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CHAPTER 1

MOTIVATION AND INTRODUCTION

1.1 Research Question

This thesis aims to answer the following driving research question:

Can unsupervised cloud clustering systems allow the discovery of unknown climate-relevant

cloud patterns, and democratize a large amount of climate data by accessing the core data

more accessible?

1.2 Thesis statement

Artificial Intelligence (AI) for science, AI4Science, develops cutting-edge AI algorithms

and High-Performance Computing (HPC) to advance the frontier of science through the

discovery of new scientific knowledge. In climate science, multispectral satellite remote

sensing instruments have provided petabytes of global multispectral cloud imagery over the

past decades that capture cloud structure, size distributions, and radiative properties at a

near-daily cadence. These observations should help in understanding cloud responses and

trends in cloud behavior in climate science, whereas these enormous datasets are underutilized

because climate scientists cannot in practice manually examine them to analyze spatial-

temporal patterns. To aid the challenge, automated cloud classification algorithms using AI

such as machine learning and deep learning have been studied to identify physically relevant

cloud types. However, the use of satellite observations to understand cloud feedbacks in a

warming climate has been hampered by the simplicity of existing cloud classification schemes,

which are based on single–pixel cloud properties rather than utilizing spatial structures and

texture, and based on a grid of classes defined by low, medium, or high values of cloud top

pressure and optical thickness.

1



In this thesis, I develop automated cloud classification frameworks 1 to generate unique

new cloud classes that detect meaningful distinctions between cloud textures, using only raw

multispectral imagery as an input. That is, cloud classes are defined without reliance on

location, time/season, derived physical properties, or pre-designated artificial class definitions.

Having the data-driven cloud classification approach, I create a unique new AI-generated

cloud dataset, which delivers the information from multi-spectral images in a compact form,

enabling data-driven diagnosis of patterns of cloud organization. This thesis aims to help

democratize climate research by developing unsupervised cloud clustering algorithms based

upon substantial prior works [40, 41, 42, 43].

1.3 Introduction

Meteorologists have developed a variety of cloud classification schemes [75, 103], which

divide the various forms of clouds into four to several dozen of deterministic or nondeterministic

types of cloud classes based on the texture, height, and thickness of clouds, as well as

their surrounding atmospheric environment. Cloud classifications help the understanding

of these cloud behavior, which plays a substantial role in the Earth’s radiation budget

by both reflecting sunlight and trapping infrared radiation. In particular, over the past

several decades, advancements in satellite-borne remote sensing instruments have produced

petabytes of global multispectral imagery that capture cloud structure, size distributions, and

radiative properties at minutes to daily cadence [98]. However, these enormous datasets are

underutilized because climate scientists cannot in practice manually examine them to analyze

spatial-temporal patterns. Here, automated cloud classification methods, which automate

the classification of clouds by leveraging recent advancements in computing capability and

AI technologies, can address the challenge.

Existing classification schemes are necessarily simplistic. The most standard classification,

1. A note about terminology: As the literature is not consistent in making a distinction between cloud
classification and cloud clustering, I use the two terms interchangeably in this thesis
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the ISCCP (International Satellite Cloud Climatology Project) schema, simply defines a grid

of nine global classes based on low, medium, or high values of cloud altitude (cloud top

pressure) and optical thickness [75, 76, 77]. Because this classification is typically applied

pixel by pixel, it cannot capture spatial structures and can produce an incoherent spatial

distribution of cloud types in cloud imagery. The World Meteorological Organization’s

International Cloud Atlas [103], a more complex but subjective cloud classification framework,

defines 10 basic classes and at most 100 of sub-classes with a complex coding procedure.

The schema is subjective and difficult to automate and furthermore does not capture the

full diversity of important cloud types. For example, it does not distinguish between open-

and closed-cell stratocumulus clouds, placing them both in “stratocumulus,” though the

two have different circulation patterns, rain rates, and radiative effects [102]. Because

the human eye serves as a sensitive tool for pattern classification, human observers can in

principle group clouds into a larger set of types based on texture and shape as well as altitude

and thickness. In practice, however, it has been difficult to devise a set of artificial cloud

categories that encompass all cloud observations and can be applied consistently by human

labelers. Moreover, the diversity of cloud morphologies and textures, and their multi-scale

properties, makes classifying them into meaningful groupings a difficult task.

These issues motivate the application of AI-based algorithms for cloud classification.

Most work to date on automated cloud classification has involved supervised learning, whereby

ML models are trained to classify cloud images based on a training set to which humans

have assigned labels. Early work on machine-based cloud classification algorithms integrated

simple statistics with machine learning algorithms [6, 45, 100, 101], and combined textual

and cloud physical features [79, 80]. More recent work [48, 71, 86, 104, 105, 106, 107, 109]

takes advantage of convolutional neural networks (CNNs) [39, 87] reinforced by increasingly

powerful modern computing hardware to achieve high classification accuracy in extracting

relative features from images in cloud classification. However, supervised methods cannot

discover unknown cloud types that may be relevant to climate change research because
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of their drawbacks: First, it requires a large annotated dataset. Conventional supervised

cloud classification studies employed human labelers from a couple of participants to a few

dozen of experts (e.g., 67 participants [71]) to clip a sufficient amount of training images.

Second, because human-defined cloud classes are only well-defined for classic examples, which

account for just a small fraction of large satellite datasets [20, 77], supervised approaches fall

short when used to classify diverse real-world data. Third, as labels are restricted to prior

assumptions, they cannot identify cloud types that were not specified in the training data

but that might be relevant to climate research. The difficulty of generating meaningful and

consistent labels is a constant problem, and supervised learning approaches are the most

successful when used on limited datasets containing classic examples of well-known textures.

For example, Rasp et al. [71] classified just four particular patterns of stratocumulus defined

and manually labeled by Stevens et al. [90].

To address the intrinsic drawback of the supervised learning approach for cloud classification

and then serve the needs of climate research free from assumptions that may limit novel

discoveries, the more appropriate choice is unsupervised learning, in which unknown patterns

in data are learned without requiring predefined labels. The first demonstrations of unsupervised

neural network methods applied to cloud images were made in the 1990s [93, 95]. Even with

the primitive neural networks then available, Tian et al. [93] showed that cloud images from

the GOES-8 satellite could be sorted automatically into ten clusters that reproduced the

ten ‘basic’ WMO classes with 65–75% accuracy. Advances in deep neural network (DNN)

methods enable to capture more complex object features from images. Denby [14] prototyped

unsupervised cloud classification algorithms that used convolutional neural networks (CNNs)

and produced cloud classes from the resulting compact representations via hierarchical

agglomerative clustering (HAC) [33]. The works used only 12 classes successfully produced

reasonable groups for different structures and textures of low clouds from near-infrared

images from the GOES satellite in the tropical Atlantic. Yet, unsupervised approaches are

challenging because they reveal underexplored associations between known cloud categories
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and cloud clusters generated as well as the lack of ground truth against which to compare

the outputs, making evaluation a challenging task.

In an era where advances in both climate models [82] and satellite instruments create an

increasing number of data at Petabytes scale in finer spatial and temporal resolution, the

difficulty raises for extracting insight from complex patterns in such PB-scale datasets, and

then furthermore for democratizing their rich information for users regardless of access to a

large computation resource. Unsupervised DNNs often perform dimensionality reduction so

as to map only relevant information from gigantic raw data into a compact lower-dimensional

latent space for serving as a Foundation Model [61]. Specifically for the purpose of cloud

classification, a standardized science product with AI-generated labels and associated cloud-

related parameters may support studies of the response of clouds to forcing on timescales

from hours to decades and to allow data-driven diagnosis of cloud organization and behavior

and their evolution over time as CO2 and temperatures increase in global warming.

1.4 Thesis Contribution

The primary goal of this thesis is to propose an unsupervised cloud classification framework

and create a new unique AI-driven cloud label and physical properties dataset that enables

to discover unknown cloud types relevant to climate change research, with definitions based

on spatial distributions, to deliver these complex datasets in compact forms that allow

interpretation by facilitating access to core data, and finally to apply the framework and

dataset to validate simulated clouds from climate model outputs. To achieve the democratization

of large climate science data via cutting-edge deep learning techniques, the thesis proposes

four solutions.

The primary contributions are:

• The development of a rotationally invariant (RI) autoencoder for extracting complex

spatial patterns of cloud texture and radiances associated with cloud properties on a
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lower dimensional latent representation. In particular, I develop a rotation-invariant

loss function to make cloud images agnostic to the orientations.

• The design of a series of evaluation protocols to establish that resulting cloud

clusters can be scientifically useful in assigning operational classifications to cloud

images.

• Creation of a novel unsupervised learning-based climate dataset that composites 23

years of global AI-generated cloud classification atlas (AICCA). AICCA translates

872 TB of satellite images into 26.7 GB (patch-level Section 3.6.3) and 54 GB

(daily-level Section 3.6.3) of class labels and cloud properties.

• A design of universal workflow to evaluate bias of simulated cloud from a high-

resolution cloud model.

The thesis is organized as follows. Chapter 2 provides related work on unsupervised

cloud classification, autoencoder, transform-invariant, and AI-generated climate datasets.

In Chapter 3 I describe the proposed thesis contents. Chapter 4 presents initial results.

item 5 describes the plan and timeline to complete thesis.
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CHAPTER 2

RELATED WORK

Automated cloud classification has been studied since the 1970s, developing from simple

statistics with machine learning algorithms and shallow neural networks in the 1990s, to

cutting-edge neural network technologies after the mid-2010s. Most of the literature relies

on supervised learning approaches. Although few unsupervised neural network approaches

have been proposed since the 1990s [93, 95], early works arise limitations as the prediction

accuracy in classification task falls behind that of supervised learning and the interpretation

of resulting classes may not always match the standard cloud types. Recent algorithms and

computing power advancements have motivated significant changes in cloud classification

approaches. In particular, powerful graphics processing units (GPUs) have allowed researchers

to train larger and more complex neural networks to tackle more sophisticated tasks. This

chapter is dedicated to review literature in unsupervised cloud classification, autoencoders

as a method of dimensionality-reduction, transform-invariant neural networks as a mean to

perform more sophisticated tasks, and AI-driven climate datasets as a tool to help in the

understanding of climate systems.

2.1 Unsupervised Neural Network approaches

Unsupervised learning, one of the AI algorithms, learns patterns in input data without

either predefined labels or artificial interventions to group similar patterns of data. Few

attempts have been made to explore the potential of unsupervised learning for cloud classification.

An early and widely used technique involves the use of a self-organizing map (SOM) [37].

SOM technique produces dimensionality-reduced representations while preserving topological

relationships in input data via a two-layer (i.e., input and output layers) neural network.

The network first selects the two largest eigenvalues to span a two-dimensional space that is

composed of nodes with initial weights. Each data point in the dataset has its Best Matching
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Unit (BMU) calculated based on the shortest Euclidean distance and is then considered

matched to that node. The node and nodes that fall within a defined neighborhood are

updated to better match the assigned point until a given step. Early studies [93, 95] uses

SOM to classify satellite imagery in both visible and infrared channels into basic cloud

types (e.g., stratocumulus, cumulus) and land and/or ocean background types without

clouds. Downstream classification task performs comparisons of the accuracy with supervised

neural networks, revealing that unsupervised learning may not match the artificial cloud

categories defined by climate scientists. The result at the early stage indicates that evaluation

metrics used for supervised learning may not be suitable for assessing the heuristic power

of unsupervised learning. Recent studies using SOM, motivated by improving unsupervised

cloud classification performance from simply applying clustering algorithms to two-dimensional

cloud optical thickness (COT) – cloud top pressure (CTP) joint histogram [30], show

that clusters produced using the SOM technique from ISCCP data [54, 55] and MODIS

prodacts [83, 84] have been used to investigate various properties associated with cloud

clusters such as radiation, vertical velocities and cloud phase.

The use of deep neural networks for unsupervised cloud classification opens up a new

research direction: Denby [14] applied representation learning techniques to classify mesoscale

cloud organizations. In representation learning, CNNs are trained to efficiently embed

meaningful features in the input data on a latent representation, which is then used for a

clustering or regression protocol. Denby trained a 34-layer residual neural network (ResNet-

34) on GOES-16 images to formulate the representation, and then applied hierarchical

clustering to the latent representation of unseen GOES-16 images. The resulting clusters

differentiate cloud images based on the strength of radiation in visible channels (band 1

of GOES-16); the triplet loss applied to the ResNet-34 network encourages the separation

of dissimilar texture of images. However, their example classes still contain similar cloud

images across several clusters, e.g. closed-cell stratocumulus clouds are distributed among

at least four classes in their Figure 2 [14], indicating a limitation in their ability to classify
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small patches of large cloud structures by unsupervised learning.

2.2 Autoencoders

An autoencoder (AE) [24, 25, 38], a widely accepted unsupervised learning method,

combines an encoder, decoder, and loss function to first encode input data into a compact

lower-dimensional latent representation and then to decode that representation at the bottleneck

to outputs, in a manner that minimizes loss function that quantifies the difference between

input and output. Encoder E extracts essential information from high-dimensional inputs

into lower-dimensional intermediate layers. The latent representation learns the efficient

data representation of the inputs via dimensionality reduction. Instead, decoder D restores

the original data from z, a latent representation at the bottleneck layer, where the input

data X = {x1, · · · , xn} are encoded as z = E(X), such that X̂ = D(z). The reconstruction

loss function measures the reconstruction error while autoencoder approximates X̂ in high

fidelity in the training process, but it typically cannot perfectly restore the inputs X. During

the optimization process, the loss function L used in common autoencoders minimizes the

squared difference between inputs and outputs as a measure of the restoration accuracy as

follows:

L =
∑

x∈X

||x− x̂||pp, (2.1)

where || · ||p denotes the p-norm of the inputs and the restorations. Autoencoder typically

uses a symmetric encoder-decoder architecture, while a recent study [21] shows asymmetric

encoder-decode, which deploys a relatively larger encoder and a lightweight decoder small

enough to reproduce input images, performs compatible classification accuracy by a large

supervised vision transformer.

