
THE UNIVERSITY OF CHICAGO

USER-CENTRIC OPTIMIZATIONS FOR INTERNET APPLICATIONS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCE DIVISION

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF DEPARTMENT OF COMPUTER SCIENCE

BY

XU ZHANG

CHICAGO, ILLINOIS

MAY 10, 2023



Copyright © 2023 by Xu Zhang

All Rights Reserved



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

2 E2E: EMBRACING USER HETEROGENEITY TO IMPROVE QUALITY OF EX-
PERIENCE ON THE WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 QoE sensitivity and its heterogeneity . . . . . . . . . . . . . . . . . . 6
2.2.3 Sigmoid-like QoE-delay relationship . . . . . . . . . . . . . . . . . . . 6
2.2.4 Variability in external delays . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Potential for improvement . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Reshuffling server-side delays . . . . . . . . . . . . . . . . . . . . . . 10
2.2.7 Practicality of simulation . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8 Potential gains in QoE and throughput . . . . . . . . . . . . . . . . . 11
2.2.9 Summary of key observations . . . . . . . . . . . . . . . . . . . . . . 14

2.3 E2E: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Key challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 E2E: decision policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Two-level decision-making policy . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Request-decision mapping algorithm . . . . . . . . . . . . . . . . . . 21

2.5 E2E: Decision overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Coarsening spatial granularity . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Coarsening temporal granularity . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Fault tolerance of E2E controller . . . . . . . . . . . . . . . . . . . . 23

2.6 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Use case #1: Distributed database. . . . . . . . . . . . . . . . . . . . 24
2.6.2 Use case #2: Message broker. . . . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8.1 Testbed setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.3 Metric of QoE gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.4 End-to-end evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.5 Overall QoE gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.6 Better QoE-throughput tradeoffs . . . . . . . . . . . . . . . . . . . . 30

iii



2.8.7 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.8 System overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.9 Decision delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.10 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.11 In-depth analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.12 Operational regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.13 Robustness to prediction errors . . . . . . . . . . . . . . . . . . . . . 34
2.8.14 QoE fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.15 E2E vs. deadline-driven scheduling . . . . . . . . . . . . . . . . . . . 35

2.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9.1 Web QoE modeling/optimization . . . . . . . . . . . . . . . . . . . . 36
2.9.2 Web service resource allocation . . . . . . . . . . . . . . . . . . . . . 36
2.9.3 End-to-end performance analysis . . . . . . . . . . . . . . . . . . . . 37

2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10.1 Incentives of other service providers . . . . . . . . . . . . . . . . . . . 37
2.10.2 Security threat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10.3 Interaction with existing policies . . . . . . . . . . . . . . . . . . . . 38
2.10.4 Complex request structures . . . . . . . . . . . . . . . . . . . . . . . 38
2.10.5 Deployment at scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 SENSEI: ALIGNING VIDEO STREAMING QUALITY WITH DYNAMIC USER
SENSITIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Prior QoE modeling and their limitations . . . . . . . . . . . . . . . 45
3.2.2 Temporal variability of quality sensitivity . . . . . . . . . . . . . . . 47
3.2.3 Modeling quality sensitivity . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Potential gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Overview of Sensei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Sensei’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Crowdsourcing quality sensitivity per video . . . . . . . . . . . . . . 56

3.4 Profiling Quality Sensitivity at Scale . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 QoE modeling workflow . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Cutting cost via chunk-level reweighting . . . . . . . . . . . . . . . . 58
3.4.3 Crowdsourcing scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Reliable QoE Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Sensei’s ABR Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Enabling new adaptation actions . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Refactoring current ABR algorithms . . . . . . . . . . . . . . . . . . 64
3.6.3 Player implementation and integration . . . . . . . . . . . . . . . . . 65

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.2 End-to-end improvement . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7.3 QoE prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7.4 Cost savings on crowdsourcing . . . . . . . . . . . . . . . . . . . . . 71

iv



3.7.5 Sensei’s ABR logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 VIDPLATFORM: A PLATFORM FOR QUALITY OF EXPERIENCE ASSESS-
MENT OF INTERNET APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . 78

5 EXPECTED TIMELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
.1 Incentive to improve latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
.2 User Study on Web Quality of Experience . . . . . . . . . . . . . . . . . . . 96

.2.1 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

.2.2 Video recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

.2.4 Response validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
.3 Sensei’s Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
.4 Reliable QoE Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
.5 Sensei’s Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
.6 More discussion on saliency models . . . . . . . . . . . . . . . . . . . . . . . 102

v



LIST OF FIGURES

2.1 (a) An example of three requests with different QoE sensitivities to server-side
delays, and (b) the potential QoE/throughput improvement if we leverage user
heterogeneity. These figures are illustrative; actual figures from our evaluation
and trace analysis appear later (e.g., Figures 2.3, 2.6). . . . . . . . . . . . . . . 2

2.2 The life cycle of a web request, showing the total delay, server-side delay, and
external delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 We observe a non-linear relationship between QoE and total delay (a), so reducing
delay by the same amount can have a dramatically different impact on QoE. We
highlight different sensitivity regions with different colors. The same QoE-delay
relationship is observed in our MTurk-based user study (b). . . . . . . . . . . . 8

2.4 External delays exhibit great variance even among requests received by the same
web server cluster for the same page content. . . . . . . . . . . . . . . . . . . . 9

