meaningful numerical representations (embeddings) for

sites’ TLS server configurations. The model we develop contextualizes the fine-grained differences

in various implementations of TLS, achieving 95+% accuracy for standard BERT pre-training

tasks. We then fine-tune our model to classify (1) properly configured and misconfigured TLS

implementations and (2) the reasons for misconfiguration; we also visualize the resulting prediction

embeddings. We observe distinct clusters in these visualizations, and verify that these clusters

indeed represent different reasons for proper configuration, or misconfiguration.
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CHAPTER 1

INTRODUCTION

Large language models are pervasive in today’s society, with interactive sessions such as OpenAI’s

ChatGPT and Google’s Bard allowing users to query and receive answers for a diverse set of general

downstream tasks. Although they are highly developed and tailored, the underlying architecture of

the models for these systems (GPT, LaMDA) stems from the transformer model (Vaswani et al.,

2017), where each word in a given input is represented by one or more tokens, and each whole input

is represented with an embedding, a high dimensional representation of the input that captures its

semantics. Self-attention is then used to assign a weight score for each token in an input based on

its importance to its surrounding tokens. This mechanism allows transformer models to capture

fine-grained relationships in input semantics not captured by other methods (e.g., traditional neural

networks), and produce output not based on a fixed feature sets, but all inputs.

The transformer approach for reasoning about data transfers well to problems that (1) can

be represented with sequences of structured input and (2) have large input spaces that any one

feature set cannot sufficiently represent. In computer networking, one such problem is that of

protocol analysis. In this case, manual parsing and analysis of network traffic can be tedious and

impractical. Attempting to apply other machine learning techniques to the problem is similarly

difficult: exhaustive mapping to represent byte offsets/header fields and their data types for all

protocols, as well as considering all values a field may take, is typically far too extensive for any one

group of features to capture comprehensively. In particular, the protocol analysis task of detecting

and mitigating misconfiguration seems particularly well suited to transformer models, where small

nuances, interactions, or misinterpretations of protocol settings can cause complicated corner cases

and unexpected behavior that may be challenging to encode with static rulesets or formal methods

approaches.

Misconfiguration may occur in many networking protocols, and such misconfiguration can have

varying consequences. For instance, an configuration or implementation error in a protocol such
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as dynamic host configuration protocol (DHCP) could result in inconvenience to users on a local

network. On the other hand, misconfiguration in the Transport Layer Security (TLS) protocol can

have serious security and privacy implications, with broad implications for a wide range of Internet

users. Unfortunately, TLS misconfiguration is common, with the flexible nature of the protocol

leading to difficulty in correct implementation. With over a thousand possible parameters to select

from for 19 configurable fields, properly setting TLS may be an understandably difficult or confusing

task (IANA). Existing, state-of-the-art tools and resources for mitigating TLS misconfiguration work

to reactively detect implementation errors to allow site operators to deploy fixes that correct the

flaws (IBM; nsacyber; drwetter; Qualys, b). Unfortunately, these mechanisms are only effective if a

site operator is aware of possible vulnerabilities and has the wherewithal to apply these techniques;

the tools also only detect known, existing misconfigurations and vulnerabilities. Unfortunately,

historical trends in patching TLS vulnerabilities show tools fall short, and operators are not so

proactive. For instance, in October 2015, 33% of the top 150,000 Alexa-ranked sites still supported

SSLv3, despite disclosure of the POODLE vulnerability a year prior (Qualys, a; Program). As such,

creating better proactive methods to prevent TLS misconfiguration by understanding trends in why

users misconfigure TLS to begin with, would be valuable for improving the security of the internet

at large.

In this paper, we aim to evaluate the place of transformer models in reasoning about protocol

misconfiguration, specifically in the TLS protocol. Our goal is not to replace current leading

methods of detecting TLS misconfiguration, but rather to: (1) verify if transformer models can be

effective in such a task, and (2) examine if the embeddings transformer models use for prediction

can provide a different perspective towards more proactive reasoning and comparison of errors in

TLS implementation.

