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ABSTRACT

Large Language Models (LLMs) are capable of answering questions without task-specific

training data, which creates an opportunity to address data integration tasks such as entity

resolution, joinability, and unionability. Solving these tasks requires incorporating semantic

knowledge, which has been a hard-to-address challenge. LLMs exhibit a tremendous capacity

to understand nuance in language and thus are promising for this task. However, using them

requires addressing two challenges: i) how to query them to obtain valid answers, i.e., prompt

engineering; ii) how to best incorporate them along today’s software pipelines.

In this paper, we study the potential of LLMs for data integration tasks. We find that

thinking of LLMs-as-a-crowd is a useful mental model to leverage them for data integration

tasks because it results in high quality results without any access to training data—which

many state of the art methods rely on—and without any dependence on good prompt engi-

neering skills. We integrate LLMs into software pipelines that leverage the vast research in

the areas of entity resolution, joinability, and unionability. We find that LLMs are effective

as an aid—but not a replacement–to software integration pipelines, thus effectively building

on previous efforts.

We obtain state of the art results for the three tasks we study, entity resolution, joinability,

and unionability. And we demonstrate that thinking of LLMs-as-a-crowd is effective and

complementary to other methods, such as few-shot learning. All in all, our experimental

evaluation paves the way for further study of the use of LLMs for data integration tasks.
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CHAPTER 1

INTRODUCTION

Integrating data to solve tasks is as important as ever but remains hard. A major source of

difficulty continues to be the need for agreeing on “semantics”, which is necessary to perform

data integration tasks, such as determining if two entities represent the same entity (entity

resolution), or if two tables can be combined (joinability and unionability). Hardcoded

rules were not sufficient to resolve semantically ambiguous tasks, due to the vast variety of

these [27, 22]. To attack this problem, there have been attempts to use external reference

data, such as ontologies and knowledge bases [8, 34, 32, 2], and to use pretrained models [46,

39, 20]. Still, despite tremendous progress, data integration is not solved. Many of the

existing methods that achieve state of the art results rely on access to large training datasets,

which require expensive human labor. As a result, solutions require large human effort to

disambiguate meaning and make progress. While humans must arguably be involved in data

preparation, overusing human time is expensive and hampers productivity.

Large Language Models (LLMs) such as ChatGPT exhibit an impressive ability to address

complex semantic tasks without access to task-specific training data; they are trained once,

and perform well on many tasks they were not explicitly trained to perform. For example,

LLMs excel at NLP tasks such as closed-book question answering, text classification, and

information extraction [4, 48] while only being trained to build a joint probability distribution

over token sequences. Such NLP tasks resemble the core challenges of entity resolution,

joinability, and unionability, tasks needed for integration. As an example, consider the LLM

query and abridged response in Figure 1.1.

The success of LLMs on complex NLP tasks (and our preliminary analyses) suggests they

introduce a new opportunity to address semantic-laden data integration tasks.

In this paper, we study the ability of LLMs to address entity resolution (do two entities

refer to the same one? ), joinability (do two tables join on these attributes? ), and unionability
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user: Consider the following two phrases:
"Eric Washington"
"Springfield, Washington"

Does "Washington" refer to the same thing?

model: In the context of the given phrases, "Washington" does not refer to the same
thing.

In the phrase "Eric Washington," "Washington" most likely refers to a person’s surname
or last name. [. . . ]

On the other hand, in the phrase "Springfield, Washington," "Washington" refers to a
location. [. . . ]

Although both instances include the word "Washington," their meanings differ depend-
ing on the context in which they are used. [. . . ]

Figure 1.1: ChatGPT handles semantic ambiguity well
(do two tables represent the same domains? ), which are important tasks that aid in many

data integration tasks. In our study, we run into two key challenges to using LLMs effectively

and propose solutions to both:

Challenge 1: Prompt Engineering is brittle and unreliable. We follow the emerging rules of

thumb for querying LLMs, commonly referred to as “prompt engineering”, and rediscover—in

the context of the target data integration tasks—what others have said before [47, 61]: that

prompt engineering is brittle to changes in prompt, data, and model. We find that the intu-

ition one develops in producing useful prompts for one task does not transfer easily to other

tasks. Besides, there is no guarantee that such intuition transfers across different versions

of data and models. Such brittleness translates in shifting human labor from annotating

training data to preparing prompts, thus negating the opportunity of LLMs.

Approach 1: Think of an LLM as a Crowd. Our observation is that changes in the

input prompts elicit different answers from LLMs, some of which are correct for a given task.

Yet, prompts that work for one task do not necessarily work well for other tasks. Then,

rather than investing time in selecting a task-specific prompt whose performance will not

2



transfer to other tasks, the key idea is to consider the LLM as a crowd that produces N

answers per instance (via N different prompts) and then uses truth-finding techniques to

aggregate the answers across multiple instances. Using a crowd avoids forcing engineers to

make an uninformed decision on which prompt to use. Thinking of the LLM as a crowd has

one advantage and one disadvantage. The advantage is that it boosts tasks’ performance

without investing time in doing prompt engineering, and without access to training data,

thus addressing Challenge 1. The disadvantage is that it requires (N > 1) queries to the

LLM per task instance, resulting in higher cost and runtime. We believe that the perfor-

mance advantage and resulting human time saved compensates for the disadvantage, and

the tradeoff will become more beneficial because of ongoing trends to make LLMs faster,

cheaper, and more environmentally friendly.

Challenge 2: Given their current technical limitations, LLMs will not replace current tools

for data integration because state-of-the-art tools solve problems that would be too expensive

and inefficient to address using LLMs. For example, the blocking stage of an entity matcher

is in charge of identifying candidates for entity resolution, and thus requires exploring many

pairs of entities. Consider the following example. Using ChatGPT as a blocker for two (tiny!)

5000-row datasets, requires 25 million API calls and would cost around $9.5k at ChatGPT’s

current prices ($0.0015 for 1000 input tokens), assuming 250 tokens per request. There

would also be substantial latency—OpenAI currently limits organizations to 90k tokens per

minute, so this would take around 48 days at a minimum. While market forces are pushing

LLMs to become cheaper, we anticipate that the better-performing LLMs will remain large

and expensive in the short term. The challenge, then, is in deciding how to best make use

of LLMs for different data integration pipelines.

Approach 2: Make LLM work alongside traditional software pipelines. We propose

an integration of LLMs into data integration pipelines that reduces cost while boosting

performance. The integration deals with the problem of adapting existing data into input
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LLM prompts, and adapting output LLM prompts into answers. We propose a pipeline for

each of the 3 target tasks and we discuss some pitfalls and lessons learned along the way.

We conduct a thorough evaluation to explore the ability of LLMs to aid in data integration

tasks, which we believe is one of the paper’s main contributions. We conclude:

• Without access to training data, LLMs significantly boost the performance on data inte-

gration tasks such as entity resolution, joinability, and unionability, and achieve state of

the art results. Even in the most favorable setting for state of the art methods (access to

large training data and evaluated on in-distribution data), LLMs’ performance match that

of those methods. This suggests that LLMs are useful to address many data integration

tasks with minimum upfront cost.

• Treating the LLM as a crowd removes the need for careful (i.e., time-consuming) prompt

engineering while boosting the performance across different data integration tasks. We

show how prompt performance varies unpredictably across tasks, and how crowd methods

are effective in selecting the right prompt at the right time.

