
THE UNIVERSITY OF CHICAGO

FREP: FLEET PERFORMANCE EVALUATION PIPELINE

FOR IDENTIFYING SERVER DEGRADATION IN LARGE-SCALE DATACENTERS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER

DEPARTMENT OF COMPUTER SCIENCE

BY

RUIDAN LI

CHICAGO, ILLINOIS

2023

Copyright © 2023 by Ruidan Li

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Introduction . 1

2 DATASET OVERVIEW . 5
2.1 Dataset Overview . 5

2.1.1 Data Collection and Scale . 5
2.1.2 Data Features . 6
2.1.3 Data Statistical Summary . 8

3 FEATURE SELECTION PROCESS . 10
3.1 Feature Selection Process . 10

3.1.1 Information Gain and Entropy . 10
3.1.2 Top-Level Grouping with Model ID . 12
3.1.3 Subgrouping Methodology . 14
3.1.4 Analysis and Recommendations . 15
3.1.5 Production Only Focus . 16

4 TOP-LEVEL VARIANCE . 18
4.1 Top-Level Variance . 18

4.1.1 Knee Detection . 18
4.1.2 (Non)Explainable Subgroup Variance and IQR Analysis 19
4.1.3 Recommendations . 21

5 DIVERGENCES . 22
5.1 Divergences . 22

5.1.1 Modified Top-Level Grouping . 22
5.1.2 Divergence Cases and Scores . 23
5.1.3 Denoising with Multipliers . 26
5.1.4 Divergence Recommendations . 28

6 OUTLIERS . 30
6.1 Outliers . 30

6.1.1 Outlier Assets . 30
6.1.2 Outliner Denoising Pipeline . 30
6.1.3 Recommendations . 32

iii

7 KEY OBSERVATIONS . 34
7.1 Key Observations . 34

8 RELATED WORK . 37
8.1 Related Work . 37

9 SUMMARY . 39
9.1 Conclusion . 39

REFERENCES . 40

iv

LIST OF FIGURES

2.1 Feature value count/distribution (§2.1.3). x-axis is the unique values of the feature,
and y-axis is the count (anonymized), which is sorted. 7

2.2 Test scores over time (§2.1.3). CPU and memory performance scores over time. The
log-scale color bar describes the number of observations in each bin. Darker color
indicates more observations per bin. The dark bands highlighted by the red lines (two
bands in each figure) are the two most common score ranges for CPU and memory
tests. 8

2.3 Joint CPU/memory scores (§2.1.3). x-axis is CPU score and y-axis is memory
score (normalized). Each blue dot is an observation from the dataset without any filter
and each orange mark is an observation from production. There are more high score
observations in the new dataset. 9

3.1 Information gain (§3.1.1). The first row is the information gain and entropy for
CPU tests and the second row is for memory tests. High information gain indicates
potential predictiveness and low entropy hints on minimum level of insight that could
be drawn from the given feature. 12

3.2 Group by model ID (§3.1.2). Info gain (CPU) after grouping by model ID. There
are four types of shape. 12

3.3 Subgrouping methodology (§3.1.3). Four step subgrouping is used before feeding
data to the downstream. 14

3.4 Variance pipeline (§4.1). Two-stage variance pipeline to detect model IDs with high
variance. 16

4.1 Knee thresholds (§4.1.1). Each dot represents a model ID’s score variance (sorted).
The model IDs with score variance above the threshold will be analyzed in later steps. 19

4.2 Subgroup variance and IQR analysis (§4.1.2). (a) The subgrouping method, (b) no
IQR overlap, (c) IQR overlap, and (d) higher variance but smaller size subgroup. . . 19

5.1 Divergence pipeline (§5.1). Multi-stage divergence measurement based on re-
adjusted grouping. The multipliers are then applied for denoising. 23

5.2 Frequency scaling (§5.1.1). FreqScale is needed for grouping the CPU tests for
more accurate divergence computation. From (b) to (c) shows an improvement. 23

5.3 KLD excels at separation (§5.1.2). KLD outperforms the others on highly divergent
pair separation. 24

5.4 JSD yields stable results (§5.1.2). JSD yields stable divergence value on similar
pairs. The two pairs displayed here share almost identical JSD values yet have drasti-
cally different KLD scores. 25

5.5 WSD advantage (§5.1.2). WSD catches the case that is overlooked by the other two
methods. 26

5.6 Size matters (multipliers) (§5.1.3). Large size difference between the pair should be
penalized due to potential inaccuracy. Pairs where both subgroups are insufficiently
sampled should be deprioritized as well. 27

v

5.7 Recommendations (cutoffs) (§5.1.4). Each dot represents a subgroup pair’s ad-
justed divergence value. The knee detection functions similarly as in 4.1.1. 28

5.8 Heatmap (§5.1.4). Each cell represents a subgroup defined by UUT and the color
indicates the total number of above-the-knee occurrence. 29

6.1 Positive outlier cluster examples (§6.1.1). The outlier cluster indicates performance
change. 31

6.2 Outlier analysis pipeline (§6.1.2). The top part of the pipeline identifies outlier
cluster, which is then validated by the bottom part. 31

6.3 DBSCAN and centroid distance check (§6.1.2). (a) and (b) shows how the clus-
tering result (dots in different color) from DBSCAN is transformed into binary. (c)
displays the fluctuation range and how c2 falls within the range. 32

6.4 Similarity Stage (§6.1.2). Jaccard similarity is applied to the result from both clus-
tering methods to eliminate borderline cases. Cluster is indicated by color. 32

vi

LIST OF TABLES

2.1 Dataset scale (§2.1.1). The scale of the old and new datasets. The new dataset is
more than four times larger than the old one, and has higher daily observation count. 6

4.1 High variance recommendations (§4.1.3). Recommendations made based on vari-
ance analysis. 21

5.1 Divergence recommendations (§5.1.4). Aggregated across the CPU and memory
tests in both old and new datasets. 29

vii

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Haryadi Gunawi, for his insightful guidance and support

throughout this research journey. I would also like to express my appreciation to Jack Nugent,

who has been assisting with this project from many perspectives. Lastly, I extend my sincere

thanks to my friends and family for their unwavering support and encouragement.

viii

ABSTRACT

Stable and predictable performance of fleet servers is critical for providing reliable services. To

identify and remove underperforming servers, performance data must be recorded and then sys-

tematically analyzed at scale. In this thesis, we report on our methodology for collecting and

analyzing performance data at COMPANYX for the purposes of identifying and removing under-

performing datacenter servers. We present (and will release), to the best of our knowledge, the

largest dataset on CPU and memory benchmarks. We show how off-the-shelf statistical techniques

must be customized for the nature of our dataset, resulting in a custom pipeline, FREP, that lever-

ages a wide range of statistical techniques. FREP comprises a variety of modules that detect

variances, divergences, and outliers, and has provided various types of important recommenda-

tions to COMPANYX operators and helped improve their understanding of their fleet behaviors.

ix

CHAPTER 1

INTRODUCTION

1.1 Introduction

In hyperscale server fleets, stable and predictable performance is critical for service reliability

and efficient use of hardware. There are many reasons why a server’s performance may become

worse over time, including: a BIOS update may reduce performance; a new kernel version may

not be optimized for the datacenter’s specific characteristics; and a server’s physical, circuit-level

properties can gradually degrade. Failing to detect underperforming servers compromises service

reliability and reduces efficiency at scale. Conversely, falsely identifying and removing high-

performance servers from production results in poor fleet capacity management.

To identify and remove underperforming servers, performance data must be recorded and sys-

tematically analyzed at scale. Using an existing application as the basis for measuring performance

has the appeal of most closely matching existing business requirements. However, using a more

generic benchmark can better support changing requirements in the future. Either way, the over-

head of performance testing must be minimized.

A given server’s performance history provides a basis for determining whether it is a candidate

for remediation—either through software or a hardware component swap. In particular, when a

separate benchmark is used, assessing this performance is overhead (in comparison to production

workloads), so it is unrealistic to expect a rich history of performance results for each server. As

such, it is more likely that baselines consist of results from comparable servers. A fundamental

challenge here is: given the significant software and hardware heterogeneity as the datacenter

evolves, how can these equivalence classes be created/managed, and, within an equivalence class,

what level of performance difference warrants removing a server from production?

In this paper, we present our methodology for collecting and analyzing performance, and how

those analyses enable the identification and removal of underperforming datacenter servers. Our

1

dataset contains over 4 million benchmark results (“observations”) on millions of servers (“assets”)

running production workloads at COMPANYX. For this pilot study, we use the publicly available

CoreMark-PRO [3] and Stream [46] benchmarks for CPU and memory, respectively. Running

these benchmarks is not trivial as it requires pausing and relocating all running services, displacing

production workloads. For each asset, we also collect 20 features including asset-level (model ID,

BIOS version, Linux kernel release, OS name), hardware-level (frequency scaling status, DIMM

count, memory size), and other test and deployment features. To the best of our knowledge, this is

the largest dataset of CPU and memory performance scores of real production servers.

To extract value from this dataset, we design and implement a system to identify anomalous

machines in a fleet. A key design goal is minimizing the false positive rate. Prior to this system,

identification of underperforming systems was limited to only the worst performers: send alerts if

(a) the performance score is two standard deviations away from the mean or (b) 40% less than the

overall peak performance. While this approach was effective, many potentially problematic servers

were missed, and those identified required ad hoc human investigation to determine whether the

server should be removed.

To develop our systematic approach, many important questions must be addressed. Beyond

outliers at the asset level, are there observable patterns at the feature level, such as inter- and intra-

model variation, performance drifts introduced by configuration changes, or firmware updates?

Among all the features, can we automatically find the significant ones that provide more insightful

analyses? What are the most suitable statistical techniques to achieve these goals? Can we take

these techniques directly off-the-shelf or is customization needed to address the nature of our

dataset?