As autoencoders can preserve only essential information in the latent representation,

by leaving out noise in the inputs, they are often used for an anomaly detection [78],

denoising [94], and image inpainting [65, 91]. In addition, autoencoders have been applied
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successfully to a wide variety of image recognition problems [9] via clustering and classification

of the compact representation.

In current AI4science literature, autoencoder generally implies convolutional autoencoder

(CAE) [49], which has been widely applied in a wide range of scientific papers because

recent advancements in computer vision have exhibited impressive classification performance

via convolutional neural networks in image recognition [39, 87]. A CAE substitutes a

fully connected layer used by an orthodox fully connected encoder-decoder network with

a convolutional layer so as to preserve spatial sub-patterns in input images. Racah et

al. [68] firstly introduce the use of CAE in climate science applications where they trained a

CAE on climate simulation output data to detect extreme weather invents. Their network

optimized a semi-supervised loss function to predict a bounding box where events are likely

to trigger, generating a representation that can be used to better understand complex large-

scale climate datasets. Despite that CNNs are widely adapted to autoencoder, the use of

a vision transformer at an encoder part of autoencoder emerges as a new architecture [3].

Overall, an autoencoder is designed such that the training of the entire network generates a

model capable of restoring the principal patterns of the original structure in an unsupervised

manner.

Variational autoencoder (VAE) [36] is another popular autoencoder variant 1. In contrast

to the unconstrained optimization of a regular autoencoder, a VAE learns how to transform

input data in a probabilistic manner into a low-dimensional latent representation from which

it can generate the approximation of any image. VAE approximates a continuous latent space

from input data that is assumed to be isotropic gaussian distributions via their mean and

variance.

1. VAE is also seen as generative model, which generates synthetic data from the probability
distribution function, generally assumed to be a Gaussian distribution, at the latent representation via
the learning process. In this thesis, we do not consider VAE as an alternative approach because our task is
simply to reduce the dimension of satellite images to a latent representation.
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2.3 Transform Invariant

Transform invariant representation learns a robust mapping in terms of the translation,

scale, and/or orientation of features from input images throughout training neural networks.

That is, a transform invariant network can map a relevant feature from high dimensional

input data to the same low dimensional latent representation regardless of its shift, scale, or

orientation. This learning of transform-invariant features may be achieved in three different

ways: with a customized loss function, a sampling and data augmentation approach, and a

specialized transform architecture/module.

The most explicit approach to achieving transform invariant feature learning is customizing

a loss function to generate invariant representations. Matsuo et al. [53], Matsuo and Shimada

[52] propose a shift-invariant autoencoder to independently learn typical sub-patterns of a

given input and transform those sub-patterns into a consistent invariant representation.

The loss function minimizes the sum of differences between restoration images with and

without the transform operator, so that the optimization of the encoder-decoder pair finds

a consistent latent representation for all orientations of each input image. Cheng et al. [12]

introduced a loss function that combines a rotation-invariant and a Fisher discrimination

regularizer to explicitly impose the rotation-invariant feature on the latent representation.

Rotaion-invariant regulariser averages over differences between an original image and the

multiple rotated version of the input to approximate invariant to any rotation of images.

Fisher regulariser plays as like contrastive learning term such that latent representations

from the same class minimizes the intra-class variations but maximize inter-class distance.

Lohit and Trivedi [46] calculated the maximum of spherical cross-correlation for spherical

3D images in the loss function.

Shen et al. [85] applied a combination of random scale, rotate angle, and translation

proportion to each local feature map, a receptive field collected from a subset of an input

image at a given kernel resolution, and for this operation, a convolutional neural network

achieves transform invariant features. Benton et al. [8] proposed a general transform invariant
11



framework that parameterizes a distribution over the set of affine transformations of data

including translations, rotations, and scales to learn invariance features from a variety of

data augmentations. Chaman and Dokmanic [11] introduced adaptive polyphase sampling

(APS), a simple sub-sampling scheme that allows convolutional neural networks to achieve

100% consistency in classification performance under shifts, without any loss in accuracy.

In satellite imagery classification context, Jain et al. [29] discussed that Bootstrap Your

Own Latent (BYOL) approach [17], a type of self-supervised neural network that learns

two different views produced by different augmentations of an identical image, encourages

learning the semantic aspect of input data, leading to obtaining invariant feature in the latent

representation. A similar and straightforward idea is introduced by Dieleman et al. [15] by

concatenating representations through a combination of multiple cropped viewpoints with

random rotation of galaxy images to improve the performance of downstream classification

casks regardless of the orientation of input galaxy images.

Many previous attempts have introduced transform invariant architectures into a neural

network in order to obtain a specific invariant feature explicitly. Jansson and Lindeberg

[31] designed the Foveated scale-channel network, which has a fixed size receptive filed to

simultaneously process an original image and its rescaled images in different channels to

acquire a scale-invariant feature for identical object in images. Sohn and Lee [88] achieved a

translation and scaling invariant feature representation through probabilistic max pooling,

which selects a transformed projection through the filter across the set of transformations.

Anti-aliased max pooling [110] subsamples feature maps from a naive max-pooling by a

stride size, which achieves shit-invariance via a max pooling operation. Farabet et al. [16]

transformed a raw input image through a Laplacian pyramid to obtain shift-invariant features.

Kanazawa et al. [35] proposed a locally scale-invariant convolutional layer where a pyramid

of different scaled images are fed to convolutional operation and finally take max-pool over

different scales to achieve transform invariance. Baccouche et al. [5] proposed a sparse shift-

invariant autoencoder that introduces a translation vector to build code into the shifted
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version of input images. The training process uses an additional variable to find the best

scale shift translation. Jaderberg et al. [28] introduced a spatial transformer, a learnable

module applied in the network to obtain spatial transform feature maps. The transformer

module learns the invariant features through a resampling from the transformed grid, which

takes localized features from the input images.

2.4 AI-generated Climate Science Dataset

An AI-generated dataset is a synthetic dataset that replicates characteristics of real data

on a large scale to improve the generalizability and performance of AI models. For example,

natural language processing traditionally gains greater benefits from synthetic images and/or

text to offer more diverse and larger training configurations, leading to a higher model

performance [19]. In climate science, generative adversarial neural network (GAN), which

is a type of neural network that simultaneously trains two networks to improve the quality

of AI-generated synthetic data, produces realistic climate model simulations and images

to complement the absence of climate datasets under various scenarios without requiring

large HPC resources or observations [67, 81]. Although the synthesized AI-generated data is

promising, there is always disputable in the fidelity of the dataset from the “black box”

whether it follows the exact first principle of physics. Instead, there are petabytes of

underutilized satellite imagery that has been observed over the past several decades, which

should be truly addressed by automatic algorithms.

To serve the needs of climate science, AI-generated cloud label datasets can help in the

further understanding of cloud feedback and response. CUMULO [107] utilized a combination

of spatial satellite cloud images of Aqua instrument from Moderate Resolution Imaging

Spectroradiometer (MODIS) and vertical cloud profile and labels from CloudSat to train

a convolutional neural network for producing AI-generated cloud dataset. The approach

can classify unlabeled MODIS cloud images into nine cloud types of the International

Satellite Cloud Climatology Project (ISCCP). Yet, to our understanding, there is currently
13



no published dataset that offers AI-generated labels and associated metadata for tracking

transitions of climate over multiple decades.
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CHAPTER 3

PROPOSED THESIS CONTENT

The proposed approach uses multispectral satellite imagery from NASA’s Moderate

Resolution Imaging Spectroradiometer (MODIS) [34] collected by Aqua and Terra instruments

in developing and evaluating our rotationally invariant autoencoder and hierarchical agglomerative

clustering (RICC)-based unsupervised learning system for cloud classification.

3.1 Data Collection

NASA’s MODIS Aqua and Terra satellites have observed 36 spectral bands of range

0.4–14.4 µm (i.e., visible to thermal infrared) radiances since 2002 (Aqua) [57] and 2000

(Terra) [56] through to the present. These instruments collect data over an approximately

2330 km by 2030 km swath spatial coverage every five minutes, generating the MODIS

Level 1B calibrated radiance product (MYD021KM/MOD021KM: hereafter, MOD02)1 in

Hierarchical Data Format (HDF) files that each contain 2030 pixels× 1354 pixels× 36 bands.

Spatial resolution for pixels directly beneath the observational instruments is 1 km, degrading

to at most several km for other pixels at an angle of the instrument. However, the frequent

scanning by instruments overlaps consecutive observations, allowing us to approximate the

spatial resolution of pixels to 1 km and at most 2 km.

There are six spectral bands that are most relevant for cloud top and optical properties.

Bands 6, 7, and 20 relate to cloud optical properties (e.g., cloud optical thickness and effective

radius), and bands 28, 29, and 31 relate to the separation of high and low clouds and liquid

and ice particle phases (e.g., cloud top pressure and cloud phase). However, for the Aqua

instrument, we use band 5 as an alternative to band 6 due to a known stripe noise issue in

Aqua band 6 [69]. The use of bands 5, 6, and 7 are only limited to local daylight times, which

1. NASA uses the prefixes MYD and MOD to distinguish between data observed from Aqua and Terra,
respectively
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restricts the amount of available swath to only about half of all archived MOD02 data. For

the efficient learning of these cloud features on neural networks, the system chooses to use a

smaller geographical unit, a patch, as the image for cloud classification. That is, this small

subset of a typical MODIS image is a 128 pixels × 128 pixels × 6 band region subsampled

from a 2030 pixel × 1354 pixel × 36 band MODIS image. The total number of swath

images per band is (12 swath/hour) × (12 hour/day) × (365 day/year) × (21 + 23 years,

for Aqua and Terra, respectively) ≈ 2.3 million swathes. The hypothesis in selecting specific

wavelengths and spatial scales here is that the use of six bands is expected to obtain a useful

association of cloud physical parameters used for ISCCP cloud classification to the resulting

group of clusters, and a 100 km spatial scale is able to represent a group of cloud structures.

Aside from radiance data via MOD02, MODIS provides a variety of derived products

from cloud physical parameters to vegetation index. MODIS06 level 2 cloud product at

1 km resolution (MYD06L2 and MOD06L2; hereafter, MOD06) [7, 66] provides cloud

optical properties and cloud top properties. RICC employs the MOD06 variables only as

a diagnostic, to evaluate associations between resulting cloud clusters and cloud physical

properties; in particular, they are not included in our RICC training data, which are

thus free from any assumptions made by ISCCP cloud classification. Additionally, the

MODIS03 product offers pixel-level latitude and longitude data from the MYD03/MOD03

(hereafter MOD03) geolocation fields for each swath, allowing us to identify latitude and

longitude location on swathes. All MODIS products are accessible via the NASA Level-1

and Atmosphere Archive and Distribution System (LAADS), grouped into per-swath files. I

summarize the specific products used for the proposed classification framework in Table 3.1.

The data collection scheme of RICC for complete 23-year (2000–2022) patches from Aqua

and Terra MODIS images requires the constraints that they 1) are disjoint in space and/or

time; 2) include only ocean pixels, 3) each includes at least 30% cloud pixels, and 4) are

applied to circular masking to stabilize optimization of neural networks. The resulting set

comprises about 153 590 874 individual 128×128 pixel (∼100 km by 100 km) ocean-cloud
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Table 3.1: MODIS products used to create the AICCA dataset. As noted in the text, each
product name MOD0X in the first column refers to both the Aqua (MYD0X) and Terra
(MOD0X) products. Source: NASA Earthdata.

Product Description BandPrimary Use Section
MOD02 Shortwave infrared (1.230–1.250 µm) 5 Land/cloud/aerosol properties


§3.2

Shortwave infrared (1.628–1.652 µm) 6 Land/cloud/aerosol properties
Shortwave infrared (2.105–2.155 µm) 7 Land/cloud/aerosol properties
Longwave thermal infrared (3.660–3.840 µm) 20 Surface/cloud temperature
Longwave thermal infrared (7.175–7.475 µm) 28 Cirrus clouds water vapor
Longwave thermal infrared (8.400–8.700 µm) 29 Cloud properties
Longwave thermal infrared (10.780–11.280 µm) 31 Surface/cloud temperature

MOD03 Geolocation fields Latitude and Longitude §3.6
MOD06 Cloud mask Cloud pixel detection

}
§3.2Land / Water Background detection

Cloud optical thickness Thickness of cloud


§3.5 &
§3.6

Cloud top pressure Pressure at cloud top
Cloud phase infrared Cloud particle phase
Cloud effective radius Radius of cloud droplet

patches, giving OC-Patches. From this set, I extract the following subsets for training and

testing.

• OC-PatchesAE: 1 million OC-Patches used for training autoencoders. This is about

0.65% of the full 23-year (2000–2022).

• OC-PatchesHAC: A set of 74 911 OC-Patches used for identifying a set of k cluster

centroids, µ = {µ1, · · · , µk} from the year 2003 (the first year in which both Terra

and Aqua satellites ran for the entire year concurrently).

• OC-PatchesHAC-2 and OC-PatchesHAC-3: Additional version of 77 235 and 76 143

OC-Patches, to account for potential sources of bias from sampling: Because the

specific days used in OC-PatchesHAC may affect our results, we assemble two additional

versions of OC-PatchesHAC, selecting two days without replacement from each season

in 2003.

• Test: A set of 2000 OC-Patches used for evaluating whether resulting latent representations

from a trained autoencoder achieve rotation-invariance features (see Section 3.5.4).
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3.2 Rotation Invariant Autoencoder

An autoencoder [24, 25] comprises an encoder, used to map input images into a compact

lower-dimensional latent representation, followed by a decoder, used to map that representation

to output images. The loss function minimizes the difference between input and output.