We approach these aims by training a transformer model that learns the semantically meaningful

relationships between fields in TLS server handshake messages. We find our model understands our

parsed representations of TLS server handshake messages well, yielding 98.8% and 95.9% accuracy
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in the standard masked-language modeling and next sentence prediction pre-training tasks. We then

fine-tune our model toward two types of downstream tasks: (1) binary classification of websites

as having either properly configured or misconfigured TLS, and (2) multi-label classification of

websites with misconfigured TLS, based on misconfiguration reason. Visualizing our models’

classification predictions for sites reveals distinct clusters representative of the different classes.

We verified that these clusters indeed represent different reasons for proper configuration, or

misconfiguration. This paper does not solve all problems relates to the use of transformers for

protocol analysis or misconfiguration detection. However, it provides a compelling use case for

this application of transformers, and in doing so also motivates future research using transformer

models to tackle a variety of protocol analysis problems in communications networks.
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CHAPTER 2

RELATED WORK

Transformer Models in Networking: The format of networking data differs greatly from any of

the previous domains. Specifically, raw networking data is not naturally segmentable into words,

sentences, or paragraphs as done the natural language domain. It also cannot be treated purely as

raw data as done in the audio and computer vision domains, as networking data is inconsistent in

form (e.g., one packet header field may represent message extension struct while another may be

simply of type integer). As such, a number of works focus on how to best approach adapting/parsing

networking data for use with transformer models (Houidi et al., 2022; Dietmüller et al., 2022).

Our work differs from these previous efforts in that we train our model on sequences of larger

protocol communication (TLS handshakes), compared to sequences of only some singular field

value(s) of a protocol. These papers also raise the question of identifying an effective representation

of networking data. Our work offers the results of using a parsed, text-based representation of

networking data as a possible approach.

Other works similarly adapt BERT to networking problems, largely focusing on classifying

traffic or device types. In another work, Le et al. train a custom BERT model on sequences

of fully-qualified domain names from IoT devices, and evaluate their model’s performance on

predicting IoT device type (e.g., camera, doorbell) and manufacturer (Le et al., 2022b). As noted

above, our work differs from this effort as it uses more a more comprehensive representation of

network data for its training process. SHAPE, created by Dai et al. (Dai et al., 2022), PERT, created

by He et al. (He et al., 2020), and ET-BERT created by Lin et al. (Lin et al., 2022a) (and its

variations (Shi et al., 2023a,b)) are models trained using tokens and inputs parsed from end-to-end

flows that resemble natural language words/sentences, and achieve high performance across a

variety of encrypted traffic classification tasks. These models are related to our work as they adapt

BERT, and generate tokens/input from larger communication in flows, into a format similar to

natural language. However, because these models must tokenize encrypted traffic, they convert
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pairs of bytes in flows into bigram strings (PERT and ET-BERT), or combine data from the packet

payloads of sampled flows with sampled header field values (SHAPE). Our work focuses on a

different objective of classifying reasons for TLS server misconfigurations, and as such also uses

a different approach for generating model tokens and inputs. Finally, these works are primarily

concerned with demonstrating their model achieves new state-of-the-art performance on encrypted

classification tasks. In our work, we also hope to achieve high performance, but additionally want

to examine if visualizing the embeddings our models use for prediction can be used to provide a

different perspective towards understanding misconfigured TLS implementations.

TLS Misconfiguration: Proper configuration of the TLS protocol has long been studied by the

networking community. Kotzias et al. present a longitudinal study of trends in TLS deployments

from 2012 − 2018, and find that while new advances in TLS are quickly deployed in clients,

legacy support for deprecated components may lead to vulnerability (Kotzias et al., 2018). Works

presenting changes to the Chromium browser interface and notification system (Zeng et al., 2019),

and tools such as TLSAssistant (Manfredi et al., 2019), and PoliCert (Szalachowski et al., 2014)

aim to fix various instances of misconfiguration both at scale, and on individual levels. Finally

other works try explore how users configure their TLS servers. Simoiu et al. examined the security

and proper configuration of the HTTPS protocol and present three major influences that affect

how machines are configured (Simoiu et al., 2021). Krombholz et al. conducted a user study

with security auditors and found that even these users find proper configuration of security related

protocols difficult (Krombholz et al., 2017). Our work differs from the first four efforts in that

we aim to not only detect misconfiguration, but also give perspective on how different instances

of misconfiguration compare to each other. The last two efforts provide valuable insight for

understanding how users configure their sites, but do not provide more fine-grained, explicit patterns

that may cause misconfiguration. Our work aims to work towards this goal. We also try employing

transformer models to investigate misconfiguration, compared to empirical analysis/user-studies.
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CHAPTER 3

TRAINING MODELS ON TLS DATA

We base our model on BERT (Devlin et al., 2018), a popular transformer-based model that has been

successfully extended to a number of domains, with modifications to the underlying vocabulary

used during training. At a high level, BERT operates in two phases: pre-training and fine-tuning.