2

To meet these requirements, in the last 1.5 years we have carefully crafted a fleet performance

evaluation pipeline, FREP, that provides specific recommendations to COMPANYX fleet opera-

tors (the “domain experts”) to inspect the fleet’s performance behaviors. As described in Section

3.1, FREP begins the analysis with the “feature analysis/grouping” stage. We first rank feature

importance with information gain and entropy approaches to separate determining, significant,

and negligible features. From there, we identify ModelID as the most important feature and use it

to perform a top-level grouping that categorizes the millions of assets into groups where the intra-

group similarity among the assets can be analyzed. We then perform a finer-grained analysis via

subgrouping, specifically breaking each top-level group (assets of the same model) into subgroups

based on other significant and potentially high-impact features, such as BIOS, ChipMV, FreqScale,

UUT, and Kernel.

With assets grouped in such a meaningful way, as described starting in Section 4.1, FREP then

performs three types of analysis (and recommendations) to detect and address anomalous behaviors

at the model, subgroup, and asset levels. (a) The variance module performs high-level anomalous

detection at the model level. (b) The divergence module enables pairwise behavior comparison at

the subgroup level (2nd-level feature) (e.g., to analyze performance behaviors of different Kernel

versions within the same model). (c) The outlier module detects unexpected behavior at the asset

level. When the detection entity is a model group or a subgroup, the outlier detection could be

inaccurate due to natural cross-asset variety. Therefore, this detection focuses on analysis and

discovery at a machine level for better accuracy. This last module also enriches our current human-

driven heuristics.

We have applied FREP to the dataset described in this paper and summarized a list of key

observations illustrating the impact of FREP. We have also formed a list of anomalous server

definitions that capture the individual characteristics more accurately as compared to currently

used heuristics, which suffer from over-generalization and, as a result, are likely missing servers

whose performance has been degraded.

3

In summary, we make the following contributions:

1. We present (and will release), to the best of our knowledge, the largest dataset on CPU and

memory benchmarks, specifically CoreMark-PRO and Stream results.

2. We show how off-the-shelf statistical techniques must be customized for the nature of our

dataset, resulting in a custom pipeline, FREP, that leverages a wide range of tools.

3. FREP has provided various types of important recommendations to COMPANYX operators

(the domain experts) and helped improve their understanding of their fleet behaviors.

4

CHAPTER 2

DATASET OVERVIEW

2.1 Dataset Overview

2.1.1 Data Collection and Scale

What data is collected? We measure the health of the hardware by monitoring our assets (ma-

chines) running two benchmarks, CoreMark-PRO [3] for CPU benchmarking and Stream [46] for

memory benchmarking. We chose these two representative benchmarks because of their lightweight

footprint, stability, and popularity. Each of these benchmarks produces a score reflecting the health

of the hardware. For each asset, we collect 20 features, detailed in the next section. When an asset

is benchmarked, all other processes are halted to ensure the high fidelity of the benchmark results.

How big is the dataset? We have two datasets, which we simply call old and new datasets.

These two datasets unfortunately cannot be combined currently because they use different hashing

algorithms when the data is anonymized, as detailed later in the anonymization paragraph. Table

2.1 describes the scale of these datasets. We define an observation as the pair of results from

running the two benchmarks above sequentially on an asset.

How long and often is data collected? Each dataset is collected over at least one month

and contains 6,261-89,562 observations per day (27,796 on average). Every asset is benchmarked

(“observed”) 1-2 times on average.1 More specifically, for the old dataset, nearly 98% of the assets

are observed exactly once/twice, while only 0.14% (630 assets) and 0.02% (89 assets) have more

than 10 and 100 observations, respectively. There are more heavily benchmarked assets in the new

dataset as only 94% of assets fall into the first category, and 0.6% (11,358 assets) and 0.04% (832

assets) for the two latter categories. Benchmarks are run infrequently on production machines due

to the cost of running them (servers must be drained to ensure high fidelity).

1. We use “asset/machine” interchangeably, as well as “benchmark/observe/test.”

5

Scale Old data New data
Observations 719,739 3,106,525
Assets 435,754 1,882,518
Duration (days) 30 92
Observations per day 23,993 33,048
Observations per asset 1.65 1.65
Features 20 20

Table 2.1: Dataset scale (§2.1.1). The scale of the old and new datasets. The new dataset is more
than four times larger than the old one, and has higher daily observation count.

How is the data anonymized? Scores are normalized to between 0 and 1 (the higher, the

better), which suffices to our analysis as it compares their relative performance. For legal and

security reasons, both datasets are anonymized using deterministic and reversible methods to en-

able follow-up internal investigation. The two datasets are not merged since they are obfuscated

in different fashions, for the following reason. Initially, COMPANYX used hash values that do not

preserve temporal information. For example, when comparing two different kernel hash values

in the first (old) dataset, we cannot tell which represents the newer release, and thus progres-

sion/regression analysis cannot be performed. Given this feedback, in the second (newer) dataset,

COMPANYX uses numeric mapping (e.g., 1, 2, 3) to retain the temporal relation. Because of this,

and the time gap of 6 months between the two datasets, we analyze both datasets separately.

2.1.2 Data Features

This section describes the 20 features available in our datasets. For simplicity of presentation, we

categorize them into four major classes: test, asset, CPU/ memory, and deployment features. For

non-sensitive feature values that are not hashed, we list some of them inside curly brackets for

better clarity.

Test features: This set is about the test itself. TestType has two values {CPU, memory} rep-

resenting the CoreMark-PRO and Stream benchmarks, respectively. TestName extends the former

feature with specific version information. For the two datasets that we have, the version remains

6

Figure 2.1: Feature value count/distribution (§2.1.3). x-axis is the unique values of the feature,
and y-axis is the count (anonymized), which is sorted.

unchanged for both throughout the dataset. TestScore is the resulting score, depending on the test

type. EventTime and TestDuration record when the test started and how long it took, respectively.

Finally, RunUUID is a unique identifier for every test, shared by both the CPU and memory tests

that together comprise one observation.

Asset features: These features describe the asset being tested. AssetID is a unique identifier

for every asset. ModelID represents an asset’s model. UUT (unit under test) captures aggregate

information of the hardware being tested. For CPU, the UUT is a hash of the CPU model number,

frequency, and microcode name and version. For memory, the UUT is a hash of DIMM count,

vendor name, and model number. BIOS, Kernel, and OS fields are hashes of BIOS version, Linux

kernel release, and OS name, respectively.

CPU/memory-related features: For CPU, ChipMV represents the firmware version of the co-

processors that are designed to assist the main CPU and FreqScale denotes whether CPU over-

clocking is {enabled, disabled or unknown}. For the new dataset, the latter has an additional value

{lowFreq}. For memory, the trace also has DIMMCnt and MemSize containing the hashed DIMM

count and memory size, respectively.

Deployment features: Our dataset also includes deployment-related information such as DeviceStatus

with possible values of {installed, inUse, provisioning, returned, and standby}; EvalStatus {massProduction,

EVT, DVT, PVT, or MP testing} representing codes for product development stages in a standard

New Product Introduction (NPI) process [2]; MaintStatus (maintenance status) {none, draining,

7

Figure 2.2: Test scores over time (§2.1.3). CPU and memory performance scores over time.
The log-scale color bar describes the number of observations in each bin. Darker color indicates
more observations per bin. The dark bands highlighted by the red lines (two bands in each figure)
are the two most common score ranges for CPU and memory tests.

in-repair, testing}; and LemonStatus {true or false}, denoting whether the asset has been flagged

as an “outlier” with a basic heuristic: either of the scores is 40% less than the population peak, or

is two standard deviations away from the population mean.

2.1.3 Data Statistical Summary

Before we dive into technical methodologies, this section summarizes the high-level statistical

information and provides a graphical overview of the dataset.

First, every bar graph in Figure 2.1 shows the value distribution of a feature in the old dataset

using histograms sorted by frequency. Every bar in the x-axis represents a possible value of the fea-

ture and the y-axis represents the relative size (values are not shown for a more compact view). For

string/hash-type values, we sort the values (the bars) from the highest to the lowest. For example,

in Figure 2.1a, the DeviceStatus field contains roughly 47% of installed (the plurality), 26% of

standby, 25% of inUse, and so on. As another example, Figure 2.1f shows that the FreqScale is

disabled most of the time (75% disabled vs. 25% enabled). Bars that are almost invisible represent

a very low count.

Second, Figure 2.2 shows a temporal view of the CPU and memory scores over the duration

of our dataset. We plot the data using hexbin with 100-group configuration, meaning that the full

range of scores from lowest to highest is divided into 100 groups with equal score range, e.g., {0–

0.01,0.01–0.02,...} within the normalized range 0–1. Hence, a dot in the figure represents a range

8

Figure 2.3: Joint CPU/memory scores (§2.1.3). x-axis is CPU score and y-axis is memory
score (normalized). Each blue dot is an observation from the dataset without any filter and each
orange mark is an observation from production. There are more high score observations in the
new dataset.

and the color represents the density (the number of scores observed within the range). The most

common CPU score ranges are 0.16–0.27 and 0.28–0.47 (indicated by the red lines in Figure 2.2a)

while it is 0.13–0.18 and 0.23–0.33 for memory scores (indicated by the red lines in Figure 2.2b)

for the new dataset. Higher CPU and memory scores are observed only intermittently, indicating

that these are likely the results of a few models or even a few assets. The memory bands are also

tighter, indicating that the memory scores may be highly predictable under certain conditions. The

trend is relatively the same for the old dataset while there are fewer high-score observations.

Finally, Figure 2.3 shows a spatial view of the combined CPU-memory scores observed in

every test. The score is normalized as well. Here, each dot represents a unique observation. The

blue dots are all the observations while the orange ones are the production observations (as later

specified in Section 3.1.5). Although the CPU and memory tests themselves should be effectively

independent, one might expect that machines designed for high performance will display both high

memory and CPU performance. While this trend largely holds true, the pattern does not always

show a simple and obvious relation between the two. For example, in both datasets, for the middle

memory band (around y=0.2), the CPU scores vary extremely between x=0.1--0.6. The trend of

the production observations aligns with the general population.