The resulting latent representation in the trained autoencoder both 1) retains only relevant

features for the target application in input images, and 2) maps images that are similar

(from the perspective of the target application) to nearby locations in latent space.

The loss function minimizes the difference between an original and a restored image

based on a distance metric during autoencoder training. The most commonly used metric

is a simple ℓ2 distance between the autoencoder’s input and output:

L(θ) =
∑
x∈S

||x−Dθ(Eθ(x))||22, (3.1)

where S is a set of training inputs; θ is the encoder and decoder parameters, for which values

are to be set via training; and x and Dθ(Eθ(x)) are an input in S and its output (i.e., the

restored version of x), respectively.

However, autoencoder optimizing with Equation 3.1 may generate different representations

for an image x and the rotated image R(x), as shown in Figure 3.1, with the result that

the two images end up in different clusters. Cloud types can occur in different orientations

as cloud formation is driven not by wind direction but by mechanisms such as adiabatic or

non-adiabatic cooling, convection, advection, and terrestrial effects. Since any particular

physically driven cloud pattern can occur in different orientations, it is inadequate for

the autoencoder for a meaningful cloud classification purpose to produce different latent

representations that depend solely on orientation and a clustering algorithm assigns different

clusters.

To address this rotation-dependence problem in autoencoder, we propose a rotation-

invariant (RI) loss function that generates similar latent representations, agnostic to orientation,
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E D

Cluster A

Cluster B

(a) Conventional autoencoder

E D

Cluster A

(b) Rotationally invariant autoencoder

Figure 3.1: Illustration of the learning process when training (a) a conventional autoencoder
with Equation 3.1 vs. (b) a rotationally invariant autoencoder with Equation 3.2. Because a
conventional autoencoder reflects orientation in the latent representation, two input images
that are identical in texture but different in orientation are assigned to different clusters,
A and B. The rotationally invariant autoencoder produces a latent representation that is
agnostic to orientation, allowing clustering to group both together.

for similar morphological clouds (Figure 3.1b). This RI autoencoder, motivated by the shifted

transform invariant autoencoder of Matsuo et al. [53], uses a loss function L that combines

both a rotation-invariant loss, Linv, to learn the rotation invariance needed to map different

orientations of identical input images into a uniform orientation, and a restoration loss,

Lres, to learn the spatial structure needed to restore structural patterns in inputs with high

fidelity. The two loss terms are combined as follows, with values for the scalar weights λinv

and λres chosen as described below:

L = λinvLinv + λresLres, (3.2)

where we design our training protocol in Section 3.3 to sweep over possible combinations of

hyperparameter space to find the optimal combination.

The rotation-invariant loss function Linv computes, for each image in a minibatch, the

difference between the restored original and a set of images obtained by applying a set R of

multiple scalar rotation operators to the original image. We empirically observe that having

a smaller angle interval helps convergence in optimization but a larger angle interval causes
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divergence in optimization. In our configuration, R rotates an input by every five degrees

in the set {0, 5, ..., 355}:

Linv(θ) = 1
N

∑
x∈S

∑
R∈R

||Dθ(Eθ(x))−Dθ(Eθ(R(x)))||22, (3.3)

Thus, minimizing Equation 3.3 yields values for θ that produce similar latent representations

for an image, regardless of its orientation.

The restoration loss, Lres(θ), learns the spatial substructure in images by computing the

sum of minimum differences over the minibatch:

Lres(θ) =
∑
x∈S

min
R∈R

||R(x)−Dθ(Eθ(x))||22. (3.4)

Thus, minimizing Equation 3.4 results in values for θ that preserve spatial structure in

inputs.

Input Block 1Conv
Block 2

Block 3
Block L-1

Block L

Layer Shape Operation
Input 128 x128 x 6 Resize
Conv 32 x 32 x 6 Conv x 1
Block 1 16 x 16 x 32 Conv x 3
Block 2 16 x 16 x 64 Conv x 3
Block 3 8 x 8 x 128 Conv x 3
Block 4 4 x 4 x 256 Conv x 3
Block 5 2 x 2 x 512 Conv x 3

Figure 3.2: Architecture of encoder part of RI autoencoder. Left: diagram of encoder that consists
of L blocks, each with three convolutional layers (orange) activated by leaky ReLU, and with batch
normalization (red) applied at the final convolutional layer in each block before activation. Right:
summary of shape and operations per layer. RI autoencoder is composed of total 10 996 230
trainable parameters, which is approximately half the size of ResNet-50.

The neural network architecture is the other critical factor needed to achieve rotation

invariance: Following the heuristic approach of deep convolutional neural networks, we

designed an encoder and decoder that stack five blocks of convolutions shown in Figure 3.2,

each with three convolutional layers activated by leaky ReLU [60], and with batch normalization [27]
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applied at the final convolutional layer in each block before activation. Shallower networks

(i.e. stack fewer blocks of convolutions) are not capable to learn rotation-invariant features

because a local receptive field does not cover global features sufficiently. We train our RI

autoencoder with OC-Patches for 100 epochs by using stochastic gradient descent [44] with

a learning rate of 10−2 on 32 NVIDIA A100 GPUs in the Argonne National Laboratory

ThetaGPU cluster. Our training protocol reveals that the selection of an adequate learning

rate is another essential factor.

3.3 Training protocol

The performance of the RI autoencoder on a particular training set is sensitive to the

values assigned to the λ parameters. We formulate a grid search process for finding an

optimal combination of λinv and λres as follows:

1. Fix λres and learning rate lr from 10−4 to 10−2, for stochastic gradient descent. Set

λinv = 0.

2. Train the autoencoder to obtain a baseline trained model A; measure its restoration

loss Lres, on a holdout set Xholdout: Lres(A, Xholdout).

3. Set λinv = 0.1.

4. Train the autoencoder with the new λinv to obtain a new trained model B; measure

its restoration loss on the same holdout set, giving Lres(B, Xholdout).

5. If the restoration loss of the newly trained model B is less than 20% larger than that

of the baseline A, i.e., if Lres(B, Xholdout) ≤ 1.2Lres(A, Xholdout), then double λinv.

6. Compare the results produced by B for images xi ∈ Xholdout, each replicated N times,

and with each replicate rotated by a different θ. Observe whether, for each image, all

B(R(xi, θ)) have the same canonical rotation. (In our implementation, we assume that
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N = 12 and θ ∈ {0, 30, · · · , 330}.) We verified B(R(xi, θ)) based on the cosine similarity

and eye-ball observation.

7. If for all xi ∈ Xholdout, all B(R(xi, θ)) are the same, terminate the search.

8. Otherwise halve λinv.

3.4 Clustering Technique

After designing a rotationally invariant autoencoder, the final step in rotationally invariant

cloud clustering (RICC) is to cluster the latent representations produced by the encoder for

a set of cloud images. We apply hierarchical agglomerative clustering (HAC) [33] to merge

pairs of clusters from bottom to top, minimizing at each step the linkage distance among

merging clusters. We use Ward’s method [97], which minimizes the variance of merging

clusters, as the linkage metric. We use HAC, which deals with each data as a singleton

cluster, rather than K means++ [2], because the HAC initialization strategy of repeatedly

merging data points gives more stable results than the K means++ approach of using random

starting centroids.

Suppose that we have two clusters CA and CB containing data points X = {xi1 , · · · , xiN }

for cluster i ∈ {A, B}. HAC with Ward’s method computes the linkage distance as follows,

d(CA, CB) = E(CA ∪ CB)− E(C1)− E(C2), (3.5)

where E(Ci) = ∑
x∈Ci

(d(x, ci)) for the centroid ci = ∑
x∈Ci

x
|Ci|

, denotes the sum of the

weighted square distances between all data points in the cluster and the centroid ci.

3.5 Evaluation Protocol

An inherent difficulty in validating unsupervised approaches is the validation of models

aside from loss values when there is no ground truth against which to evaluate the outcomes.
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While a supervised approach involves a perfect ground truth against which output can be

compared, an unsupervised learning system produces outputs whose utility must be more

creatively evaluated. Therefore, it is necessary to define a series of evaluation protocols to

determine whether the resulting cloud classes via RICC are meaningful and useful.

RICC seeks cloud clusters that: 1) are physically reasonable (i.e., embody scientifically

relevant distinctions); 2) capture information on spatial distributions, such as textures, rather

than only mean properties; 3) are separable (i.e., are cohesive, and separated from other

clusters, in latent space); 4) are rotationally invariant (i.e., insensitive to image orientation);

and 5) are stable (i.e., produce similar or identical clusters when different subsets of the data

are used). Table 3.2 summarizes these criteria and the quantitative and qualitative tests

that we have developed to validate them.

Table 3.2: Proposed five-criteria evaluation protocol. We design several tests to
demonstrate quantitative and qualitative evaluation that distinguishes useful from non-useful
autoencoders and clustering results.

Criterion Test Requirement
Physically
reasonable

Cloud physics Non-random distribution; median inter-cluster
correlation < 0.6

Spatial distribution
Spatial coherence Spatially coherent clusters
Smoothing Low adjusted mutual information (AMI) score
Scrambling Low AMI score

Separable Separable clusters No crowding structure
Rotationally
invariant

Multi-cluster AMI score closer to 1.0

Stable

Significance of cluster
stability

Ratio of Rand Index G/R ≥ 1.01

Similarity of clusterings Higher Adjusted Rand Index (ARI)
Similarity of intra-cluster
textures

Lower weighted average mean square distance

Clusters capture seasonal
cycle

Minimal seasonal texture difference
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3.5.1 Criterion 1: Physically Reasonable Clusters

Cloud clusters produced by RICC should be physically reasonable, with scientifically

relevant distinctions. To this end, we define a test that examines quantitative differences

among cloud physics parameters.

Test 1: Cloud physics parameters. We define reasonableness in terms of whether each

cluster produced by RICC is associated with distinct distributions (i.e., not being randomly

distributed) of four selected retrieved cloud physics parameters from the MOD06 product:

cloud optical thickness (COT), cloud top pressure (CTP), cloud top phase (CPI), and cloud

effective radius (CER). We select COT and CTP because these two parameters are used

for ISCCP cloud classification to evaluate the compatibility between novel types of clouds

and the established ISCCP cloud classes [75] CPI and CER are not considered in the nine

ISCCP cloud classes, but able to add additional differences in cloud properties in resulting

cloud clusters.

The reasonableness test is defined as follows. We first verify that the values for each

parameter collected from OC-PatchesHAC are not randomly distributed, which would contradict

cloud physics. Then, for each parameter, We examine whether different clusters show

different distributions. This is based on calculating for each cluster pair the inter-cluster

correlation and then computing the median of the resulting inter-cluster correlation coefficients.

If for at least one of the four parameters, this median is less than 0.6, a cutoff commonly

used to indicate the empirical threshold of no strong correlation [23] in a variety of natural

sciences, then We conclude that the clusters do indeed group patches based on physical

properties. A median inter-cluster histogram correlation of less than 0.6 suggests that half

of the histogram pairs do not perfectly correlate, and thus we declare that the cloud clusters

have distinct patterns.

Note that autoencoders are trained only on the MOD02 input radiances, not on four

MOD06 physical parameters. Thus, this test determines whether our training and clustering
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process is able to embed into the latent representation the distinctions that are recorded by

the MOD06 parameters.

3.5.2 Criterion 2: Spatial Distribution

Cloud clusters produced by RICC should capture information on cloud spatial distributions.

This means that they should not be reproducible by using only mean properties over the

target area. To this end, we define three tests.

Test 2.1: Spatial coherence. We qualitatively evaluate whether the clusters produced

by an autoencoder demonstrate more spatially coherent assignments than those obtained

by clustering patch-mean cloud parameters. When clustering without an autoencoder, we

apply HAC to the patch-mean values of COT, CTP, cloud water path (CWP), and CER.

Test 2.2: Smoothing. We examine how the cluster assignments for cloud images change

when we alter the spatial resolution of the images via smoothing.

Test 2.3: Scrambling. We examine how cluster assignments scramble pixels in patches

so as to remove spatial patterns while preserving the distribution of values.

If the cluster assignments do not change in the Tests 2.2 and 2.3, we conclude that

our autoencoder is not learning spatial information, because the encoder generates similar

representations when the input images are transformed to remove spatial information. To

quantify the similarity of the clustering assignment, we use the following metric:

Adjusted mutual information (AMI) score The AMI score [62] is a metric that adjusts

the mutual information (MI) score to account for a chance to measure the extent to which

cluster assignments agree for inputs of different spatial resolutions. Given two clustering
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assignments U and V , the AMI is computed as:

AMI(U, V ) = MI(U, V )− E(MI(U, V ))
avg{H(U), H(V )} − E(MI(U, V )) , (3.6)

where H(·) depicts entropy, which formally defines with probability P (u) as

H(U) = −
∑

u∈U

P (u) log P (u) (3.7)

and MI(U, V ) is the mutual information between clustering assignments U and V , as determined

by their joint distribution P (u, v) and their respective probabilities P (u) and P (v):

MI(U, V ) =
∑

u∈U

∑
v∈V

P (u, v) log P (u, v)
P (u)P (v) . (3.8)

The AMI of two sets of cluster assignments is 1 if the assignments match perfectly,

regardless of the assigned labels, and 0 if there is no match. If the AMI score between

the clustering results obtained for two different spatial resolutions (test 2.2) and/or spatial

positions (test 2.3) is low, we conclude that the trained autoencoder has learned spatial

information in its latent representation; if the agreement score is close to 1, we conclude

that it has failed to capture spatial patterns and thus is likely instead only encoding the

distribution of pixel values in input images.