Figure 3.1 presents an overview of the training process. In pre-training, BERT is trained over

unlabeled input, and is evaluated on two downstream tasks to verify its understanding of the input.

After pre-training, the trained model may be fine-tuned with labeled data to perform downstream

tasks (e.g., classification, text generation) comprised of the same input format. We describe both

pre-training and fine-tuning in this section.

3.1 Model Pre-Training

The process of creating the BERT model begins with pre-training. Here, the model uses two

components: (1) a set of tokens resulting from splitting input specific to a domain called the

vocabulary, and (2) a large training set of unlabeled, domain-specific data. Using these components,

the model learns the semantics of the given domain in an unsupervised fashion, and evaluates its

“understanding” via pre-training tasks. We detail how to construct these items, and our model’s

performance on pre-training tasks below.

Building a Vocabulary & Training Set: We begin by collecting sequences of server responses

to various configurations of TLS client_hello messages. We collect only the server response

components of a handshake as we care only about the values found in these messages that indicate

proper or misconfiguration of TLS for a site. During pre-training, we do not mind the classification

(i.e., proper/mis-configuration) of each input/sequence of handshake messages, as we care only

about exposing the model to a sufficient variety of different server side TLS message values for it

to develop an understanding of the semantics of these messages, and what these messages mean
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Figure 3.1: Overview of the pre-training (yellow) and fine-tuning (purple) stages in our model
training pipeline.

in regard to a server’s TLS protocol configuration. We collect handshakes from sites found on the

Tranco list (Le Pochat et al., 2019), a top-list of websites generated by aggregating site rankings from

different ranking sources, and validating these rankings to yield a manipulation resilient site ranking.

We use the Tranco list as a starting point of sites to establish handshakes with, as these “top” sites are

likely to be active to respond to handshake requests. We collect the server messages of handshakes

themselves by writing a wrapper around the TLS Webserver Configuration Scanner created by

Simouiu et al. (Simoiu et al., 2021) to establish handshakes to websites. For each unique ciphersuite

configuration value, the scanner returns the server messages of the TLS handshake session, parsed

to human-readable values using the Golang tls package (Project), in JSON format. We then parse

the JSON output to remove unique/noisy values (e.g., cryptographic values, raw data), leaving only

the configurable fields that a server operator may set in their TLS implementation. Specifically,

each input used to train our model is a concatenation of the remaining values found in the headers of

the server_hello and server_hello_done, as well as any optional server steps of a TLS

handshake (e.g., certificate, server_key_exchange, certificate_request).

Performance on Pre-Training Tasks: At the end of the data-collection process, our training set

contains 8,681,927 inputs, comprising 394,839,183 words, from 907,857 distinct websites found in

the Tranco top-list. Specifically, each input is a sequence of TLS server handshake messages, and

the average input length is 48 words. We preprocess this input to cast all strings to lowercase, and

remove non-UTF characters and punctuation (expected format for vanilla BERT). We then tokenize

these inputs using WordPiece, the default tokenizer for BERT, and generate a vocabulary of 32,000

tokens. Finally, we train our model for a total of four epochs on a system consisting of an AMD
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EPYC 7302 16-Core Processor, 512 gigabytes of RAM, and a Nvidia A30 GPU. On completion

of training, we evaluate our model on the standard masked-language modeling (MLM) and next

sentence prediction (NSP) pre-training tasks. In MLM, the BERT model randomly masks a portion

of the input, and attempts to predict the masked word/value. In next sentence prediction, BERT

considers two inputs A and B, and is tasked with predicting if B follows A in the original training

input or is instead randomly selected from the training corpus. For MLM, the model achieves

accuracy of 98.8%, and cross-entropy loss of 0.075 nats. For NSP, the model achieves accuracy of

95.9% and cross-entropy loss of 0.067 nats. These results are encouraging, and signal our model

understands the semantics of our parsed handshake messages.