2.5 Potential QoE gains through better allocation of server-side resources based on
QoE sensitivity. By reshuffling server-side delays (solid yellow line), we achieve
significant QoE gains that are close to the (unrealizable) ideal of zero server-side
delays (dashed blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Potential throughput improvement with similar QoE, achieved by reshuffling
server-side delays during peak hours and off-peak hours. . . . . . . . . . . . . . 12

2.7 Current server-side delays are uncorrelated with external delays, showing that the
existing resource allocation policy is agnostic to QoE sensitivity. (Candlesticks
show {5, 25, 50, 75, 95} percentiles.) . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Server-side delays are highly variable, and not just at the tail. This holds for
different page types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Overview of E2E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Examples of how E2E may allocate resources differently in (a) a distributed

database and (b) a message broker. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Illustration of how allocating resources based solely on requests’ external delays

can lead to suboptimal QoE. Scenarios 1 and 2 have the same pair of requests
but different server-side delays. We use the assignment of server-side delays to
represent resource allocation. In scenario 1, assigning the shorter server-side
delay (s2) to B and the longer one (s1) to A leads to better overall QoE. But in
scenario 2, giving the shorter delay (s′2) to A leads to worse overall QoE. . . . . 17

2.12 Running our request-decision mapping algorithm on an example replica selection
scenario with three requests (c1, c2, c3) and two replicas (x, y). The given
decision allocation is two requests for replica x and one request for the replica
y. The final request-decision assignment is optimal for the decision allocation if
and only if the corresponding bipartite matching is maximum. . . . . . . . . . . 18

2.13 Use cases of E2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.14 Overall QoE improvement of E2E and the slope-based policy over the default

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.15 QoE improvement of E2E under different levels of loads. Throughput is normal-

ized against the highest per-hour throughput (a) and the total testbed capacity
(b, c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



2.16 The additional overhead of E2E vs. the total overhead of running the testbeds. 31
2.17 Per-request delay reduction due to spatial and temporal coarsening (§2.5). . . . 32
2.18 E2E can tolerate loss of the controller. . . . . . . . . . . . . . . . . . . . . . . . 33
2.19 The impact of three key workload dimensions on E2E’s effectiveness. The red

spot shows where the workload in our traces lies. . . . . . . . . . . . . . . . . . 34
2.20 Sensitivity of QoE improvement to prediction errors in external delay and re-

quests per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.21 E2E vs. Timecard (with different total delay deadlines). . . . . . . . . . . . . . 35

3.1 Example of dynamic quality sensitivity. Users are asked to rate the quality (on
a scale of 1 to 5) of different renderings of a source video (Soccer1), where a 1-
second rebuffering event occurs at a different place in each rendering. We observe
substantial differences in the QoE impact (measured by mean opinion score, or
MOS) across the renderings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Existing QoE models exhibit substantial QoE prediction errors (x-axis), which
cause them to frequently mis-predict the relative QoE ranking between two ABR
algorithms on the same video, i.e., a discordant pair (y-axis). . . . . . . . . . . 47

3.3 1-sec rebuffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 4-sec rebuffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Bitrate drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Impact of different quality incidents at different points in the video in Figure 3.1.

The pattern of variability remains the same across the different quality incidents.
Error bars show standard deviation of the means. . . . . . . . . . . . . . . . . 49

3.7 Soccer1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 QoE rating drop when adding a 1-sec rebuffering at different points in the video,

compared to chunk sensitivity levels inferred by saliency models. . . . . . . . . . 51
3.10 Distribution of sensitivity variability when a low-quality incident (1-second re-

buffering, 4-second rebuffering, or a bitrate drop for 4 seconds) is added at differ-
ent points in the same video. The trend is similar even if the low-quality incident
and QoE gap are localized to a 12-second window. . . . . . . . . . . . . . . . . 53

3.11 Being aware of dynamic quality sensitivity can significantly improve QoE and
save bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Overview of Sensei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.13 Workflow of profiling dynamic quality sensitivity using a crowdsourcing platform.

The arrow back to the scheduler means that crowdsourced ratings may be used
to suggest more rendered videos to iteratively refine the QoE modeling. . . . . 57

3.14 A running example of the crowdsoucring scheduler for a source video with 3
chunks, 2 bitrate levels (high and low), 2 rebuffering event levels (0 and 1 second). 59

3.15 ABR framework of Sensei. The differences with traditional ABR framework are
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 Illustrative examples of Sensei vs traditional ABR logic: how Sensei improves
quality (a vs. b) or avoids bad quality (c vs. d) for high-sensitivity chunks. . . . 64

3.17 QoE gains over BBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.18 QoE vs. bandwidth usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



3.19 MTurk cost vs. QoE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.20 Sensei with crowdsourced weight vs. saliency-based weights . . . . . . . . . . . 67
3.21 End-to-end performance of Sensei over traditional and saliency-based ABR base-

lines across all videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.22 QoE gain grouped by genre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.23 QoE gain grouped by trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.24 QoE gains over BBA for genre and for each throughput trace (ordered by in-

creasing average throughput) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.25 QoE prediction accuracy of Sensei, Sensei’s variants, and baseline QoE models. . 71
3.26 The effect of the number of raters . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.27 QoE model accuracy changes with cost. . . . . . . . . . . . . . . . . . . . . . . 72
3.28 QoE under increasing bandwidth variance. . . . . . . . . . . . . . . . . . . . . . 73
3.29 Impact of base ABR logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.30 Improvement breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.31 Chunk sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.32 Lookahead horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.33 Understanding Sensei’s improvements. . . . . . . . . . . . . . . . . . . . . . . . 74