Smoothing test implementation Listing 3.1 provides the pseudocode for the smoothing

test. We use OC-PatchesHAC described in Section 3.1, which contains 74 911 patches used for

generating clustering centroids. Let k be the kernel size used to convolve the image with a

boxcar filter to produce the smoothed version. The smoothing process computes an average

value for each pixel region in a patch. For instance, for k = 2, it sets each pixel at (i, j),

(i + 1, j), (i, j + 1) and (i + 1, j + 1), for i ∈ {1, 3, · · ·N − 1} and j ∈ {1, 3, · · ·N − 1}, where

N is the patch size, to be the average value of those pixels, leaving any remaining border
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pixels (e.g., if N = 5 and k = 2, those with i = 5 or j = 5) unchanged.

Let Pk be the patches obtained when each of OC-PatchesHAC is smoothed over k × k

pixels. Then, we encode each smoothed patch in Pk with the trained encoder, giving

Zk as the corresponding set of latent representations, and apply HAC to those latent

representations to obtain a set of k clusters Ck. Lower AMI scores then indicate that the

autoencoder has mapped different spatial structures within the input images into different

latent representations. Finally, we determine agreement between C1, obtained from the

unsmoothed Xholdout, and Ck by computing AMI(C1, Ck).

# Smooth a single image

def smooth(x, k):

# fix here

p = Average(x[i:i+k-1,j:j+k-1])

return p

# Compare cluster assignments for different kernel sizes

for kernel size k in [list of k]:

# Smooth each patch for kernel size k

P_k = smooth(x, k) for x in X_holdout

# Encode each smoothed patch

Z_k = encode(x) for x in P_k

# Cluster resulting latent representations

C_k = Cluster(Z_k, ncluster)

# Determine agreement between C_1 and C_k

compute AMI(C_1, C_k)

Listing 3.1: Pseudocode for the smoothing protocol. The smooth function computes an

average over a local window k × k, as depicted in the figure.
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Scrambling test implementation Listing 3.2 presents the scrambling test protocol in

pseudocode form. Similar to Smoothing Test, we compare the cluster assignments when we

scramble the pixels of each image after smoothing patches by applying a random permutation

to the smoothed pixels, a process that we repeat (with the same random permutation) for

each channel based on different size of kernels.

Again, we use OC-PatchesHAC in evaluating the smoothing protocol. For each kernel

size, we smooth each image in Xholdout by k and then scramble its pixels, giving Pk. We

then compute the latent representation on Zsc
k by encoding P sc

k with a trained encoder and

cluster the latent representations obtained for the different images to obtain clusters Csc
k .

We assess the agreement of Ck and Csc
k by computing AMI(Ck, Csc

k ).

# Scramble a single image

def scramble(x):

indicesA = [(1,1), (1,2), ..., (height(x), width(x))]

indicesB = random_shuffle(indicesA)

for (i,j),(m,l) in (indicesA,indicesB):

p[i,j] = x[l,m]

p_[l,m] = x_[i,j]

return p

# Compare cluster assignments for different kernel sizes

for kernel size k in [list of k]:

# Smooth each patch for kernel size k

P_k = smooth(x, k) for x in X_holdout

# Scramble each smoothed patch

P_k_sc = scramble(x, k) for x in P_k

# Encode each scrambled patch

Z_k_sc = encode(x) for x in P_k_sc
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# Cluster resulting latent representations

C_k = Cluster(z_k_sc, ncluster)

# Determine agreement between C_1 and C_k

compute AMI(C_1, C_k)

Listing 3.2: Pseudocode for the scrambling protocol. The scramble function shuffles the

values of randomly selected pixel pairs, as depicted in the code.

3.5.3 Criterion 3: Separable Clusters

Clusters produced by RICC should be separable in a way that there are both cohesive in

the same cluster in latent space and separated from each other. To evaluate this, we design

a test as follows:

Test 3: Spatial organization. We use t-distributed Stochastic Neighbor Embedding

(t-SNE) [47] to examine the spatial organization of the latent representation when projected

onto a two-dimensional map, and thus to determine whether similar (dissimilar) clusters,

as defined by the physical parameter distributions, are projected to closer (more distant)

locations in the embedding space. This test is a qualitative metric to investigate the structure

of latent space.

t-distributed Stochastic Neighbor Embedding (t-SNE) t-SNE is a probabilistic

nonlinear dimensionality reduction technique that maps each data point in a high-dimensional

space to a lower-dimensional point in such a way that, with high probability, similar data

are placed near to each other and dissimilar data far apart. Suppose that we have N

latent representations Z = {z1, · · · , zi, zj , · · · , zN} produced by an autoencoder. Let P be a

joint probability distribution in the high-dimensional input space, and Q a joint probability

distribution in the low-dimensional projection space. The t-SNE optimization minimizes the

Kullback-Leibler (KL) divergence between pj|i and qj|i. The conditional probability pj|i for

29



the M-dimensional latent representation produced by our autoencoders is:

pj|i =
exp(−∥zi − zj∥2/2σ2

i )∑
k ̸=i

exp(−∥zi − zk∥2/2σ2
i )

, (3.9)

where σi denotes the variance of a Gaussian distribution for data point zi, while for a two-

dimensional map:

qj|i =

(
1 + ∥z′i − z′j∥2

)−1

∑
k ̸=l

(
1 + ∥z′l − z′k∥

2)−1 . (3.10)

The cost function to be minimized by gradient descent is then

KL(P ||Q) =
∑
i

∑
j

pj|i log
pj|i
qj|i

. (3.11)

Note that this joint distribution assumes a Student t-distribution with one degree of freedom

in the low-dimensional map.

3.5.4 Criterion 4: Rotation Invariance

We expect the classes produced by RICC to be rotationally invariant, where HAC assigns

a cloud image and its rotated version into the same cluster regardless of its orientation

regardless of the orientation of the image in which they appear.

Test 4: Multi-cluster rotation-invariance. We evaluate whether our RI autoencoder

groups similar types of clouds into the same cluster regardless of image orientation.

Multi-cluster rotation-invariance We use Test dataset, a set of 2000 patches that are

randomly sampled from OC-Patches as well as not considered during training as holdout

patches. We make 11 copies of each patch in this set such that we rotate each copy every 30◦;

thus, the ideal result should return the same cluster label for both the original patches and

the rotated copies. We then implement HAC clustering from 4 to 2000 clusters. The AMI
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score should be close to 1 for 2000 clusters because each patch among 2000 OC-Patchesand

its replications can be placed in a unique cluster.

3.5.5 Criterion 5: Stable Clusters

Cluster stability is an important property for a cloud classification algorithm. A clustering

method is said to be stable for a dataset, D, and number of clusters, k, if it produces similar

or identical cluster assignments when applied to different subsets of D. To evaluate stability

of clusters, we define four tests to evaluate this criterion:

Test 5.1: Clustering similarity. We measure clustering similarity by generating

clusterings for different subsets of the same dataset, and calculating the average distance

between those clusterings.

Test 5.2: Clustering similarity significance. We measure clustering similarity

significance by comparing each clustering similarity score to that obtained when our clustering

method is applied to data from a uniform random distribution.

Test 5.3: Intra-cluster texture similarity. We measure intra-cluster texture

similarity by calculating the average distance between latent representations in each cluster.

Test 5.4: Seasonal stability. We measure seasonal stability by comparing intra-

cluster texture similarity for patches from January and July.

We are concerned not only with determining whether RICC generates clusters that are

stable, but also with identifying the optimal number of clusters, k∗. In determining that

number, we must consider all four tests just listed: we want a high clustering similarity,

a high significance (certainly greater than 1), a low intra-cluster similarity score, and low

intra-seasonal texture differences.

For all of our stability tests, we work with D = { OC-Patches from 2003 to 2021, inclusive

}. |D| ≈ 180M . (We do not consider data from 2000–2002 because Aqua and Terra were not

operating simultaneously for an entire year-long observation during that period.) We create

a holdout subset H with number of patches NH = 14 000, and create 30 random subsets Si
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with NR = 56 000 by sampling without replacement from D \ H. This procedure ensures

that the different Si are mutually exclusive and that there is no intersection between our

holdout set H and the random subsets. The ratio NH : NR of 20 : 80 is standard practice.

We then create our 30 test datasets as H∪Si for ∀i ∈ {1, · · · , 30}. To quantify the similarity

of clustering assignments, we use the following metrics:

Rand Index The Rand index [70] measures the similarity of two partitions of clustering

assignments. Let U = {U1, · · · , Ur} and V = {V1, · · · , Vc} be two clustering partitions of a

set of N objects O = {o1, · · · , oNP
}, such that ⋃r

i=1 Ui = ⋃c
j=1 Vj = O, and Ui ∪ Ui′ = ∅ as

well as Vj ∪ Vj′ = ∅ for 1 ≤ i ≤ r and 1 ≤ j ≤ c. We count how many of the
(

N
2

)
possible

pairings of elements in O are in the same or different clusters in U and V :

• P11: number of element pairs that are in the same clusters in both U and V

• P10: number of element pairs that are in different clusters in U, but in the same

cluster in V

• P01: number of element pairs that are in the same cluster in U, but in different

clusters in V ; and

• P00: number of element pairs that are in different clusters in both U and V.

The Rand index then computes the fraction of correct cluster assignments:

RandI(U, V ) = P11 + P00
P11 + P10 + P01 + P00

= P11 + P00(
N
2

) (3.12)

It has value 1 if all pairs of labels are grouped correctly and 0 if none are correct. The metric

is independent of the absolute values of the labels: that is, it allows for permutations.

To illustate how the Rand index works, consider the two clusterings: A = {d1}, {d2, d3}

and B = {d1, d2}, {d3} of the dataset D = {d1, d2, d3}. Here, N = 3, and there are
(3

2
)

=

3 possible pairings of the three dataset elements: (d1, d2), (d1, d3), (d2, d3). Thus: P11 = 0,
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as no pair is in the same cluster in both A and B; P10 = 1, as d1 and d2 are in different

clusters in A but the same cluster in B; P01 = 1, as d2 and d3 are in different clusters in A

but the same cluster in B; and P00 = 1, as d1 and d3 are in different clusters in both A and

B. Hence, the Rand index by Equation 3.12 of A and B is (0 + 1)/3 = 0.33.

Adjusted Rand Index A difficulty with the Rand index is that its value tends to increase

with the number of clusters, hindering comparisons across different numbers of clusters. In

order to permit comparisons of Rand index values across different numbers of clusters, the

adjusted Rand index (ARI) [26] corrects for co-occurrences due to chance:

ARI(U, V ) =

(
N
2

)
(P11 + P00)− [(P11 + P10) (P11 + P01) + (P01 + P00) (P10 + P00)](

N
2

)2
− [(P11 + P10) (P11 + P01) + (P01 + P00) (P10 + P00)]

,

(3.13)

where the Pxy are as defined above.

Stability Test 5.1: Clustering Similarity We measure clustering similarity by first

generating clusterings for different subsets of the target dataset and then calculating the

average pairwise distance between those clusterings. This approach is documented as Algorithm 1.

As described above, we use as the input dataset D all ocean-cloud patches from 2003–2021,

inclusive. We then define a holdout set, H, H∪Si, i ∈ 1..30, to generate 30 different clustering

assignments via a trained RICC for evaluation (line 1), and use as a set of “perturbed

versions” N subsets selected without replacement from D\H (line 3). Then for each number

of clusters, k, in the range 8 ≤ k ≤ kmax, I then: train RICC on each subset (line 8); apply

the trained RICC to generate a clustering for the holdout set (line 6); use the adjusted Rand

index, ARI, to evaluate pairwise distances between those clusterings (line 10); and average

among the 30 clusterings generated by the RICC models {RICCi
k, i ∈ 1..30} to determine

the mean clustering similarity for that specific cluster number k. Finally, we calculate the

ARI for all
(30

2
)

= 435 combinations of those 30 clusterings and determine the mean ARI

score G8..Gkmax
(line 12).
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Algorithm 1 Pseudocode for the clustering similarity test described in Section 3.5.5.
Input: D: { OC-Patches for 2003–2021, inclusive }
Output: G8, · · · , Gkmax : Clustering similarity scores for cluster counts from 8 to kmax.

1: H := {x | x ∈ D} where |H| = NH ▷ Select holdout set to be used for evaluation
2: for i from 1 to N do
3: Select a subset Si :=

{
x | x ∈ D \H \ ⋃ i−1

j=1 Sj

}
with |Si| = NR

4: for k from 8 to kmax do
5: RICC i

k ← Train RICC with k clusters on Si ∪H

6: C i
k ← RICC i

k(H) ▷ Determine cluster assignments in H with RICC i
k

7: end for
8: end for
9: for k from 8 to kmax do

10: Gk = 1(
N
2

) ∑
(i,j)∈(N

2 )
ARI

(
C i

k , C
j
k

)
▷ Mean similarities for RICC clusters

11: end for
12: Return clustering similarity scores {G8, · · · , Gkmax

}

Stability Test 5.2: Significance of Similarities Having determined how cluster similarity

scores vary with a number of clusters, we next turn to the question of whether these values

are significant. Following Von Luxburg [96], we compare cluster similarity scores, as shown

in Algorithm 2, against those obtained when the same method is applied to data generated

not by our trained autoencoder but from a random uniform distribution clustered with the

same HAC method. To produce random label assignments, we first prepare 30 datasets

that are sampled from random uniform distributions U ∈ [−2σ, 2σ] (line 6). For each k in

the range 8..kmax, We apply HAC to the random data to generate random labels (line 11),

from which we also calculate the Rand Index for 435 combinations, giving the mean scores

R8..Rkmax
(line 17). Finally, we compare how the ratio Gk

Rk
between those two values varies

with number of clusters, k (line 20). We then compute the mean clustering similarity score

G from our patches and R from the data from the random uniform distribution for each k

for all 435 combinations, though here we use the Rand index rather than ARI, as we are not

comparing scores across k. We can then compare how the ratio between those two values

varies with number of clusters. A ratio > 1 indicates that cluster assignments are more

stably grouped than would be expected by chance; a value of 1 indicates that there is no
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benefit to adding extra clusters.