9

CHAPTER 3

FEATURE SELECTION PROCESS

3.1 Feature Selection Process

Given a large dataset with 20 features, the next question to address is which features would give us

the most information. The conjecture is that perhaps not all features would matter equally to the test

scores and not all of them would give us insights that could help identify defects or unstable assets

and models. Defining peers among features is the first step for reaching this goal: should we group

the observations/assets based on ModelID, DeviceStatus, or other features? Imprecise grouping

will lead us to incorrect analysis. The next section describes our methodology for deciding which

features provide more insight into performance (§3.1.1). We next identify the first feature group

(§3.1.2) and then repeat this methodology iteratively to explore dynamic grouping that considers

various feature dimensions, rather than just a fixed set (§3.1.3).

3.1.1 Information Gain and Entropy

To rank the features by their importance, we use two methods, entropy and information gain.

Entropy [56] measures the uncertainty contained/captured by the data. The higher the entropy is,

the more potential information/noise is contained within the collected dataset. On the other hand,

low entropy indicates high uniformity, and such features can be excluded. While entropy is not

about predictiveness, its value will guide us in discarding features with low significance, as we

describe with more examples below. Information gain [29], which builds on top of entropy, is a

technique that ranks given an output value to predict (e.g., the TestScore in our case), which of the

input features will give us the highest level of predictiveness (i.e., the highest information gain).

The four graphs in Figure 3.1 show the resulting information gain and entropy (left and right)

for CPU and memory tests (top and bottom), respectively. From these results, we can now catego-

rize them into determining, significant, negligible, and “everything-in-between” (but could poten-
10

tially be useful) features.

“Determining” feature: A “determining” feature is one that has the largest impact on an

asset’s performance prediction. Therefore, these features are the first we should use to break

and group the assets. Figure 3.1a shows that ModelID gives the highest information gain for

both CPU and memory tests. COMPANYX’s engineers, as the domain experts, also confirm that,

indeed, the hardware performance is highly dependent on the asset’s ModelID. In other words,

the performance of all assets within the same ModelID should be similar or, at least, should fall

within an expected range, and the comparison of asset performance across different ModelIDs will

not yield valuable insights and is not considered a high priority (also confirmed by the domain

experts). For the entropy, Figure 3.1b also shows that ModelID has a relatively high entropy

compared to other features. This is because ModelID has large amount of unique values (as shown

in Figure 2.1d) instead of having one or two dominating values (such as Figure 2.1c), confirming

that ModelID could potentially be highly informative.

Significant features: After ModelID, we see other features with high entropy, such as BIOS and

ChipMV versions. Hence, they are the candidates for subgrouping in subsequent steps (§3.1.3) for

a tighter and finer-grained analysis.

Negligible features: The figure also quantifies features that have almost no impact such as OS,

MaintStatus, and EvalStatus. For example, the OS name has almost zero information gain and

entropy because a single OS name appears in more than 99% of all the assets (as shown earlier in

Figure 2.1g).

“Everything in between:” Finally, there are “everything-in-between” features that neither

have high nor low information gain or entropy, features such as MemSize and DIMMCnt. We can

triage these features as needed. In our analysis, we get important insights with just the significant

features, so we tend to deprioritize these “in-between” features unless later steps suggest otherwise.

11

Figure 3.1: Information gain (§3.1.1). The first row is the information gain and entropy for
CPU tests and the second row is for memory tests. High information gain indicates potential
predictiveness and low entropy hints on minimum level of insight that could be drawn from the
given feature.

Figure 3.2: Group by model ID (§3.1.2). Info gain (CPU) after grouping by model ID. There
are four types of shape.

3.1.2 Top-Level Grouping with Model ID

Based on the previous section, we now group the assets by their ModelID. Among these model

groups, which represent a class of similar machines, the sampling distribution is considerably less

skewed. As shown in Figure 2.1d, out of the 87 total models (on the x-axis), 8 have more than

20,000 observations, 12 have between 2,000 and 20,000 observations, and 17 have between 200

and 2,000 observations. Although there are a few infrequently observed models that each is only

corresponding to a single asset, a typical model is associated with many assets—the median model

group contains 133 observations and 87 assets. This more balanced sampling enables meaningful

inter- and intra-model comparisons, and, for this reason, ModelID forms the basis of the grouping

step.

We next run the information gain and entropy formulas again after we group the assets by

12

ModelID. Figure 3.2 shows the result of information gain for CPU test. Note that this time, we can

show a violin plot (vs. the simple bar graph in Figure 3.1). The violin plot is a visual representation

of each feature’s intra-group information gain distribution. Their shapes provide useful information

which we categorize into three types.

First, label 3.2a in the figure points to the Kernel feature with a high information gain and a

cone shape. This shape implies that the values of Kernel among the assets within each ModelID are

diverse, not highly skewed to one value. This suggests that we can further subgroup the assets

within a ModelID group by their Kernel versions for a tighter analysis.

Second, label 3.2b points to the MaintStatus feature that can reach a relatively high infor-

mation gain but unlike the previous one, the violin shape is more skewed to the bottom of the

vertical line, suggesting that this feature is relatively homogeneous and hence may not be a useful

candidate for subgrouping the assets further. There are other features that look similar, such as

EvalStatus. For these two status features, interestingly while in the previous section, they almost

show no information gain, in this section they show some gain, but their shape suggests limited

predictive power.

Third, label 3.2c reveals an interesting “8-shape” violin for the FreqScale status. The violin

shape tells us of an almost pure bimodal distribution, strongly reflecting that both sides of the

values can provide strong predictiveness. Indeed, that is the case for CPU tests; within a ModelID

population, assets with FreqScale=On will deliver higher CPU scores compared to the other

assets with FreqScale=Off. Hence, although the information gain is relatively “medium” and its

entropy is low (see Figure 3.1b), we should provide special treatment for the FreqScale feature

during subgrouping, for a more precise analysis. Note that this special treatment is only valid for

analyzing CPU tests later on. For memory tests, FreqScale does not display the 8-shape violin

(not shown in the figure), which is indeed the case as the feature does not have any noticeable

impact on memory scores (as verified by the domain experts at COMPANYX).

Finally, label 3.2d points to features with low information gain such as OS, DIMMCnt, etc., con-

13

Model
M1 b1

Top-Level
Grouping

Model
M2

a b
Subgrouping
using feature “X”
(e.g. BIOS)

Entire
Dataset 5

b2

b..

bN

Variance

Divergence

Outlier

c Test Score
Analysis

d Repeat Steps (b) and (c), with other features
(ChipMV, FreqScale, UUT, Kernel, etc.)

Figure 3.3: Subgrouping methodology (§3.1.3). Four step subgrouping is used before feeding
data to the downstream.

firming again that they will not be relevant even after we group assets by ModelID.

3.1.3 Subgrouping Methodology

Based on the findings from the previous section, we will use the following 5 subgrouping (second-

level) features: BIOS, ChipMV, FreqScale, UUT, Kernel for a more fine-grained analysis. Figure 3.3

illustrates our subgrouping methodology. (a) We categorize the entire population (observations)

based on their ModelID, acting as the top-level grouping. (b) We then take the population of each

ModelID, and subgroup them further based on each of the subgrouping (second-level) features

mentioned above. Thus, when we say that we “subgroup using feature X,” it means we break

the assets with the same model ID into subgroups. For example, when we use the BIOS fea-

ture (with N possible BIOS values), then there will be N subgroups, e.g., ModelID=m1,BIOS=b1,

ModelID=m1,BIOS=b2, ..., ModelID=m1,BIOS=bN. Then in (c), we compare their score behaviors us-

ing various methods such as variance, divergence, etc., as explained in the next section. We then

(d) repeat the same process by subgrouping using other features.

Subgrouping is important in our analysis because we cannot just compare assets based on

their model ID. Throughout the lifetime of an asset, the model ID will remain the same, but the

other (second-level) features might change. Furthermore, within the same model ID, the second-

level features likely have varying values (e.g., assets of the same model might use different BIOS

versions). Beyond subgrouping (2nd-level grouping), we do not perform a 3rd level grouping

14

because the population of each “sub-subgroup” would be overly small and prevent statistically

meaningful conclusions.

3.1.4 Analysis and Recommendations

Based on the subgrouping method, we will build three analysis modules to cover anomalous be-

haviors at model, subgroup and asset levels, as defined below.

Variance: The variance module in Section 4.1 identifies model(s) with abnormally high vari-

ance. Hence, this module focuses on the detection at the model level. Although different models

tend to vary in their overall performance, reliability remains a key concern despite the expected

cross-model variability. For example, a model with high variability could negatively impact work-

load balancing even though its performance is higher than the majority of the models. Therefore,

model-wide variance is used to capture the unreliable models and lower-level root-cause analysis

is performed to further assist the triage process.

Divergence: The divergence module in Section 5.1 module enables pairwise performance

comparisons at the subgroup level to identify highly divergent subgroup pairs. This module is

based on the assumption that peer subgroups that are within the same model group should display

high similarity. While the variance module detects top-level anomalies, the divergence analysis

goes beyond that level, and provides a more comprehensive as well as refined anomaly detection,

which can highlight performance differences with even subtle distributional drifts.

Outlier: While the previous two modules cover the model-level and subgroup-level anoma-

lies, the outlier module in Section 6.1 detects the unexpected performance degradation over time

at the asset level. This is done by locating the outlier observation cluster that shows downgraded

performance. When the detection entity is a model group or a subgroup, the outlier cluster de-

tection could be highly inaccurate due to the natural variety–a normal benchmark score from one

asset could fall in the “anomalous” range for another one, although their configurations are almost

identical, and the outlier benchmark score can also be hidden for the same reason. Therefore, this

15

Knee

Algorithm

IQR

Analysis

- Explainable

- Semi-explaible

- Non-explainable

Variance

Analysis

Figure 3.4: Variance pipeline (§4.1). Two-stage variance pipeline to detect model IDs with high
variance.

detection focuses on the detection at the finest level for the best accuracy.