3.2 Fine-Tuning to Classify Misconfiguration

Having achieved good performance in pre-training, we wanted to apply our model to more practical

downstream tasks, including reasoning about misconfiguration. Specifically, we wanted to assess if

our model could perform (1) simple binary classification of websites as having properly configured or

misconfigured TLS, and (2) in sites with misconfigured TLS, more detailed multi-label classification

of the reason for misconfiguration. We acknowledge that such tasks are solvable using existing tools

such as those mentioned in Section 2. However, these tools do not provide ways to reason about

how different properly configured/misconfigured websites compare to each other. In this section,

we present the performance of our fine-tuned models, and investigate if their embeddings for inputs

used for prediction can give a different perspective for comparing server configurations.

Data Collection: To build a ground-truth dataset for classification, we wrote a crawler that collects

the results of user submitted queries to Qualys SSL Server Test (Qualys, b) (QSST). QSST is a

service that runs comprehensive evaluations of websites, checking TLS implementation details.

QSST simulates TLS handshakes with websites using 66 distinct client configurations (i.e., operating

systems, web browser), testing on each support for weak ciphersuites and other components affected

by protocol attacks (e.g., BEAST, DROWN). QSST then assigns a site a letter grade ranging from
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“A+” (best) to “F” (worst), using a score computed from the test results. Due to the thoroughness of

its process, we consider the results of QSST to be reliable for creating a ground-truth dataset of

properly configured/misconfigured sites.

Data Labeling: Our crawler periodically examines the public facing results page of QSST, recording

all websites with grade “A+” or “A” to a set of “properly configured” sites, and recording all

websites with grade “C” and below to a set of ”misconfigured” sites. We assign labels for the

binary classification task by simply labeling all sites in the “properly configured” set as “Properly

Configured”, and labeling all sites in the “misconfigured” sites set as “Misconfigured.” To assign

labels for the multi-classification task, we input the sites from the “misconfigured” set to the testssl.sh

tool (drwetter), an open source script that outputs verbose reasons for why a site is assigned its

grade. testssl.sh provides very similar output to QSST (testssl.sh uses the Qualys grading scheme to

evaluate sites), but is locally deployable, allowing us to parallelize label collection. We parse this

output to create two labeling schemes: Multi-Label 1 (ML1) and Multi-Label 2 (ML2). ML1 assigns

the most serious reason for misconfiguration as the label for a site (e.g., “Contains Vulnerability”).

However, a site may have many reasons for misconfiguration. ML2 accounts for this, assigning the

concatenation of the reasons for misconfiguration as the label for a site (e.g., “Contains Vulnerability,

Certificate Issues”). Thus, we fine-tune towards three classification tasks: binary, ML1, and ML2.

Dataset Creation: Running our crawler and testssl.sh over the span of a month, we collect

approximately 1,300 unique misconfigured sites, and 42,000 unique properly configured sites. This

imbalance is due to the output format of the public facing results page of QSST. From observation,

sites receiving grades of “C” and below are far less frequently submitted than “A+” or “A” rated

sites (a positive surprise). We then again use our modified TLS Webserver Configuration Scanner to

collect handshakes from sites, and parse the resulting JSON output to the input format discussed

in Section 3.1. This yields 18,629 inputs corresponding to TLS handshakes conducted with

misconfigured sites, and 332,651 inputs corresponding to handshakes conducted with properly

configured sites. To create a balanced dataset of inputs from either group, we use all inputs collected
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from the misconfigured sites, and select a matching 18,629 inputs at random from the larger pool of

inputs of properly configured sites. This yields our final fine-tuning task dataset of 37,258 inputs.