• Of all popular prompt engineering techniques, few-shot learning is effective, and its effects

compound with those of the crowd. On the other hand, Chain of Thought reasoning and

self-consistency are not effective for data integration tasks.

Overall, the results of this study underscore the opportunity of integrating LLMs with

data integration pipelines. The results also quantify the remaining challenges, including the

need to reduce the cost of LLMs and identify better ways of eliciting crowds from LLMs,

even when the models themselves are practically black boxes.

The rest of the paper is organized as follows. We present a background on LLMs in

Chapter 2. We present the LLM-as-a-crowd in Chapter 3 to address Challenge 1, the

integration with data integration tasks in Chapter 4 to address Challenge 2. And the

experimental evaluation in Chapter 5. We conclude with related work (Chapter 6) and

Conclusions.
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CHAPTER 2

THE OPPORTUNITY OF LLMS

In this section, we explain why LLMs are promising for data integration tasks.

2.1 Data Integration and Semantic Ambiguity

In this paper, we use the phrase data integration task to refer to one of {entity resolution,

joinability, unionability} and we use task instance to refer to an atomic example, e.g. whether

two particular tables are joinable, or whether two rows refer to the same entity.

Consider the following entity resolution instance:

(i) title: WD Red NAS 3.5 Internal HDD SATA 6Gb/s, 2TB 6Gb/s 2TB - WD | CPC

(ii) title: Buy Online | WD Red WD20EFRX 2TB Desktop Internal Hard Drive Price in

India.

A human may recognize the brand (Western Digital) and that 2TB refers to a storage unit,

linking it to the hard drive keywords of the second row and concluding the rows refer to

the same entity. But it is difficult to incorporate that semantic knowledge into a machine.

Such knowledge is useful for many other integration tasks, including determining join keys,

whether tables join, etc.

To incorporate semantic knowledge, existing work has used reference data such as on-

tologies and knowledge bases [34, 41, 2], different combinations of signals [46, 32, 5, 59, 8],

and, more recently, pre-trained models such as word2vec, BERT, and more. Pre-trained

models have been used for integration tasks such as unionability/joinability [46, 12, 18, 20],

entity resolution [39, 6, 45] and more [27, 60]. These pre-trained models generally require

fine-tuning before the systems that use them can perform well on the given task: this poses a

barrier to their adoption because of i) the cost of collecting training data; ii) their dependence

on training data to achieve high performance (as we show in the evaluation).
5



2.2 Why LLMs for Data Integration?

In contrast to existing efforts to deal with semantic knowledge in data integration, recent

large language models (LLMs) do not need any training data or fine-tuning to solve data

integration task instances, which is an important advantage. For example, in Fig. 2.1 we

query ChatGPT on the task instance from Section 2.1. Not only does it give the correct

answer, it follows up with a reasonable-sounding explanation. It is this ability of LLMs

to answer questions without access to training data that makes them so attractive to data

integration tasks, and that motivates our work. Note that we transform the instance into

a text sequence that contains the instance itself along with additional context, such as a

question and an instruction about the desired answer format. We refer to this text derived

from a task instance as a data integration prompt.

user: title: WD Red NAS 3.5 Internal HDD SATA 6Gb/s, 2TB 6Gb/s 2TB - WD | CPC

###

title: Buy Online | WD Red WD20EFRX 2TB Desktop Internal Hard Drive Price in
India

Same product? Begin your answer with YES or NO.

model: YES, both titles refer to the same product, which is the WD Red NAS 3.5
Internal HDD with a capacity of 2TB and a SATA 6Gb/s interface. The first title
mentions the brand (WD) and the distributor (CPC), while the second title emphasizes
the availability for online purchase in India and includes the specific model number
(WD20EFRX).

Figure 2.1: ChatGPT solves an Entity Resolution instance.

Language Model Overview. A language model (LM) assigns probabilities to sequences

of text, which are split into discrete "tokens" that include words, parts of words, whitespace,

and so on. Formally, a LM takes a sequence of tokens x1, . . . , xn as input and outputs joint

probability P (t1 = x1, t2 = x2, . . . , tn = xn) (probability that the first token is x1, second

token is x2, etc.). It is common to calculate this by computing conditional probabilities

6



Prompt Template
“Consider the following 
2 phrases: <phrase 1>, 
<phrase 2>. Do these 
phrases refer to the 

same person?

Task Instance
Phrase 1: “Eric 
Washington”

Phrase 2: “Springfield, 
Washington

makePrompt()
(LLM-input)

Prompt
“Consider the following 2 
phrases: Eric Washington, 

Springfield, Washington. Do these 
phrases refer to the same person?

Response
“In the context of the given 

phrases, Washington does not 
refer to the same thing […]”

Parsed Response
No

responseParser()
(LLM-output)

Figure 2.2: Illustration of input/output procedures to: i) transform prompt template and
instance into a prompt; and ii) transform output into an answer to the instance. The
functions (blue background) are explained later.
P (ti|t1, . . . , ti−1) for all 1 ≤ i ≤ n and then using the chain rule of conditional probabilities

to compute the full probability [29]. Then, given an input sequence x1, . . . , xk, such LMs

perform text generation by sampling the joint distribution conditioned on x1, . . . , xk to gen-

erate xk+1, . . . , xn. The type of sampling used is referred to as a decoding strategy [24, 25].

Informally, the class of recent language models that are able to perform well on a diverse

array of tasks without task-specific training data are referred to as large language models

(LLMs); examples include the GPT family of models. These models generally have vastly

more parameters and were trained on much larger text corpora than older language models.

How does an LLM solve an integration prompt?. An LLM takes an input sequence

of tokens that represents the prompt, w⃗in and produces a sequence of tokens in response,

w⃗out. Since w⃗out is unstructured, it is necessary to post-process it with some function g

into an answer to the task, g(w⃗out). Different input prompts produce different outputs.

Crafting the input prompt so the output contains the answer to the task is referred to as

prompt engineering, and we refer to a particular mapping of instance to prompt as a prompt

template. We illustrate this mapping in Fig. 2.2 and describe this process in more detail in

Chapter 4. LLMs subtly differentiate word meaning and do not rely on training data to do

so: this makes them attractive for data integration.

7



2.3 Challenges to Leveraging LLMs

Two hurdles complicate using LLMs for data integration tasks.

Challenge 1. Prompt Engineering is brittle and unreliable. An input prompt may

produce different output when the model or the query-specific tokens, e.g., those representing

a row in a table, change. A prompt that performs well in one query may perform badly on

another one. This means that to obtain good performance across varied tasks and queries,

humans must be involved to do prompt engineering. And there are many techniques a human

must try, ranging from Chain-of-thought reasoning [56] to least-to-most prompting [63],

and many others [56, 36, 55, 28, 13, 63]. Although some of these techniques succeed in

obtaining better quality answers, their performance still varies across queries and thus only

ameliorate the problem for the human involved. In summary, the intuitions leveraged by

prompt engineering techniques do not transfer across queries and tasks.

For example, we find that one prompt template outperforms another by 11 F1 points on

one benchmark, and underperforms by 3 F1 points on another. The performance of different

prompts on the same task can vary by as much as 70 F1 points (see Fig. 5.3).