1 The relationship between page load time and user rating in different websites. . 98
2 Summary of source videos in our dataset. They span four genres: sports (a -

g), gaming (h - j), natural (k - m), and animation (n - p). They are compiled
randomly from public QoE datasets: LIVE-MOBILE [60](a,k), LIVE-NFLX-
II [31] (b, n), YouTube-UGC [132] (c - j and l - o); and WaterlooSQOE-III [53]
(p). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Chunk weight difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4 A diagram of our QoE survey interface. In each survey, an MTurker is asked to

rate K rendered videos; after watching each rendered video, an MTurker is asked
to rate its quality on a scale of 1 (worst) to 5 (best). . . . . . . . . . . . . . . . 101

viii



LIST OF TABLES

2.1 Dataset summary (date: 02/20/2018) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Summary of terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Summary of the test video set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



CHAPTER 1

INTRODUCTION

The landscape of networked applications has changed rapidly, with a sharp increase of ap-

plications now relying on high-quality video streams and fast web services, a proliferation

of higher resolution videos (4K, 8K, and virtual reality), and above all, users becoming less

patient with low-quality services. These changes greatly increase resource demands, in both

network bandwidth and compute cycles, of today’s Internet applications. This has created

a significant challenge since scaling applications requires either lowering service quality or

upgrading the network/system infrastructure (which can be slow and expensive). Although

researchers have worked on improving user perception of Internet applications (video and

web) for decades, the research community on computer systems has followed chiefly a system-

centric approach, intending to maximally utilize system resources to optimize a predeter-

mined set of low-level system metrics (e.g., video bitrate, system processing latency, etc.).

We argue that these system-centric optimizations are not necessarily aligned with im-

provements in user perception since the users might perceive the same system metric in

different ways. For example, for a web service, reducing page-load delay by 50ms can im-

prove user perception if the total page load time is 200 milliseconds, but the same delay

reduction is not perceivable if the page load time is as long as 10 seconds. The key insight

in this thesis is that there are many types of heterogeneities across video content and in-

ternet connectivity. This thesis will show that perception heterogeneity provides us with a

new design space to optimize Internet application systems, and it allows us to improve user

perception without using more system or network resources.

To realize the proposed user-centric approach in practice, this thesis presents a set of

techniques for automatically profiling the user’s perceptions by the system metrics for new

users and application content through user study, and optimizing user perception in online

networked systems with marginal additional overhead. In particular, the thesis will focus on

improving quality of experience (QoE) in two widely-used systems in a cost-efficient way:
x



Web services: Considering that user perception of application quality largely depends on

the delay until the response is received, the users do not have the same sensitivity to the

same delay of a web server due to the different delays experienced by a web request before

arriving at the web server, e.g., network transmission time and client processing time). We

will present a system deployed on a web server, which can automatically identify the user

sensitivity to the delay of web servers and allocate more computation resources to more

delay-sensitive users.

Internet video streaming: User perception greatly varies in terms of video content and

user quality preferences—users are more sensitive to quality issues when watching interesting

content. We will propose a new approach that first models the user perception sensitivity to

different content in a fast and cost-efficient fashion and then utilizes the model to optimize

user perception by trading off video-streaming quality during insensitive content and quality

during sensitive content.

Crowdsourcing-based user study tool: Direct QoE measurements are essential to model-

ing the sensitivity to different video content and web server delay, yet QoE measurements

are time-consuming and expensive. In this paper, we will use domain-specific knowledge to

design and implement a tool to assist crowdsourcing-based user study that can minimize the

number of QoE responses collected from the crowd workers and thus minimize the cost and

latency.
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CHAPTER 2

E2E: EMBRACING USER HETEROGENEITY TO IMPROVE

QUALITY OF EXPERIENCE ON THE WEB

2.1 Introduction

Improving end-to-end performance is critical for web service providers such as Microsoft,

Amazon, and Facebook, whose revenues depend crucially on high quality of experience

(QoE). More than ten years have passed since Amazon famously reported every 100ms

of latency cost them 1% in sales, and Google found 0.5s of additional load time for search

results led to a 20% drop in traffic [16]. Today, latency remains critical but the consequences

have gotten steeper: an Akamai study in 2017 showed every 100ms of delay in website load

time hurt conversion rates by 7% [17], and Google reported higher mobile webpage load

times more than double the probability of a bounce [18]. Naturally, web service providers

strive to cut server-side delays—the only delays they can control—to improve the end-to-end

performance of each web request. Following this conventional wisdom, a rich literature has

developed around reducing web service delays (e.g., [120, 136, 65, 82, 44, 74, 127]).

Our work is driven by a simple observation: although reducing server-side delay generally

improves QoE, the amount of QoE improvement varies greatly depending on the external

delay of each web request, i.e., the total delay experienced prior to arriving at the web service

due to ISP routing, last-mile connectivity, and so forth. In other words, if we define QoE

sensitivity as the amount QoE would improve if the server-side delay were reduced to zero,

there is substantial heterogeneity in QoE sensitivity across users. This heterogeneity results

from two empirical findings. First, as illustrated in Figure 2.1(a), QoE typically decreases

along a sigmoid-like curve as delay increases. When the external delay is very short or very

long (e.g., A or C on the curve), QoE tends to be less sensitive to the server-side delay than

when the external delay is in the middle (e.g., B on the curve). We verified this trend using

traces from Microsoft’s cloud-scale production web framework, as well as a user study we
1
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Figure 2.1: (a) An example of three requests with different QoE sensitivities to server-side
delays, and (b) the potential QoE/throughput improvement if we leverage user heterogeneity.
These figures are illustrative; actual figures from our evaluation and trace analysis appear
later (e.g., Figures 2.3, 2.6).

ran on Amazon MTurk to derive QoE curves for several popular websites (§2.2.2).