In the remainder of this paper, we use the following terminologies: pY means the Y% per-

centile, e.g., p25 means the 25th percentile. To improve readability, when naming a group or a

subgroup, we shorten the hash (anonymized) values into two characters with one lower-case prefix

that represents the feature. For example, subgroups b0X and b93 represent two subgroups with

different BIOS (“b”) hash values “0X” and “03.” We use “v” in “AvB” to imply we are comparing

subgroups A vs. B.

3.1.5 Production Only Focus

After confirming the feature selection result with the domain experts at COMPANYX, we prioritize

analyzing “in-production” assets, given their importance to end users. Thus, we apply a “produc-

tion” filter, specifically defined by three features: DeviceStatus=inUse && EvalStatus=massProduction

&& MaintStatus=none.

For the first feature above, even though DeviceStatus information gain is high as shown in

Figure 3.2 (hence, might be interesting to analyze), we focus only on inUse assets because the

implication of other DeviceStatus values is already known from the domain experts’ view (e.g.,

DeviceStatus=provisioning represents assets that are still being set up but not ready for full pro-

duction use, hence are not currently useful to be analyzed).

The latter two features (EvalStatus and MaintStatus) are selected because of the insight pro-

vided by their values based on Figure 3.1, where the information gain of both features is near

zero, and Figure 3.2, where the highly skewed distribution reveals homogeneity. Hence, COMPA-

NYX recommends us to focus on just the assets with massProduction evaluation status and no

(“none”) special maintenance status, and leave the rest as future work.

16

In addition, the production observations are more stable than the rest, such as ones drawn from

testing assets, where configurations would change more drastically and frequently. This trend can

be observed in Figure 2.3, where the pattern of the production joint scores is less noisy than the

overall population.

With this filter, in the next two sections, our results are based only on production assets, more

specifically a total of 878,768 observations across 772,569 assets to analyze. Even though our

detailed analysis is restricted to this prioritization, we will release the entire dataset to support

many possible future directions (e.g., understanding performance instability of inRepair assets).

17

CHAPTER 4

TOP-LEVEL VARIANCE

4.1 Top-Level Variance

We now begin with “top-level variance,” with the goal of finding specific model IDs whose popu-

lation exhibits high benchmark score variance. Figure 3.4 shows our two-stage variance pipeline.

First, we use a knee detection threshold-based algorithm (§4.1.1) to select models that have a high

variance of performance scores. For those that are above the threshold, we then apply inter-quantile

range (IQR) analysis (§4.1.2) on the subgroups within each of them. The outcome of this pipeline

is three types of recommendations, explainable, semi-explainable, and non-explainable variance

(§4.1.3).

4.1.1 Knee Detection

For each model ID, we first compute its score variance among all the assets in the model. We

normalize the variance by N − 1 so that it is unbiased [5]. Figure 4.1 shows the sorted test score

variance (in the y-axis) from the highest to the lowest for every model ID (anonymized in the x-

axis). High variance implies some inconsistency among the assets in the model. We then run a

knee detection algorithm, Kneedle [51] with a configurable sensitivity level. The sensitivity level

that yields the most stable threshold is chosen, meaning changing the value slightly will not cause

a drastic difference in knee threshold. The resulting knee threshold is the bold dashed horizontal

line.

Finding #0: Memory test scores are more stable (less variant) than CPU test scores . In

Figure 4.1b, the memory score variance has a clear “knee” with a spike in variance on the left

side and many low variances on the right side of the knee. However, in Figure 4.1a, the CPU

score variance is less stable across various models. FreqScale status is one of the reasons for this

variance instability, we will discuss more on FreqScale later. The cases above the knee threshold
18

0 20 40 60
Model

0

1

2

Va
ria

nc
e

1e9
(a) CPU

Knee threshold

0 20 40 60
Model

0

1

2

Va
ria

nc
e

1e9
(b) Memory

Knee threshold

Figure 4.1: Knee thresholds (§4.1.1). Each dot represents a model ID’s score variance (sorted).
The model IDs with score variance above the threshold will be analyzed in later steps.

Model ID: X

sub
group
ing

Freq:on

Freq:off

A

B(high variance)

Compare
subgroup
variances

(a)

disabled enabled
FreqScale

0

0.25

0.5

0.75

1.0

CP
U

Sc
or

e

(b)

k6A kA6
Kernel

0.25

0.5

0.75

1.0

CP
U

Sc
or

e

(c)

uF0 u5E
UUT

0
50

100
150
200
250
300

Su
bg

ro
up

 S
ize

var
size

0
0.3b
0.6b
0.9b
1.2b
1.5b
1.8b

Va
ria

nc
e

(d)

Figure 4.2: Subgroup variance and IQR analysis (§4.1.2). (a) The subgrouping method, (b) no
IQR overlap, (c) IQR overlap, and (d) higher variance but smaller size subgroup.

will be streamlined to our next analysis modules.

4.1.2 (Non)Explainable Subgroup Variance and IQR Analysis

Models with high variance do not necessarily imply anomalies, as long as they are “explainable.”

For example, due to the impact of FreqScale on CPU performance, it is reasonable that a model

involving a mixture of FreqScale enabled and disabled assets displays higher variance than one

having solely enabled assets. Thus, to differentiate explainable and non-explainable variance, we

perform subgroup variance and IQR analysis. As illustrated in Figure 4.2a, for every model ID

with high variance (e.g., model X), we take all the assets and categorize them into subgroups based

on a series of important features that have been selected in the feature selection process (Section

3.1.3). For example, the figure shows the FreqScale feature where we categorize the assets of a

model ID into two subgroups A and B (On and Off values, respectively). We then compute the

score variance in each of the subgroups and compare them, and depending on the result, we also

perform IQR analysis. The three outcomes are as follows.

19

Case 1 (explainable via no IQR overlap): In this case, the variance of subgroup A is similar

to B (vA∼vB), hence the feature being used is not helping out. Thus, we use inter-quantile range

(IQR) analysis to see if the test score ranges in A and B overlap or not. More specifically, if the

p25 score in A is above the p75 score in B, there is no overlap. The whisker plot in Figure 4.2b

illustrates this using the FreqScale feature example. The left whisker bar (representing the assets

with FreqScale=On) has higher CPU performance scores and their range does not overlap with

the right bar (FreqScale=Off).

Instances of Case 1 are marked as explainable, because the tool has identified two subgroups

with non-overlapping p25-p75 score ranges as a source of the high variance in this model ID. The

tool does not throw alerts for these occurrences. The percentile values are also configurable (e.g.,

to p20-p80).

Case 2 (non-explainable due to similar variance and IQR overlap): Following on the IQR

outcome above, another outcome is an overlapping IQRs from the two subgroups (e.g., in Fig-

ure 4.2c), while at the same time, they have similar score variance. In this case, we mark them as

non-explainable and punt them to the domain experts to be analyzed.

Case 3 (semi-explainable by one high-variance subgroup): Here, the variance of subgroup

A is higher than B (vA≫vB), regardless of their population sizes. By “higher,” we mean the

variance difference between the two subgroups is above the 50thpercentile (which is configurable)

among all the subgroups. In this case, the tool recommends the domain experts to just focus on

analyzing assets in subgroup A as opposed to the entire assets with this model. For example, in

one model, the subgroup with UUT feature with u5E (anonymized) value has a high variance (as

compared to the other subgroup uF0). The domain expert analyzes that and agrees to monitor this

subgroup in the future.

While so far we use an example of two subgroups A and B, in reality, some feature has multiple

values, such that there will be multiple subgroups (e.g., the BIOS feature has 36 unique values). To

generalize our approach to more than two subgroups, our tool performs all the pairwise compar-

20

CPU Mem
of model IDs 120 119
of high variacnce model IDs 45 17
Case 1 (expl., no IQR overlap) 26 7
Case 2 (non-expl., IQR overlap) 8 3
Case 3 (semi-expl.) 11 7

Table 4.1: High variance recommendations (§4.1.3). Recommendations made based on vari-
ance analysis.

isons, A vs. B, A vs. C, B vs. C, and so on, and sort them based on how many times (“votes”)

the subgroup has a higher variance than the other one. To assist further, we also add subgroup

size comparisons to increase the priority of the votes (hence, the reports). For example, Figure

4.2d shows a higher priority report where A’s variance is higher than B’s (the bar graph) but A’s

population size is much smaller than B (the line plot), which is considered a statistical anomaly

(i.e., a smaller population is less likely to lead to a significantly higher variance).

4.1.3 Recommendations

Table 4.1 shows the overall results of variance analysis, combined for both the old and new

datasets. For CPU and memory tests respectively, the knee algorithm delivers a total of 45 and

17 model IDs that have high variance, the IQR analysis removes 26 and 7 explainable cases, and

mark 8 and 3 cases as non-explainable, and finally, the variance pipeline reports 11 and 7 cases as

semi-explainable given the high-variance dominance in one or some of the subgroups.

We also experiment with various configurations for the knee detection algorithm to measure

the sensitivity. That is, if we relax knee sensitivity value, will it spuriously report too many high-

variance models? We found that memory results are more sensitive (in a positive way) such that

changing the configuration can lead to suddenly more results, meaning that there is a clear “knee”

(as one can also see in Figure 4.1b).

21

CHAPTER 5

DIVERGENCES

5.1 Divergences

We now move from variance to divergence analysis. Figure 5.1 shows the overall design. (a)

Here, for each model ID, we break the population into subgroups (based on various features and

values as defined earlier in Section 3.1.3) and compare their CPU/memory test scores in a pairwise

manner. However, before applying various divergence methods, Section 5.1.1 will describe the

importance of adding FreqScale as a second top-level feature for CPU test score. (b) We apply

various divergence methods, Kullback-Leibler divergence[30], Jensen-Shannon divergence[38],

and Wasserstein distance[28] as elaborated more in Section 5.1.2. (c) We then adjust the scores

(denoising) with multipliers (weighting) based on subgroup population sizes, as motivated in Sec-

tion 5.1.3. (d) and finally provide the recommendations, as shown in Section 5.1.4.