Challenge 2: LLMs cannot Replace Integration Pipelines. In practice, solving inte-

gration tasks requires building software pipelines that in addition to obtaining good accuracy

must also perform efficiently even on large inputs. Using LLMs in this scenario pose a chal-

lenge for two reasons: i) they have limited context, which prevents them from e.g., reading

an entire table; ii) they are resource-intensive, e.g., the $10K, 48-day example from the in-

troduction. A better use of LLMs for data integration is alongside such existing software

pipelines, but this requires adapting the data to input prompts, and then adapting the output

of LLMs to answers that are meaningful to the software.

We introduce techniques to address Challenge 1 in Chapter 3 and those to address Chal-

lenge 2 in Chapter 4.
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CHAPTER 3

LLM AS A CROWD

Given a data integration query, different prompts give different answers, some correct and

some not. Prompt templates that lead to correct answers on one instance are not guaranteed

to give good answers for a different instance. To make matters worse, we have no way of

predicting what characteristics make a prompt good for a given instance, and we do not

want to rely on access to large training data because this is precisely one of the challenges of

state of the art techniques that we wish to avoid, i.e., collecting training data is expensive.

Our key observation is that while we do not know what prompt templates will perform

well, we know that some prompt templates perform well on some tasks. We propose to

create a crowd of prompt templates and then use crowd truth inference methods (or crowd

methods for short) to identify the answer to the question. Rather than spending much

effort on engineering very good prompts for different queries, we spend little effort in writing

multiple prompts once for all queries. Such an approach removes the need for relying on any

one prompt, and translates into good performance across different queries and tasks.

We give an overview of crowd truth inference methods, and then present our method for

using LLMs as a crowd.

3.1 A Primer on Crowd Truth Inference

The goal of a crowd truth inference method is to find the true answers to a set of task

instances from a crowd of noisy (poor-performing, adversarial) workers without access to

the ground truth answers. Formally, crowd truth inference solves the following problem [62]:

given a set of workers W and a set of task instances T = {t1, . . . , tn} (e.g., pairs of rows that

may be entity resolution matches), let vwi be the response of worker w for instance ti ∈ T .

Let V be the complete set of worker responses for all instances T and all workers W . That

9



is, V = {vwi |ti ∈ T,w ∈ W}. Then, given V , the goal of crowd truth inference is to find the

true answer for each instance, denoted as v∗i for instance ti ∈ T .

A familiar example of crowd truth inference is majority voting : choose each v∗i to be the

most frequently appearing value in {vwi |w ∈ W}. The performance of majority voting suffers

when i) the performance of workers differs or; ii) the difficulties of the instances differ. The

rich literature [62] in this area seeks to estimate worker reliability and instance difficulty

without access to the ground truth label to improve over majority voting.

Methods that Explicitly Model Worker Reliability. A family of methods suitable

to our setting is probabilistic graphical model (PGM)-based models, because these models

explicitly model worker reliability using worker probabilities or confusion matrices, and can

similarly model instance difficulty explicitly. They are also common [16, 57, 15, 35, 53, 42,

30]. Since they do not have access to the ground truth, they estimate worker reliability by

observing apparent worker correlations and making modeling assumptions. For instance, a

common assumption is that all workers are independent conditional on the true label. When

this assumption holds, workers that more often adhere to the majority vote are likely high-

quality. These crowd methods find the most likely v∗i for each instance by estimating the

probability distribution of the possible labels given worker responses, P (v∗i |{v
w
i |w ∈ W}),

and the probability distribution of worker responses given the possible labels, P (vwi |v
∗
i ). To

estimate these distributions, these methods typically perform maximum likelihood estimation

via expectation-maximization.

Guarantees and Robustness. Since many of these works use expectation-maximization,

they are only guaranteed to find a local optimum when: (i) the priors on worker answer distri-

butions and the ground truth distribution do not differ drastically from the true distributions

for worker answers and ground truth (ii) the modeling assumptions, such as conditional in-

dependence of workers, are met. There are PGM-based models that attempt to make weaker

assumptions, including some that allow for some worker responses or tasks to be correlated

10



[38, 43].

3.2 Eliciting Crowds from LLMs

Here, we explain how we elicit crowds from LLMs to boost the performance of data integra-

tion tasks.

Prompt Templates as Workers

A crowd is a set of prompt templates drawn in some systematic way, with different phrasings,

different prompt engineering techniques, or a combination of those.

Algorithm

We construct a crowd once per data integration task, and collect responses for each <prompt

template, task instance> pair. Unstructured LLM responses are parsed into structured

responses. Finally, we apply a crowd method on the structured responses to obtain final

predictions for each task instance. Algorithm 1 shows this process in more detail.
Algorithm 1 LLMCrowdTruthInference
1: Input: LLM, Crowd, Task, CrowdMethod, ResponseParser
2: Responses = ∅
3: for instance ∈ Task do
4: for template ∈ Crowd do
5: prompt = template.makePrompt(instance)
6: rawResponse = LLM(prompt)
7: response = ResponseParser(rawResponse)
8: Responses.append((prompt.id, instance.id, response))
9: end for

10: end for
11: Predictions = CrowdMethod(Responses)

Given a LLM, a set of prompt templates Crowd, and a data integration task Task, we

gather crowd responses by using each template to map each instance to a concrete prompt

(L5), querying the LLM with the prompt (L6), and parsing its response into a structured

11



format with some function ResponseParser (L7). We then run some crowd truth infer-

ence method CrowdMethod on the responses to come up with a prediction for each task

instance (L11). We illustrate this process in Fig. 2.2.

How to construct crowds?

A crowd is characterized by a set of prompt templates, which may differ from each other

in terms of both the prompt phrasing and which prompt engineering techniques are used.

Crowd methods are generally designed to be robust against additional poorly-performing

workers, so adding additional prompt templates will not generally drive performance down

significantly. Ideally, we would choose prompt templates that are conditionally independent

of one another. Techniques to elicit such a crowd require white box access to LLMs—so

we can search over the full joint distribution—which we do not have. Instead, we construct

the crowd template by providing different combinations of contexts, phrasings, and prompt

engineering techniques, and then rely on crowd methods that are less sensitive to correlations

between prompts.

We emphasize that while it is possible to handcraft prompt templates that perform well on

a particular instance, there is no guarantee such prompts will perform well on other instances.

We assemble a crowd without reference to individual prompt templates’ performance on the

integration queries, to avoid biasing the choice. (We strictly follow this principle in the

evaluation chapter).

Extending to Multiple Repetitions

Self-consistency [55] is a technique that improves LLM accuracy on certain tasks. It involves

repeating prompts multiple times at high temperature to sample more of the tail of the

LM joint probability distribution and taking a majority vote over all responses. Following

this intuition, in some of our experiments we collect multiple responses for each prompt by
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querying the LLM with the prompt multiple times. Crowd methods are able to incorporate

multiple responses from the same worker on the same instance.

Summary

Instead of spending effort in crafting prompts that will break on new queries, thinking of

the LLM as a crowd and using crowd truth inference techniques permits writing a crowd

template once and still obtain good performance, all without access to training data, thus

addressing Challenge 1.
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CHAPTER 4

LLMS IN DATA INTEGRATION PIPELINES

In this section, we explain strategies to leverage LLMs for entity resolution, joinability,

and unionability. The integration of LLMs into software pipelines addresses Challenge 2.

Addressing this challenge consists of solving two problems:

1. Integrating LLMs with Integration Pipelines. Solving entity resolution, joinability,

and unionability on large table collections is a compute intensive task, for which many

techniques have been proposed before. A typical architecture finds candidates approximately,

e.g., blocking in entity resolution, and then applies more expensive matchers to only a subset

of the data. For each task, we integrate the LLM in the place that minimizes the number of

queries (and thus cost in money, time, and energy impact) while maintaining performance.