Algorithm 2 Pseudocode for the stability significance test described in Section 3.5.5.
Input: D: { OC-Patches for 2003–2021, inclusive }, trained rotationally invariant

autoencoder AE
Output: {G8

R8
, · · · ,

Gkmax
Rkmax

}: cluster similarity significance scores

1: H := {x | x ∈ D} where |H| = NH ▷ Select holdout set to be used for evaluation
2: z = {AE(x) : x ∈ H} ▷ Use trained autoencoder to compute latent representations

3: σ =
√

1
NH

NH∑
j=1

(zj − z)2 ▷ Calculate standard deviation σ for latent representations

4: for i from 1 to N do
5: Select a subset Si :=

{
x | x ∈ D \H \

⋃ i−1
j=1 Sj

}
with |Si| = NR

6: Sample Ui :=
{
u | u ∈ U [−2σ, 2σ]

}
with |Ui| = NH , U a random uniform distribution.

7: for k from 8 to kmax do
8: RICC i

k ← Train RICC on Si ∪H
9: RICC i

k(H) ← Determine cluster assignments in H
10: HAC i

k ← Train HAC on Ui

11: HAC i
k(Ui) ← Determine cluster assignments in Ui

12: end for
13: end for
14: ▷ Calculate averages of cluster similarities, as computed via Rand index, RandI(·), between

all pairs of two label assignments resulting from RICC and a random distribution respectively
15: for k from 8 to kmax do
16: Gk = 1(N

2
) ∑

(i,j)∈(N
2 )

[
RandI

(
RICC i

k(H), RICC j
k (H)

)]
▷ Mean similarities for RICC clusters

17: Rk = 1(N
2

) ∑
(i,j)∈(N

2 )

[
RandI

(
HAC i

k(Ui), HAC j
k (Uj)

)]
▷ Mean similarities for random clusters

18: Calculate Gk
Rk

, ratio of stability between RICC and random samples
19: end for
20: Return cluster similarities significance scores, {G8

R8
, · · · ,

Gkmax
Rkmax

}

Stability Test 5.3: Intra-cluster Texture Similarity A stable clustering should group

patches with similar textures within the same cluster. To determine whether a clustering has

this property, we examine how the average distance between latent representations within

each cluster changes when we apply RICC to create different numbers of clusters. The

mean distance between pairs of latent representations in a cluster relates to similarity of

texture, as our RI autoencoder learns texture features and encodes those features in latent

representations. Specifically, we calculate the mean squared Euclidean distance between the
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latent representations computed for patches in our holdout set H.

For a clustering with k clusters, let nc be the number of elements in cluster c, and y1

.. ync be the patches in that cluster. As cluster sizes can vary, we weight each cluster’s

mean distance by wc = nc/
∑k

i=1 ni, to obtain a weighted average mean squared Euclidean

distance:

dk =
k∑

c=1

wc

m∑
i=1

m∑
j>i

||z(yi)− z(yj)||22
m
2 (m− 1)

 where m = min(nc, Np), (3.14)

where z represents the latent representations generated by our RI autoencoder, and Np is

the maximum number of patches to consider in the distance calculation—a limitation used

to accelerate calculations. We set Np = 200 for our tests. Note that when the total number

of clusters is large, some individual clusters may have a size less than this limit.

We calculate Equation 3.14 for k from 8 to 256 for each of our 30 clusterings of test subsets

{RICC1
k(H), · · · , RICC30

k (H)}, and then compute the mean value across clusterings. The

resultant weighted average distance decreases monotonically with the cluster number k: see

Figure 4.9c), as does the metric G/R from test 2, but the trends have opposite implications:

lower values are worse in test 2 but better in test 3. A lower distance value indicates

that cloud texture and physical properties are more homogeneous within a given cluster,

meaning the resultant set of k cloud classes provides a more consistent cloud diagnostic.

The implication is that the optimal number of clusters k∗ will be approximately the largest

number that satisfies our criterion in test 5.2.

Stability Test 5.4: Seasonal Variation of Textures within Clusters Our final test

investigates whether clusters produced via RICC show similar patterns regardless of season:

we compare intra-cluster texture similarity between OC-Patches from January and July. If

differences are small, the number of clusters used is sufficient to accommodate the large

seasonal changes in cloud morphology.

We use RICC with the autoencoder trained on OC-PatchesAE and cluster centroids based
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on OC-PatchesHAC, for different numbers of clusters k, as before. For each k, we then apply

the trained RICCk model to the patches in OC-PatchesHAC to assign a label c ∈ {1, .., k}

to each patch, and for each c, extract the latent representations for ms
c randomly selected

July patches and mw
c randomly selected January patches with that label (with ms

c and mw
c

being at most 100 in these analyses, but less if a particular cluster has fewer January or

July patches, respectively), compute an intra-cluster texture similarity score for each set of

July and January patches, and (as in Section 3.5.5) weight each cluster mean by the actual

ms
c or mw

c so that we can consider texture similarities from many clusters without results

being dominated by trivial clusters that we observe to group fewer similar patches due to

undersampling. We then sum the scores to obtain the overall weighted averaged squared

distance (WASD) for k clusters. In summary:

WASDk =
k∑

c=1

wc

ms
c∑

i=1

mw
c∑

j=1

||z(ys
i )− z(yw

j )||22
ms

c ·mw
c

 (3.15)

where wc and z are as defined in Section 3.5.5 and ys = {ys
1 .. ys

ms
c
} and yw = {yw

1 .. yw
mw

c
}

are the January and July patches in cluster c, respectively.

We expand the analysis to account for two additional potential sources of bias. Because

the specific days used in OC-PatchesHAC may affect our results, we assemble two additional

versions of OC-PatchesHAC, selecting two days without replacement from each season in

2003, as before. The resulting OC-PatchesHAC-2 and OC-PatchesHAC-3 have 77 235 and

76 143 patches, respectively. Similarly, to account for any effect of the random selection of

the ms summer and mw winter patches, we repeat the analysis of Equation 3.15 three times

for each of OC-PatchesHAC, OC-PatchesHAC-2, and OC-PatchesHAC-3. In this way we obtain

a total of 9 · k mean squared distance values and nine WASD values for each k in the range

8 to 256.
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3.6 AICCA: AI-driven Cloud Classification Atlas

The AI-driven Cloud Classification Atlas (AICCA) provides AI-generated cloud class

labels for all ocean cloud images that are sampled by MODIS instruments since they started

operations and subdivided into 128×128 pixels (∼100 km by 100 km). The cloud labels

(ranging from 1 to 42) are generated by RICC and a label assignment scheme (see Section 3.6.1)

designed to generate 42 clusters that are configured via the evaluation protocol (see Section 3.5).

MOD02
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Figure 3.3: The AICCA production workflow comprises four principal stages. 1)
Download/Archive and Prepare MODIS data: Download calibrated and retrieved
MODIS products from the NASA Level-1 and Atmosphere Archive and Distribution System
(LAADS), using FuncX and Globus for rapid and reliable retrieval of 872 terabytes of
three different MODIS products between 2000–2022. Store downloaded data on the Theta
filesystem at the Argonne National Laboratory. Select six near-infrared to thermal bands
related to clouds and subdivide each swath into non-overlapping 128×128 pixel patches by
six bands. Select patches with >30% cloud pixels over ocean regions, and apply a circular
mask for optimal training of our rotationally invariant autoencoder, yielding OC-Patches.
2) Train RICC: Train an autoencoder to 1M randomly selected patches to generate latent
representations, and cluster those latent representations to determine cluster centroids. 3)
Evaluate clusters: Apply five protocols to evaluate whether the clusters produced are
meaningful and useful. 4) Assign clusters: Use trained autoencoder and centroids to assign
cloud labels to unseen data. We use the Parsl parallel Python library to scale the inference
process to hundreds of CPU nodes plus a single GPU, and to generate the AICCA dataset
in NetCDF format. We then calculate physical properties and other metadata information
for each patch and for each 1◦ × 1◦ grid cell.
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3.6.1 Assign Cluster Labels

To assign cluster labels for OC-Patches unseen in training autoencoder and clustering, we

can cluster latent representations from a trained RI autoencoder applied to OC-PatchesHAC

so as to identify the centroids that will define our cloud clusters for assigning cluster labels.

We define the assignment process as follows: Given N data points, a naive HAC approach

requiresO(N2) memory to store the distance matrix used when calculating the linkage metric

to construct the tree structure [58]—which would be impractical for the one million or more

patches. Thus, we use a smaller set of patches, OC-PatchesHAC, comprising 74 911 ocean-

cloud patches from the year 2003 (the first year in which both Terra and Aqua satellites ran

for the entire year concurrently) for the clustering phase. We apply our trained encoder to

compute latent representations for each patch in OC-PatchesHAC and then run HAC to group

those latent representations into k∗ clusters, in the process identifying k∗ cluster centroids

and assigning each patch in OC-PatchesHAC a cluster label, 1..k∗. While we could use a

parallelizable HAC algorithm [32, 59, 92] to increase the quantity of data clustered, this

would not address the intrinsic limitation of our clustering process given the 872 terabytes

of MODIS data.

We have so far trained our RI autoencoder on the 1 million patches in OC-PatchesAE and

applied HAC to the 74 911 patches in OC-PatchesHAC to obtain a set of k∗ cluster centroids,

µ = {µ1, · · · , µk∗}, where k∗ is the number of clusters defined in Section 3.5. We next want

to assign a cluster label to each of the 153 million patches in OC-Patches. We do this by

identifying for each patch xi the cluster centroid µk with the smallest Euclidean distance to

its latent representation, z(xi). We use Euclidean distance as our metric because our HAC

algorithm uses Ward’s method with Euclidean distance. That is, we calculate the cluster

label assignment ck,i for the i-th patch as:

ck,i = arg min
k={1,··· ,k∗}

||z(xi)− µk||2. (3.16)
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This label prediction or inference process is easily parallelized. We use the Parsl parallel

Python library [4], which enables scalable execution on many processors via simple Python

decorators, for this purpose.

3.6.2 AICCA Patch-Level Data

The AICCA dataset uses all patches from Aqua and Terra MODIS image data during

2000–2022, subject to the constraints that they 1) are disjoint in space and/or time; 2)

include no non-ocean pixels, and 3) each includes at least 30% cloud pixels. The resulting

set comprises about 153 590 874 individual 128×128 pixel (∼100 km by 100 km) ocean-cloud

patches, for each of which AICCA provides the following information (and see Table 3.3):

• Source is either Aqua or Terra;

• Swath, Location, and Timestamp locate the patch in time and space;

• Training indicates whether the patch was used for training;

• Label is an integer in the range 1..42, generated by the RICC configured for 42

clusters based on results from evaluation protocol;

• COT patch, CTP patch, and CER patch, the mean and standard deviation, across

all pixels in the patch, for three MOD06 physical values: cloud optical thickness

(COT), cloud top pressure (CTP), and cloud effective radius (CER); and

• CPI patch, cloud phase information (CPI), four numbers representing the number

of the 128×128 pixels in the patch that are estimated as clear-sky, liquid, ice, or

undefined, respectively.

The resulting 146 Bytes per patch represents a 16 159 × reduction in size relative to the

raw multispectral imagery. Assignment of cluster labels involves a sorting process that

clusters are first sorted on CTP and then on the global occurrence of the clusters within
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each 50 hPa pressure bin. Thus, small cluster numbers (e.g., #1) represent high-altitude

cloud, and within a similar CTP range (e.g., 500 hPa – 550 hPa), smaller numbers represent

the more dominant patterns within the bin. Additional information can assist users in

understanding when and where individual patches are extracted from MOD06 by using

the patch’s geolocation index and timestamp (Location and Timestamp in Table 3.3), and

furthermore to locate the patch’s data in the appropriate other MODIS product files. These

mean values summarize the average physical characteristic for the patch; the standard

deviations provide some indication as to the existence of multiple clouds (especially low-

and high-altitude clouds). We do not use the MOD06 multilayered cloud flag.

Table 3.3: Information provided in AICCA for each 128×128 pixel ocean-cloud patch:
metadata that locate the patch in space and time, and indicate whether the patch was used
to train RICC; a cloud class label computed by RICC; and a set of diagnostic quantities
obtained by aggregating MODIS data over all pixels in the patch.

Variables Description Values Type
Swath Identifier for source MODIS swath 1 float32
Location Geolocation index for the upper left corner of patch 2 float32
Timestamp Time of observation 1 float32
Training Whether patch used for training 1 binary
Label Class label assigned by RICC: integer in range 1..k∗ 1 int32
COT patch Mean and standard deviation of pixel values in patch 2 float32
CTP patch ” ” ”
CER patch ” ” ”
CPI patch Number of pixels in patch in {clear-sky, liquid, ice, undefined} 4 int32

The core AICCA dataset is provided as NetCDF [72] files that combine patches from each

MODIS swath into a single file. While AICCA contains no raw satellite data, it includes

for each patch an identifier for the source MODIS swath and a geolocation index; thus users

can easily link AICCA results with the original MOD02 satellite imagery and other MODIS

products. The complete OC-Patches set contains around (21 + 23 years) × (365 days/year)

× (12 000 patches/day) ×146 B/patch ≈ 26.7 gigabytes, excluding metadata.
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3.6.3 AICCA Daily-Level Data

In addition to providing a set of per-patch data per each swath file, we follow common

practice in climate datasets by also providing data composited on a daily basis. The second

element of the AICCA dataset spatiotemporally aggregates the patch-level class label and

diagnostic values from patch-level data Section 3.6.2, along with additional informative cloud

physical parameters and metadata to provide users with rich information about clouds in a

readily applicable format. The selection of additional parameters from MOD03 and MOD06

products are based on the needs for comprehensive analysis of clouds when we conducted

interviews with climate scientists.

