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ABSTRACT

This paper explores learning emulators for parameter estimation with uncertainty estimation

of high-dimensional dynamical systems. We assume access to a computationally complex

simulator that inputs a candidate parameter and outputs a corresponding multichannel

time series. Our task is to accurately estimate a range of likely values of the underlying

parameters. Standard iterative approaches necessitate running the simulator many times,

which is computationally prohibitive. This paper describes a novel framework for learning

feature embeddings of observed dynamics jointly with an emulator that can replace high-cost

simulators for parameter estimation. Leveraging a contrastive learning approach, our method

exploits intrinsic data properties within and across parameter and trajectory domains. On a

coupled 396-dimensional multiscale Lorenz 96 system, our method significantly outperforms

a typical parameter estimation method based on predefined metrics and a classical numerical

simulator, and with only 1.19% of the baseline’s computation time. Ablation studies highlight

the potential of explicitly designing learned emulators for parameter estimation by leveraging

contrastive learning.
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CHAPTER 1

INTRODUCTION

Physics-based simulators play a vital role in many domains of science and engineering, from

energy infrastructure to atmospheric sciences. They are frequently critical for assessing

risk and exploring “what if” scenarios, which require running models many times [Snyder

et al., 2019, Beusch et al., 2020, Helgeson et al., 2021, Zhao et al., 2021]. However, the

increasing complexity of operational computer models makes running such simulators a major

challenge. Emulators (also known as surrogate models) are models trained to mimic numerical

simulations at a much lower computational cost, particularly for parameters or inputs that

have not been simulated.

This paper considers the problem of estimating the parameters of a physics simulation

that provide the best fit to data. The estimation problem can generally be thought of as

a nonlinear inverse problem in which our goal is to estimate parameters φ ∈ Rk from a

noisy multichannel time series Z ∈ RT×d. Z = H(φ;Z0) + η, where H(φ;Z0) represents

running is a physics simulator with parameters φ and initial condition Z0 for T time steps,

and η ∼ N (0,Γ) is observation noise. To ease the notation, we drop the initial condition Z0

in H(φ;Z0). We are particularly interested in complex simulators for which we do not have

analytic expressions for H, evaluating H(φ) is a computational bottleneck and we cannot

readily compute its gradients.

One important application of this problem arises in climate science, where climate scientists

have spent decades developing sophisticated physics-based models corresponding to H, often

implemented using large-scale software systems that solve complex systems of differential

equations [Kay et al., 2015]. In this case, evaluating H can be computationally demanding.

Furthermore, tools like physics-informed neural networks [Raissi et al., 2019] are inapplicable

because we cannot compute losses that depend upon knowing the form of H. Estimating

the parameters of such models based on observational data is essential for accurate climate
1



forecasting, and we typically seek not only point estimates of parameters, but also quantifiable

uncertainty measures that allow us to forecast the full range of possible future outcomes.

Parameter uncertainty quantification is vital here [Cleary et al., 2021, Souza et al., 2020,

Hansen, 2022], especially when dealing with noisy observations where a small error in φ̂

might lead to a dramatically different forecasts of the dynamics; uncertainty quantification

also plays a vital role in the decision-making process to prevent hazardous loss under tail

events [Hansen, 2022].

We explore an alternative framework in which we use our simulator to generate training

samples of the form (φi,Zi) for i = 1, . . . , n and train a machine learning model for parameter

estimation. Our approach, which we call Embed & Emulate, jointly trains two neural

networks. The first, fθ, maps an observation Z to a low-dimensional embedding. The

second, ĝθ, emulates the map gθ := fθ ◦H, and so maps a parameter vector φ to the same

low-dimensional embedding space. The learned ĝθ may be used in place of H within an

optimization-based framework such as Ensemble Kalman Inversion (EnKI, §1.1).

More specifically, our method uses the learned low-dimensional embedding to specify

an objective function well-suited to parameter estimation without expert knowledge and

the learned emulator as a surrogate for classical numerical methods used to compute H.

Furthermore, inspired by empirical Bayes methods, our learned network suggests a natural

mechanism for specifying the EnKI prior based on the trained network.

1.1 Related Work

Brief parameter estimation background A widely-used approach for parameter es-

timation is Ensemble Kalman Inversion (EnKI; §A.1) [Iglesias et al., 2013]. EnKI is a

derivative-free optimization framework allows a user to specify a prior distribution over the

parameter vector φ and results in samples from the corresponding posterior distribution. As

a result, this method provides users with important information about the uncertainty of
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estimates of φ. The clear and thought-provoking paper of Schneider et al. [2017] highlighted

the use of the EnKI in earth system modeling.

Despite its success in the perfect-model setting (i.e., where H(φ) can be computed exactly

and perfectly represents the dynamics in Z for some φ), using such methods in practice

presents several challenges. To use the EnKI for parameter estimation, we must specify three

key elements: (a) the objective function that EnKI is attempting to minimize; (b) the tool

used to compute the forward mapping H (or a surrogate for H); and (c) a prior pφ. For

instance, Schneider et al. [2017] uses a Gaussian prior pφ, computes H using Runge-Kutta

methods [Dormand and Prince, 1980], and attempts to minimize the Mahalanobis distance

Jmoment(φ) := ‖m(Zi)−m(H(φ))‖2Σ(m(Zi))
, (1.1)

where m(Zi) is a vector of first and second moments of different spatial channels of Zi and

Σi is a diagonal matrix with the j-th diagonal entry Σi,j,j := Var[m(H(φi))j ]. Using a loss

based on moments within the EnKI framework provides critical robustness to the chaotic

nature of Zi.

This framework presents two central challenges. First, choosing the objective for EnKI

to minimize requires non-trivial domain knowledge, and a poor choice may lead to biased

parameter estimates or unpredictable sensitivities to certain features in Z. Second, high-

resolution simulations used to evaluate H for a given φ (e.g. Runge-Kutta or other classical

numerical solvers) can be computationally demanding. In particular, the EnKI method uses

a collection of particles to represent samples of the posterior, and the forward model H must

be calculated for each particle at each iteration. For complex optimization landscapes or in

high-dimensional settings, the number of particles must be large. This is further complicated

by the fact that often the parameter estimation task is conducted repeatedly, e.g., each time

new climate data is acquired.

Simulation-based inference (SBI): A large body of work in SBI focuses on parameter
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estimation for physics-based simulators [Beaumont et al., 2009, Papamakarios et al., 2019,

Cranmer et al., 2020, Lueckmann et al., 2019, Chen et al., 2020b, Alsing et al., 2019].

Advanced SBI methods focus on adaptive generation of new training data to approximate

the posterior and could be classified into different categories based on how they adaptively

choose informative simulations [Lueckmann et al., 2021]. One approach, likelihood estimation,

proposes to approximate an intractable likelihood function [Drovandi et al., 2018]. For

instance, Sequential Neural Likelihood estimation (SNL, Papamakarios et al. [2019]) trains a

conditional neural density estimator (e.g., Masked Autoregressive Flow (MAF)) which models

the conditional distribution of data given parameters [Papamakarios et al., 2017]). While SNL

does not readily scale to high-dimensional data, a recent variant called SNL+ [Chen et al.,

2020b] addresses this limitation by learning sufficient statistics (embeddings) of the data based

on the infomax principle, and it iteratively updates the network used to compute sufficient

statistics and the neural density estimators during sequential sampling. An alternative

approach, (sequential) neural posterior estimation ((S)NPE), aims to approximate directly

the target posterior (SNPE-A in Papamakarios and Murray [2016], SNPE-B in Lueckmann

et al. [2017], SNPE-C in Greenberg et al. [2019]), where SNPE-C forces fewer restrictions on

the form of prior and posterior by leveraging neural conditional density estimation.

However, in the context of this manuscript’s setting, i.e., estimating multiple φi for

multiple different observations Zi at test time, the key technique of SBI, sequential sampling,

can require substantial computational investments. This idea is discussed further with our

experimental results.