Second, external delays are inherently diverse across user requests to the same web ser-

vice, due to factors that are beyond the control of the web service provider: e.g., ISP routing,

last-mile connectivity, DNS lookups, and client-side (browser) rendering and processing. Our

analysis of our traces reveals substantial variability in external delays even among requests

received by the same frontend web server, for the same web content (§2.2.2).

The heterogeneity in QoE sensitivity implies that following the conventional wisdom

of minimizing server-side delays uniformly across all requests can be inefficient, because

resources may be used to optimize requests that are not sensitive to this delay. Instead, we

should reallocate these resources to requests whose QoE is sensitive to server-side delay.

At a high level, user heterogeneity is inherent to the Internet’s loosely federated archi-

tecture, where different systems are connected together functionally (client devices, ISPs,

cloud providers, etc.), but delay optimization is handled separately by each system. Our

work does not advocate against this federated architecture; rather, we argue that web ser-

vice providers should embrace the heterogeneity of QoE sensitivity across users to better

allocate server-side resources to optimize QoE. Using our traces, we show that if we could

reshuffle server-side delays among concurrent requests so that requests with more sensitive

QoE get lower server-side delays, we could increase the average duration of user engagement

2



(a measure of QoE) by 28% (§2.2.5).

To explore the opportunities of leveraging user heterogeneity, we present E2E, a resource

allocation system for web services that optimizes QoE by allocating resources based on each

user’s sensitivity to server-side delay.1 E2E can be used by any shared-resource service;

for example it can be used for replica selection in a distributed database to route sensitive

requests to lighter-loaded replicas.

The key conceptual challenge behind E2E is that, unlike static properties of a request

(e.g., basic vs. premium subscription, wireless vs. wired connectivity), one cannot determine

the QoE sensitivity of an arriving request based solely on its external delay. Instead, QoE

sensitivity depends on the server-side delay as well. As we show in §2.3.2, if the server-side

delay is large enough, it could cause a seemingly less sensitive request (A) to suffer more

QoE degradation than a seemingly more sensitive request (B). Thus, one cannot prioritize

the allocation of resources without taking into account both the external delay distribution

and the server-side delay distribution. The latter distribution, in turn, is affected by the

resource allocation itself, which makes the problem circular and computationally expensive

to solve at the timescale of a web serving system.

E2E addresses this challenge from both the algorithmic perspective and the systems per-

spective. From the algorithmic perspective, E2E decouples the resource allocation problem

into two subproblems, each of which can be solved efficiently: (1) a workload allocation pro-

cess, which determines the server-side delay distribution without considering QoE sensitivity;

and (2) a delay assignment process, which uses graph matching to “assign” the server-side

delays to individual requests in proportion to their QoE sensitivity. E2E solves the two

subproblems iteratively until it finds the best workload allocation and delay assignment

(§2.4).

From the systems perspective, E2E further reduces the cost of processing each request by

coarsening the timescale and the granularity of resource allocation decisions. Observing that

1. E2E takes an “end-to-end” view of web request delays.
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the optimal allocation is insensitive to small perturbations in the external delay and server-

side delay distributions, we allow the system to cache allocation decisions in a lookup table

and only update them when a significant change is detected in either distribution (§2.5).

We demonstrate the practicality of E2E by integrating it into two open-source systems to

make them QoE-aware: replica selection in a distributed database (Cassandra) and message

scheduling in a message broker (RabbitMQ) (§.5). We use a trace-driven evaluation and

our testbed deployments to show that (1) E2E can improve QoE (e.g., duration of user

engagement) by 28%, or serve 40% more concurrent requests without any drop in QoE; and

(2) E2E incurs negligible (4.2%) system overhead and less than 100µs delay (§2.7).

This paper focuses on applying E2E to an individual service, or to multiple services that

serve unrelated requests. In a production web framework, it is often the case that multiple

backend services work together to complete the same (high-level) web request. Focusing on

individual backend services allows us to develop our key idea of prioritizing requests based

on how sensitive their QoE is to server-side delays, without the added complexity introduced

by dependencies across services. We discuss these issues in §2.10.

2.2 Motivation

We first use our traces to show the prevalence of heterogeneity in how server-side delays

impact the QoE of different users (§2.2.2). Then, we analyze the potential QoE improvement

that could be attained by exploiting this heterogeneity for server-side resource allocation

(§2.2.5).

2.2.1 Dataset

Our dataset consists of the traces of all web requests served by a production web framework

cluster during one day in February 2018. The cluster is one of several located in an Eastern
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Page Type 1 Page Type 2 Page Type 3
Page loads (K) 682.6 314.1 600.2

Web sessions (K) 564.8 265.7 512.2
Unique URLs (K) 3.8 1.5 3.2
Unique users (K) 521.5 264.2 481.8

Table 2.1: Dataset summary (date: 02/20/2018)

US datacenter serving the major websites and online storefront properties of Microsoft.2

Importantly, the traces include both client-side (browser) and server-side event logs: the

client-side logs record all page rendering events and issued requests, while the server-side

logs record all backend processing operations required to fulfill each request. Overall, the

dataset spans 1.17M unique users and 1.6M page load events, as summarized in Table 2.1.

For each web request, we define three delay metrics, shown visually in Figure 2.2:

• The total delay (also known as page load time) is the duration between when a user

clicks a link that issues the request and when the last object associated with the request

is rendered.