For each resulting data item, the AICCA daily-level dataset provides the information

listed in Table 3.4, a total of 313 Bytes for Aqua and 314 Bytes for Terra:

• Platform is either Aqua or Terra;

• Location gives a latitude and longitude for the center of the patch;

• Timestamp locates the patch in time;

• Label is an integer in the range 1..42;

• COT patch, CTP patch, CER patch, CPI patch, are obtained from patch-level data;

• CWP patch, CE patch, CTT patch, ACWV patch, the mean across all pixels in the

patch for cloud water path (CWP), cloud emissivity (CE), cloud top temperature

(CTT), and the above cloud water vapor (ACWV);

• CF patch, SIB patch, MLF patch,SF patch, the fraction in modulo 100 across all

pixels in the patch for cloud fraction (CF), snow and ice background fraction (SIB),

cloud multi-layer fraction (MLF), and sunlight fraction (SF); and

• MLC patch is the median of cloud multi-layer confidence (MLC) in the range of 0

to 8 (i.e., higher is more confident) in all pixels in the patch.
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Table 3.4: Information provided in AICCA daily-level data: a cloud class label computed
by RICC and a set of diagnostic quantities obtained composited for a daily-level file.

Variables Description Values Type
Location (lat, long) for a patch 2 float64
Timestamp Time of observation 1 string
Platform Aqua or Terra 1 string
Label A class label in a patch 1 int64
COT patch Mean and standard deviation of pixel values in patch 2 float64
CTP patch ” ” ”
CER patch ” ” ”
CPI patch Number of pixels in patch in {clear-sky, liquid, ice, undefined} 4 int64
CWP patch Mean of pixel values in patch 1 float64
CE patch ” ” ”
CTT patch ” ” ”
ACWW patch ” ” ”
CF patch Percentage of pixel values in patch ” ”
SIB patch ” ” ”
SF patch ” ” ”
MLF patch ” ” ”
MLC patch Median of pixel values in patch ” ”

The daily-level AICCA dataset is provided by the comma-separated values (CSV) files

that composite pathces from patch-level AICCA dataset into a single CSV file for each day.

Because Pandas [64] and Dask [74] that offer built-in support for CSV files are familiar

with our end users in climate science community, allowing seamless integration with their

analysis workflow. The complete dataset contains around (21 + 23) years × (365 days/year)

× (12 000 patches/day) ×314 B/patch ≈ 56 gigabytes.

3.7 SCuBA: Self-supervised Cloud Bias Assessment

Finally the thesis proposal proposes Self-supervised Cloud Bias Assessment (SCuBA)

framework that validates biases included in simulated clouds from high-resolution numerical

climate simulations. Advances in computing power for HPC systems greatly encourage

to scale high-resolution simulations with 3–5 km horizontal grid resolution, enabling to

compute more accurate simulated large scale cloud phenomena (e.g., storm and Madden-
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Julian Oscillation) [89]. However, the state of the art 3–5 km simulations are not fully

resolving deep convection, leading to biases in simulated clouds. Given that the clouds play

the one of the largest uncertainty in climate projections [108], an universal bias assessment

application that can assess the fidelity of simulated clouds is necessary. The SCuBa therefore

aims to serve as a validation tool for the purpose of a better understanding of clouds and

fine-scale processes generated from microphysics and radiation schemes in high-resolution

climate models, particularly comparing against satellite observations.

The SCuBA framework may have potential advantages over existing supervised learning

based model bias scheme [63] without reliance of limit location, time/season, and selection

of climate models by employing a trained RI autoencoder to produce latent representations

and using the class assignment scheme described in Section 3.6.1 to assign cluster labels for

patches generated from climate models. The application of a satellite simulator allows for

the generation of synthesized radiances and thus patches as input to the RI autoencoder,

thereby independent of the underlying climate models. To validate the biases in simulated

clouds from climate models, we compare the distributions of AICCA class labels generated

from real MODIS radiances and synthesized ones. Through this comparison, SCuBA can

gain insight into the sources of bias and further refine the microphysics process in tested

climate models.

For variables from outputs of climate model, let ϕ be selected variables to be used for

a satellite simulator M . Here, we use the Satellite Data Simulator Unit (SDSU) [50]. As

high-resolution models include excessive number of layers where clouds are rarely observed

< 100 hPa (e.g., polar mesospheric clouds), and layers near the tropopause that halts further

upward motion of clouds, we select 45 model vertical layers especially more frequently from

700 to 1000 hPa altitude (line 1). To account for variables distributed non-continuously

in the vertical direction, we calculate weighted mean (line 6) across layers using Gaussian

function (line 5). Having pre-processed model variables, we execute satellite simulator to

generate synthesized MODIS radiances for bands 6, 7, 20, 28, 29, and 31 and subsequently
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Algorithm 3 Pseudocode for the self-supervised cloud bias assessment.
Input: ϕ: { variables of climate model used for simulator}
Output: C̃ = {c̃1, · · · , ˜c42} : AICCA class labels via synthesized radiances.

1: Z := {z | z ∈ ZN} ▷ Select vertical layer used for simulator
2: for j from 1 to |ϕ| do
3: Average a variable across the layers.
4: for zi from Z do

5: w(z) = 1
σ

√
2π

exp− (z−zi)2

2σ2 where σ =
√ ∑

(z−zi)
zi+1−zi−1

, ▷ Determine weights per layer

6: ϕ̄i
j =

∫
w(z)·ϕi

j dz∫
w(z) dz

7: end for
8: end for
9: X̃ = M(ϕ̄) where M : satellite simulator ▷ Synthesize MODIS radiances via simulator

10: for x̃i from X̃ do
11: c̃k,i = arg min

k={1,··· ,42}
||z(x̃i)− µk||2 where µ: centroids ▷ Assign cluster label for the i-th patch

based on synthesized radiances
12: end for
13: Return cluster distribution of C̃

patches, giving X̃. We then assign one of AICCA class labels (line 11) via a trained RI

autoencoder, giving a distribution of class labels C̃ to compare ones from AICCA dataset

from real MODIS observation.

3.7.1 Project Plan

First, we develop SCuBA framework on a coarse-resolution model. As a preliminary

test, we work with the eXperimental System for High-resolution prediction on Earth-to-

Local Domains (X-SHiELD) [13] developed at the Geophysical Fluid Dynamics Laboratory

(GFDL). We select the Satellite Data Simulator Unit (SDSU) [50] as a satellite simulator for

generating MODIS radiances because SDSU employs a simple and computational efficient

radiance calculation compared to other satellite simulators. We may deploy the Goddard

Satellite Data Simulator Unit (G-SDSU) [51], an advanced version of SDSU, to achieve more

complex and parallel node execution.

To develop and test SCuBA framework in a cloud-resolving scale model, we will work

with the experimental nature run at global 1-km resolution (XNR1K) data from the global
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1-km Integrated Forecast System (IFS) simulation [99] archived at Oak Ledge National

Laboratory. XNR1K dataset provides global 1-km cloud and atmospheric data during the

northern hemispheric winter months (NDJF: November to February) and the North Atlantic

tropical cyclone season (ASO: August to October) at every 3 hours cadence. IFS model was

initialized at 00 UTC on 1 November 2018 for NDJF, and 00 UTC on 1 August 2019 for ASO.

Here, we plan using first seven days to validate synthesized radiances from SDSU simulator

with real MODIS radiances. Simulated model variables after first seven days may deviate

from real atmosphere, so we do not use for validation of radiances from satellite simulator

but only use for inputs for SCuBA framework. Once we verify the performance of SDSU,

we apply SCuBA workflow 3 to XNR1K’s NDJF and then ASO data. As IFS data output

provides ocean and land flag, we only work with simulated ocean clouds.
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CHAPTER 4

INITIAL RESULTS

We first determine the optimal combination of coefficients in Equation 3.2, investigate the

performance of RI autoencoder in terms of their robustness (i.e., to what extent clustering

assignment changes among autoencoders trained in different initialization), and scaling as a

function of GPUs. Then, we examine clusters based on our evaluation protocol (see Section 3.5).

4.1 Determine optimal combination of λ

We first implement a grid search to determine the optimal combination of weight parameters

(λinv, λres) based on the grid search protocol (see Section 3.3) because the performance of

RI autoencoder is sensitive to the values. Figure 4.1 shows that the optimal parameter

combination is (λinv, λres) = (32, 80) for learning rate at 10−2. Other parameter combinations

do not satisfy the restoration error ratio criterion [Lres(B, Xholdout) > 1.2Lres(A, Xholdout)]

(i.e., a newly trained model B for larger λinv produces restoration errors 20% larger than the

baseline model A) and/or do not achieve rotation-invariant (i.e., a set of the restored image

B(R(xi, θ)) for θ ∈ {0, 30, · · · , 330} is not identical for all rotation combinations.)

Figure 4.1a shows the ratio of restoration loss Lres(B, Xholdout)/Lres(A, Xholdout). Hatched

elements represent suboptimal combinations by Lres(B, Xholdout) > 1.2Lres(A, Xholdout).

There are more suboptimal elements colored in navy seen at lower λres (λres = 1, 10, 20)

and larger λinv (e.g., (λinv, λres) = (25.6, 50), (51.2, 80)), suggesting that a larger λres help

to decrease the restoration error ratio and allow to take larger λinv to satisfy the criterion.

Figure 4.1b shows the standard deviation of the cosine similarities for RI autoencoder

outputs as a function of λ values, which enables quantitative investigation of rotation-

invariance. Cosine similarity quantifies the similarity between two vectors X and X ′ in
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terms of the cosine of the angle between them:

Cosine similarity = < X, X ′ >
∥X∥ · ∥X ′∥

. (4.1)

Equation (4.1) gives 1 when elements of two vectors are exactly matched. A standard

deviation closer to 0 in Fig. 4.1b means that cosine similarities in restored images rotated

for θ ∈ {0, 30, · · · , 330} obtain an identical representation, which verifies the autoencoder

maps images with different transformations into a single canonical orientation. The matrix

of the ratio of restoration and standard deviations tells that increasing λres needs increasing

λinv to satisfy the rotation-invariant criterion while increasing λres leads to better-quality

restorations.

Fig. 4.1c shows the evolution of training loss over iterations with different parameter

values. The lowest convergence of the blue line in Fig. 4.1c proves that the optimal combination

(λinv, λres) = (32, 80) achieves the lowest rotation-invariant loss of the combinations shown.

Note that an appropriate size of learning rate is also essential to discovering the optimal

configuration. Learning rates lower than the 10−2 enables the network to have larger

(λinv, λres) wheres considered here allow the network to take larger λ values, which results

in the latent representation not being able to achieve rotation-invariance.

4.2 Performance of RI autoencoder

First we examine the robustness of RI autoencoders in terms of clustering assignments

if multiple RI autoencoders, which have an identical architecture and training dataset but

are trained on different initialization, generate to what extent similar cluster assignments

based on clustering dataset OC-PatchesHAC, giving robustness of autoencoder. We test six

different RI autoencoders from 8 to 256 clusters. RI autoencoder from Kurihana et al. [43]

is the baseline and we train five other models: one is RI autoencoder that is trained until

400 epochs (hereafter, 2021–400epochs) because longer training epochs benefit models to
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Figure 4.1: Results of grid search for RI autoencoder. (a) Ratio of the two restoration losses
Lres(B, Xholdout)/Lres(A, Xholdout) for different λ combinations. (b) Standard deviation
of cosine similarity computed on the restoration images from RI autoencoder, when
feeding various transformations rotated by {0◦, 30◦, · · · , 330◦}. We highlighted the optimal
combination by a red circle. (c) Training losses for the optimal λ combination (blue) and
two suboptimal combinations (orange and green) examined in the grid search.

gain more generalized representations [10]. The other four models (Model–A – Model–D)

are trained based on different initialization for 400 epochs. Figure 4.2 plots the results of the

robustness of clustering assignments via the Rand score index as a function of the number

of clusters. The Rand index score curve starts from 0.83 at 8 clusters, and converges to

0.99 at 256 clusters, suggesting that RI autoencoders can generate almost identical latent

representations, resulting in similar cluster groups via HAC.

Next, we investigate the scaling performance of the RI autoencoder when training models

with distributing patches in data parallelism. There are two scenarios in the scaling experiment:

‘Strong’ scaling measures the changes in an execution time as a function of the number of

processors when the total problem size remains, and ‘weak’ scaling measures the changes in

an execution time as a function of the number of processors when a problem size is constant

per processor. Particularly in deep learning training, strong scaling lets the total batch size a

constant, whereas weak scaling lets the per-GPU batch size a constant and both experiments

vary the number of GPUs to train a neural network. Table 4.1 summarizes the number of

GPUs used for training, the size of minibatch per GPU, and the total size of GPUs.
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Figure 4.2: Plots of clustering agreement score (Rand Score Index) among six RI
autoencoders based on OC-PatchesHAC from 8 to 256 clusters. Agreement scores show similar
ranges among models for the number of clusters tested, indicating that RI autoencoders
are robust to generate similar latent representation and thus result in similar clustering
assignments in particular for a larger number of clusters.

Table 4.1: Configuration of strong and weak scaling experiment for the RI autoencoder.

Experiment Strong scaling Weak scaling
GPUs 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
#batch per
GPU

512 256 128 64 32 16 8 4 128 128 128 128 128 128 128 128

Total #batch 512 512 512 512 512 512 512 512 128 256 512 1024 2048 4096 8192 16384

Figure 4.3 plots the results of strong and weak scaling based on a training time per step

and throughput from weak scaling. Figure 4.3b indicates that the training of RI autoencoder

efficiently leverages a larger size of GPUs under a weak scaling experiment by 128 GPUs, and

the throughput line in Figure 4.3c matches with the ideal scaling curve. Instead, Figure 4.3a
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suffers from effective scaling in data parallel training, suggesting that the effective weak

scaling achieves easier than strong scaling for the proposed RI autoencoder with increasing

size of GPUs.
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Figure 4.3: Plots of strong and weak scaling of RI autoencoder. (a) Strong scaling and
(b) weak scaling results in terms of execution time per step. (c) Throughput of images per
second based on weak scaling. The blue line and dots represent scaling performance and the
dashed line (magenta) represents the ideal scaling line. Convergence is efficiently scaled in
weak scaling but strong scaling suffers from effective scaling.