Learned emulators Physics models and simulations are pervasive in weather and climate

science, astrophysics, high-energy and accelerator physics, and the study of dynamical

systems. These models and simulations are used, for example, to infer the underlying

physical processes and equations that govern our observations, design new sensors or facilities,

estimate errors, understand experimental behavior, and estimate unknown parameters within
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models. Many such physics simulators require expensive computational resources, and are

difficult to fully leverage. “Learned emulators,” “surrogate models,” or “approximants”

are computationally-efficient approximate models that use numerically simulated data to

train a machine learning system to mimic these numerical simulations at a much smaller

computational cost. There have been many recent successes in the development of surrogate

model foundations [Brockherde et al., 2017, Raissi et al., 2019, Chattopadhyay et al., 2019,

2020, Raissi et al., 2017, Vlachas et al., 2018, 2020, Brajard et al., 2020, Gagne et al., 2020]

and applications [Goel et al., 2008, Mengistu and Ghaly, 2008, Brigham and Aquino, 2007,

Kim et al., 2015, Papadopoulos et al., 2018, White et al., 2019, Gentine et al., 2018, Rasp

et al., 2018, Cohen et al., 2020, Yuval and OGorman, 2020, Xue et al., 2021, Wang et al.,

2019].

Typically, one would directly try to emulate H, and the efficacy of the learned emulator

would be evaluated on how well Ĥ(φ) matches H(φ) (often using squared error) across

a range of φ. This formulation, however, may be suboptimal when the emulator will be

used for parameter estimation. First, as we will detail later, emulating H when Z is very

high-dimensional is quite challenging. (In our experiments, dim(Z) = 396, 000.) Furthermore,

in many climate settings, H represents a chaotic process in which very small changes to the

initial conditions can result in very large differences later in the process. In this setting,

training an emulator with a loss akin to (1/n)
∑n

i=1 ‖Zi − Ĥ(φi)‖22 may be overly sensitive

to noise and initial conditions and not preserve statistical features of Zi that may be essential

to parameter estimation.

Inspired by the objective in (1.1), Cleary et al. [2021] trained a model ĝθ to emulate the

moments of parameters using the loss function `moment(θ) := (1/n)
∑n

i=1 ‖m(Zi)−ĝθ(φi))‖2Σi

to ease the burden of running H. However, `moment(θ) is not always the best choice. First,

estimating Σi for each training sample is an enormous computational burden that far exceeds

the cost of generating the original training data (unless the range of candidate φ is very small).

5



Second, choosing the moment function m (essentially fixing a particular low-dimensional

embedding) is a critical design element that requires domain expertise and often must be

tuned in practice. Finally, even if one is willing to generate accurate estimates of Σi, one

could face additional challenges. Cleary et al. [2021] is designed for inferring parameters given

one fixed test observation, and they train their emulator for a small domain of parameter

space dependent on the test observation at hand. Extending this framework to a larger

domain of parameters φ results in large variability among the collection of corresponding

Σis generated for training, making the loss landscape challenging to navigate.

Contrastive learning With the above challenges in mind, we present a novel and generic

framework for parameter estimation by jointly optimizing (a) an embedding of the multichan-

nel dynamics used to evaluate the accuracy of a candidate parameter φ and (b) an emulator

of the dynamics projected into the embedding space. We leverage a contrastive framework to

learn discriminative representations for high-dimensional spatio-temporal data.

Contrastive representation learning has exploded in popularity recently for self-supervised

visual feature learning that has achieved comparable performance with its supervised coun-

terparts [Caron et al., 2020, Chen et al., 2020a, He et al., 2020, Grill et al., 2020, Zhang

and Maire, 2020, Caron et al., 2021]. The majority of these frameworks operate under the

push-pull principle for instance-wise discrimination: images generated from different forms of

data augmentation (e.g., cropping, color jittering) are pulled together while other images are

pushed away. Apart from its common setup in unsupervised representation learning, Khosla

et al. [2020] also demonstrated selecting positive and negative pairs in a supervised way

leveraging label information can boost the performance. Many efforts focus on understanding

the mechanism of contrastive learning [Oord et al., 2018, Wei et al., 2020, Arora et al.,

2019, Wang and Isola, 2020, Zimmermann et al., 2021]. Among them, Zimmermann et al.

[2021] show that contrastive loss can be interpreted as the cross-entropy between the latent

conditional distribution and ground truth distribution.

6



1.2 Contributions

In our work, we follow the contrastive framework and learn an embedding network to capture

structural information for high-dimensional spatio-temporal data and an emulator that can be

used to compute parameter estimates with uncertainty estimates. This is effective for several

reasons. First, when the model H is bijective, representations learned using contrastive losses

are highly correlated with their underlying parameters [Zimmermann et al., 2021]. Second,

most existing emulating methods focus on approximating dynamical models for a fixed

parameter φ and lack generalization capacity [Krishnapriyan et al., 2021]. In part this is due

to the difficulties of emulating dynamics with high spatio-temporal resolution. We circumvent

this bottleneck by training an emulator to output the learned latent representations of

the dynamics, which are much lower-dimensional and easier to learn with fewer training

samples. Finally, our method is inspired by the Contrastive LanguageImage Pre-training

(CLIP) [Radford et al., 2021] framework, which is designed for contrastive learning of

aligned representations of images and language. Our approach, by analogy, learns aligned

representations of dynamics and parameters, allowing us to jointly learn the embedding

function and emulator for high-resolution data.

More specifically, this paper makes the following key contributions:

• Incorporation of a contrastive loss function for learning an embedding of the simulation

outputs (Zi) instead of relying on a known “good” moment function m, leveraging ideas

from CLIP [Radford et al., 2021];

• Development of an emulator designed to facilitate parameter estimation with uncertainty

quantification. We demonstrate that the proposed emulator can be used effectively within

an EnKI framework to generate parameter estimates with accurate posterior distribution

estimates.

• An empirical evaluation of different methods (EnKI [Schneider et al., 2017], supervised

7



learning, NPE-C Greenberg et al. [2019], SNL+ [Chen et al., 2020b], and our proposed

emulator-based approach) in terms of robustness to noise or errors in training and testing

data for a range of sample sizes as well as computational costs. Compared to using

numerical solvers, we show that our method achieves higher accuracy overall in 1.08% of

the computation time, even accounting for the computational costs of generating training

data.

• Evaluation of the quality of the uncertainty estimates using the Continuous Ranked

Probability Score (CRPS) for varying numbers of training samples.

Our empirical results highlight both the improved computational and empirical accuracy

of our proposed emulator-centric approach relative to competing methods and, more broadly,

the benefits of designing emulators specifically for parameter estimation tasks.
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CHAPTER 2

METHOD

2.1 Proposed method

Our goal is to learn a mapping from observations of a multichannel dynamical system,

Z ∈ RT×d, to the underlying system parameters φ ∈ Rk, where Z = H(φ) + η for some

noise vector η ∈ RT×d. We assume we do not have access to an analytical expression for H,

but can compute H(φ) for any φ using a computationally complex simulator. We further

assume a prior pφ over parameter space.

Using this prior and the simulator, we generate n training samples as follows: for

i = 1, . . . , n, draw φi ∼ pφ, and use the simulator to compute Zi = H(φi) + ηi. We do

not explicitly generate noise ηi; rather, the numerical algorithm used to simulate H will

generally produce some errors, with faster implementations of H being more error-prone.

The distribution pφ coupled with the noise distribution over η induces the joint distribution

pφ,Z.

2.1.1 Baseline approach – supervised learning

Given training samples (φi,Zi) for i = 1, . . . , n, we train a neural network represented by hθ

using a ResNet [He et al., 2016] as the backbone (see details in §B.2). θ denotes the learned

network parameters and our prediction is φ̂i = hθ(Zi). We train using the Mean Absolute

Percentage Error (MAPE) loss

`MAPE(θ) :=
1

n

n∑
i=1

k∑
j=1

∣∣∣∣∣φij − (hθ(Zi))j

|φij |+ ε

∣∣∣∣∣ . (2.1)

As we will see in the experimental results, this approach yields point estimates of φ on

holdout test data with reasonable accuracy and offers a significant computational advantage

9



over the EnKI method. However, it does not offer uncertainty estimates, and its test accuracy

is lower than that of our proposed approach (§2.1.2).