5.1.1 Modified Top-Level Grouping

As we embark on using divergence, we found a negative impact of the FreqScale feature on

CPU test score divergence. To recap, Section 3.1.2 discusses the special “8-shape” pattern of

the FreqScale in Figure 3.2. To show what happens, we pick a model ID, and divide it into

two subgroups (FreqScale=On and Off) and show the CPU test score distribution in each of the

subgroups in Figure 5.2a, which clearly shows enabling this feature will give CPU boosts.

The negative implication is shown in Figure 5.2b where we now break the same model ID’s

population based on the BIOS feature. The figure only shows two different BIOS subgroups for

readability. Here we can see that each BIOS subgroup exhibits a bimodal distribution from the

impact of the FreqScale status, which will lead to inaccurate analysis. In other words, merging

the two FreqScale statuses may “dilute” the divergence and could thus be detrimental to the highly

divergent pair capture.
22

Subgrouping
A-vs-B

Divergences

JLD, KLD, WSD

A

B

 Modified

top-level

grouping

(for CPU)

Weights /

Multipliers

Recomm-

endations

a b c

d

Figure 5.1: Divergence pipeline (§5.1). Multi-stage divergence measurement based on re-
adjusted grouping. The multipliers are then applied for denoising.

CPU Score

De
ns

ity
(a)

FreqScale
on
off

CPU Score

De
ns

ity

(b)

BIOS
b0A
b0C

CPU Score

De
ns

ity

(c)

BIOS
b0A
b0C

Figure 5.2: Frequency scaling (§5.1.1). FreqScale is needed for grouping the CPU tests for
more accurate divergence computation. From (b) to (c) shows an improvement.

For this reason, we must treat this feature differently, but only for CPU tests (memory tests are

not impacted by the FreqScale feature). Before, we only use model ID as the top-level grouping,

but now for every model ID, we must further break the population of the model into two different

groups (FreqScale=On and Off). Only after that, we can do the subgrouping based on other

features more accurately. Figure 5.2c shows the same analysis in 5.2b, but now we only do so

within the population with FreqScale=On within this model ID, which gives a cleaner result.

5.1.2 Divergence Cases and Scores

We use three divergence methods, Kullback-Leibler divergence (KLD), Jensen-Shannon diver-

gence (JSD), and Wasserstein distance (WSD) to combine their different advantages as discussed

below.

KLD

Kullback-Leibler divergence is a statistical distance measurement that tells how much a modeled

distribution is different from its actual, reference probability distribution. Because of the definition

of model and actual probability distribution, it is asymmetric and thus choosing the model and

actual distribution plays a crucial role. It is good for measuring the information gain/loss between

23

0 10 20 30
Subgroup Pairs

0
0.2
0.4
0.6
0.8
1.0

Di
ve

rg
en

ce

(a)

BIOS
KLD
JSD
WSD

Memory Score

0.0

0.5

1.0

De
ns

ity

1e−3

(b)

BIOS
b99
b0A

Figure 5.3: KLD excels at separation (§5.1.2). KLD outperforms the others on highly divergent
pair separation.

the two aforementioned distributions. But due to the definition of this divergence measurement, it

is undefined when the model distribution is evaluated to zero and could, therefore, be sensitive to

the distribution choice. This method is preferred when there is a clear difference in role between

the two distributions (e.g., comparing a “newer” distribution to an “older” one).

Figure 5.3a shows the need for KLD, compared to JSD and WSD that we will describe later.

Here the x-axis represents all the subgroup pairs (A-vs-B, A-vs-C, and so on) for the BIOS feature

sorted based on their KLD, JSD, and WSD divergences in the memory scores (normalized using

min-max scaling in the y-axis from 0 to 1). We can clearly see the sharp differences in the score

distribution between these three measurements. KLD detects two subgroup pairs with extremely

high divergence scores (between 130 and 160) while the 3rd pair’s score is only 14 (a sharp drop

in the red line).

Figure 5.3b dissects the highest KLD divergence case. The two lines represent the proba-

bility distribution function (PDF) of the memory scores of two subgroups with different BIOS

values (b0A and b99, with the prefix “b” represents BIOS) within the same model, which clearly

shows some separations. COMPANYX confirms the test result distribution drift and found that the

performance downgrade is for expanding the option pool and cost models.

JSD

Jensen-Shannon divergence is the enhanced, smoothed, and symmetric version of KLD. It lever-

ages the average between the two distributions and, as a result, unlike KLD, it is always defined.

And because of its symmetric nature, the result is not sensitive to the actual/model distribution

24

Event Time

M
em

or
y

Sc
or

e

(a)

BIOS

b99
b0A

Event Time

M
em

or
y

Sc
or

e

(b)

BIOS

b0C
b90

Figure 5.4: JSD yields stable results (§5.1.2). JSD yields stable divergence value on similar
pairs. The two pairs displayed here share almost identical JSD values yet have drastically different
KLD scores.

choice. These two characteristics together make JSD a more stable statistical distance measure-

ment. If the difference between the two distributions is relatively vague, then JSD may be a better

choice since it is symmetric.

To motivate JSD, let us look at Figure 5.4 where we compare (a) b90 vs. b0C subgroups and (b)

b0A vs. b99 subgroups. The x-axis represents the logging timestamp and the y-axis represents the

memory scores. Both comparisons in (a) and (b) show similar behavior that these BIOS versions

deliver different ranges with minimal overlap. The only difference is that the former (5.4a) is less

evenly sampled temporally as compared to the latter (5.4b).

model: groupA vs. groupB KLD JSD
mE8: b0C vs. b90 3.1 (8th) 3.16 (2th)
mE8: b0A vs. b99 156.9 (2nd) 3.13 (3rd)

The table above shows all the KLD and JSD scores of these two pairs of comparisons (the

two rows). Interestingly KLD marks only the second row with a high score (with the 2nd rank, as

shown in the parentheses) while the first row exhibits a low KLD score (and ranked 8th). In other

words, we would miss the first case if we only use KLD. With JSD however, both cases are marked

equally strong. In terms of performance stability, JSD surpasses KLD as for the former, similar

pattern yields consistent result.

WSD

Wasserstein distance is usually called the earth mover distance as it computes the minimal level of

distance required for “moving” from one distribution to another. Like JSD, it is also symmetric.
25

CPU Score
0

2

4

De
ns

ity

1e−5

(a)

BIOS
b0C
b90

Event Time

CP
U

Sc
or

e

(b)

BIOS

b0C
b90

Figure 5.5: WSD advantage (§5.1.2). WSD catches the case that is overlooked by the other two
methods.

Its biggest advantage is that it can be applied on the raw data (observed value in the empirical

distribution) instead of the estimated density function. The distance-focused nature surpasses the

other two methods on outlier detection yet it also causes WSD to be more sensitive to the extreme

outliers.

Figure 5.5 motivates our use of WSD. Here, we have two BIOS versions (two lines) that show

interesting results. In Figure 5.5a, we have the PDF (density) graph of their CPU scores. BIOS b0C

is clearly bimodal (green dashed line) and b90 is also multimodal (red solid line), with only one

of the modes highly overlapping with the former. Figure 5.5b shows the raw data observed over

time. However, if we see the resulting KLD, JSD and WSD scores in the table below, KLD marks

this comparison at rank 18, JSD at rank 9, but only WSD is able to mark it relatively high (at rank

3). The dissimilarity between the pair is severely underrepresented when solely measured by KLD

and JSD.

group A vs. group B KLD JSD WSD
mE8: b90 vs. b0C 1.10 (18th) 2.07 (9th) 4.47 (3rd)

5.1.3 Denoising with Multipliers

Although a handful of samples are sufficient to estimate any divergences, the population size of a

subgroup can still play a significant role in the divergence measurement. The more observations

are used for the estimation, the “closer” the model distribution would be to the actual distribution.

Divergence measurements involving more sufficiently sampled subgroups are considered more ac-

curate and thus should be prioritized while denoising is needed for the insufficiently sampled ones.

26

b59 b3D b59 b3D
BIOS

0

50

100

150

200

Su
bg

ro
up

 S
ize

b59
b3D De

ns
ity

(a)

c78 c96 c78 c96
ChipMV

0

2

4

6

8

Su
bg

ro
up

 S
ize

c78
c96

De
ns

ity

(b)

Figure 5.6: Size matters (multipliers) (§5.1.3). Large size difference between the pair should
be penalized due to potential inaccuracy. Pairs where both subgroups are insufficiently sampled
should be deprioritized as well.

Therefore, we do two stages of score adjustment based on (a) pairwise size and (b) groupwise size.

Figure 5.6a motivates the first case. Here we compare the sizes of subgroups A and B, but B’s

size is much smaller than A’s size (148 vs. 3). Let us suppose their A-vs-B divergence score is

high (e.g., say “105”), but it is not a valid result based on the population—the actual distribution of

B may be similar to A’s and the high divergence is a result of insufficient sampling, in which case

we would like to decrease the confidence of such cases. Hence, we introduce the first “multiplier”

(weighting) with a simple formula: gMultiplier1=gSmall/gLarge.

Here, gSmall is the size of the smaller subgroup of the pair and gLarge is that of the larger

one. Thus in this particular example, the multiplier is very small (3/148), which is then applied

to the divergence score, resulting in small value as compared to the pairs that have roughly even

subgroup sizes.