4.3 Evaluation protocol

We evaluate the performance of RICC in terms of the evaluation protocol described

in Section 3.5 and compare results obtained from the non-rotationally invariant (NRI)

autoencoder.

4.3.1 Physically Reasonable

Figure 4.4 shows, for each of k clusters from 8 to 256 for the OC-PatchesHAC dataset, the

median inter-cluster correlation as a quantitative metric to evaluate the distinct combinations

of physical properties grouped by each cluster. We set 0.6 as a cut-off threshold following the

standard practice to judge whether two datasets are not strongly correlated. Liquid and ice

phase (CPI), cloud top pressure, and cloud effective radius are below our cut-off threshold of
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Figure 4.4: Plots of the median of correlation coefficients for four cloud physics parameters
(COT, CPI, CTP, and CER) for RI autoencoders. Correlation coefficients <0.6 is a threshold
for whether resulting clusters can group unique distributions of physical parameters. Three
of the four variables fall below 0.6 from 16 to 46 and > 128 clusters, whereas the majority
of clusters have highly similar optical thickness distributions.

0.6, particularly from 16 to 46, and larger than 128 clusters. Cloud optical thickness (COT)

is the highest median correlation of 0.87 at 8 clusters and still shows a high correlation

throughout the experiment. The diversity of distributions of physical parameters between

16 and 46 can conclude that increasing the number of clusters benefits the separation of fine

differences identified in RICC. We observe that CTP and CER are above the cut-off between

48 to 88 clusters, indicating that the relatively larger cluster numbers may have clusters that

are indistinct in terms of their physical properties.

4.3.2 Spatial Distribution

First, we conduct a qualitative test to compare whether the autoencoder-based approach

outperforms a simple clustering of cloud parameters in terms of their spatial coherence in

cluster assignments. Results shown in Figure 4.5 indicate that autoencoder helps to group

adjacent cloud patches into the same clusters, resulting in more spatially coherent cluster

assignments than cluster assignments produced from HAC applied to sets of four patch-mean
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cloud parameters.

RICC HAC 

Figure 4.5: On the same MODIS swath with 493 patches, we show; Left: Clusters produced
by RICC; Right: Clusters produced by HAC applied to patch-mean values of COT, CTP,
CWP, and CER. The background raw visible image from MODIS band 1 is provided to show
the context of geolocation and the presence of clouds. For both cases, 12 clusters (shown
in the color bar) are applied to examine the spatial distribution of clusters qualitatively.
RICC can produce spatially more coherent cluster assignments, whereas a simple clustering
to cloud parameter falls short to capture spatial information.

Next, we apply two different pixel-based sampling processes ‘smoothing’ and ‘scrambling’

to patches to investigate to what extent autoencoders embed spatial information into the

latent representations.

The smoothing test examines how cluster assignments change when we alter the spatial

resolution of patches in OC-PatchesHAC via smoothing based on our protocol Section 3.5.2.

Lower AMI scores indicate that latent representations vary based on differences in the spatial

structure of patches. Figure 4.6a compares the results obtained from RI autoencoder and

NRI autoencoder from 8 to 256 clusters. Results tell that RI autoencoder achieves the

lowest agreement score of 0.519, while NRI obtains 0.619. AMI scores from RI autoencoder

are always below the scores from NRI autoencoder.

The scrambling test examines how cluster assignments change when we scramble pixels on
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Figure 4.6: AMI scores for kernel size 12 from 8 to 256 clusters based on (a) smoothing test
and (b) scrambling test. Lower AMI scores indicate better performance in this test as latent
representations result in differently with and without smoothing and scrambling operations.
The blue line represents adjusted mutual information between clustering assignments from
RI autoencoder with and without smoothing and/or scrambling operation, and the orange
line represents those from NRI autoencoder.

patches from OC-PatchesHAC to remove spatial patterns while preserving the distribution of

pixel values. Similar to the smoothing test, a low agreement score indicates that the trained

autoencoder is encoding information about spatial patterns in the latent representation, and

a high agreement score shows that it is not. Figure 4.6b shows that RI autoencoder achieves

the lowest AMI score of 0.449 and even the highest AMI score of 0.54 is lower than the lowest

AMI score of 0.586 from NRI autoencoder.

The results suggest that both autoencoders are learning spatial patterns as their AMI

score is not close to 1, a perfect matching of two clustering agreements, and the difference

can be accounted for with and without rotation-invariance.

4.3.3 Separable Clusters

The separable clusters test qualitatively examines whether patches from the same cluster

group are located close to each other and whether those from different cluster groups are

far apart from each other in the high-dimensional space. We apply t-SNE to the latent

representations from RI autoencoder so as to visualize them in two-dimensional space.
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Figure 4.7: t-SNE visualization of latent representations of OC-PatchesHAC. To generalize
the relationship between positions of patches and cluster labels in various cluster numbers k
from 8 to 256, we regroup a set of clusters into High altitude, Medium altitude, Sparse, Open
cell stratocumulus, and Closed cell stratocumulus clouds based on texture and within-cluster
mean cloud optical thickness and cloud top pressure values.

Figure 4.7 shows the structure of latent representations of OC-PatchesHAC, colored by five

main cloud groups: High altitude, Medium altitude, Sparse, Open cell stratocumulus, and

Closed cell stratocumulus clouds based on texture and within-cluster mean cloud optical

thickness and cloud top pressure values. This is for generalizing the relationship between

positions of patches and cluster labels in various cluster numbers k from 8 to 256. We

observe that the cloud groups are locally homogeneous and distinct instead of being randomly

distributed, indicating that clustering achieves good separability.
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4.3.4 Rotation Invariance
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Figure 4.8: multi-cluster, applied to NRI and RI autoencoders. Clustering agreement scores
(AMI) on the Test dataset, for from 4 to 2000 clusters. The AMI curve for RICC converges
at 0.9, meaning that RICC autoencoder produces rotation-invariant latent representation.

Fig. 4.8 plots AMI scores as a function of the number of clusters. The AMI curve

for the RICC (blue) converges to 0.9, indicating that the clustering result is agnostic to the

orientation of clouds in the holdout set. In contrast, the agreement score for the combination

of NRI autoencoder and HAC decreases as the number of clusters increases, suggesting that

the NRI autoencoder’s latent representation is influenced by the rotation of images even if

they are for the same types of clouds. Therefore, we conclude that RICC is functional to

process a real image dataset when input orientation does not matter for pattern recognition.

4.3.5 Stability

Figure 4.9a shows that the mean ARI drops from 0.48 at eight clusters to 0.32 at 48

clusters, and then continues to decline to below 0.3 after 68 clusters. Results indicate

that there is a presence of cluster assignments consistently seen in different combination

of datasets, particularly for stronger agreement observed in k > 68.
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The significance curve in Figure 4.9b drops to 1.01 at 50 clusters, indicating that our

optimal number of clusters is k∗ < 50.
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Figure 4.9: Plots for the three stability criteria metrics of Table 3.2, each as a function of
number of clusters. (a) Clustering similarity: Adjusted Rand Index (ARI) as a measure of
similarity of clusterings generated by RICC models trained on different subset of patches.
(b) Clustering similarity significance: Blue line represents the ratio of the mean Rand Index
based on RICC applied to our holdout patches {x | x ∈ H} (G) and the mean Rand Index
from HAC applied to random uniform distributions (R). The red dashed line is G/R ≥ 1.01,
indicating that the stability of cluster label assignments produced from RICC is ≥1% better
than results of simply clustering random uniform data. (c) Intra-cluster texture similarity:
Blue line shows the weighted average of the mean squared Euclidean distance between
pairs of patches within each cluster. Lower values suggest more homogeneous textures and
physical features within each cluster. The use of three similarity tests enables to achieve
simultaneously our goal of both stability and maximality when grouping clusters.
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In Figure 4.9c, the distance metric sharply decreases from 8 to 36 clusters, but the

slope then flattens and values are almost unchanged between 40–48 clusters. That is, the

pairwise similarity of latent representations drastically increases between 8 and 36 clusters

but becomes less different among the range between 40–48 clusters. The selection of a k value

from within this range would not change the result significantly. Since test 5.2 provides an

upper bound of k∗ < 50, the results of test 5.3 suggests that the optimal number of cluster

lies in 40 ≤ k∗ ≤ 48.
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Figure 4.10: Seasonal stability test comparing the intra-seasonal variance of textures within
each cluster as a function of number of clusters. Each of 9 · k colored dots for each value
of k gives the average squared distance (left y-axis) between July and January patches as
described in text; the color indicates cluster density, a measure of cluster size. The black
line shows the mean WASD (right y-axis) from nine trials as described in text. The blue line
shows a smoothed WASD curve obtained by applying a Savitzky-Golay filter with degree six
polynomial. The minimum WASD value in 40 ≤ k∗ ≤ 48 occurs at k = 42, motivating our
choice for AICCA.

These are shown as the dots in Figure 4.10. The WASD curve (black) decreases with

increasing cluster number k, implying as expected that higher cluster numbers allow for

better capturing of seasonal changes. Because a smoothed version of the WASD curve (blue)

has a minimum of k = 42 over the range 40 ≤ k ≤ 48, we choose 42 clusters as the optimum

number and use this value in the cluster assignment step of Section 3.6.1. Given that the

WMO cloud classes define approximately 28 subcategories, the 42 AICCA clusters should
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not overwhelm users who use AICCA to investigate cloud transitions.

4.4 Analysis of AICCA dataset

Having configured the optimal number of clusters to generate the AICCA dataset, we

now examine whether the AICCA dataset provides useful insight into the process of ocean

clouds.

4.4.1 Distribution of clusters

First we investigate the distribution of 42 clusters from AICCA on COT-CTP space. A

major limitation of the ISCCP cloud classification scheme is that the variety of cloud textures

and physical patterns seen among low clouds are simply merged into a single stratocumulus

cloud, one of the largest concerns for climate scientists. In fact, 49.7 percent of OC-Patches

from 2000-2021 falls into a single stratocumulus cloud type, where AICCA assigns 30 of 42

classes to the stratocumulus regime. AICCA distinguishes cloud information distinctively at

the low cloud altitudes and moderate cloud thickness (Sc), while the classes are distributed

on every part of COT-CPT space.

Besides the rich diversity of physical information, we highlight the texture distinctions

in AICCA cloud classes: Figure 4.12 shows six true color images [18] representing common

texture closest to the OC-PatchesHAC centroid for each of the six clusters. Patches shown

for each cluster are visually similar, and the different clusters have distinct differences. For

example, high altitude clouds, #1 and #3 differ in their within-cluster mean optical thickness

(#1: 24.1 and #3: 6.1) and differences in their texture correspond the physical features.

Similarly, four clusters (#20, #25, #30, and #35) that fall into the traditional stratocumulus

cloud category in ISCCP match their mean optical thickness and their sparse/dense cloud

textures. These distinctions show that AICCA is separating stratocumulus clouds by texture

as well as by mean properties across the patch.
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Figure 4.11: Distributions of cluster occurrences and properties from 2000 to 2021 for AICCA
in COT–CTP space, where COT is cloud optical thickness (dimensionless) and CTP cloud
top pressure (hPa). For comparison, dashed lines divide the nine regions corresponding
to the International Satellite Cloud Climatology Project (ISCCP) cloud classes [76, 103].
Dots indicate mean values for each cluster and error bars the standard deviation of cluster
properties. Data point colors indicate the relative frequency of occurrence (RFO) of each
individual cluster in the dataset. Note that, in assigning cluster labels, we sort the clusters
first on CTP and then on the global occurrence of the clusters within each 50 hPa pressure
bin. Thus, small cluster numbers (e.g., #1) represent high-altitude cloud, and within a
similar CTP range (e.g., 500 hPa–550 hPa), smaller numbers represent the more dominant
patterns within the bin.

4.4.2 Geographic Distribution of Cluster Label Occurrence

In this study, we leverage AICCA daily-level dataset (see Section 3.6.3) to examine the

geographic distribution of AICCA cluster labels from 2000 to 2022. Figure 4.13 shows

mean incidences for each of the 42 cloud types in the dataset, gridded on a 1◦ global
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(a) Cluster 1 (b) Cluster 3 (c) Cluster 20

(d) Cluster 25 (e) Cluster 30 (f) Cluster 35

Figure 4.12: Selected MODIS true color images [18] for the six clusters that dominate high
altitude clouds (#1 and #3 ), sparse and open-cell stratocumulus (#20 and #25), and closed-
cell stratocumulus (#30 and #35) clouds. Surtitles show the cluster numbers. We show the
six representative patches closer to OC-PatchesHAC centroids. The example patches indicate
that AICCA discriminates well between textures (e.g., compare the fine-scale detail of #20
to the more coarsely aggregated #35) even for patches of similar mean cloud properties seen
in Figure 4.11.

grid to calculate relative frequency of occurrences of each of 42 clusters. Results exhibit

strong geographic distinctions among cluster labels, with some occurring only in the tropics

and others only at high latitudes. Some show even finer geographic restrictions. For

example, cloud classes #1–#3 are localized primarily in the West Pacific warm pool, all

likely associated with tropical deep convection, though ranging in altitude (227.7–324.6 hPa

CTP) and thickness (24.1–6.1 COT). Note again that classes are numbered in order of

their mean altitude; see Section 3.6.1 for details. By contrast, the stratocumulus cloud

labels discussed for Figure 4.11 show different distributions. Those most clearly associated

with classic closed-cell stratocumulus—#30 and #35—are as expected primarily localized to

small areas on the west coasts of continents. The most predominant open-cell stratocumulus
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cloud, #25, is more widely distributed but with strong latitudinal dependence. The three

clusters described are all low in altitude (mean CTP of 796.3–834.9 hPa) and moderate in

thickness (mean COT of 8.8–13.2 thickness for the closed-cell classes and 7.1 for the open-

cell). Therefore all would be labeled as Sc in the ISCCP classification, whereas AICCA

reveals their striking differences. Additionally, it is worth noting that when comparing the

geographical distributions with different seasons, the geographic distinctions become even

sharper patterns along with migrating seasonally with the sun’s position.