2.1.2 Our approach: joint embedding and emulation via contrastive feature

representation

Contrastive feature representation: Measuring the distance between a pair of dynamics,

a necessary task for constructing a loss function used for training, is particularly challenging

when the dynamics are chaotic. As mentioned above (§1.1), one alternative in the literature is

to use a custom loss function based on summary statistics of Z; this requires expert knowledge

to determine which statistics are relevant, and has demonstrated efficacy only for narrow

ranges of parameters φ.

We present an alternative framework in which we learn an embedding of Z, denoted fθ(Z),

that preserves statistical and structural characteristics of Z most relevant to the parameter

estimation task and hence can be used to train an emulator. Here θ denotes all the parameters

of the neural network defining the embedding function. Inspired by recent advances in

contrastive representation learning, from a collection of parameters and trajectories pairs

{φi,Zi}ni=1, we propose a trajectory encoder fθ which learns a distinguishable representation

by minimizing the following variant of the Info Noise Contrastive Estimation (InfoNCE) loss

[Oord et al., 2018]:

`ZZ(θ; τ) :=
1

n

n∑
i=1

− log
exp

(
〈fθ(Zi), fθ(Z̃i)〉/τ

)
n∑

j=1
exp(〈fθ(Zi), fθ(Zj)〉/τ

) . (2.2)

Here fθ(Z) ∈ Sp−1 is normalized and lives in a unit hypersphere. Z̃i is selected through data

augmentation (see §B.1) or in a supervised way by measuring the distance in the parameter

space: Z̃i := argminZj 6=Zi
δ(Zj ,Zi), where δ is a metric used in calculating distance in

10



parameter space, and τ is a temperature hyperparameter balancing the impact of similar

pairs and negative examples [Zhang et al., 2018, Ravula et al., 2021]. In this way, we drive

the model to embed data with similar values of the parameter φ in similar locations while

repulsing data with unrelated parameters, resulting in an embedding that respects the latent

structure of the parameter and trajectory pairs.

Emulators: Emulating the dynamics of a simulator by training a deep neural network ĝθ(·)

is a natural approach to easing the computational burden of parameter estimation. However,

recent works in emulating dynamics focus on the fixed-parameter setting [Krishnapriyan et al.,

2021] and cannot be easily generalized to multi-parameter settings (i.e. the emulator only

approximates H(φ) for a single fixed φ instead of a range of φs, as we need for parameter

estimation).

Learning emulators for a range of parameter values is challenging in part due to the

dimension of the dynamics to be emulated (i.e. the dimension of the Zs). To address this

problem, we propose to learn an emulator ĝθ of gθ := fθ ◦H, which represents the mapping

from the parameter space (φ) to the latent representation space fθ(Z). which is much

lower-dimensional than Z and hence easier to learn with limited training samples.

We say that the trajectory encoder and the emulator are perfectly aligned when ĝθ(φ) =

fθ(Z),∀ (φ,Z) ∼ pφ,Z. Under perfect alignment, given a test Z, we may seek to minimize

J(φ;Z, fθ, ĝθ) = ‖ĝθ(φ)− fθ(Z)‖22 (2.3)

instead of (1.1) with much faster objective function evaluations.

Learning the emulator via CLIP: Pretraining an embedding fθ and then learning

an emulator ĝθ with an L2 loss is hard to optimize; the different architectures, necessitated

by the very different dimensions of φ and Z, make feature alignment challenging and the

optimization prone to poor local minimizers. Alternatively, inspired by the recent success

of CLIP [Radford et al., 2021, Ravula et al., 2021] in cross-domain representation learning,

11
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ℓZZ(θ; τ) ℓZϕ(θ; τ′ )

Trajectory  
Encoder 

fθ

(b) Contrastive losses

Figure 2.1: The Embed & Emulate framework.(a) Components of our network and loss
function. (b) We use three contrastive learning schemes. The bottom left block denotes the
intra-trajecotry domain contrastive mechanism, the upper right denotes the intra-parameter
domain contrastive learning, and the bottom right block shows inter-trajectory-parameter
domains contrastive learning. Within each block, diagonals correspond to the dot product
between the representations of positive trajectories pairs (Zi, Z̃i), positive parameter pairs
(φi, φ̃i), and matched trajectory parameter pairs (Zi,φi), which we aim to maximize. Off-
diagonal pale pink blocks show similarities between the anchor point and the negatives
examples, which we aim to minimize.

we use the following variant of InfoNCE loss to align the representation space between two

networks:

`Zφ(θ; τ
′) :=

1

n

n∑
i=1

− log
exp

(
〈fθ(Zi), ĝθ(φi)〉/τ ′

)
n∑

j=1
exp

(
〈fθ(Zi), ĝθ(φj)〉/τ ′

) − log
exp

(
〈fθ(Zi), ĝθ(φi)〉/τ ′

)
n∑

j=1
exp

(
〈fθ(Zj), ĝθ(φi)〉/τ ′

) .
(2.4)

Intra-parameter domain contrastive loss: In order to fully exploit data potential

within parameter space and better guide the learning of the representation and preserve

similarities within the parameter space, we add an intra-parameter contrastive loss and find
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empirically that it helps accelerate the training process:

`φφ(θ; τ) :=
1

n

n∑
i=1

− log
exp

(
〈ĝθ(φi), ĝθ(φ̃i)〉/τ

)
n∑

j=1
exp

(
〈ĝθ(φi), ĝθ(φj)〉/τ

) , (2.5)

where φ̃ is selected through data augmentation by perturbing φ with small amount of noise

(see §B.1) or by finding nearest neighbors in the training set.

Regression head: Zimmermann et al. [2021] shows that under certain assumptions (see

§A.2), the feature encoder fθ implicitly learns to invert the data generating process H up to

an affine transformation, implying we can estimate φ via h(fθ(Z)) for some linear function h.

Inspired by their analysis, we add a regression head hθ (a single fully-connected linear layer)

in our framework, and we ensure the affine relationship between hθ and fθ by letting them

share the same backbone up to the last layers before the output.

Unified training procedure: To this end, we formulate the final loss of our Embed &

Emulate method as

`(θ) = λZZ`ZZ(θ; τ) + λφφ`φφ(θ; τ) + λZφ`Zφ(θ; τ
′) + λMAPE`MAPE(θ),

where λZZ, λφφ, λZφ and λMAPE control relative loss weights. We show our basic setup in

Fig. 2.1(a) and loss framework in Fig. 2.1(b).
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CHAPTER 3

EXPERIMENTS

3.1 Experiments

We conduct a numerical case study on the multiscale Lorenz-96 (L96) model [Lorenz, 1996],

which is a common test model for climate models with both “fast” (high-frequency) and “slow”

(low-frequency) components and other geophysical applications [Majda and Harlim, 2012,

Law and Stuart, 2012, Law et al., 2016, Brajard et al., 2020]. It is a prototypical turbulent

dynamical system “designed to mimic baroclinic turbulence in the midlatitude atmosphere”

[Majda et al., 2010]. Its dynamics exhibit strong energy-conserving non-linearities, and

for some settings of φ, it can exhibit strong chaotic turbulence. Code is available at:

https://github.com/roxie62/Embed-and-Emulate

The governing equations of the L96 system are defined as follows:

dXk
t

dt
= −Xk−1

t (Xk−2
t −Xk+1

t )−Xk
t + F − hcȲk

t ,

1

c

dY
j,k
t

dt
= −bY

j+1,k
t (Y

j+2,k
t −Y

j−1,k
t )−Y

j,k
t +

h

J
Xk

t ,

where Xt ∈ RK denotes the slow variable at the t-th time stamp and Yt ∈ RKJ denotes

the fast variable. We use Zt := [Xt,Yt] ∈ RK(J+1) to denote the system state at the t-th

time stamp. We choose K = 36 and J = 10 throughout experiments in this section, as in

Schneider et al. [2017].