2. LLMs I/O. First, expanding the crowd template requires carefully selecting what con-

text to include, subject to context window length limitations of today’s LLMs. For example,

giving an LLM an entire table is infeasible with today’s limits (e.g. 4096 tokens for Chat-

GPT). Second, obtaining the answer from the output of LLMs requires parsing text into

query answers, e.g., booleans. This imposes constraints on the prompt to solicit easy-to-

parse responses.

Next, we explain how to leverage LLMs for the data integration tasks, including how we

address problem 1 and problem 2.

4.1 Entity Resolution

Entity resolution is the problem of identifying pairs of rows between two tables that represent

the same real-world entity [40]. Whether two entities are truly the same can be subjective.

However, entity resolution typically takes place on table collections with a closed world of

concepts, meaning it can be solved computationally. It is used to combine tables, to clean
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data and many other tasks.

More formally, let E be a set of entities (from one table or multiple tables) with n tuples

and m attributes. Given all distinct tuple pairs (r, r′) : r ̸= r′, where r, r′ are in E , the

problem of entity resolution consists of determining which of the pairs represent the same

real-world entity.

Traditional software pipelines apply a “divide-and-conquer” strategy to avoid expensive

all-pairs comparisons. Concretely, entity resolution systems employ cheap, approximate

blockers that return candidate row pairs with high recall. Then, they apply more expensive

matchers downstream to improve the precision.

Integrating LLMs (problem 1). Using LLMs as blockers would be too expensive due

to the large number of pairs of rows that need to be read and hard-to-implement due to

the length limitation of context windows. Expensive here means to three resources: money,

time, and energy. Instead, we propose to reuse traditional blockers to identify candidates

efficiently and then use LLMs as a matcher, thus reducing LLMs intervention to only the

space of candidates.

Input/Output (Problem 2). Each candidate row pair constitutes an instance of the

entity resolution task which is used to expand a crowd template.

Our implementation of makePrompt() is straightforward - we simply fill in the prompt

template with the specified elements of the input instance. See Fig. 2.2 for an example.

The implementation of ParseResponse() requires careful wording to elicit answers easy

to parse by traditional software. We used three strategies that proved effective: i) providing

context before prompting [47] by using system messages (e.g., You are a helpful assistant

who can only answer YES or NO and then provide your reasoning.) ii) few-shot prompting:

past works [58, 44], observe that adding training examples within a prompt can be effective

in generating answers matching the format required by the task. iii) asking again: if the

software receives an unparseable answer, it queries again for a maximum of k times.
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Example Prompt + LLM Response. See Fig 2.1.

user: Consider samples of the following two tables:

Table 1: assay_id,doc_id,description,assay_type, [. . . ]
Table 2: [. . . ] 0,1,11087,The compound was tested for [. . . ]

Is it likely that column assay_id from Table 1 and column active_molregno from Table
2 capture the same type of information? Begin your answer with YES or NO.

model: NO. Based on the provided samples, it is likely that the column "assay_id" from
Table 1 and the column "active_molregno" from Table 2 do not capture the same type
of information. In Table 1, the "assay_id" column represents the unique identifier for
each assay conducted. [. . . ] On the other hand, in Table 2, the "active_molregno"
column appears to represent an identifier related to the molecular structure of a com-
pound. [. . . ] These columns capture different types of information and serve distinct
purposes within their respective tables.

Figure 4.1: ChatGPT Joinability Example
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User: I’m a machine learning engineer looking for training data in our company’s data
lake. I have the following training dataset so far:
Address3,Postcode,LCG,Registered_Patients,[. . . ]

I’m looking for data containing rows I can add to this. So far, I found the following
dataset:
COUNTY,TOWN,API WELL NUMBER,WELL NAME, [. . . ]
Modulo some data transformation, is it possible to add rows from this dataset to my
current training dataset?

Model: NO. Based on the provided datasets, it seems that the two datasets have
different structures and purposes. The first dataset appears to be related to medical
practices, with information such as practice names, addresses, and registered patients.
On the other hand, the second dataset seems to be related to oil and gas wells, with
information like well names, locations, and company names. [. . . ]

Figure 4.2: ChatGPT Unionability Example
4.2 Joinability and Unionability

Joinability and Unionability are two important problems in data discovery, which help data

integration, which are defined as identifying all pairs of tables that join/union within a table

collection [65, 64, 7, 11, 19, 21, 26, 46, 32, 20, 3].

Similar to entity resolution, the computational complexity of identifying whether two

tables join or union with each other is high, as it requires comparing all pairs. For that

reason, state of the art systems have implemented strategies that resemble those of the

blocker-matcher pair in entity resolution. As a consequence, joinability and unionability

systems have a similar architecture that consists of a cheaper algorithm to find candidates

with high recall followed by a more expensive matcher/filter to improve precision.

We integrate LLMs similarly to entity resolution, as filters for join/union candidates

(problem 1). Similarly, while the implementation of makePrompt and parseResponse() dif-

fers across tasks, the general architecture remains the same (problem 2), suggesting a

straightforward, generic strategy to leverage LLMs for data integration tasks.

Example Prompt + LLM Response. See Fig. 4.1 and Fig. 4.2.
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CHAPTER 5

EVALUATION

In this chapter, we answer the central research question of this paper: can LLMs aid in data

integration tasks? To do so, we structure the chapter around specific research questions:

• RQ1: How do we use LLMs? Using well-known benchmarks for entity resolution, we

measure the performance of different LLM-based methods, including but not limited to

those we proposed in Chapter 3, to identify which one performs better.

• RQ2: How do LLMs and the state-of-the-art compare? How does this vary with the

availability, quality, and quantity of training data?

After offering the main results on entity resolution, we study the performance of LLMs

on other common data integration tasks:

• RQ3: Do LLMs help joinability and unionability?

Setup. We use ChatGPT (version gpt-3.5-turbo-0301) as it is a recent LLM which has

shown good performance across many known tasks and is widely available to the public. We

present more specific setup information along with each experiment.

5.1 RQ1. How do we use LLMs?

We study the ability of LLMs to solve entity resolution.

Benchmark. We use the established WDC Large-Scale Product Matching (LSPM) bench-

mark [37] and the newer, more challenging WDC Products benchmark [51]. Both benchmarks

consist of pairs of rows from different product offers scraped from the internet. Some pairs

refer to the same real-world entity and some pairs do not. Both benchmarks have train-

validation-test splits, and the training splits are further divided by size, which is convenient

to evaluate models when different amounts of training data are available. LSPM is split by

product: cameras, computers, shoes, and watches, which permits studying the performance
18



Task Benchmark Training size Test size Topics Source

Entity resolution

LSPM

small: 1408-2231 pairs 1011-1097 pairs

Product offers:
cameras,
computers,
shoes,
watches.