Figure 5.6b motivates the second case where both sizes of subgroups A and B are small

relative to other subgroups such as C. Here, we leverage the median subgroup size within one

model, denote gMedian, to address the issue. The median is used for being outlier-resistant. For

this multiplier we want to penalize the small pairs and boost the large pairs as a way for denoising,

with the assumption that the pair with huge size difference has already been taken care of by the

aforementioned multiplier. This second “multiplier” is calculated based on the same gSmall and

gLarge along with gMedian and a configurable adjustment factor w:

27

0 20
Subgroup Pairs

0

50

100

150

Di
ve

rg
en

ce

(a) KLD

Knee threshold

0 20
Subgroup Pairs

 0

 1

 2

 3

Di
ve

rg
en

ce

(b) JSD

Knee threshold

0 20
Subgroup Pairs

0.0

0.5

1.0

Di
ve

rg
en

ce

(c) WSD

Knee threshold

Figure 5.7: Recommendations (cutoffs) (§5.1.4). Each dot represents a subgroup pair’s ad-
justed divergence value. The knee detection functions similarly as in 4.1.1.

gMultiplier2=


1−w if gLarge< gMedian

1+w if gSmall> gMedian

1 otherwise

Thus, in this case, regardless of the A-vs-B’s divergence score, their score will be lowered if

the sizes of both are below median, increased if they are above, and remain unchanged otherwise.

5.1.4 Divergence Recommendations

To illustrate our divergence recommendations, Figure 5.7 shows the divergence scores when us-

ing BIOS for subgrouping for memory tests (on the old dataset). Each dot in the x-axis repre-

sents a subgroup pair and the y-axis represents the divergence score (e.g., the divergence result of

BIOS version A vs. B in a model ID M). There are 37 pairs in the x-axis. As discussed, the three

figures display the different natures of the KLD, JLD, and WSD results. We then apply the knee

threshold (similar to Section 4.1.1) to decide which pairs are “high.” In the figure, for KLD, JSD,

and WSD, there are 2, 7, and 1 pair(s) classified as highly divergent pairs among all 37 pairs. Other

than BIOS, we also have 15 more sets of graphs (not shown for space) for 3 other features on both

datasets.

Table 5.1 shows the overall number of recommendations that the tool reports to the domain

experts. The rows are the different features we use for subgrouping (BIOS, UUT, etc.). The “Total”

column represents the total number of subgroup pairs created (AvB, AvC, and so on) using the

28

Subgrouping Total #Pairs above threshold
Feature Pairs KSD JSD WSD
BIOS 374 33 24 34
Kernel 2744 62 125 86
CMV 304 15 44 35
UUT 7068 112 24 78

Table 5.1: Divergence recommendations (§5.1.4). Aggregated across the CPU and memory
tests in both old and new datasets.

KJ
W

Memory UUT

0
5

Figure 5.8: Heatmap (§5.1.4). Each cell represents a subgroup defined by UUT and the color
indicates the total number of above-the-knee occurrence.

corresponding feature across all the models. The rest of the columns show the number of subgroup

pairs that are above the knee thresholds based on their KLD, JSD, and WSD scores. Overall,

each divergence method only reports 1.7-25% of the total pairs (the median is 8%), which are

manageable. When reporting to the domain experts, we also provide the sorted divergence scores

so the domain experts can prioritize/triage the cases.

Our tool also provides other types of visualization such as the heatmap in Figure 5.8. For

space, we only show one subgrouping feature, UUT, for memory tests on the old dataset (other than

this, there are 15 more figure sets). The x-axis represents the subgroups (A, B, C, and so on) that

appear above the knee thresholds. The heatmap color represents the count of how many times the

subgroup appears in highly divergence pairs, regardless of their model IDs. This way the domain

experts can see if a feature value is causing a divergence in all models. For example, the darkest

cell in Figure 5.8 shows a count of 8. This is because there is a specific unit under test (UUT)

whose memory test is in a very tight range compared to the other 8 memory units.

29

CHAPTER 6

OUTLIERS

6.1 Outliers

Lastly, we describe our outlier analysis pipeline and how we compose several statistical techniques

to denoise the results and provide more accurate analysis. Unlike our variance and divergence

pipelines, the outlier pipeline focuses on asset-level analysis.

6.1.1 Outlier Assets

For clarity, we begin by showing sample cases outputted by our pipeline. Figure 6.1 shows (a)

a confirmed performance degradation outlier is displayed where the CPU score dropped by 47%

without trackable configuration change and (b) another case with noticeable performance change

(increase), which is caused by FreqScale status being turned on. These two cases can be easily

caught by existing techniques such as DBSCAN [13]. However, using solely off-the-shelf sta-

tistical techniques will lead to high false positives, which will be overly costly in the production

environment. Thus, we combine and adapt the current techniques for removing the noises.

6.1.2 Outliner Denoising Pipeline

Figure 6.2 shows the design of the pipeline, which is a composition of various statistical tech-

niques, targeting to reduce the false positive rate. First, in Figure 6.2a, we only take assets with at

least 50 observations to allow the clustering to work properly, and then, as a standard preprocessing

step of any clustering method, the min-max scaling is applied to EventTime and TestScore, the

two fields that will be used for the remaining of the clustering steps.

Now we move to the top part of the pipeline, shown in Figure 6.2b-d, where we use the

combination of DBSCAN, binary clustering and cluster centroid distance check. To motivate these

30

Event Time
0.0

0.5

1.0

CP
U

Sc
or

e

(a)
Event Time

0.0

0.5

1.0

CP
U

Sc
or

e

(b)

Figure 6.1: Positive outlier cluster examples (§6.1.1). The outlier cluster indicates performance
change.

(a)

>50 Obs
&

Min-Max
Scaling

(b)

DBSCAN
(c) Binary
Clustering

(d) Centroid
Distance Check

(f) Jaccard Similarity(e) K-Means

Figure 6.2: Outlier analysis pipeline (§6.1.2). The top part of the pipeline identifies outlier
cluster, which is then validated by the bottom part.

steps, let’s use the case in Figure 6.3a that exhibits a sparse observation, yielding three clusters by

the DBSCAN. But since our goal is to detect performance outliers, two clusters would be sufficient.

Note that if DBSCAN only sees one cluster, the case is considered a good case and thus excluded.

After we perform binary clustering, the same case will result in Figure 6.3b where the binary

clustering sets the cluster with the largest average EventTime as cluster #2 and all the other clus-

ters are merged together as cluster #1. But a binary clustering does not directly lead to outlier

indication. If either cluster only contains single observation, the case is not considered either.

To further denoise, centroid distance check is then performed. To motivate this with better

clarity, Figure 6.3c shows a different case study with more observations. Here, we compute the

centroid of the first cluster (denoted by the red cross, c1) and the fluctuation distance (denoted by

the green band, d) with the latter defined by two standard deviations of this cluster’s test score.

Then the centroid of the second cluster is calculated (denoted by the purple cross, c2). If c2 is

within the fluctuation range of c1 (c1−d ≤ c2 ≤ c1+d), then the performance change is considered

normal and this asset will not be recommended to be checked.

Even though the aforementioned steps (the top part of the pipeline in Figure 6.2) can eliminate

most of the noises, false positives are still observed when the borderline between the two clusters

is vague. For this reason, we augment the pipeline with K-means (Figure 6.2e). To motivate this,

31

Event Time
0.0

0.5

1.0

CP
U

Sc
or

e

(a)
Event Time

0.0

0.5

1.0

CP
U

Sc
or

e

(b)
Event Time

0.0

0.5

1.0

CP
U

Sc
or

e

(c)

Centroids

Figure 6.3: DBSCAN and centroid distance check (§6.1.2). (a) and (b) shows how the clus-
tering result (dots in different color) from DBSCAN is transformed into binary. (c) displays the
fluctuation range and how c2 falls within the range.

Event Time
0.0

0.5

1.0
CP

U
Sc

or
e

(a)

Centroids

Event Time
0.0

0.5

1.0

CP
U

Sc
or

e

(b)

Figure 6.4: Similarity Stage (§6.1.2). Jaccard similarity is applied to the result from both
clustering methods to eliminate borderline cases. Cluster is indicated by color.

let’s use Figure 6.4a as an example where the binary clustering result from DBSCAN passes the

centroid distance check since c2 falls out of the fluctuation range, however this asset is actually

not displaying any abnormal performance change. Therefore, we also apply K-means [41] on the

same case, which leads to the clustering result in Figure 6.4b, where the centroids of the two

cluster share similar y values.

The outputs of the DBSCAN and K-means algorithms are binary strings (e.g., {0,1,0,1,0,...}),

representing the clustering classification of each observation of the asset. Thus, we use Jaccard

similarity [25] (step Figure 6.2f) to analyze the outputs of the top and bottom steps of the pipeline.

Only when the two results converge (that there is an outlier cluster), the tool would emit recommen-

dations to the domain experts. For example, this case study will be rejected because the clustering

results in Figures 6.4a and 6.4b do not converge as decided by the Jaccard similarity.

6.1.3 Recommendations

Out of over 2 million assets, we only take 3,078 of them as they have at least 50 observations. Our

outlier pipeline only recommends 28 assets to be further investigated (14 for memory and 14 for

CPU) because of the highly efficient denoising process. For example, for CPU, 1,363 assets are

eliminated by the binary clustering, and cluster centroid distance check can remove 1,639 assets.

32

Among the remaining assets, 62 of them are excluded during the Jaccard similarity comparison

stage.

33

CHAPTER 7

KEY OBSERVATIONS

7.1 Key Observations

In this paper, we take a performance benchmarking dataset from FREP, and conduct our investi-

gations via a single-blind research approach. Given the heterogeneity of the datasets, we iterated

upon various methods to detect performance outliers and degradation within a dynamic fleet. We

present the following key observations as a result of our work on methodology evolution.

Observation 1: Performance benchmarking at scale is a hard problem. Performance bench-

marking at scale requires that the capacity is continuously cycled through the benchmarks thereby

introducing a cost of fleet monitoring. In addition, the collection of features is a complex choice,

as collecting too many features increases the state space, and collecting too few can lead to un-

explained behaviors. Optimizing for the right feature set requires consideration of features across

hardware, software, and testing environments to build a good evaluation system. We also notice

that data extracted from a live fleet can have unpredictable sampling density and large variance

in data counts across the entire population with some assets benchmarked only once while some

assessed numerous times because of either machine states or the traversal across them of which is

an artifact of a large fleet. In addition, in certain virtualized environments, the benchmarks could

be running on concurrent systems and result in corrupted scores, so isolation is a key requirement.