• The server-side delay is the time to process all server-side operations on the backend,

which may involve multiple steps, such as fetching product IDs from a database and

then querying a product catalog for HTML description snippets, before aggregating

the results and sending them to the user.

• The external delay includes all delays beyond the purview of server-side operations,

e.g., transferring data over the wide-area network, routing the request to the service,

decoding and rendering the response in the client-side browser, etc..

We measure these delay metrics for each web request using the timestamps recorded in

our traces. The total delay is measured by the difference between the first and the last

timestamps associated with the request.

2. Examples include: microsoft.com, xbox.com, msn.com, etc..
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Figure 2.2: The life cycle of a web request, showing the total delay, server-side delay, and
external delay.

The server-side delay is measured by the total delay of all backend operations (with

overlapping delays excluded). As mentioned above, we assume there is a single backend

service; we discuss complex dependencies between backend services in §2.10. Finally, the

external delay of a web request is calculated by subtracting the server-side delay from the

total delay; it includes both wide-area network and datacenter delays, as shown in Figure 2.2.

Note that this estimate of external delay is conservative because the actual delay may be

smaller if server-side processing overlaps with wide-area transfers or browser rendering—our

results improve as server-side delay becomes larger relative to external delay.

2.2.2 QoE sensitivity and its heterogeneity

Our basic intuition is that the impact of the server-side delay of a request on its QoE, i.e.,

its QoE sensitivity, varies greatly across users. This follows directly from two observations,

which we empirically demonstrate here: the sigmoid-like relationship between QoE and total

delay, and the variability in requests’ external delays.

2.2.3 Sigmoid-like QoE-delay relationship

The key to understanding the user heterogeneity lies in the non-linear relationship between

QoE and delay. Figure 2.3 shows the QoE-delay relationship of requests to one particular
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page type. Like prior work, we estimate QoE by “time-on-site”, measured as the difference

between the start and end timestamps of their web session. A web session includes all of the

user’s engagement on the website, such as subsequent clicks and other interactions, with no

period of inactivity greater than 30 minutes. Figure 2.3 groups the total delays into equal-

sized buckets, each with at least 5,000 users, and plots the average QoE of users in each

bucket. The key property of this graph is its sigmoid-like shape. Initially the total delay

is small and the QoE is almost insensitive to any change in delay (the delay is too short

for users to perceive); then the QoE starts to drop sharply with slope peaking at around

2,000 ms (this is the region where reducing total delay makes a difference); finally, when the

total delay exceeds about 5,800 ms, the QoE becomes insensitive again (the delay is long

enough that a little additional delay, while noticeable, does not substantially affect QoE).

Accordingly, we can roughly categorize all user requests into three sensitivity classes:

• Too-fast-to-matter (left blue-shaded area): QoE is not sensitive to server-side delay if

total delay is below 2000 ms.

• Sensitive (middle orange-shaded area): QoE is sensitive to server-side delay when total

delay is between 2000 ms and 5,800 ms.

• Too-slow-to-matter (right red-shaded area): QoE is not sensitive to server-side delay if

total delay exceeds 5,800 ms.

The sigmoid-like curve may look similar to deadline-driven utility curves commonly used

in prior work (e.g., [105, 44]), but there is a difference. Traditionally, a service deadline is

set where the QoE starts to drop. But our analysis shows that when the total delay exceeds

any threshold, the QoE does not drop to zero immediately, and instead decreases gradually

as total delay increases. As we will see in §2.8.11, this difference can cause deadline-driven

schemes to have suboptimal QoE.

We acknowledge that time-on-site may not always reflect how satisfied users are with the

web loading experience. Therefore, we complement the above analysis with an IRB approved
7
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Figure 2.3: We observe a non-linear relationship between QoE and total delay (a), so re-
ducing delay by the same amount can have a dramatically different impact on QoE. We
highlight different sensitivity regions with different colors. The same QoE-delay relationship
is observed in our MTurk-based user study (b).

user study3 on Amazon MTurk [1]. We describe the detailed setup in Appendix .2 and only

give a summary here. Following similar work in the crowdsourcing literature [128], we asked

participants to watch a web page load with different total delays and then to rate their

experience on a scale of 1-5. The total delays were randomly permuted per user to avoid

any bias due to ordering. We ran this user study on the same web page as in Figure 2.3(a)

and plot the resulting QoE curve in Figure 2.3(b). As the figure shows, the curve from the

user study shares the same sigmoid-like shape as the curve from our trace analysis. We also

repeated the user study on four other popular websites; all websites yielded similar sigmoid-

like QoE curves, though the boundaries of the three sensitivity regions vary slightly across

the sites.

Although our observations about the QoE-delay relationship do not seem different from

prior work (e.g., [34, 46]), they have deeper implications when combined with the next

empirical observation on the variability of external delays.

3. Our study was approved by U. Chicago, IRB18-1096. It does not raise ethical issues.
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web server cluster for the same page content.

2.2.4 Variability in external delays

The sigmoid-like relationship between QoE and delay means that the sensitivity of QoE to

server-side delay depends heavily on the external delay. Figure 2.4 shows the distribution

of external delays among requests for the same web page received at the same frontend web

cluster. We see a substantial fraction of requests in each of the three sensitivity classes (25%

too-fast-to-matter, 50% sensitive, 25% too-slow-to-matter). The same kind of distribution

holds across web pages and is stable over time in our traces.4 Note that the variance in

Figure 2.4 is unlikely due to datacenter-level geographical differences, since our traces use a

global network of edge proxies to route users from the same region to the same datacenter

cluster, although this does not exclude geographical differences users in the same region.