2017
Common
Crawl[1]

medium: 4080-6331 pairs
large: 15091-25891 pairs

xlarge: 31293-53258 pairs

Products
small: 2500 pairs

4500 pairs

Product
offers
across
multiple
domains

2020
Common
Crawl
corpus[1]

medium: 6000 pairs
large: 19607 pairs

Joinability ChemBL N/A 140450 table-col pairs

chemicals,
bioactivity,
genomics

ChemBL
database

Unionability
SANTOS small N/A 27500 table pairs

schools,
infra-
-structure,
government,
commerce

CA, UK, US,
AU Open Data

TUS N/A 614875 table pairs

schools,
infrastructure,
government,
commerce

CA, UK
Open Data

Table 5.1: Overview of benchmarks for each data integration task.
of entity resolution on different datasets, i.e., understand the effect of using in-distribution

vs out-distribution data. The Products benchmark comes in multiple variants. We use the

variant where 50% of the pairs are "corner cases," defined as pairs selected to have low (for

positive pairs) or high (for negative pairs) similarity according to various similarity metrics.

Each variant includes three test sets where all, half, or none of the products in the test set

pairs appear in the training set (denoted as "seen," "half-seen," and "unseen," respectively).

Except where specifically noted, we use the "unseen" test set, as we believe this to be most

representative of real-world entity resolution.

Metrics. The LLM method works as a matcher (see Chapter 4), processing candidate pairs

from the preblocked set provided in the WDC LSPM and Product benchmarks. We choose

F1 as the performance metric because this is a commonly used metric in entity resolution

works [39, 45, 6]. In particular, it is used to evaluate Ditto so it helps us present our results

in context.
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Figure 5.1: Comparison of LLM results with various prompt engineering strategies. X-axis is
the benchmark. Y-axis is the F1 score (starts at 30). (a) Comparison of LLM results with and
without few-shot learning and crowd truth inference on all datasets. (b) Comparison of LLM
results with and without multiple repetitions at high temperature on LSPM benchmarks.
(c) Comparison of LLM results with and without chain-of-thought prompting on Products
benchmark.
Methods. All methods use ChatGPT (gpt-3.5-turbo-0301) as the LLM. We compare the

performance of the following seven prompt engineering strategies, used in combination:

• Basic. We use a single prompt template that directly asks ChatGPT to perform entity

resolution with temperature 0. This helps us understand the performance of ChatGPT

without any additional intervention.

• Few-shot. As above, but we add few-shot examples to each prompt. This is a widely-used

prompt engineering technique that works well in many different domains [4, 58, 44] We

add to each prompt two positive and two negative example instances, sampled uniformly

from the benchmark’s "small" training set. An example consists of a prompt (using the

same template as the main prompt) along with the desired response.

• Uniform Few-shot. As above, but we use the same few-shot examples for the entire dataset.

• Multi-rep. We repeat each prompt multiple times at temperature 2 and take the ma-

jority response as the answer, similar to the prompt engineering method known as self-

consistency [55].

• CoT. We use chain-of-thought prompting, another widely used prompt engineering tech-

nique [56]. We use the prompt described in Basic with an additional request to think

step-by-step before producing the answer.
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• Crowd. We run our LLM-as-a-crowd method. Our default crowd template, used unless oth-

erwise stated, is formed from the Basic prompt described above, plus seven other prompts

with varying phrasings. Our default crowd method is Dawid-Skene—we will justify this

decision with an experiment.

• OptimalCrowd. As in our LLM-as-a-crowd method, we run a crowd on the benchmark.

Then, we use the responses and the true labels to identify the crowd method that max-

imizes accuracy on the benchmark using only the prompt responses. Since this method

uses the ground-truth labels to identify the optimal method, it is not a true crowd truth

inference method; rather, we use it as an upper bound on what is achievable via crowd

truth inference given the particular crowd and its responses.1

When combining the techniques above, we note:

• When combining Few-shot with techniques like Crowd and Multi-rep that query ChatGPT

multiple times per instance, we use the same few-shot examples for all queries of a given

instance.

• When combining Crowd and Multi-rep, we use the method described in Section 3.2.

• Few-shot examples with CoT need manually-written explanations. For this reason, we use

CoT with Few-shot, as that requires writing explanations for every training set example.

We write manual explanations for four curated examples from the training set when using

CoT and Uniform Few-shot together.

Next, we proceed to ask a set of questions and present the results progressively, towards

answering RQ1: How do we use LLMs?

1However, in some cases, this method underperforms relative to true crowd methods since it is optimized
for accuracy and we use F1 as the metric. We chose to have this method optimize for accuracy regardless as
it is more computationally feasible, and the true crowd methods are also attempting to maximize accuracy.
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Which traditional prompt engineering techniques are effective?

Fig. 5.1(a) shows the performance of Basic and Crowd with and without Few-shot over all

benchmarks. We observe trends:

• Using Crowd always improves performance.

• Using Few-shot always improves performance.

• Using Crowd and Few-shot together achieve the highest performance suggesting their ben-

efits are complementary.

Fig. 5.1(b) shows the performance of Multi-rep combined with other techniques and crowd

truth inference on the LSPM benchmarks. Although self-consistency shows improvement for

other tasks it does not help for data integration tasks. We no longer use it in the remainder

of this evaluation.

Fig. 5.1(c) shows the performance of CoT relative to Basic with and without Few-shot.

We find that adding chain-of-thought prompting drops performance significantly, particularly

in the zero-shot case, where the F1 score decreases by 29.131, due to a high false negative

rate (the precision of CoT on this benchmark is just 31.4). See Fig. 5.2 for a false negative

example.

In summary, of all techniques we tried, Crowd and Few-shot are effective and complemen-

tary to each other, while Multi-rep and CoT do not boost the performance for this task; in

fact they affect it negatively. We now study in more depth the performance improvements

of crowd methods.

Do crowd methods improve performance?

A user can construct multiple prompt templates, using different wording and/or prompt en-

gineering techniques, but it is difficult to know in advance which will be most performant for

a learning task. Table 5.2 shows that the individual template performance varies significantly
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user: We are trying to integrate product data from two different databases. [. . . ] Since
the databases are different, there will still be some differences between entries that refer
to the same product.

Here is an entry from the first database:
- title: Everyday Backpack 30L v2 - Midnight
[other attributes provided are: description, price, currency ]

Here is an entry from the second database:
- title: Peak Design Everyday Backpack 20L v2 - Midnight
[other attributes provided are: description, price, currency ]

As best as you can tell, do these entries refer to the same product? Let’s think step-
by-step:

model: Step 1: Compare the titles of the two entries.
The titles are similar but not identical. The first entry is titled [. . . ]

Step 2: Compare the descriptions of the two entries.
The descriptions are similar and both mention the bag’s ability to adapt to changing
gear needs. However, there are some differences in the details mentioned.

Step 3: Compare the prices of the two entries.
The prices are different, with the first entry priced at HKD 2,599.00 and the second
entry priced at USD 259.95.

Based on these differences, it is unlikely that these entries refer to the same product.
Therefore, the answer is no.

Figure 5.2: An example of a common false negative failure mode when using ChatGPT CoT
(chain-of-thought): the model is fixated on the many non-meaningful differences.
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Figure 5.3: (left) Performance of various workers and crowd methods. Y-axis is the average
F1 score. (a) Results for our standard crowd used in ChatGPT Crowd + Few-shot, averaged
across all datasets. Error bars show the maximum and minimum dataset F1 scores. (b)
Results from a crowd formed from various prompt engineering techniques - Basic + Few-
shot, Basic, CoT + Few-shot, and CoT.
between datasets, demonstrating that it would be hard to commit to a template ahead of

time. This result is true both when using zero- and few-shot, motivating our approach of

using crowd truth inference to avoid relying on choosing a good prompt template.