We set our baseline following Schneider et al. [2017]. Within the EnKI framework,

they use Runge-Kutta Dormand and Prince [1980] to compute the forward model H and

optimize (1.1). After analyzing the physics information of the L96 system, they define

the moment function as: m(Z) := [〈X〉T , 〈Ȳ〉T , 〈X2〉T , 〈XȲ〉T , 〈Ȳ2〉T ], where 〈·〉T denotes

an empirical average over T time steps, Ȳ denotes an average across the J Y channels,
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〈Ȳ〉T = (1/JT )
∑T

t=1

∑J
j=1Y

j,k
t ∈ RK , and other quantities are computed similarly (see

details in §B.1). m(Zt) ∈ R5K . For the SBI methods, to suit the scenario we care about, i.e.,

estimating multiple φi for multiple different observations Zi at test time, we compare with

the non-adaptive counterpart of the algorithms referenced in these papers. For instance, we

set the round number of SNL+ [Chen et al., 2020b] to be one. And use the fixed training

dataset for SNL+ and NPE-C [Greenberg et al., 2019].

We conduct experiments and demonstrate the efficacy when measuring (1) the accuracy

of averaged point estimates, (2) the accuracy of uncertainty quantification, (3) the empirical

computational complexity. For all of our experiments (including SNL+ and NPE-C), we use

ResNet-34 [He et al., 2016] as the backbone of the trajectory encoder. We apply average

pooling at the last layer to generate a 512-d hidden vector. For contrastive learning, we

project the 512-d hidden vector into a 128-d feature vector as the output of the trajectory

encoder. For the regression head, we map the 512-d hidden vector to a 4-d parameter vector.

It is important to note that activation functions are not used in the regression head to ensure

an affine mapping between two projections. We parameterize the emulator network with

a ResNet backbone, and to enhance the representation power of the network, we use five

residual connection blocks (see §B.2). We find this increases the alignment between the two

representation spaces. Within each skip block, there is a residual connection between the

input layer and the output. The implementation details for training are shown in §B.1.

3.1.1 Higher quality estimates with lower sample cost

In this section, we evaluate our method with different training sizes in the perfect-model setting

where no noise is injected in observations. These experiments demonstrate the usefulness of

our method in realistic scenarios where forward models are prohibitively expensive and only

limited quantities of training data are available.

We train our Embed & Emulate method and the supervised regression baselines

15



when the training size equals 500 and 1, 000. The training samples are sampled uniformly

from φmin = [Fmin, hmin, cmin, bmin] = [−5, 0, 0.1, 0] to φmax = [Fmax, hmax, cmax, bmax] =

[20, 5, 25, 25], and each simulation is of length 100, with dt = 0.1. We then sample 200 testing

samples uniformly from a narrower range of [−3, 0.5, 2, 2] to [18, 4.5, 23, 23]. As assumed in

Schneider et al. [2017], each testing sample is of length 1, 000, with dt = 0.1. The EnKI prior

used for baselines (i.e. minimizing (1.1)) is a Gaussian distribution with means at the middle

of the range of the testing instances, diagonal covariance matrix, and variances broad enough

that all test samples are within 2σ of the mean, denoted pφ,fixed (see §B.1). Within the

context of the Embed & Emulate approach, we adopt an empirical Bayes approach: for

each test instance, we compute φ̂ using the regression head and use these values as the prior

means when using EnKI to minimize (2.3); we denote this prior pφ,empB. The impact of the

empirical Bayes approach is explored in §3.1.3.

n F ↓ h ↓ c ↓ b ↓

0 EnKI w/o Learning 15.48 (3.77) 0.86 (0.20) 40.45 (13.39) 4.60 (0.60)

500

hθ w/ Embed & Emulate 11.19 (3.65) 3.18 (1.60) 15.52 (6.24) 8.57 (2.17)
EnKI w/ Embed & Emulate 10.94 (4.07) 3.74 (2.26) 16.09 (6.41) 8.84 (2.93)
Supervised Regression 11.97 (3.10) 4.07 (2.24) 17.04 (5.88) 9.07 (2.74)
NPE-C 15.51 (4.52) 5.94 (2.59) 23.54 (8.16) 9.42 (3.70)
SNL+ 36.88(19.93) 48.71 (30.69) 57.45 (28.59) 23.45 (17.62)

1000

hθ w/ Embed & Emulate 6.30 (1.86) 2.07 (1.31) 9.34 (3.71) 5.51 (1.74)
EnKI w/ Embed & Emulate 6.59 (2.14) 2.36 (1.54) 9.38 (4.02) 5.54 (2.35)
Supervised Regression 7.57 (1.78) 3.08 (1.54) 11.46 (3.29) 6.64 (2.19)
NPE-C 11.29 (3.54) 5.62 (2.29) 16.32 (6.53) 6.81 (2.38)
SNL+ 33.29(19.68) 49.05 (27.75) 48.17 (23.90) 25.40 (16.03)

Table 3.1: Averaged MAPE (MdAPE, median absolute percentage error) for
varying training size of different methods for 200 test samples. We compare Embed
& Emulate w/ regression head (hθ) and Embed & Emulate plugged into EnKI to
supervised regression, NPE-C [Greenberg et al., 2019], SNL+ [Chen et al., 2020b], and a
classical numerical solver (Runge-Kutta) plugged into EnKI to minimize (1.1). The example
illustrates that Embed & Emulate is able to achieve a lower error than both the EnKI
approach based on a fixed moment vector objective and classical numerical solver [Schneider
et al., 2017] and a straightforward supervised regression approach that is unable to produce
uncertainty estimates.
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Training
data genera-
tion

Training
time

200 test
runs

Total time (train
+ test)

EnKI w/o Learning 0.0 0.0 8,000.0 8,000 (5.5 d)
hθ w/ Embed & Emulate 21.0 72.0 1.0 94.0 (1.57 h)
EnKI w/ Embed & Emulate 21.0 72.0 2.0 95.0 (1.58 h)
Supervised Regression 21.0 59.0 1.0 81.0 (1.35 h)
NPE-C 21.0 72.0 2.0 95.0 (1.58 h)
SNL+ 21.0 73.0 400.0 494.0 (8.23 h)

Table 3.2: Empirical computational time for different stages of different methods
(n = 1, 000). Reported in minutes, total time for Embed & Emulate, the supervised
regression, or NPE-C are 1.19% of EnKI with Runge-Kutta. All neural approaches are
trained with 4 GPUs and tested with 1 GPU. Both training data generation and EnKI w/o
Learning are run with 32 CPU Cores.

We first evaluate the accuracy of point estimates using the mean and median absolute

percentage error (MAPE and MdAPE), see §B.1. In Table 3.1 and Table 3.2, we see that

Embed & Emulate evaluated with the regression head (hθ) and EnKI guarantees similar

performance in terms of averaged accuracy. However, the regression head (hθ) is slightly

better, which may be explained by our empirical observation that when estimates from hθ

with Embed & Emulate are far from the true parameter values, then using this estimate

as the prior mean for EnKI can worsen the estimate. Despite this challenge, the EnKI has

the advantage of providing uncertainty estimates, which are discussed below and reflected in

Table 3.3.

Compared with other methods, it is clear that Embed & Emulate yields a significant

improvement in accuracy, especially for the parameter affecting high-frequency dynamics

(e.g., c). In particular, NPE-C [Greenberg et al., 2019]; SNL+ [Chen et al., 2020b] using

MCMC or rejection sampling suffers from increasing evaluation time as the number of test

samples increases. Moreover, when compared to the classical method of running EnKI

using a predefined moment function and expensive numerical solvers, Embed & Emulate

yields better performance in terms of accuracy and computation time. Last, our Embed &
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Emulate framework also performs well relative to supervised regression for smaller training

sets.