Hyperparameter Tuning We split the dataset into training, evaluation, and testing sets for each

of the three tasks using a 80:10:10 split. This results in a training set of 29,806 inputs, evaluation

set of 3,726 inputs and test set of 3,726 inputs, for each task. Using the evaluation set, we perform

grid search of model hyperparameters to find the best model for the data, and for each classification

task. We fix the max-sequence length to be 128 as determined by our max observed input length,

and fix the number of epochs to 4, as recommended in a subsequent work by the original BERT

authors (Turc et al., 2019). We then vary batch size, the number of inputs processed at a time

before updating the model, using five values (8, 16, 32, 64, 128) and learning rate, the step size by

which model parameters are updated during fine-tuning, using four values, (5e-5, 3e-5, 1e-4, 3e-4)

similarly as recommended in the mentioned work. For all three tasks, we observe both accuracy

and cross-entropy loss to generally improve as batch size increases, and as learning rate decreases,

though all combinations of batch sizes for learning rates 5e-5, 3e-5, and 1e-4 yield accuracy of

95+%. At the end of grid search, we find an optimal model trained with batch size of 128 and

learning rate of 3e-5 for the binary classification task. For tasks ML1 and ML2, we find optimal

models trained with batch sizes of 64 and 32 respectively, and learning rate of 5e-5.
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CHAPTER 4

CAN TRANSFORMER MODELS EXPLAIN TLS MISCONFIGURATION?

Having found our fine-tuned models accurately detect both sites with TLS misconfiguration, and

the more fine-grained reasons for misconfiguration, we wanted to explore how and if our models’

predictions for sites’ TLS handshake messages clustered together. We discuss our process for

visualizing the embedding space of our models, as well as more detailed performance metrics below.

4.1 Visualizing Predictions

Taking the best fine-tuned models from our hyperparameter search, we visualize their final-layer

classifications of our evaluation set inputs (i.e., the [CLS] token) using t-distributed Stochastic

Neighbor Embedding (t-SNE), casting the 768-dimension embeddings of our model to two dimen-

sions. Figure 4.1 shows the results of this process1. Each point in either t-SNE represents our

parsed representation of a set of TLS handshake server for a site in the test set. For the binary

classification task (Figure 4.1a), red indicates a site is predicted misconfigured while blue indicates

a site is predicted properly configured. For the ML1 task (Figure 4.1b), various colors represent

different reasons for misconfiguration.

For the binary classification task t-SNE, we observe most predicted misconfigured sites on

the right half of the plot, and most predicted properly configured sites on the left half of the plot.

In either separation we also observe high-density clusters (e.g., properly configured northwest of

center, misconfigured northeast of center). For the ML1 task t-SNE, there exists a notable separation

between points representing sites predicted as misconfigured due to “Issues with the chain of trust”,

and all other reasons. Similar to the binary classification plot, distinct clusters of inputs for different

predicted misconfiguration reasons are visible (e.g., “Uses weak ciphersuite(s)” slightly west of

center, “Contains vulnerability” north of center). Our hypothesis for these clusters was that they

1. The t-SNE for ML2 shows high visual similarity to the t-SNE shown for ML1. We show only one figure for
brevity.
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Figure 4.1: t-SNE plots of the embeddings of our fine-tuned models.

represented different implementations TLS that resulted in the same classification (e.g., properly

configured or misconfigured due to “Use of weak ciphersuite(s),” etc.).

To investigate this hypothesis, we manually examine the inputs corresponding to points of the

same cluster, and find that the server configurations for these sites indeed share related, but slightly

different configuration parameters. For instance, in the ML1 task t-SNE, server messages for the

points of the “Contains vulnerability” (blue) cluster at values spanning roughly Dim 1 = [−20, 0]

and Dim 2 = [10, 25], differ in their support of varying sets of weak ciphersuites, but all share

support for (1) ciphersuites that use Cipher Block Chaining (CBC) as part of their bulk encryption,

and (2) TLS/SSL versions TLS v1.0 and older. Support for these items allows for the POODLE and

BEAST attacks, which leverage fallback to older TLS/SSL versions to then reveal encrypted content.

To contrast, for the binary classification task t-SNE, server messages for the points of the properly

configured (blue) cluster at values spanning roughly Dim 1 = [−60,−30] and Dim 2 = [18, 52]

support (1) predominantly non-weak ciphersuites (i.e., stronger than 112 bits), and (2) only TLS

v1.1 or higher (in some cases, only v1.2 and higher). Further, we observe in instances where a

site supports a weaker ciphersuite (i.e., one exploited by a vulnerability), our models still correctly

classify it as properly configured, as the other necessary component for exploitation (older version
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of TLS/SSL) is not present. This suggests our models are not simply learning that any one field

signifies a classification, but instead incorporate interactions between different configurations of

sites’ TLS message fields to make this decision.