All these combined together make performance benchmarking at scale a hard problem.

Observation 2: Understanding large-scale datasets requires efforts in state space reduction,

correlation techniques along with manual fine-tuning. We observed from our studies that while

we started with 20+ features, certain features have higher entropy and the others do not display

the same trend. Ranking features along with leveraging methodologies to achieve sound selection

plays a key role in benchmarking. In our study, we continuously iterated to rank features based

on domain expertise as well as data at hand using variance, divergence, and outlier methods to

34

understand benchmark scores and their sensitivity to features. Our feature ranking evolved based

on the manual inputs from domain experts at COMPANYX, and also on the understanding of the

nuanced state transitions of assets and their relative importance to the production fleet. As a result,

we believe that performance outlier detection requires both the automation for efficiency and the

manual fine-tuning to arrive at meaningful results at production scale.

Observation 3: Features have different weights to performance outlier detection (with ModelID ¿

BIOS ¿ Kernel). Based on the production use cases and feature ranking discussion, we found that

the model architecture has the highest impact on performance scores. While this is an obvious

result, the significance of it is higher than the firmware or software related features which can

also sway the scores. BIOS version has the second most significant impact on CPU and memory

performance and a plethora of BIOS options can affect the enumeration and configuration of the

CPU. If left untracked, the lack of BIOS input could have severe performance degradation remain

unnoticed. Kernel being the next impactful feature also adds value for future data collection.

Observation 4: Periodic performance benchmarking tracks fleet regressions and can enhance

fleet stability. In a live fleet, BIOS versions and kernel versions are rolled out continuously. Our

methods in this paper, as highlighted by our case studies, have proven effective in identifying

regressions due to BIOS (and kernel) configuration variation. The methods presented in this paper

have been proven to be useful in our offline evaluation cycle, and we will explore online integration

at COMPANYXas the next step. Our results show that periodic performance benchmarking and

outlier detection across BIOS release, kernel release, and hardware configuration changes can

enhance overall fleet stability.

Observation 5: Hardware performance degradation is real. We observe that hardware perfor-

mance does degrade over time, and is often unexplainable by any of the top features in our study.

This leads us to conclude that repeated low performance benchmark score without any changes

in top ranking features signals potential hardware issue. Hardware does gradually degrade, and

silently sliding down from previously assessed high performance level. We present a couple of as-

35

set examples which show degradation behavior. Periodic performance benchmarking is required to

catch these hardware failures in time to reduce the risk of deploying application laggard hardware

in the future.

36

CHAPTER 8

RELATED WORK

8.1 Related Work

In this section we will discuss related works in the fields and the contribution our work brings in.

Large-scale studies: Large-scale fleet management has gaining its attention in the recent

decade due to its increasing importance and there have been a lot of studies on understanding ma-

chine performance and failures in large-scale deployment. As a first step, many empirical studies

are conducted on large-scale systems on performance [1, 8, 27], general failure and crash recovery

analysis [7, 9, 18, 19, 53, 68, 69], and hardware errors [20, 33]. Google published traces from

their large-scale production cluster called Borg [64] aiming to facilitate the scheduling pattern

study [60]. Besides compute cluster, the performance and reliability of enterprise storage system

at large-scale is also well analyzed at NetApp and Google [21, 42, 43, 55]. Microsoft conducted

an empirical analysis focusing on hardware failures within CPU and disk subsystems [47]. Meta

took a step further via analyzing, predicting, and performing root cause investigation and hardware

remediation at scale [35, 36, 37]. We continue the importance of this area of study and have the fo-

cus on leveraging the CPU and memory benchmarks for the cluster management, which we believe

have not been reported at such a large scale.

Dataset scale: In terms of the scale of the dataset, many large scale datasets of various types

have been well analyzed by previous studies. Empirical analysis are carried out using incident

records [73] and tickets [54, 65, 68] from the platforms that are based on over 100k nodes. Logs

and error messages are also common sources for system failure studies focusing on large fleets that

could involve millions of servers [26, 34, 47, 67]. Our large-scale dataset is at the same level. We

have a dataset that contains over millions of assets in total and will be made public to academic

collaborators (pending legal approval) to facilitate further studies.

37

Analysis techniques: For analyzing and further utilizing the dataset, there are a lot of pre-

vious works that use techniques ranging from statistical techniques such as variance, hierarchical

clustering, and optimal experiment design [24, 31, 63], information theory-based tools [15, 70], to

machine learning tools including OCSVM [12], transfer learning [70, 71], gradient boosted tree

[32], deep learning model [11, 32], Causal Bayesian Networks [17], and negative-unlabeled learn-

ing [10], and even extend the application of NLP to data center management [4, 72]. Particularly,

for anomaly detection, clustering techniques such as K-means [39], Extreme Studentized Deviate

[22, 62], k-NN [40], SVDD [23], and neural network [57, 58, 61] have been explored. Some stud-

ies change the perspective of model building by leveraging user perception rather than complex

system metrics to unearth anomalies. Aiming at the same target, in our work, we show that multi-

layered recommendation system (variance, divergence, outlier detection) would be beneficial, and

we learn that using off-the-shelf statistical techniques as-is does not suffice the low false positive

requirement for the production cluster management. Instead, a customized pipeline is crucial for

denoising, given the complex nature of the dataset with a diverse feature set.

Benchmarks: When it comes to benchmark choices, in particular, CPU and memory bench-

marks, Stream [46] and CoreMark-PRO [3] have been recognizably popular for many practitioners.

The former is widely used for measuring peak memory bandwidth [6, 14, 44, 45, 48, 59, 66]. For

the latter, while CoreMark [16] itself is already an outstanding and widely used benchmark for

the CPU pipeline [52], its next generation, the CoreMark-Pro Suite, stems from it and gained its

popularity for the wider range of coverage. Its support for stress testing the entire processor makes

it a benchmark suitable for various types of compute systems [49, 50]. We believe that we are the

largest dataset with respect to these two benchmarks.

38

CHAPTER 9

SUMMARY

9.1 Conclusion

Stable and predictable performance of large-scale fleet is critical for providing reliable services.

The performance of a server fluctuates over time and thus identifying underperforming servers

is challenging as it requires minimizing the testing overhead as well as the false positive rate.

Aiming to pinpoint and remove underperforming servers, FREP is a rigorous and unique cus-

tomization of off-the-shelf statistical techniques and is applied offline to a dataset containing over

4 million benchmark results from over millions of production servers in COMPANYX. Results

from FREP verifies the plan for its deployment in datacenters to facilitate real-time degradation

identification.

39

REFERENCES

[1] Performance Analysis of Alibaba Large-Scale Data Center.
https://www.alibabacloud.com/blog/performance-analysis-of-alibaba-

large%25-scale-data-center_594676, 2019.

[2] EVT, DVT, and PVT: Product Development Stages Explained.
https://www.onlogic.com/company/io-hub/evt-dvt-and-pvt-product-

development-stages-explained/, 2022.

[3] CoreMark-PRO An EEMBC Benchmark Suite.
https://www.eembc.org/coremark-pro/, 2023.

[4] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Tredan. Experience Report:
Log Mining Using Natural Language Processing and Application to Anomaly Detection. In
Proceedings of the IEEE International Symposium on Software Reliability (ISSRE), 2017.

[5] Ben W. Bolch. More on unbiased estimation of the standard deviation. The American
Statistician, 22:27, 1968.

[6] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier, and
Raymond Namyst. Forestgomp: an efficient openmp environment for numa architectures.
International Journal of Parallel Programming, 38:418–439, 2010.

[7] Ignacio Cano, Srinivas Aiyar, and Arvind Krishnamurthy. Charaterizing private clouds: A
large-scale empirical analysis of enterprise clusters. In Proceedings of the 7th ACM
Symposium on Cloud Computing (SoCC), 2016.

[8] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. The
Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services. In
Proceedings of the 11th Symposium on Operating Systems Design and Implementation
(OSDI), 2014.

[9] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nematollah
Bidokhti. How Bad Can a Bug Get? An Empirical Analysis of Software Failures in the
OpenStack Cloud Computing Platform. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), 2019.

[10] Yi Ding, Avinash Rao, Hyebin Song, Rebecca Willett, and Henry Hoffmann. NURD:
Negative-Unlabeled Learning for Online Datacenter Straggler Prediction. In The
Conference on Machine Learning and System, 2022.

[11] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. DeepLog: Anomaly Detection and
Diagnosis from System Logs through Deep Learning. In Proceedings of the 2017 ACM
Conference on Computer and Communications Security (CCS), 2017.

40

https://www.alibabacloud.com/blog/performance-analysis-of-alibaba-large%25-scale-data-center_594676
https://www.alibabacloud.com/blog/performance-analysis-of-alibaba-large%25-scale-data-center_594676
https://www.onlogic.com/company/io-hub/evt-dvt-and-pvt-product-development-stages-explained/
https://www.onlogic.com/company/io-hub/evt-dvt-and-pvt-product-development-stages-explained/
https://www.eembc.org/coremark-pro/

[12] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie.
High-dimensional and large-scale anomaly detection using a linear one-class svm with deep
learning. Pattern Recognition, 58:121–134, 2016.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Knowledge
Discovery and Data Mining, 1996.

[14] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski, Gunho Lee,
David Patterson, Ariel Rabkin, Ion Stoica, et al. Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS, 28(13):2009, 2009.

[15] Song Fu. Performance Metric Selection for Autonomic Anomaly Detection on Cloud
Computing Systems. In IEEE Global Communications Conference (GLOBECOM), 2011.

[16] Shay Gal-On and Markus Levy. Exploring CoreMark - A Benchmark Maximizing
Simplicity and Efficacy.
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf.

[17] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina
Delimitrou. Seer: Leveraging Big Data to Navigate the Complexity of Performance
Debugging in Cloud Microservices. In Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[18] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang,
Li Zhou, and Yongming Wu. An Empirical Study on Crash Recovery Bugs in Large-Scale
Distributed Systems. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 2018.