In Fig. 5.3(a) we show the F1 score (averaged across all datasets, with the max and min

shown in error bars) of the eight individual prompt templates that make up our default

crowd (with Few-shot, shown on the cluster of bars on the left side of the plot), as well as

the averaged F1 scores of various crowd methods on our default crowd, shown on the right

side of the plot. This experiment shows:

• Individual templates’ performance varies widely across datasets, both absolutely and rel-

atively. We cannot reliably predict absolute or relative template performance ahead of

time.

• Crowd methods perform much more consistently across datasets, boosting the perfor-

mance.

• Crowd methods’ perform almost as well as OptimalCrowd.

Now we re-analyze the crowd results of Fig. 5.1(a), which show that, while crowd truth
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Rank

Dataset Method 1 2 3

Products Crowd baseline veryplain security
Crowd + Few-shot baseline veryplain security

LSPM cameras Crowd veryplain layperson baseline
Crowd + Few-shot layperson veryplain baseline

LSPM computers Crowd layperson baseline veryplain
Crowd + Few-shot security baseline veryplain

LSPM shoes Crowd veryplain baseline layperson
Crowd + Few-shot layperson security veryplain

LSPM watches Crowd baseline veryplain security
Crowd + Few-shot layperson veryplain baseline

Table 5.2: Top 3 prompt templates (by F1 score) from our default crowd (with and without
Few-shot).
inference improves performance with and without few-shot prompting, the benefits are much

more modest with few-shot prompting. We want to understand why. We observe that few-

shot prompting increases the partial correlations between workers (controlling for the true

label as a covariate), as demonstrated in Fig. 5.4. Crowd methods like Dawid-Skene assume

conditional independence of workers. Conditional independence is violated for most pairs

of prompts in the zero-shot case (the chi-square test statistic is greater than 0.05 for only

4 out of 28 pairs, and less than 1.0e-5 for 19 pairs), and all pairs in the two-shot case (the

largest chi-square test statistic of any pair is 1.25e-11). It is not generally possible to evaluate

whether workers are conditionally independent without access to the true labels. The good

news is that empirically, crowd methods perform well even when independence assumptions

are violated, as demonstrated in Fig. 5.3(a).

Which crowd method performs best?

In Fig. 5.3(a), all crowd methods have similar overall performance. However, this is not

true across all datasets and crowds. In 5.3(b), we form a crowd by using prompts that

incorporate different prompt engineering techniques, rather than different prompt phrasings.

Here, we find that the simplest method, MajorityVote, significantly under-performs relative

to the others. What this result reveals is that in scenarios where the relative performance of
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Figure 5.4: Partial correlations (controlling for the true label as a covariate) between the
prompt templates of our default crowd across all datasets. (a) ChatGPT. (b) ChatGPT +
Few-shot.
individual prompts lead to a deterioration of the quality of MajorityVote, more sophisticated

techniques can still outperform. Of all crowd methods we choose Dawid-Skene because it

is a simple model with relatively few parameters that nonetheless avoids the deterioration

exhibited by Majority Vote. As shown in the figure, its performance is also close to the

reference OptimalCrowd.

How much does the specific choice of few-shot examples matter? Is

it important that they are sampled in-distribution?

We observed that few-shot is another effective technique to boost performance. We now study

this in more depth, in particular paying attention to the effect of the examples chosen. We

sample few-shot examples uniformly from the training set to get a more precise estimate of the

benefit in expectation from adding few-shot examples. However, in a more realistic scenario,

there may only be a few labeled examples that must be re-used for every prompt. To estimate

the variability in performance due to choice of few-shot examples, we selected 10 different

sets of few-shot examples uniformly at random from the LSPM computers training set, and

using each set ran Crowd + Uniform Few-shot on the entire LSPM computers benchmark.

The average F1 score for these 10 runs is 92.08 (an average improvement of 2.91 over zero-
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Figure 5.5: Comparison of LLM results with in- and out-of-distribution few-shot examples.
X-axis is the benchmark. Y-axis is the F1 score (starts at 50).
shot), and the sample standard deviation is 2.14. This indicates that the choice of few-shot

examples does matter.

Fig. 5.5 compares the performance on LSPM computers, shoes, and watches when the

few-shot examples are drawn from the corresponding training set vs when the few-shot

examples are drawn from the cameras dataset. The out-of-distribution few-shot examples

are still helpful, increasing scores by 1.06 with crowd truth inference and 1.19 without, but

generally not as helpful as the in-distribution few-shot examples (which increase scores by

2.78 and 2.34 respectively).

Takeaways

Of the standard prompt engineering techniques we tried, we find that only Few-shot is

consistently helpful. Furthermore, we find crowd truth inference is helpful when there is

uncertainty as to which prompt might have the highest performance, and even improves

performance over the best prompt. We empirically find that Crowd + Few-shot works the

best, so we use it as our main point of comparison in the following section.
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5.2 RQ2. How do LLMs and the state-of-the-art compare?

In this section, we put our LLM results in context by comparing the LLM methods Crowd

and Crowd + Few-shot with Ditto, the state of the art method for entity resolution. Because

Ditto uses training data, we also ask how can training data—when available—be leveraged to

boost LLMs. Concretely, we fine-tune the smallest OpenAI GPT-3 model, Ada, and include

the results for context.

Benchmark. We use the WDC LSPM and Product benchmarks described before. In

addition to using the LSPM benchmarks as before, we also consider the results when the

various models are trained using the cameras training set (or, in ChatGPT’s case, the few-

shot examples are drawn from the cameras training set) but tested on the other LSPM

benchmarks; this is to understand whether Ditto trained on dataset X also performs well

on dataset Y or whether its performance deteriorates, which would suggest the need for

collecting training datasets for each scenario. For the Product benchmark, we additionally

consider variants of the test set that contain various overlaps of products with the training

set.

Metrics. All methods are Matchers, so we use F1. We compare the performance of the

following four methods:

• ChatGPT Crowd: as before.

• ChatGPT Crowd + Few-shot: as before.

• Ditto. Ditto is trained and validated on various sizes (small, medium, large, or xlarge

[LSPM only]) of the benchmark training sets. The number of examples in each size

category vary by benchmark, but have similar magnitude. We list the number of examples

in each size category in Table5.1.

• Fine-tuned Ada. We fine-tune OpenAI’s smallest GPT-3 model, Ada, on various sizes of

the benchmark training sets, as above. This LLM method is more similar to Ditto in that
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Figure 5.6: (left) Comparisons of Ditto and LLM techniques. X-axis is the benchmark.
Y-axis is the F1 score (starts at 40). (a) Comparison of techniques when available training
data are out-of-distribution (the training data is from LSPM cameras). (b) Comparison of
techniques on variants of the Products dataset that require more or less generalization.

both fine-tune a language model using training data.

Training data availability. We evaluate our various methods under four scenarios of

increasing access to high-quality labeled training data. This is to study how the methods

perform in what is the hardest but most impactful scenario, i.e., no training data, while

reproducing the environment in which state of the art methods were designed, i.e., with

access to training data:

1. No training data relevant to the task is available.

2. Training data is available, but it is drawn from a different distribution than the task’s

examples.

3. A limited amount of in-distribution training data is available.

4. A large amount of in-distribution training data is available.

Scenarios 1 and 2 are common in real-world contexts. Scenario 3 is relevant as labeling

large amounts of data is often infeasible. Scenario 4 is the scenario that is implicitly assumed

in many data integration papers, including Ditto.