It is also unlikely due to application-level differences, since the requests are all targeting

the same web page. In practice, a web service provider may see even greater variability in

external delays if its edge proxies are less widely distributed than our traces (causing each

datacenter cluster to serve a larger geographic region), or if requests are processed by a more

centralized architecture (e.g., in many video streaming CDNs [143]).

Since external delays are beyond the control of the web service provider, they are an

inherent property of the request from the perspective of the service provider. This is in

contrast to server-side delays, which the service can influence.

4. The total delay distributions in our traces are consistent with those observed in prior work [36], though
they may still vary with website type (e.g., online shopping vs. search engine).
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2.2.5 Potential for improvement

We now use a trace-driven simulation to demonstrate the opportunity of leveraging the

heterogeneity of QoE sensitivity to server-side delays. Suppose the dataset has n requests

R = {r1, . . . , rn}, and the server-side delay and external delay of request ri are si and ci,

respectively. Let Q(·) be the QoE function that takes total delay as input and returns the

expected QoE. The current QoE of ri can thus be denoted by V old
i = Q(si + ci). Table 2.2

summarizes our notation.

2.2.6 Reshuffling server-side delays

Now, let us consider a simple analysis to counterfactually estimate the benefit of allocating

resources based on QoE sensitivity. We preserve both the external delay of each request

and the collection of server-side delays, but we re-assign the server-side delays to requests as

follows. We first rank all requests in order of their derivative on the QoE curve, − dQ
dx

∣∣∣
x=ci

,

representing the impact on QoE of a small change in server-side delay. Then, we assign

the kth-largest server-side delay to the request with the kth-smallest derivative (i.e., the

kth-least sensitive request to server-side delay). Let π denote the resulting permutation of

server-side delays, i.e., request ri now has server-side delay sπ(i). So the new QoE of request

ri is V new
i = Q(sπ(i) + ci).

Intuitively, the above re-assignment gives small server-side delays to requests that are

sensitive to them, and larger delays to requests that are less sensitive. If the server-side

delays si are sufficiently small, this assignment can be shown to be optimal, as follows. The

average QoE can be written as 1
n

∑n
i=1Q(sπ(i) + ci) =

1
n

∑n
i=1 sπ(i)Q

′(ci) +
1
n

∑n
i=1Q(ci).

Suppose the ci are given and w.l.o.g. c1 ≤ · · · ≤ cn, then this expression is maximized when

sπ(1) ≤ · · · ≤ sπ(n).
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2.2.7 Practicality of simulation

To avoid assigning improbable server-side delays to the requests, we first grouped the requests

by page type within one-minute time windows, and only re-assigned server-side delays among

requests in the same group and 10-second time window. In other words, we do not assign

the server-side delay of an off-peak-hour request to a peak-hour request, or the server-side

delay of a simple static page request to a complex page request. We also verified that

the server-side delay distributions exhibit only negligible changes within a time window.

Nonetheless, there are two important caveats. First, our analysis assumes the server-side

delays can be arbitrarily re-assigned among requests, which of course is impractical. Second,

the analysis uses a very simple algorithm that assumes the set of server-side delays is fixed. In

practice, server-side delays are difficult to predict and depend on how resources are allocated

to requests. These issues make it challenging to achieve the QoE gains predicted by our

simulation; later sections address the issues to extract as much gain as we can manage.

2.2.8 Potential gains in QoE and throughput

Figure 2.5 shows the distribution of QoE improvements over all requests, i.e., (Qnew
i −

Qold
i )/Qold

i , as predicted by our simulation. We see that a small fraction of requests (less

than 15.2%) suffer a marginally worse QoE under the new assignment, but a substantial

fraction of requests (over 27.8%) see QoE improve by at least 20%. Overall, the new average

11



.4

.5

.6

.7

 0.6  0.7  0.8  0.9  1

Q
oE

 (
N

or
m

al
iz

ed
)

Throughput (Normalized)

Reshuffled delay
Current Policy

Figure 2.6: Potential throughput improvement with similar QoE, achieved by reshuffling
server-side delays during peak hours and off-peak hours.

QoE is 15.4% higher than the old QoE. These improvements are consistent across different

page types in the traces. Note that although the new assignment may worsen tail QoE,

requests at the tail have such small QoE derivatives that the additional degradation is

marginal. We conclude that there is substantial room to improve QoE for a substantial

fraction of users, without changing the distribution of server-side delays.

Similarly, we can also support more concurrent requests, i.e., higher throughput, while

maintaining a similar level of QoE. To estimate the gain in throughput, we apply our reshuf-

fling of server-side delays to peak hours (higher throughput but worse QoE) and to off-peak

hours (lower throughput but better QoE). Figure 2.6 shows the throughput and QoE during

these two periods of time. We randomly select web requests from two peak hours (4pm and

9pm) and three off-peak hours (12am, 3am, 10pm), all in the Eastern Time Zone. For every

10 minutes, we pick the last 10-second window, reshuffle the server-side delays within the

time window, and measure the new QoE as above. We can see that the new average QoE

during peak hours is similar to (even higher than) the old QoE during off-peak hours. In

other words, if we only apply our approach during peak hours, we could support 40% more

users without any drop in average QoE.

Now, there are two contributing factors that suggest why these potential gains can be

realized over existing systems.