[19] Peter Garraghan, Paul Townend, and Jie Xu. An Empirical Failure-Analysis of a
Large-Scale Cloud Computing Environment. In The 15th IEEE International Symposium on
High-Assurance Systems Engineering (HASE), 2014.

[20] Jim Gray and Catharine Van Ingen. Empirical Measurements of Disk Failure Rates and
Error Rates. Microsoft Research Technical Report MSR-TR-2005-96, 2005.

[21] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A. Chien,
and Haryadi S. Gunawi. The Tail at Store: A Revelation from Millions of Hours of Disk and
SSD Deployments. In Proceedings of the 14th USENIX Symposium on File and Storage
Technologies (FAST), 2016.

[22] Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. Automatic anomaly detection in
the cloud via statistical learning. arXiv preprint arXiv:1704.07706, 2017.

41

https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf

[23] Chengqiang Huang, Geyong Min, Yulei Wu, Yiming Ying, Ke Pei, and Zuochang Xiang.
Time Series Anomaly Detection for Trustworthy Services in Cloud Computing Systems. In
IEEE Transactions on Big Data, 2017.

[24] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert B. Ross, and Michel A. Kinsy. HPC I/O Throughput Bottleneck Analysis
with Explainable Local Models. In Proceedings of International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), 2020.

[25] Paul Jaccard. Comparative study of floral distribution in a portion of the alps and jura.
Bulletin of the Natural History Society of Vaud, 37:547–579, 1901.

[26] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are Disks the
Dominant Contributor for Storage Failures? A Comprehensive Study of Storage Subsystem
Failure Characteristics. In Proceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST), 2008.

[27] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre
luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy
Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture (ISCA), 2017.

[28] Leonid Kantorovich. Mathematical methods of organizing and planning production.
Management Science, 6(4):366–422, 1960.

[29] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual
information. Phys. Rev. E, 69:066138, Jun 2004.

[30] Solomon Kullback and Richard Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79 – 86, 1951.

[31] Jaewon Lee, Changkyu Kim, Kun Lin, Liqun Cheng, Rama Govindaraju, and Jangwoo Kim.
WSMeter: A Performance Evaluation Methodology for Google’s Production
Warehouse-Scale Computers. In Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2018.

42

[32] Sebastien Levy, Randolph Yao, Youjiang Wu, Yingnong Dang, Peng Huang, Zheng Mu,
Pu Zhao, Tarun Ramani, Naga Govindaraju, Xukun Li, Qingwei Lin, Gil Lapid Shafriri, and
Murali Chintalapati. Predictive and Adaptive Failure Mitigation to Avert Production Cloud
VM Interruptions. In Proceedings of the 14th Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[33] Xin Li, Michael C. Huang, and Kai Shen. An Empirical Study of Memory Hardware Errors
in A Server Farm. In The 3rd Workshop on Hot Topics in System Dependability (HotDep),
2007.

[34] Yinglung Liang, Yanyong Zhang, Morris Jette, Anand Sivasubramaniam, and Ramendra
Sahoo. BlueGene/L Failure Analysis and Prediction Models. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN), 2006.

[35] Fan Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin Curelea,
Seunghak Lee, and Sriram Sankar. Fast Dimensional Analysis for Root Cause Investigation
in a Large-Scale Service Environment. In Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS), 2020.

[36] Fred Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham Vunnam, Amol Desai, and Sriram
Sankar. Hardware Remediation At Scale. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2018.

[37] Fred Lin, Antonio Davoli, Imran Akbar, Sukumar Kalmanje, Leandro Silva, John Stamford,
Yanai Golany, Jim Piazza, and Sriram Sankar. Predicting Remediations for Hardware
Failures in Large-Scale Datacenters. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2020.

[38] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information Theory, 37(1):145–151, 1991.

[39] Jieyu Lin, Qi Zhang, Hadi Bannazadeh, and Alberto Leon-Garcia. Automated Anomaly
Detection and Root Cause Analysis in Virtualized Cloud Infrastructures. In IEEE/IFIP
Network Operations and Management Symposium, 2016.

[40] Zhaoli Liu, Tao Qin, Xiaohong Guan, Hezhi Jiang, and Chenxu Wang. An Integrated
Method for Anomaly Detection From Massive System Logs. In IEEE Access, 2018.

[41] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[42] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. A Study of SSD
Reliability in Large Scale Enterprise Storage Deployments. In Proceedings of the 18th
USENIX Symposium on File and Storage Technologies (FAST), 2020.

[43] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. Reliability of SSDs
in Enterprise Storage Systems: A Large-Scale Field Study. In ACM Transactions on Storage
(TOS), 2021.

43

[44] Aniruddha Marathe, Rachel Harris, David K. Lowenthal, Bronis R. de Supinski, Barry
Rountree, Martin Schulz, and Xin Yuan. A Comparative Study of High-Performance
Computing on the Cloud. In Proceedings of the 22nd IEEE International Symposium on
High Performance Distributed Computing (HPDC), 2013.

[45] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan Stutsman, and
Robert Ricci. Taming Performance Variability. In Proceedings of the 13th Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[46] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance
computers. https://web.archive.org/web/20200205055303/http:
//www.cs.virginia.edu/~mccalpin/papers/bandwidth/sigmetrics.html, 2006.

[47] Edmund B. Nightingale, John R Douceur, and Vince Orgovan. Cycles, Cells and Platters:
An empirical analysis of hardware failures on a million consumer PCs. In Proceedings of
the 2011 EuroSys Conference (EuroSys), 2011.

[48] Nick L. Petroni, Jr. Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a
Coprocessor-based Kernel Runtime Integrity Monitor. In Proceedings of the 13th
conference on USENIX Security Symposium, 2004.

[49] Ivan Porres, Tanwir Ahmad, Hergys Rexha, Sébastien Lafond, and Dragos Truscan.
Automatic exploratory performance testing using a discriminator neural network. In IEEE
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2020.

[50] Ivan Porres, Hergys Rexha, and Sébastien Lafond. Online GANs for Automatic
Performance Testing. In IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2021.

[51] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a ”Kneedle” in
a Haystack: Detecting Knee Points in System Behavior. In 2011 31st International
Conference on Distributed Computing Systems Workshops, pages 166–171, 2011.

[52] Romain Saussard, Boubker Bouzid, Marius Vasiliu, and Roger Reynaud. A Robust
Methodology for Performance Analysis on Hybrid Embedded Multicore Architectures. In
Proceedings of the 10th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSOC), 2016.

[53] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-performance
computing systems. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), 2006.

[54] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX Symposium on
File and Storage Technologies (FAST), 2007.

44

https://web.archive.org/web/20200205055303/http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/sigmetrics.html
https://web.archive.org/web/20200205055303/http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/sigmetrics.html

[55] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reliability in Production:
The Expected and the Unexpected. In Proceedings of the 14th USENIX Symposium on File
and Storage Technologies (FAST), 2016.

[56] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

[57] John Sipple. Interpretable, Multidimensional, Multimodal Anomaly Detection with
Negative Sampling for Detection of Device Failure. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

[58] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust Anomaly
Detection for Multivariate Time Series through Stochastic Recurrent Neural Network. In
Proceedings of the 25nd SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), 2019.

[59] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa. The
impact of memory subsystem resource sharing on datacenter applications. In Proceedings of
the 36th Annual International Symposium on Computer Architecture (ISCA), 2011.

[60] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven
Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation. In Proceedings of
the 2020 EuroSys Conference (EuroSys), 2020.

[61] Mineto Tsukada, Masaaki Kondo, and Hiroki Matsutani. A Neural Network-Based
On-Device Learning Anomaly Detector for Edge Devices. In IEEE Transactions on
Computers (TC), 2020.

[62] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. A Novel Technique for Long-Term
Anomaly Detection in the Cloud. In The 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2014.

[63] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion
Stoica. Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics. In
Proceedings of the 13th Symposium on Networked Systems Design and Implementation
(NSDI), 2016.

[64] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and
John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of the
2015 EuroSys Conference (EuroSys), 2015.

[65] Kashi Vishwanath and Nachi Nagappan. Characterizing Cloud Computing Hardware
Reliability. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[66] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. In Communications of the ACM (CACM),
2009.

45

[67] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting
Large-Scale System Problem Detection by Mining Console Logs. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP), 2009.

[68] Praveen Yalagandula, Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan.
Beyond Availability: Towards a Deeper Understanding of Machine Failure Characteristics in
Large Distributed Systems. In Proceedings of the Workshop on Real, Large Distributed
Systems (WORLDS), 2004.

[69] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,
Pranay U. Jain, and Michael Stumm. Simple Testing Can Prevent Most Critical Failures: An
Analysis of Production Failures in Distributed Data-Intensive Systems. In Proceedings of
the 11th Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[70] Ji Zhang, Ke Zhou, Ping Huang, Xubin He, Ming Xie, Bin Cheng, Yongguang Ji, and Yinhu
Wang. Minority Disk Failure Prediction Based on Transfer Learning in Large Data Centers
of Heterogeneous Disk Systems. In IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2020.

[71] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu Zhang, Bo Qiao, Yingnong Dang,
Xinsheng Yang, Qian Cheng, Murali Chintalapati, Youjiang Wu, Ken Hsieh, Kaixin Sui, Xin
Meng, Yaohai Xu, Wenchi Zhang, Furao Shen, and Dongmei Zhang. Cross-dataset Time
Series Anomaly Detection for Cloud Systems. In Proceedings of the 2019 USENIX Annual
Technical Conference (ATC), 2019.

[72] Giulio Zhou and Martin Maas. Learning on Distributed Traces for Data Center Storage
Systems. In The Conference on Machine Learning and System, 2021.

[73] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and Tingting
Qin. An Empirical Study on Quality Issues of Production Big Data Platform. In
Proceedings of the 37th International Conference on Software Engineering (ICSE), 2015.

46