Scenario 1: No relevant training data. Ditto requires training data, thus it does not

work in this scenario. ChatGPT Crowd works in this scenario (it is unaffected), and few-shot
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learning can still be used as long as a few test set examples can be manually labeled.

Scenario 2: Out-of-distribution training data. In our second scenario, we explore the

case where the training and test datasets are drawn from different distributions. We train

Ditto and fine-tune Ada on the LSPM cameras dataset and evaluate their performance on

the other LSPM datasets. ChatGPT Crowd + Few-shot draws its few-shot examples from the

cameras training set. We report the results in Fig. 5.6(a). We report results for the training

set size with the highest performance - "xlarge" for Ditto and "large" for Ada, which are

the most favorable scenarios for those methods. Ada significantly outperforms Ditto and

ChatGPT significantly outperforms Ada, indicating that LLMs are the best option when

there is not high-quality training data that is specific to the relevant task. We consider this

a key result of our paper: LLMs achieve high-performance in difficult data integration tasks

compared to existing baselines without requiring access to training data.

Is there information leakage? If the LLM performs well on these tasks because the benchmark

data was used to build the LLM, the results may be misleading, and not transfer to new

datasets. We ameliorate this concern by using a benchmark (Products) published in 2022

on a model (gpt-3.5-turbo-0301) trained up to 2021.

Scenario 3: Limited amounts of in-distribution training data. In the third scenario,

we assume some existing training data is available, and we explore what happens when the

amount of training data varies. We train Ditto and Ada on different sizes of the training

datasets, and report the results in Table 5.3. Ditto relies on having a relatively large amount

of training data - ChatGPT Crowd + Few-shot overall outperforms Ditto on LSPM when

5000 training examples are available (medium) and Finetuned Ada outperforms Ditto even

when 20000 training examples are available (large), indicating that LLMs are the best option

absent a large amount of training data.

Scenario 4: Large amount of in-distribution training data. In our final scenario,

we assume that we have access to a large amount of high-quality training data, and that
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Training set size

Dataset Model small medium large xlarge

Ditto 50.03 58.09 59.49 N/A
Finetuned Ada 71.25 68.07 70.76 N/AProducts
ChatGPT Crowd + Few-shot 77.65 77.65 77.65 N/A

LSPM cameras
Ditto 75.18 84.98 91.94 94.90
Finetuned Ada 87.78 92.62 89.98 89.77
ChatGPT Crowd + Few-shot 94.81 94.81 94.81 94.81

LSPM computers
Ditto 78.62 83.68 92.36 94.79
Finetuned Ada 91.48 93.49 92.23 94.74
ChatGPT Crowd + Few-shot 93.23 93.23 93.23 93.23

LSPM shoes
Ditto 75.18 80.06 86.41 88.97
Finetuned Ada 80.07 88.89 90.32 90.63
ChatGPT Crowd + Few-shot 89.75 89.75 89.75 89.75

LSPM watches
Ditto 87.12 89.89 97.08 96.50
Finetuned Ada 93.17 95.39 96.15 96.17
ChatGPT Crowd + Few-shot 88.74 88.74 88.74 88.74

LSPM (mean)
Ditto 79.02 84.65 91.95 93.79
Finetuned Ada 88.12 92.60 92.17 92.83
ChatGPT Crowd + Few-shot 91.63 91.63 91.63 91.63

Table 5.3: Performance (F1 score) of Ditto, Finetuned Ada, and ChatGPT on the entity
resolution benchmarks, with access to the training sets of various sizes. Numbers for Chat-
GPT are repeated as ChatGPT always draws its few-shot examples from the small training
set. Bold numbers are the highest F1 score for the given size and benchmark. We highlight
Products as we believe it to be the most informative benchmark for entity resolution.
the integration queries come from the same distribution as that training data—this is the

most favorable scenario for Ditto, but the one least favorable to an analyst who needs to

collect data for a target task. The results are reported in the rightmost columns of Table 5.3.

We allow Ditto and Ada to train on the largest version of each training dataset. ChatGPT

Crowd + Few-shot still draws its few-shot examples from the "small" version of each training

dataset. LLMs significantly outperform Ditto on the Product dataset, achieving a state-of-

the-art result. However, Ditto generally performs better on the various LSPM datasets. The

Product benchmark was designed to be more challenging than the older LSPM benchmarks,

so LLMs’ superior ability to handle semantic ambiguity may be better used on the former.

Generalization on Products. Digging deeper into the previous results, Fig. 5.6(b) shows

the performance of the various methods on the variants of the Products test sets with dif-

fering levels of product overlap with the training set. Ditto’s performance drops significantly

when the test set contains products that did not appear in the training data. Ada overall

outperforms Ditto in all variants but also drops in performance somewhat. ChatGPT main-
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tains similar performance in all variants and achieves the highest in the most challenging

unseen category (right-most part of the plot).

Takeaway. We conclude LLMs have the highest performance in scenarios 1, 2, and 3, and

may generalize better in scenario 4.

5.3 RQ3. Generalization to other Tasks

In this section, we explore the performance of LLMs for the other two data integration tasks

we consider, joinability and unionability. Since these integration tasks do not explicitly use

training data, we compare against the best zero-shot and few-shot LLM methods identified

in RQ1: ChatGPT Crowd and ChatGPT Crowd Few-shot. We use Dawid-Skene as the crowd

method. Our results align with those of entity resolution: ChatGPT Crowd + Few-shot boosts

the precision of current joinable/unionable table search systems.

Joinable Table Search: Quantitative Analysis

In this experiment, we seek to understand the ability of LLMs to determine whether tables

join with each other. We conduct two experiments.

Dataset. We use the ChemBL database, which is a database containing details of chemicals,

their properties, experiments concerning them, etc. The database contains a well-designed

schema that incorporates 100 PK/FK dependencies between attributes in the tables. We

use these dependencies as the ground truth for this experiment.

Does the LLM correctly identify joinable tables? In this first experiment, we select the

100 PK/FK dependencies of ChEMBL (true positives) and 100 additional ones false PK/FK,

which we choose at random from all other pairs. We then feed each of the 200 instances

of this joinability problem to ChatGPT Crowd + Few-shot and measure its performance in

terms of precision (how many of the returned answers are correct) and recall (how many of

32



the correct answers are identified). This results in a precision of 0.75 and a recall of 0.95,

i.e., the LLM correctly identifies 95/100 PK/FKs, correctly dismisses 68/100 false PK/FKs.

ChEMBL is a domain-specific database with concepts that are not hard to grasp and yet

the LLM returns impressive results (see Fig. 4.1 for a qualitative example).

How do LLMs perform in joinability pipelines? While the previous experiment high-

lights the potential of LLMs, in a real joinability task, one must compare all pairs of tables

to determine which ones join. This is a computationally expensive problem for which many

approaches exist. Next, we use one such approach to identify candidates and use the LLM

to curate the output results. The potential contribution of LLMs in this case is that they

improve the precision of the system. We compare the following methods:

• Aurum. We use Aurum’s pkfk_table API, which returns the likely PK/FKs of a table from

a table repository. We do this by inputting each table in the table repository to pkfk_table.

• ChatGPT Basic. As before, but with a prompt geared towards joinability.

• ChatGPT Crowd. This works as described previously, except we use a different set of seven

prompt templates for joinability.