We then evaluate our results based on the continuous ranked probability score (CRPS)

[Hersbach, 2000, Zamo and Naveau, 2018, Pappenberger et al., 2015]. CRPS is an important

metric used in quantifying uncertainty (e.g., in weather forecasts). It measures the accuracy

of estimated posterior distributions and is defined as

CRPS(C,φ∗j) =
∫ ∞

−∞
(C(yj)− U(yj − φ∗j))

2dyj ,

where φ̂∗j represents the j-th component of the estimate parameter vector, φ∗j represents

the j-th component of the true parameter vector, C is the cumulative density function of

the ensemble estimates with C(y) = P (φ∗j ≤ y), and U is the Heaviside step function. For

a deterministic estimate from supervised regression, CRPS is equal to the mean absolute

error (MAE). Table 3.3 shows that Embed & Emulate achieves high-accuracy estimates of

uncertainty.

3.1.2 Visualizing uncertainty with noisy observations

In this subsection, we go beyond the perfect-model setting and evaluate our method in the

realistic scenarios where observations are noisy and obtained through: Z = H(φ) + η, where

η ∼ N (0, rΓ), where Γ is the temporal covariance of the trajectory Z, and r is a scaling

value. Specifically, we set φ = [10, 1, 10, 10] following Schneider et al. [2017] to ensure we are

in the chaotic regime. We use model trained with n = 4, 000 data samples and compare the

results obtained in both the noiseless and noisy cases. For this visualization, both methods

use the fixed prior from §3.1.1 based on the range of test values, so any differences observed

are not caused by differences in the prior, but rather differences in the choice of objective

and the method of computing the forward model.
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n F ↓ h ↓ c ↓ b ↓

0 EnKI w/o Learning 0.910 0.019 2.443 0.393

500

hθ w/ Embed & Emulate 0.698 0.076 1.715 0.824
EnKI w/ Embed & Emulate 0.615 0.073 1.561 0.720
Supervised Regression 0.707 0.104 1.785 0.917
NPE-C 0.844 0.106 2.117 0.853
SNL+ 1.399 0.616 2.426 1.822

1000

hθ w/ Embed & Emulate 0.412 0.049 0.992 0.453
EnKI w/ Embed & Emulate 0.360 0.042 0.829 0.394
Supervised Regression 0.478 0.078 1.242 0.650
NPE-C 0.593 0.096 1.389 0.564
SNL+ 1.304 0.595 2.010 1.763

Table 3.3: Continuous Ranked Probability Score (CRPS) evaluated on 200 test
samples. The errors of the uncertainty estimates are almost always lower for Embed &
Emulate than for an EnKI method using a classical numerical solver. And compared to
neural methods, EnKI with Embed & Emulate yields significant improvements over a
supervised regression which cannot quantify uncertainty, and defeats the simulation-based
inference models NPE-C [Greenberg et al., 2019] and SNL+ [Chen et al., 2020b] which relies
on sequential sampling. Moreover, it’s clear that Embed & Emulate evaluated with EnKI
provides more accurate uncertainty estimates than point-wise estimates from the regression
head (hθ) trained with Embed & Emulate.

As shown in Fig. 3.1, Embed & Emulate is more robust to noise than the baseline

method with numerical solvers and predefined moments. Reconstructed posterior distributions

learned with Embed & Emulate in Fig. 3.1 are more consistent with increasing noise levels,

especially for the parameters F and b.

3.1.3 Ablation study: role of the regression head

In this section, we empirically verify the utility of the regression head hθ in our Embed &

Emulate framework. We use n = 4000 training samples in two settings: first, we use the full

Embed & Emulate model of §3.1.1; second, we discard the regression head (i.e. fix hθ = 0)

while keeping intra- and inter-domain contrastive losses. For both trained models, we run the

EnKI. We run the EnKI using components from the Embed & Emulate framework for two
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Figure 3.1: Impact of observation noise. Reconstructed posterior distributions, comparing
a classical numerical solver (Runge-Kutta) plugged into EnKI to minimize (1.1) (left) with
Embed & Emulate (right). Both variants of EnKI are run for 70 iterations with 100
particles. The green line shows the noise-free case, the blue shows the noisy case when
r = 0.1, and the red shows the noisy case when r = 0.2. We see here that our proposed
Embed & Emulate method (right column) produces posterior estimates that are consistent
over a range of noise levels, while the baseline EnKI approach using a pre-defined embedding
corresponding to a moments vector is much more sensitive to variations in r.

choices of prior: first, we use pφ,fixed, and second, we use pφ,empB. Note the empirical Bayes

prior is only possible with the regression head. These priors are detailed in §3.1.1 and §B.1.

F ↓ h ↓ c ↓ b ↓

(a) No regression head (pφ,fixed) 16.75 (2.62) 6.02 (1.63) 22.16 (6.35) 6.60 (1.86)
(b) Embed & Emulate (pφ,fixed) 8.39 (1.12) 1.77 (0.82) 15.82 (1.61) 3.85 (0.91)
(c) Embed & Emulate (pφ,empB) 3.39 (1.03) 1.21 (0.76) 4.53 (1.52) 3.02 (0.90)

Table 3.4: Ablation study of regression head: Average MAPE (MdAPE, median absolute
percentage error) over 200 test instances for estimating φ by minimizing (2.3) in three different
settings: (a) fθ and ĝθ correspond to a generic emulator trained without the regression loss
`reg and the original prior pφ,fixed; (b) fθ and ĝθ correspond to the emulator learned with our
Embed & Emulate framework and the original prior pφ,fixed; and (c) fθ and ĝθ correspond
to the emulator learned with our Embed & Emulate framework and the empirical Bayes
prior pφ,empB. This experiment shows that having the regression component of the loss
complement the contrastive losses yields a substantial improvement in parameter estimation
accuracy using Embed & Emulate.

Table 3.4 shows that having the regression component of the loss complement the

contrastive losses yields a substantial improvement in parameter estimation accuracy using

Embed & Emulate. In other words, explicitly training the embedding function and emulator

for the parameter estimation task yields an emulator that is far more accurate during parameter

estimation than training a generic embedding and generic emulator. Furthermore, this table
20



illustrates the efficacy of our empirical Bayes procedure – i.e., using our learned regressor to

alter the prior used by EnKI. The medians are slightly improved while the means are strongly

improved, suggesting that the empirical Bayes procedure is particularly helpful in the tails.
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CHAPTER 4

CONCLUSION

4.1 Conclusions

The proposed Embed & Emulate framework trains an emulator of a complex simulation

to facilitate parameter estimation. Unlike generic emulation methods, which can lead to

poor parameter estimates and require expert domain knowledge to construct, our method

(a) leverages a contrastive learning framework coupled with a regression head to jointly

learn a low-dimensional embedding of simulator outputs that can be used to construct an

objective function for parameter estimation and (b) yields an emulator that can be used

within an optimization framework such as the EnKI to produce accurate parameter estimates

in 1.19% of the computation time of an approach using classical numerical methods, even

accounting for the time required to generate training samples. We explore our approach

in the context of earth system modeling as described by Schneider et al. [2017] and Cleary

et al. [2021] and hypothesize that these tools can facilitate improved climate forecasts that

account for uncertainties and cover the full range of possible outcomes. The social impacts of

improved climate forecasting are positive if acted upon. While learned emulators are gaining

in popularity, we as a community still know little about which systems are more or less

challenging to emulate or how to design task-specific emulators more generally. There are

further opportunities for exploring emulators for parameter estimation using optimization

frameworks beside the EnKI.
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A Algorithms and analysis

A.1 Ensemble Kalman Inversion

Ensemble Kalman Inversion (EnKI) gained its popularity in addressing Bayesian inverse

problems since its proposal [Iglesias et al., 2013]. It is a derivative-free optimization method

for objective functions of the form [Chada et al., 2020]:

JDM(φ) :=
1

2
‖ymeasure − g(φ)‖2R, (1)

where ymeasure is the measured data, g is a given map and R is a symmetric positive definite

matrix representing the data measurement precision (we explain how different approaches in

our paper using different ymeasure and R below).