Task
Fine-Tuning Parameter Classification Metric

MSL∗ E⋆ BS† TR‡ Acc.
(%)

F1
(%)

Prec.
(%)

Rec.
(%)

AUC
(%)

Loss
(nats)

MCC
[−1,+1]

Binary 128 4 128 3e-5 97.6 97.6 97.6 97.6 97.6 0.099 0.952
Multi-Label 1 128 4 64 5e-5 96.7 96.6 96.7 96.7 97.3 0.109 0.953
Multi-Label 2 128 4 32 5e-5 96.5 96.4 96.4 96.5 98.1 0.119 0.951

∗ := Max Sequence Length, ⋆ := Epochs, † := Batch Size, ‡ := Training Rate

Table 4.1: Optimal hyperparameters for fine-tuning tasks and corresponding classification metrics.

4.2 Fine-Tuned Model Performance

Finally, we evaluate the performance of the same fine-tuned models used for visualization, on their

held-out test sets. Table 4.1 provides an overview of the results of this evaluation. We observe

overall good performance, with precision, recall, accuracy, and F1 scores of at least 96%, AUC of at

least 97%, and cross-entropy loss of at most 0.119 nats, for all three tasks. When constructing our

datasets for the multi-label classification tasks, we observed that some reasons for misconfiguration

were more prevalent than others, indicating class imbalance. To account for this, we also measure

the Matthews Correlation Coefficient (MCC), a performance metric that yields a high score only

when a model’s predictions match the true labels at a high rate, independent of the ratios of each

class in its dataset (Chicco and Jurman, 2020). Ranging between [−1,+1], a MCC of ±1 indicates

perfect prediction or total disagreement, while a MCC of 0 indicates prediction is no better than

random. Our models also perform well in this metric, having a MCC of least 0.95 for all tasks.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

The performance of our fine-tuned models and corresponding visualizations of their predictions

are promising, suggesting transformer-based models can not only detect TLS misconfiguration, but

can also provide a different perspective for comparing TLS implementations. We posit that during

the fine-tuning process, our models learn the fine-grained interactions and characteristics found

between values in our inputs (parsed sequences of TLS server messages) that together indicate

a class of misconfiguration. This follows similar results applying transformer-models to tasks

such as sentiment analysis, in which presence of profanity alone does not definitively indicate

positive or negative sentiment. Indeed, intuitively for our case, this makes sense, as the bidirectional

transformers of BERT which our models are based on allow them to capture different contexts

in which a handshake field-value may appear. Based on cursory results described in the previous

section, this appears to be true, though additional tests should be conducted to completely verify

this claim. We also verified that our parsed, string-based, space-delimited representation of TLS

traffic that follows the expected format for BERT, is feasible for achieving good performance on

networking-specific tasks. However, other representations of network data should not be ruled out

as effective for transformer-based models.

In future work, we plan to further explore the above items, and additionally want to examine if

we can use our models to better reason about trends in the state of TLS misconfiguration at large.

We also are interested in applying transformer-based models to data of other networking protocols,

especially encrypted DNS.
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CHAPTER 6

CONCLUSION

The TLS protocol is confusing to implement and configure. Although it is easy to detect errors

causing misconfigurations, it is more difficult to understand the nature (and cause) of these miscon-

figurations. In this paper, we investigate if transformer models can help approach this problem by

creating a new BERT-based model trained on parsed TLS handshake server messages.

We verify that our input representation of TLS traffic (1) offers flexibility in adapting existing

language model architectures to the networking, and (2) retains enough meaning to produce good

performance. Our base model achieves 95+% on the standard pre-training tasks, and our fine-tuned

models achieve F1 scores of 96+% on tasks classifying TLS configurations. Visualizations of the

models’ predictions using t-SNE reveal clusters that capture different variations of settings causing

the same reasons for misconfiguration, a promising result toward more proactive prevention of TLS

misconfiguration—and perhaps the use of transformers for protocol analysis more generally.
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