• ChatGPT Crowd + Uniform Few-shot. We use four curated examples - an obvious negative

and positive, and a tricky negative and positive.

On ChEMBL, Aurum identifies 1150 joins with a precision of 0.05. When we apply

ChatGPT Crowd + Uniform Few-shot on the candidates, the precision improves significantly,

by 3x (to 0.137). This means the LLM correctly dismisses false positives identified by Aurum.

Since Aurum aims for high recall, the LLM helps by curating the output and improving the

precision. Aurum finds 1150 joins of which 57 are correct. ChatGPT Crowd + Uniform Few-

Shot correctly filter out the joins to 408, while only incorrectly dismissing 1 FK, thus finding

56.

Compared to ChatGPT Crowd + Uniform Few-shot, ChatGPT Basic does much worse, even

though it still improves the precision (to 0.09). This result confirms the benefits of using
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Dataset SANTOS ChatGPT Basic ChatGPT
Crowd

ChatGPT Crowd +
Uniform Few-shot

SANTOS 0.969 0.903 1.000 1.000

TUS 0.709 0.683 0.712 0.719

Table 5.4: Precision of LLM Methods vs SANTOS, by Dataset.
Crowd for boosting the quality of LLMs on data integration tasks.

Unionable Table Search: Quantitative Analysis

In our last experiment, we consider the benefits of LLMs on unionability. We measure the

benefits of using LLMs alongside state of the art systems. We use two datasets for which

the ground truth is available: (i) the SANTOS’s "small" benchmark, used in SANTOS’s

experiments, (ii) the table union search (TUS) dataset.

Similar to the previous experiments, we use the LLM to postprocess candidates returned

by SANTOS, aiming to boost SANTOS’s precision. Therefore, we compare SANTOS’s

precision to the precision of postprocessing SANTOS candidates. We report the original

precision of SANTOS and include the effect of using LLM methods to curate the candidates

identified by SANTOS.

The precision results are shown in Table 5.4. Similar to the joinability task, Crowd +

Uniform Few-shot (with a crowd of five prompt templates) helps the upstream system, in this

case SANTOS, by curating its output, improving the precision to 1. On the TUS dataset,

using Crowd + Uniform Few-shot achieves a new state of the art performance number (see

Fig. 4.2 for a qualitative example).

In summary, LLMs significantly help data integration tasks when used alongside a blocker

(in entity resolution) or a candidate generator (in joinability or unionability).
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CHAPTER 6

RELATED WORK

Incorporating Semantics into Data Integration. As mentioned in Section 2.1, there

have been many efforts to resolve semantic ambiguity by incorporating semantic knowledge

into data integration pipelines, ranging from the use of ontologies to the use of word embed-

dings.

Some works consider the problem of mapping tables to existing ontologies or knowledge

bases as a precursor to integration tasks. For example, semantic type annotation is helpful

to incorporate knowledge into the columns of a table that can then be leveraged by entity

resolution, joinability, etc. Many semantic annotation works primarily label columns with

labels from existing ontologies (e.g., DBpedia, Wikidata, an enterprise’s knowledge base,

etc.), either via classification to given labels (e.g., Sherlock [27] and Sato [60]) or via mapping

to several ontologies (e.g., C2 [33]–notably, C2 also uses curated webtables as an ontology).

Several systems for semantic annotation from ontologies have also been developed for the

SemTab Competition [2].

Other works more directly apply ontologies for data integration problems. For example,

SemProp [8] labels tables with ontology classes, and determines table relatedness via links

between these ontology classes. SANTOS [32] labels columns with semantic labels from

YAGO and assesses table unionability using both schema similarity based on column labels

and similarity of links among column labels in the same table.

Some works have also used word embedding similarity to solve data integration problems.

TUS [46] and D3L [3] leveraged open-source word embeddings, such as word2vec and fastText

to incorporate schema similarity as one of many metrics used to determine unionability.

Warpgate [12] and PEXESO [18] use embeddings of pretrained models to determine whether

columns contain overlapping values, where values are considered equal based on semantics

rather than equality.
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From the examples in this paper (see Fig. 4.1 and Fig. 4.2), we have qualitatively shown

that LLMs indicate semantic types in their output, successfully incorporating much valuable

context based on external knowledge. Overall, we see LLMs as a new tool that aids in the

general effort of addressing data integration and we showed in the paper the promise of such

technology.

LLMs for Integration & Table Understanding. Several papers have studied GPT-3 and

ChatGPT’s performance on various data integration problems. [50] has studied ChatGPT’s

performance on entity matching tasks using zero-shot and few-shot prompting, as well as

specifying rules that may help. CHORUS [31] is a system that uses LLMs to perform semantic

annotation while avoiding hallucination of labels. [52] has studied GPT-3’s performance at

table understanding (meanings of cells, columns, rows), and tabular question-answering.

StructGPT has studied GPT-3’s performance on tabular question-answering and semantic

parsing of text to SQL. [10] studied GPT-4’s performance at various data analysis tasks,

including sql query generation and plotting. To the best of our knowledge, this is the first

paper to systematically study the effect of different prompting techniques in the application

of LLMs to data integration tasks.

Crowdsourcing for Data Integration. Previous work has used human crowds to ad-

dress data integration [17, 14, 49], showing the promise of aggregating the opinions of large

samples of humans. A long line of work in the database community has focused on efficient

crowdsourcing algorithms for data integration [54, 9], including decomposing larger tasks

into subtasks more likely to elicit correct responses from human users [23]. In this paper,

we elicit the crowd from large language models, which requires rethinking the prompting

strategy—similar to preparing tasks for a human crowd—and then aggregating the results,

in this case identical to aggregating human answers. We have shown that these techniques

are effective when the crowds for data integration are elicited from LLMs.
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CHAPTER 7

CONCLUSIONS

Large language models hold tremendous promise to aid in important data integration tasks

such as entity resolution, joinability, and unionability. Despite challenges related to prompt

engineering and their integration with software pipelines, this paper shows that thinking of

LLM-as-a-crowd and leveraging the vast advances in data integration tasks in data man-

agement are effective techniques. The results show that LLMs produce high-quality results

without access to training data and that thinking of them as crowds further reduces the

reliance on high-cost prompt engineering.

Our work is a starting point toward using LLMs for data integration reducing reliance

on training data or prompt engineering. As future work, we plan to expand the scope of

integration tasks explored: for example, we observed that LLMs cannot be used for both

blocking and matching of entity resolution, but our method used LLMs for matching. We

can explore how LLMs can be used for the blocking phase of entity resolution.

Further, we used ChatGPT in our work. However, a cheaper, reproducible alternative

are open LLMs, such as LlaMA2, Vicuna, Longformer, etc. These models hold promise

as alternatives to the black-box OpenAI models. However, their performance is markedly

worse. This leaves more room for improvement, which our crowd method may provide.

Additionally, we can explore the choice of prompts to use in a crowd in more depth. The

next-word joint probability distributions trained by these models can be fully explored,

unlike with OpenAI LLMs. We can use these distributions to determine probabilities of

correct answers on integration tasks for given prompts, allowing us to use training data not

only to fine-tune LLMs or extract few-shot examples, but also to estimate the performance

of given prompts, and use this as a more accurate prior for crowd truth inference methods.

On a more speculative note, this may also help devise crowd truth inference methods that

account for the characteristics of prompts using the joint distributions trained by LLMs.
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