The EnKI estimates a posterior distribution of φ, which is approximated using an ensemble

of particles. At each iteration, the EnKI consists of two steps: the prediction step and the

analysis step. In the prediction step, we apply the forward model g to each particle of

the ensemble. In the analysis step, each particle is updated by using artificially perturbed

observations and forward-mapped particles. The EnKI is summarized in Algorithm 1.

When using Embed & Emulate to minimize the objective function (2.3), ymeasure

corresponds to the embedding of the raw trajectory fθ(Z), the forward model g corresponds

to the emulator ĝθ, and R corresponds to an identity matrix. When using the baseline

method to minimize the objective function (1.1), ymeasure corresponds to the moment vector

m(Z), g corresponds to the m ◦H where H is computed using Runge-Kutta method, and R

is a diagonal matrix with j-th diagonal entry Rj,j := Var[m(Z)j ].
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Algorithm 1 EnKI (ymeasure, g, pφ, α,R,M,N)

Input: Data ymeasure, forward model g, prior distribution pφ, step size α, variance R,
ensemble size M , number of iterations N .

Initialize: {φ̂(0,m)}Mm=1 sampled from the prior distribution pφ.
1: for i = 1, · · ·N do
2: Prediction step: propagate the ensemble of particles to data space {g

(
φ̂
(i,m))}Mm=1

by applying the forward model g M times. From the ensemble, calculate the empirical
means and covariance matrices:

φi =
1

M

M∑
m=1

φ(i,m), gi =
1

M

M∑
m=1

g
(
φ̂
(i,m))

,

Ci
φg =

1

M

M∑
m=1

(
φ̂
(i,m)
i − φi

)
⊗
(
g
(
φ̂
(i,m))− gi

)
,

Ci
gg =

1

M

M∑
m=1

(
g
(
φ̂
(i,m))− gi

)
⊗

(
g
(
φ̂
(i,m))− gi

)
,

3: Analysis step: calculate the Kalman gain matrix

Ki = Ci
φg(C

i
gg + α−1R)−1,

artificially perturb the data y
(i,m)
measure = ymeasure + η(i,m) where η(i,m) ∼ N (0, α−1R),

and update the ensemble of particles:

φ̂
(i+1,m)

= φ̂
(i,m)

+Ki
(
y
(i,m)
measure − g

(
φ̂
(i,m)))

, 1 ≤ m ≤ M.

4: end for
Output: {φ̂(N,m)}

A.2 Contrastive learning and inverse problems

In this section, we briefly reviewed the assumptions and results of Zimmermann et al. [2021]

and explain how we relate the analysis to our work in addressing the parameter estimation

problem.

Recent literature studies the reason why contrastive learned representations can be

successfully extended to multiple downstream tasks [Arora et al., 2019, Wang and Isola, 2020,
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Zimmermann et al., 2021]. Among them, a recent work from Zimmermann et al. [2021]

points out that under certain assumptions, the representations fθ learned in the contrastive

framework to minimize `ZZ(θ; τ) (shown in (2.2)) inverts the underlying data generating

process H−1(Z) of observed data up to an affine transformation.

Assumptions Zimmermann et al. [2021] firstly make assumptions on the data generating

process. They assume the generator H : Φ → Z is an injective function with Φ ∈ Sk−1

in a unit hypersphere and the distribution of φ ∈ Φ is uniform. Second, they assume

the conditional distribution p(φ̃|φ) of a “positive parameter” φ̃ given φ is a von Mises-

Fisher (vMF) distribution with p(φ̃|φ) = c−1
p exp(κ〈φ̃,φ〉) where cp is the normalizing

constant and κ is the concentration parameter. Third, they assume the learned representation

fθ : Z → Sk−1 is in the unit hypersphere where the dimension of the representation is

equal to the dimension of the parameters. They further assume the learned conditional

distribution of φ̃ given φ with the contrastive trained neural network is a vMF distribution

with qθ(φ̃|φ) = Cq(φ)
−1 exp(〈fθ(H(φ̃), fθ(H(φ))/τ〉) where Cq(φ) is the partition function.

In the context of the parameter estimation problem of this paper, the relationship proved

by Zimmermann et al. [2021], that fθ(Z) = AH−1(Z) = Aφ where A is a full rank matrix,

is clearly a desirable property as, if A were known, we could simply invert A to obtain an

unbiased estimate of φ. Empirically, we find that directly adding a linear regression head on

top of fθ (which effectively serves as a mechanism for learning A−1; see Fig. 2.1) provides

faster convergence and better performance (as shown in §3.1.3).

B Implementation details

B.1 Experiment details

Lorenz 96 dataset Initial conditions of the ODE/PDE systems affect the values of

dynamical variables at future times. To better fit in real-world scenarios, we simulate the
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training data used for Embed & Emulate and the supervised regression, as well as the

testing data used for evaluations of all methods, with random initial conditions sampled

from the normal distributions. During EnKI evaluations of the baseline we are required to

specify initial conditions. We follow Schneider et al. [2017] and set the initial conditions

of all simulations in the EnKI evaluations as random samples drawn from the observation.

Note that, unlike the baseline method, Embed & Emulate directly learns the structural

embeddings of φ and does not require initial conditions. Beyond the setup of initial conditions,

there are two stages to generate our train and test data. In the first stage, we generate a

collection of φi, and for each one, we run a Runge-Kutta solver to compute a corresponding

Zi. In the second stage, we filter out some of the {φi,Zi} generated during the first stage

–whenever the Runge-Kutta iterations are unsuccessful, generating NaN values, and whenever

the Zi are degenerate, resulting in a standard deviation below 5e-5.

Data processing (a)Trajectory cropping: during the training of Embed & Emulate

and the supervised regression, we randomly crop a collection of length-250 trajectories from

length-1000 trajectories, where each crop Zcrop ∈ R250×396. (b) “positive” data selection:

Embed & Emulate trained with contrastive learning objectives tries to pull “anchor” data Z

(or φ) towards “positive” data Z̃ in (2.2) (or φ̃ in (2.5)) and at the same time push “negative”

data away. To identify a “positive” trajectory Z̃ (or parameter φ̃), we use a two-step approach.

First, we select it in a supervised manner by measuring the distance between the “anchor”

data Zi (or φi) and a sample Zj (or φj) in the parameter space. We find the index ĩ of the

nearest neighbor of the “anchor” data in the parameter space with ĩ := argmini 6=j δ(φi,φj),

where δ is a metric function defined as: δ(φi,φj) :=
1
2

{
APE(φi;φj) + APE(φj ;φi)

}
(see

APE in §B.3). However, since the training data is sampled from finite grids with limited size,

the distance between the “anchor” data and its nearest neighbor δ(φi,φĩ) could be very large.

We apply a threshold filter and only accept a candidate nearest neighbor as “positive” data

when the empirical distance δ(φi,φĩ) is below some threshold (e.g., 0.45 for n = 500, 0.4 for
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n = 1, 000 and 4, 000 ). Second, for the cases where no sample passes the threshold filter,

we set Z̃ and φ̃ in two different ways. For Z̃, we simply set it in an unsupervised way by

randomly making another crop on Zi. For φ̃, we set it by randomly adding a small amount

of noise on φi with φ̃ij := φij + ξφij , j = 1, 2, 3, 4 with a certain probability (e.g., 50%),

where ξ is a normal variable with mean 0 and a small standard deviation (e.g., 0.04).

Training Hyperparameters We train Embed & Emulate and the supervised regression

using the AdamW optimizer. For both methods, we linearly warm up the learning rate to

0.01 at the beginning of the training and then gradually decay the learning rate with a cosine

decay scheduler. We use λ =1e-5 for weight decay. We train NPE-C [Greenberg et al., 2019]

and SNL+ [Chen et al., 2020b] with learning rate 1e-4 and 5e-4 as we find lower learning

rate leads to better performance. We train all the methods with 1, 000 epochs. We use batch

size 1000 for large sized training data with n ≥ 1, 000. For the small size training data with

n = 500, we set it as 500.