The strong localization of some cloud classes near the poles raises concern that they

may be affected by the presence of sea ice. We have restricted analysis to ocean clouds

to avoid the complications of surface effects—the ocean provides a dark and homogeneous

background—but parts of the high-latitudes ocean are covered in wintertime ice. Because

two of the MODIS bands used in our cloud clustering system, bands 6 (1.6 µm) and 7

(2.12 µm), are also used by the MODIS snow and ice detection algorithm [73], the resulting

AICCA dataset can inadvertently include some surface background information in the latent

representation. To check for contamination, we use a MODIS cloud product that describes

the presence of a snow and ice background for each pixel (MOD06). Only one cloud class

may experience significant interference: #12, which forms in local winter. (Sea ice makes

up 16/31% of its labeled pixels in January/July.) The other polar cloud classes appear in

local summer. Sea ice effects therefore do not appear to drive the labeling of geographically

distinct cloud classes that appear in polar oceans.

These results suggest that AICCA identifies real and important differences between cloud

types and can help climate scientists understand the drivers of distinct cloud patterns and

regimes.

4.4.3 Trends in subtropical stratocumulus

For our case study, we consider whether the AICCA classes can provide insight into a

recently discovered cloud trend: low cloud cover has been decreasing in the Pacific Ocean
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Cluster 1 
 RFO 2.1 % 

 COT 24.1  CTP 227.7 hPa

Cluster 2 
 RFO 2.4 % 

 COT 12.9  CTP 283.0 hPa

Cluster 3 
 RFO 2.2 % 

 COT 6.1  CTP 324.6 hPa

Cluster 4 
 RFO 3.4 % 

 COT 14.7  CTP 407.0 hPa

Cluster 5 
 RFO 1.3 % 

 COT 13.3  CTP 445.1 hPa

Cluster 6 
 RFO 2.2 % 

 COT 7.4  CTP 439.0 hPa

Cluster 7 
 RFO 2.5 % 

 COT 16.2  CTP 539.9 hPa

Cluster 8 
 RFO 2.4 % 

 COT 4.5  CTP 479.5 hPa

Cluster 9 
 RFO 4.5 % 

 COT 13.9  CTP 645.4 hPa

Cluster 10 
 RFO 5.3 % 

 COT 14.1  CTP 690.5 hPa

Cluster 11 
 RFO 3.4 % 

 COT 18.2  CTP 551.4 hPa

Cluster 12 
 RFO 3.8 % 

 COT 12.5  CTP 688.0 hPa

Cluster 13 
 RFO 1.1 % 

 COT 21.7  CTP 672.5 hPa

Cluster 14 
 RFO 4.1 % 

 COT 12.3  CTP 721.7 hPa

Cluster 15 
 RFO 2.3 % 

 COT 15.6  CTP 675.3 hPa

Cluster 16 
 RFO 2.3 % 

 COT 15.5  CTP 680.1 hPa

Cluster 17 
 RFO 1.7 % 

 COT 3.7  CTP 627.6 hPa

Cluster 18 
 RFO 3.1 % 

 COT 12.7  CTP 812.8 hPa

Cluster 19 
 RFO 1.9 % 

 COT 6.2  CTP 726.5 hPa

Cluster 20 
 RFO 1.4 % 

 COT 3.8  CTP 699.5 hPa

Cluster 21 
 RFO 4.4 % 

 COT 10.3  CTP 777.0 hPa

Cluster 22 
 RFO 4.7 % 

 COT 10.0  CTP 810.0 hPa

Cluster 23 
 RFO 2.8 % 

 COT 8.0  CTP 791.8 hPa

Cluster 24 
 RFO 2.1 % 

 COT 10.3  CTP 792.4 hPa

Cluster 25 
 RFO 2.6 % 

 COT 7.1  CTP 796.3 hPa

Cluster 26 
 RFO 2.0 % 

 COT 8.7  CTP 787.2 hPa

Cluster 27 
 RFO 2.2 % 

 COT 6.5  CTP 820.5 hPa

Cluster 28 
 RFO 1.9 % 

 COT 11.0  CTP 801.5 hPa

Cluster 29 
 RFO 1.7 % 

 COT 5.7  CTP 769.2 hPa

Cluster 30 
 RFO 1.9 % 

 COT 8.8  CTP 834.9 hPa

Cluster 31 
 RFO 1.1 % 

 COT 16.2  CTP 784.3 hPa

Cluster 32 
 RFO 1.7 % 

 COT 7.7  CTP 810.7 hPa

Cluster 33 
 RFO 1.4 % 

 COT 12.3  CTP 801.8 hPa

Cluster 34 
 RFO 1.7 % 

 COT 8.4  CTP 816.4 hPa

Cluster 35 
 RFO 1.2 % 

 COT 13.2  CTP 832.3 hPa

Cluster 36 
 RFO 2.0 % 

 COT 6.4  CTP 853.1 hPa

Cluster 37 
 RFO 1.9 % 

 COT 5.9  CTP 849.2 hPa

Cluster 38 
 RFO 1.7 % 

 COT 4.6  CTP 837.3 hPa

Cluster 39 
 RFO 1.7 % 

 COT 6.7  CTP 855.5 hPa

Cluster 40 
 RFO 2.1 % 

 COT 6.4  CTP 850.9 hPa

Cluster 41 
 RFO 1.5 % 

 COT 5.3  CTP 848.9 hPa

Cluster 42 
 RFO 2.3 % 

 COT 10.0  CTP 876.1 hPa

1 5 10 15 20 25 30
Relative Frequency of Occurrence (%)

Figure 4.13: An example application of AICCA. We plot the relative frequency of occurrence
(RFO) for each of the 42 AICCA42 clusters, using all data from 2000 to 2021. Land is in grey,
and areas where RFO < 1.0% are in white. Surtitles show global mean RFO, cloud optical
thickness (COT), and cloud top pressure (CTP) for the given cluster. Clusters show striking
geographic distinctions, and those with roughly similar spatial patterns have different mean
physical properties, suggesting meaningful physical distinctions.

off the coast of Southern California and the Baja peninsula [1]. This finding was based on

mean MODIS cloud properties alone, with no consideration of cloud patterns.

Figure 4.14 shows the trends in 18 years (2003–2021) of MODIS observations off the

S. California coast for eight cloud classes. We exclude 2000–2002 because the Aqua and

Terra instruments were not operating simultaneously over an entire year during that period.
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Figure 4.14: Trends in occurrence of selected AICCA cloud classes over the subtropical
N. Pacific Ocean (100–160W and 5–40N). Colors show fitted linear trends over the 18 years
2003–2021, expressed in units of % of the mean value over this time. Dot size represents mean
relative frequency of occurrence within a class. Dashed curve highlights the approximate edge
of the deck.

Closed-cell (or transitional) stratocumulus are the most dominant cloud types in this part

of the Pacific, making up a quarter of all cloud occurrences (top row, #26, 30, 33, 35, which

are four of the five most predominant classes). All these classes decrease strongly, especially

along the southern edge of the deck—by as much as 2/3 in some locations. However, several

classes of optically thinner clouds increase, especially just south of the deck region (bottom

row, #8, 17, 20, and 38). These classes represent very sparse cumulus or alto-cumulus, similar

in visual texture but slightly higher in altitude. The combined effect is that sparse classes

infiltrate the stratocumulus deck along its unstable edges. (The same analysis applied to

ISCCP cloud classifications also shows a decrease in stratocumulus and increase in cumulus

clouds, but AICCA cloud classes provide finer details on these transitions.) This trend

may be temperature-driven: stratocumulus decks form only when atmospheric conditions

are highly stable, and warmer sea surface temperatures tend to reduce stability. Sea-surface

temperatures in the region from the ERA5 reanalysis [22] do increase by nearly 1K over this

time period.

The AICCA dataset also lets us examine the temporal evolution of cloud patterns over

shorter timescales. For now we consider evolution at fixed (Eulerian) locations, ignoring
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Figure 4.15: Sankey diagram of sub-daily and daily cloud class transitions within gridcells for
the 2003–2022 period for the eight classes, and region, in Figure 4.14. Box widths represent
occurrence frequency of each class, and colors are ordered by trend. Ribbon width represents
the rate of transitions from one class type to another. Loops represent persistence of a class
from one time period to the next.

advection by winds. (Stratocumulus textures are driven by a mix of local environmental

control and horizontal advection, but the Eulerian perspective can provide insight at sub-

daily to daily timescales.) Figure 4.15 shows, as a Sankey diagram, transitions from one time

period to the next (∼ daily) for the selected classes and region shown in Figure 4.14. We see

significant evolution within closed-cell stratocumulus. The most frequently occurring class,

#35, is unsurprisingly also the most stable, and evolves primarily into other closed-cell forms

(#30 and #26), which in turn transition into a wide variety of classes. Less than 10% of

transitions represent direct evolution from selected closed-cell to selected sparse cloud classes

(though still more than the reverse direction). That is, transitions from closed cell classes

to sparse cloud classes are largely modulated through a complicated network of mixed type

classes. This result suggests that the replacement of closed-cell by sparse cloud types in

Figure 4.14 does not simply result from a reduction in stratocumulus lifetime.
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4.5 SCuBA: Model comparison

We conduct analysis to compare the distribution of AICCA cloud classes from real

MODIS observation between 2000–2022 and synthesized radiances from the eXperimental

System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD) [13] developed

at the Geophysical Fluid Dynamics Laboratory (GFDL). We use the Satellite Data Simulator

Unit (SDSU) [50] to obtain simulate radiances from the climate model. In a preliminary

analysis, we use a one-day snapshot of X-SHiELD model output that is upscaled from 3.5

km to 6.5 km horizontal scale.

4.16 shows distributions of cluster frequencies for the entire 23-year AICCA dataset

and those from the 6.5 km X-SHiELD model output. As expected, climate model outputs

overestimate high clouds (#4 and #5) as well as low cloud classes (#37 and #38), and thus

underestimating medium altitude clouds, indicating the model bias in terms of simulating

clouds. Interestingly, a type of cloud class #37, which represents optically thin (COT 5.9 &

CTP 849.2 hPa) low clouds, shows the highest frequency of occurrences (16.6%), even though

#37 has only 1.9% of partition of patches based on MODIS observation for the entire 23

years. Results suggest that since the horizontal resolution of 6.5km does not reproduce

the fine texture and structure of clouds, distributions of AICCA class based on synthesized

radiances may contradict those from observations.

The preliminary result suggests that SCuBA framework can be used as a new diagnostic

tool to evaluate biases from climate simulations, which is one of the largest uncertainties in

the future climate projection. Because the satellite simulator is applicable to any climate

models, our proposed tool shows a new direction of research in an application of unsupervised

deep learning in climate science for the purpose of AI-based cloud bias correction.
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Figure 4.16: Histogram of distributions of 42 cloud classes in AICCA42 from the mean
relative frequency of occurrences from 2000-2022 of OC-Patches , and those from synthesized
radiances based on one day snapshot of X-SHiELD model 6.5km resolution.
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CHAPTER 5

RESEARCH TIMELINE

Based on the proposed thesis content Chapter 3, I completed Data collection (Section 3.1),

development of rotationally invariant autoencoder algorithm and the training protocol (Section 3.2

and Section 3.3), design of evaluation protocol under the condition of no ground-truth cloud

labels are available (Section 3.5), and the creation of the novel AI-driven cloud classification

atlas (AICCA) (Section 3.6). I plan to compile AICCA for the publicly available dataset

(Section 3.6) by Summer 2023.

To complete the remaining part of the thesis in Section 3.7, I have to conduct the following

steps:

Step-1 Collect the cloud-resolving scale (i.e., ideally spatial resolution ≤ 3 km ) climate

model outputs;

Step-2 Compile and adjust a satellite simulator code on the Midway cluster computer

and the Argonne Leadership Computing Facility’s Theta computer for the cloud-

resolving scale inputs;

Step-3 Complete workflow to convert raw climate outputs to variables needed to feed the

satellite simulator;

Step-4 Generate synthesized MODIS radiances from the variables being converted in the

previous step; and

Step-5 Finally, finalize a workflow to validate biases of simulated clouds generated from

climate models with the framework of distributions of cloud classes in AICCA.

For the tasks to be completed, I have already collaborated with Valentine Anantharaj in the

Oak Ridge National Laboratory to obtain access permission to the experimental nature run at

global 1-km resolution (XNR1K) data from the global 1-km Integrated Forecast System (IFS)
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simulation [99], and computing resources from Oak Ridge Leadership Computing Facility.

I will use the Summer 2023 to run the experiments and perform validation tasks with

XNR1K. I plan to submit these results to American Geophysical Union (AGU) Fall Meeting

2023 and/or journals that target AI applications to climate science.

Finally, I will use the Autumn 2023 to write a draft of Ph.D. thesis and schedule a

dissertation defense on the mid-December, 2023

I summarized the work plan as follows:

Spring 2023

• Collect XNR1K data from ORNL

• Prepare compilation and configuration to run satellite simulator

Summer 2023

• Generate synthesized MODIS radiances

• Conduct validation of simulated clouds from XNR1K data

• Submit an abstract to AGU 2023

• Make AICCA publicly available

Autumn 2023

• Finalize draft of the Ph.D. dissertation

• Defense on the mid-December
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