1. Existing systems are agnostic to user heterogeneity. Figure 2.7 shows the distribution
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Figure 2.8: Server-side delays are highly variable, and not just at the tail. This holds for
different page types.

of server-side delays in a 10-second window for requests whose external delays fall into

different ranges. We see that there is little correlation between the external delay and

the corresponding server-side delay, which suggests that current resource allocation

and processing of these requests is agnostic to QoE sensitivity. Our discussions with

the Microsoft product teams represented in our traces corroborate this finding.

2. Server-side delays are highly variable. Figure 2.8 shows that there is a substantial

variability in server-side delays even among requests for the same page type. Part

of this variance is due to tail performance (as observed in prior work), but the lower

percentiles also show substantial variance. This variance in server-side delays creates

the “wiggle room” that makes the improvements in Figure 2.5 possible.
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2.2.9 Summary of key observations

The findings in this section can be summarized as follows:

• The variability of external delays across users and the sigmoid-like relationship between

QoE and page load time give rise to heterogeneity in the QoE sensitivity of users to

server-side delays.

• Our trace-driven simulation shows that by allocating server-side delays based on the

QoE sensitivity of each request, one could potentially improve QoE by 20% with the

same throughput, or improve throughput by 40% with the same QoE.

• Existing server-side resource allocation is largely agnostic to external delays, while

server-side delays exhibit high variance, which together create the opportunity to sig-

nificantly improve QoE over current schemes.

2.3 E2E: Overview

The next few sections describe E2E, a general resource allocation system for web services

that realizes the potential QoE and throughput gains of leveraging user heterogeneity.

2.3.1 Architecture

Figure 2.9 illustrates the main components of E2E and how it interacts with a web service

system. Typically, a web request is first received by a frontend web server (Figure 2.9

depicts only one web server, but there may be multiple), which then forwards the request

to a backend infrastructure service (e.g., a distributed database or a message broker) whose

compute/network resources are shared across requests. E2E provides a resource allocation

policy for the shared service that makes a decision for each request, e.g., telling it which

replica to route the request to in a distributed database, or what priority to assign the request

in a message broker. Figure 2.9 depicts only one shared-resource service, but in general E2E
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Figure 2.9: Overview of E2E.

can serve multiple services (or multiple applications within a service) simultaneously, provided

these services do not interact on the same request. We discuss interrelated services, such as

those used to aggregate results for a high-level web request, in §2.10.

E2E takes as input three variables: an offline-profiled QoE model (such as the ones in

Figure 2.3), an external delay model from the frontend web servers, and a server-side delay

model from the shared-resource service. The external delay model provides the distribution of

external delays across requests and an estimate of the current request’s external delay. This

external delay is then tagged as an additional field on the request and on any associated sub-

requests (similar to [44]). The server-side delay model provides an estimate of the server-side

delay of a request based on the decision and the current workload. Based on these inputs,

E2E returns a decision per request for how to allocate resources to it.

We discuss how server-side delays and external delays are estimated in §.5.

Figure 2.10 gives two illustrative examples of how E2E might affect resource allocation

policies, for a distributed database and a message broker. In particular, E2E can improve the

requests’ QoE in two ways. First, E2E can assign more QoE-sensitive requests to decisions

that have lower server-side delays, e.g., a less loaded replica in a distributed database.

Second, E2E can allocate resources to affect the server-side delays, in order to reduce the

delays for QoE-sensitive requests. Even if E2E cannot predict server-side delays exactly, it
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Figure 2.10: Examples of how E2E may allocate resources differently in (a) a distributed
database and (b) a message broker.

can still create a discrepancy between the delays experienced by requests of different QoE

sensitivities. For instance, as illustrated in Figure 2.10(a), E2E can assign uneven loads

across the replicas of a distributed database, so that less loaded replicas are available to

process QoE-sensitive requests with faster response times.

The next two sections present E2E’s resource allocation policy and control interface, using

the distributed database and message broker as two concrete examples of a shared-resource

service. In general, E2E makes very few assumptions about how a shared service processes

requests or physically shares its resources; it only requires the service to expose an API for

controlling decisions (e.g., the replica to select, the priority of a request, etc.). Also, our work

places less emphasis on the prediction of external/server-side delays, or the implementation

of a control plane on which E2E’s resource allocation policy may run. Existing work already

addresses and provides general solutions for these aspects (e.g., [105, 44, 43]).

2.3.2 Key challenge

The key challenge behind E2E is that the optimal decision for a request cannot be determined

from the request alone. Instead, the decision depends on the external delay distribution of

other requests as well as the server-side delay distribution, which itself is a function of these

decisions. Figure 2.11 illustrates a simple example where prioritizing requests purely based

on external delay can lead to a bad decision, and shows how to improve it by taking the

16



Q
oE

Delay

𝑠"

𝑠#

Q
oE

Delay

𝑠"

𝑠#

Q
oE

Delay

𝑠#′

𝑠"′

Q
oE

Delay

𝑠#′

𝑠"′

(a) Scenario 1: 𝑄𝑜𝐸 𝑠" ⇒ 𝐴 + 𝑄𝑜𝐸 𝑠# ⇒ 𝐵 > 𝑄𝑜𝐸 𝑠# ⇒ 𝐴 + 𝑄𝑜𝐸 𝑠" ⇒ 𝐵

A

B

A

B

A
B

A

B

(b) Scenario 2: 𝑄𝑜𝐸 𝑠"′ ⇒ 𝐴 + 𝑄𝑜𝐸 𝑠#′ ⇒ 𝐵 < 𝑄𝑜𝐸 𝑠#′ ⇒ 𝐴 + 𝑄𝑜𝐸 𝑠"′ ⇒ 𝐵

Better overall QoE if B
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Figure 2.11: Illustration of how allocating resources based solely on requests’ external delays
can lead to suboptimal QoE. Scenarios 1 and 2 have the same pair of requests but different
server-side delays. We use the assignment of server-side delays to represent resource alloca-
tion. In scenario 1, assigning the shorter server-side delay (s2) to B and the longer one (s1)
to A leads to better overall QoE. But in scenario 2, giving the shorter delay (s′2) to A leads
to worse overall QoE.

server-side delays and other requests’ external delays into account. The key observation is

that the non-convexity of the QoE-delay curve may cause the sensitivity of a request’s QoE

to flip depending on the external delay and the magnitude of the server-side delay.