Temperature values in contrastive learning balance the influence between barely distin-

guishable samples and easily distinguishable “negative” samples [Ravula et al., 2021]. They

are commonly chosen to be less than one where smaller values indicate a larger influence of

barely distinguishable “hard” samples. For Embed & Emulate, we initialize the tempera-

ture values τ in (2.2) and (2.5) and τ ′ in (2.4) at 0.15. We keep τ and τ ′ fixed at 0.15 for the

first 500 epochs to make sure “hard” samples get large gradients and are updated sufficiently.

We then adopt the “heating-up” strategy from Zhang et al. [2018] and linearly increase τ in

(2.2) and (2.5) to 0.5 to increase the impact of “easier” samples. We keep τ ′ in (2.4) fixed all

the time so that the learned emulator ĝθ is capable of distinguishing embeddings of “hard”

samples from the embedding network fθ, and vice versa.

In training a contrastive learning target, we usually need sufficient amount of “negative”

samples to approximate the uniform repulsion. We follow He et al. [2020] and construct a

first-in-first-out queue with a rolling updating scheme. Practically, the memory bank size
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should be no less than the training size. In our experiments, we set the size of the memory

bank as 5, 000 when the training size n = 4, 000; the size of the memory bank as 2, 000 when

the training size n = 1, 000; and the size of the memory bank as 1, 500 when the training size

n = 500.

All the hyperparameters are chosen using a grid search with a reserved validation set

consisting of 5 samples. The range of values searched over are as follows:

• The initialized learning rates for Embed & Emulate and the supervised regression were

selected from the set {0.001, 0.01}.

• The initialized temperature values of τ in (2.2) and (2.5) and τ ′ in (2.4) were selected

from the set {0.10, 0.15, 0.20}. The heated up maximum value of τ in (2.2) and (2.5) were

selected from the set {0.1, 0.2, 0.3, 0.4, 0.5}.

Priors Initialization of the EnKI As Schneider et al. [2017], for the initialization of

the EnKI prior, we use a normal prior for (φ1,φ2,φ4) = (F, h, b) and a log-normal prior for

φ3 = c in order to enforce positivity. For the baseline method minimizing (1.1) in §3.1.1 and

§3.1.2, we use a fixed prior pφ,fixed. For the normal variables, we choose the mean at the

middle of the range of testing instances: µφ,fixed(F, h, b) = (7.5, 2.5, 12.5) and variances broad

enough so that all test samples are within 2σ of the mean: σ2φ,fixed(F, h, b) = (36.0, 2.25, 36.0).

For the log-normal variable log c, we set its mean µφ,fixed(log c) = log(11.5) and variance

σ2φ,fixed(log c) = 0.15 (i.e., a mean value of 12.5 for c). For Embed & Emulate, we can

choose between the instance-wise prior pφ,empB and the fixed prior defined above. Specifically,

we alter the mean of pφ,empB with the empirical estimate provided by the regression head

and use a relatively small variance. σ2φ,emp(F, h, b) = (18.0, 1.125, 18.0) for normal variables

and σ2φ,emp(log c) = 0.075 for log-normal variable c.

Setup of the EnKI For experiments in §3.1.1, we set the ensemble size M = 100, step

size α = 0.3 and iteration number N = 50 for the baseline method with pφ,fixed and Embed
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& Emulate with pφ,empB. For the study of noise impact in §3.1.2 when evaluating the

baseline and Embed & Emulate, we use pφ,fixed. For the ablation study in §3.1.3 when

evaluating Embed & Emulate and no regression head contrastive learning with pφ,fixed, we

set a large ensemble size M = 10, 000 to prevent potential collapse in a local minimum and

N = 100 to ensure convergence. Arguably, this could slow down the computational times.

However, empirically we only increased the time from 2 seconds to 16 seconds per instance,

which is significantly lower than the times consumed by the baseline method.

Computational resources Experiments of Embed & Emulate and the supervised

regression were performed on a system with 4x Nvidia A40 GPUs, 2 AMD EPYC 7302 CPUs,

and 128GB of RAM. The baseline methods and data generating process were performed on

2x Xeon Gold 6130 CPUs.

B.2 Network Architecture

Emulator ĝθ To enhance the representation power of the emulator ĝθ and enlarge the

alignment between two learned representation spaces, we design the emulator using residual

blocks as in Fig. B.1.

Embedding network fθ We use Resnet34 [He et al., 2016] as the backbone of the

trajectory branch of Embed & Emulate in Fig. 2.1(a) and the supervised regression. We

apply average pooling at the last layer to generate a 512-d hidden vector. To respect the

temporal periodic pattern of Lorenz 96, we replace the standard zero padding with the circular

padding on the temporal axis. For the regression head hθ, we project the 512-d hidden vector

into a 4-d output using only a single fully connected layer. For the embedding network, we

project the 512-d hidden vector into a 128-d feature vector using a similar structured branch

as projection residual (out) in Fig. B.1(d) except that the residual block skips two layers

instead of one.
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(a) Encoder network(b) Residual projection
(in)

(c) Residual block (d) Residual projection
(out)

Figure B.1: Architecture of emulator ĝθ of Embed & Emulate (a) The emulator
network consists of one residual projection (in), three residual projection blocks, and one
residual projection (out). (b) The residual projection (in) independently maps the j-th item of
φ into a high-dimensional (e.g., 128) latent representation, which is then concatenated (shown
as the ⊕ operator) as a single vector as the output. (c) The residual block has the same
input and output dimension. (4) The residual projection (out) projects a high-dimensional
input latent vector into a low-dimensional embedding.

B.3 Performance metrics

Absolute Percentage Error (APE) : APE is used in selecting “positive” samples of

Embed & Emulate and is calculated on pairs of training samples:

APE(φj ;φi) =
k∑

l=1

|φil − φjl|
|φil + ε|

, (2)

here k is the dimension of φ, i, j that represents indexes of two data samples, and ε is a small

value to address overflow issues.
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Mean Absolute Percentage Error (MAPE) MAPE is a measure of prediction accuracy

over the entire testing data and is expressed as a ratio with the formula:

MAPE(φ̂∗j ;φ∗j) =
1

n

n∑
i=1

|φ̂ij − φij |
|φij |+ ε

, (3)

where φ̂∗j represents the j-th component of the estimate parameter vector, φ∗j represents

the j-th component of the true parameter vector (e.g., [φ∗1,φ∗2,φ∗3,φ∗4] = [F, h, c, b] for

Lorenz 96), and ε is a small value to address overflow issues.

Continuous Ranked Probability Score(CRPS) As described in §3.1.1, CRPS is a

probability metric to evaluate the performance of a probabilistic estimation. CRPS is

computed as a quadratic measurement of cumulative distribution function (CDF) between

the predicted distribution C and the empirical distribution of the observation. CRPS is

defined as [Hersbach, 2000, Zamo and Naveau, 2018, Pappenberger et al., 2015]:

CRPS(C,φ∗j) =
∫ ∞

−∞
(C(yj)− U(yj − φ∗j))

2dyj , (4)

where φ∗j and φ̂∗j are defined above, C is the CDF of the ensemble estimation with

C(yj) = P (φ̂∗j ≤ yj), and U is the CDF of the Heaviside step function with U(yj − φ∗j) =

1{yj ≥ φ∗j}. Practically estimating C is difficult since it has no analytic form. In our

case, using EnKI with ensemble size M , we can estimate (4) using the empirical distribution

calculated from the particles {φ̂(m)
∗j }Mm=1

1:

CRPS(C,φ∗j) = − 1

2M2

M∑
m=1

M∑
m′=1

|φ̂(m)
∗j − φ̂

(m′)
∗j |+ 1

M

M∑
m=1

|φ̂(m)
∗j − φ∗j |. (5)

1. https://pypi.org/project/properscoring/
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B.4 Visualizing the objective functions

(a) Marginal heatmap of (1.1) using Runge-Kutta.
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(b) Marginal heatmap of (2.3) using learned emulator.

Figure B.2: Heatmap visualization showing values of objective functions. (a) the
marginal heatmap of predefined moments objective function (1.1); and (b) the marginal
heatmap of (2.3) with Embed & Emulate using learned emulator. The red stars in both
plots show the locations of the true parameters, while the black stars show the locations of the
points with the minimum function value. All objective values are greater or equal to zero, but
we intentionally set the limit of z-axis to be negative for clear visualization of “star” points.
z-axes between different marginal heatmaps using the same objective function are aligned
with post-processing. Unlike the value of the objective function (2.3) are bounded between
[0, 4], values of (1.1) have no upper bound and might contain extremely large numbers. For
better visualization, we manually truncate values of (1.1) by a threshold number (e.g.,100)
for better visualization.

In this section, we visualize the objective function of (1.1) with predefined moments

function and Runge-Kutta and (2.3) of Embed & Emulate with emulator fθ and ĝθ. We

use the same instance in §3.1.2 as the observation with the ground truth φ = [10, 1, 10, 10]

and the noiseless Z is of length 10, 000. Fig. B.2 shows the marginal heatmaps of the objective

functions when holding two parameters fixed at the ground truth values and sampling the

other two parameters uniformly in a fixed range. We can see that the objective function

learned with Embed & Emulate can accurately reflect the dynamics in the parameter

space with smooth curves. In contrast, the predefined objective function is insensitive to the

parameter c with a flat curve showing in the marginal heatmap of (h, c) pairs.
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C Further Experiments

In this section, we study the 1-d Kuramoto-Sivashinsky equation (KSE). Kuramoto-Sivashinsky

equation is known for its chaotic dynamics and can be applied in describing a variety of

physical phenomena, including flows in pipes, plasmas, chemical reaction dynamics, etc.

[Hyman and Nicolaenko, 1986] The Kuramoto-Sivashinsky equation is a fourth-order partial

differential equation with the form:

∂Vx
t

∂t
+ λ2

∂2Vx
t

∂x2
+ λ4

∂4Vx
t

∂x4
+ λnonlinearV

x
t
∂Vx

t

∂x
= 0,

and Vx
t = Vx+2L

t ,

where Vx
t is the state of KSE, λ2, λ4 and λnonlinear are the coefficients of second-order deriva-

tive, fourth-order derivative and nonlinear term. In all, we define φ := [λ2, λ4, λnonlinear],

and our goal is to learn φ from sequences of observations V ∈ RT×d.

Choosing the moments function We choose the first order statistics of V to define the

moments function: m(V) = [〈V〉] where 〈·〉 denotes empirical average over time. Note here

we have tried multiple combinations of moments, including second-order and third-order

statistics but found no choice of moments performs better than using only the first-order.

Preparation of dataset We set L = 32 and d = 256 to ensure we are in a chaotic regime.

Initial conditions are randomly sampled from a uniform range [−π, π]. All simulations

performed here are completed with a Runge-Kutta 4-stage method as Pachev et al. [2021].

Training data are sampled uniformly for all three components of φ ranging from min = 0.1

to max = 10.0 with length T = 400, dt = 0.5 and size n = 500. 100 testing data are sampled

in a narrower range from min = 0.5 and max = 9.5 with length 800 and dt = 0.5.
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Setup of the EnKI We set the fixed Gaussian prior pφ,fixed with mean at the middle

of the testing range and variance broader enough to cover all testing instances in 2σ:

µφ∗j,fixed = 5, σ2φ∗j,fixed
= 6.25, j = 1, 2, 3. We use the same variance for pφ,empB and

alter its mean with the empirical estimate provided by the regression head. For both baseline

and Embed & Emulate, we set ensemble size M = 100, iteration number N = 40, step

size α = 0.3.

Setup of the training We train both Embed & Emulate and the supervised regression

for 1,000 epochs. We set the memory bank size of Embed & Emulate for 1,000. We set

the dimension of learned representation, i.e., fθ(V) and ĝθ(φ) to be 120. We use the same

learning rate and cosine decay scheduler. We initialize τ, τ ′ = 0.1, and linearly warm up τ ′

from 500 to 900 epochs with the maximum value 0.6.

λ2 ↓ λ4 ↓ λnonlinear ↓

(a) EnKI w/o Learning 34.73(25.44) 56.14 (38.27) 68.64(33.90)
(b) hθ w/ Embed & Emulate 3.24 (1.56) 3.70 (1.68) 2.69 (1.45)
(c) EnKI w/ Embed & Emulate 3.48 (1.42) 3.29 (1.50) 3.30 (1.69)
(d) Supervised regression 3.27 (1.16) 3.34 (0.97) 3.14 (1.36)
(e) NPE-C 4.30 (2.14) 4.86 (2.59) 3.30 (1.83)

Table C.1: Averaged MAPE (MdAPE, median absolute percentage error) over
100 test instances. (a) EnKI plugged in the Runge-Kutta solver and predefined moments
function in minimizing (1.1); (b) Embed & Emulate with Regresssion head (hθ); and
(c) EnKI plugged in our Embed & Emulate with the empirical Bayes prior pφ,empB; (d)
Supervised regression; (e) NPE-C [Greenberg et al., 2019].

Results We first evaluate the accuracy of point estimates using the mean absolute percentage

error (MAPE) and the median absolute percentage error (MdAPE). In Table C.1, we see

that Embed & Emulate significantly outperforms EnKI using the predefined moments

function and the expensive numerical solver. This experiment demonstrates that designing

moments function like Schneider et al. [2017] did for the Lorenz 96 system needs physical
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λ2 ↓ λ4 ↓ λnonlinear ↓

(a) EnKI w/o Learning 1.14 1.50 1.47
(b) hθ w/ Embed & Emulate 0.148 0.149 0.125
(c) EnKI w/ Embed & Emulate 0.121 0.101 0.114
(d) Supervised regression 0.149 0.124 0.150
(e) NPE-C 0.175 0.217 0.131

Table C.2: Averaged continuous ranked probability score (CRPS) over 100 test
instances. (a) EnKI plugged in the Runge-Kutta solver and predefined moments function
in minimizing (1.1); (b) Embed & Emulate with Regresssion head (hθ); and (c) EnKI
plugged in our Embed & Emulate with the empirical Bayes prior pφ,empB; (d) Supervised
regression; (e) NPE-C [Greenberg et al., 2019].

Training
data genera-
tion

Training
Time

100 test-
ing runs

Total time(train-
ing+ testing)

EnKI w/o Learning 0.0 0.0 3,600.0 3,600.0 (60h)
hθ w/ Embed & Emulate 9.0 34.0 0.5 43.5 (0.73 h)
EnKI w/ Embed & Emulate 9.0 34.0 1.0 44.0 (0.74 h)
Supervised Regression 9.0 28.0 0.5 39.5 (0.62 h)
NPE-C 9.0 31.0 1.0 40.0 (0.66 h)

Table C.3: Empirical computational time for different stages of different methods.
Reported in minutes, total time needed for Embed & Emulate or the supervised regression
are 1.23% of EnKI with Runge-Kutta.

information of the dynamical system and in applications (e.g., climatology) this requires

extra domain expertise. We then evaluate the quantified uncertainty using the continuous

ranked probability score (CRPS). In Table C.2, we see that Embed & Emulate outperforms

the baselines of the EnKI without learning and the supervised regression. This experiment

demonstrates that Embed & Emulate with the EnKI is capable of providing a reliable

probabilistic estimation with low errors than the EnKI without learning which requires

domain knowledge to perform well, the supervised regression which only provides points

estimates, and NPE-C which lacks competence when trying to estimate multiple different

observations at test time. Lastly, we show the empirical computational time needed for
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Embed & Emulate, the supervised regression, NPE-C, and the EnKI with Runge-Kutta for

different stages. From Table C.3, we see that Embed & Emulate, the supervised regression,

and NPE-C only require 1.23% (or below) of the time needed by the EnKI with Runge-Kutta.
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