This property makes it challenging to design a scalable decision-making policy. In par-

ticular, the circular dependence between server-side delays and resource allocation decisions

makes the problem algorithmically expensive; and the need to account for other request’s

external delays adds processing overheads.

The above makes E2E conceptually different from many other request scheduling prob-

lems where each request has an innate property that indicates its urgency, such as subscrip-

tion type (e.g., premium vs regular users) or the application’s delay sensitivity (e.g., video

streaming vs. web pages). Notably, Timecard [105] and DQBarge [44], two closely related

systems to ours, use the external delay to directly determine the processing deadline of each

request in isolation, without considering other requests or the global impact on available
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Term Brief description
ri;
R

request; vector of requests

ci;
C

external delay of ri; vector of external de-
lays

si;
S

server-side delay of ri; vector of server-
side delays

Q(·) QoE model; Q(d) returns the QoE of total
delay d

zi;
Z

allocation decision of ri; vector of deci-
sions

G(·) server-side delay model; G(Z) returns the
server-side delay vector of decision vector
Z

Table 2.2: Summary of terminology
Replicas Requests Slots

𝑐1

𝑐2

𝑐3

𝑠𝑥

𝑠𝑥

𝑠𝑦

𝑄 𝑐2 + 𝑠𝑥

Requests Slots

𝑐1

𝑐2

𝑐3

𝑠𝑥

𝑠𝑥

𝑠𝑦

𝑠𝑥

𝑠𝑥

𝑠𝑦

x

y

(a) Obtain server-side delays of the 

decision allocation from G()

(c) Find a maximum 

bipartite matching

(b) Construct a bipartite graph 

between requests and decisions

(d) Translate bipartite matching 

into replica selection decisions

Requests

𝑐1

𝑐2

𝑐3

x

y

ReplicasSlots

Figure 2.12: Running our request-decision mapping algorithm on an example replica selection
scenario with three requests (c1, c2, c3) and two replicas (x, y). The given decision allocation
is two requests for replica x and one request for the replica y. The final request-decision
assignment is optimal for the decision allocation if and only if the corresponding bipartite
matching is maximum.

resources (see §2.9).

2.4 E2E: decision policy

This section describes E2E’s decision-making policy for allocating resources to requests.

2.4.1 Problem formulation

We start by formulating the problem of E2E. Table 2.2 summarizes our terminology. We

use ri, ci, si, zi to denote the ith request, its external delay, server-side delay, and allocation
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decision, respectively. Given n concurrent requests r1,..., rn whose external delays ci..., cn

are provided by the external delay model, E2E finds the decision vector Z=(z1,..., zn) that

maximizes

1

n

n∑
i=1

Q(ci +G(zi, Z)),

where Q(d) is the QoE of a request with total delay d, as estimated by the QoE model; and

G(z, Z) is the server-side delay of a request assigned to decision z given that the complete

decision vector is Z, as estimated by the server-side delay model. We assume that the QoE,

external delay, and server-side delay models are known and provided as input; we discuss

their implementation in §.5. For now we assume the server-side delay model G(·) returns

precise (noise-free) estimates; we relax this assumption at the end of §2.4.3.

Unfortunately, solving this problem is computationally hard, because it has to take two

dependencies into account:

1. The amount of resource allocated by zi to a request i depends on how much impact

the resource would have on the request’s QoE. But this impact is not linear: as more

resources are given to the request, the improvement to its QoE may increase or diminish

(since Q is non-linear with respect to server-side delay G(zi)).

2. The resource allocation among a set requests depends on the server-side delay distri-

bution, which is itself a function of the resource allocation.

Mathematically, this problem is NP-hard; the proof is beyond the scope of this paper

(readers can refer to [126]), but the basic hardness lies in the non-convexity of function Q.

2.4.2 Two-level decision-making policy

Our approach to addressing the above intractability is to decouple the problem into two levels,

as shown in Algorithm 1). The bottom level finds the best request-decision mapping for a
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Algorithm 1: E2E’s two-level decision-making policy.
Input: 1) A vector of n requests (r1, . . . , rn),
2) external delay of ri is ci,
3) Number of possible decisions k
Output: Decision vector Z = (z1, . . . , zn), zi is decision of ri
/* Initialize decision allocation */

1 (n, 0, . . . , 0) → W
/* Find the best decisions and QoE under W */

2 RequestDecisionMappingAlgorithm(W ) → Z
3
∑

iQ(ci +G(zi, Z)) → q
4 while HillClimbing(W ) → W ′ ̸= ϕ do
5 RequestDecisionMappingAlgorithm(W ′) → Z ′

6
∑

iQ(ci +G(z′i, Z
′)) → q′

/* Update Z if hillclimbing step improves QoE */
7 if Q′ > Q then
8 Z ′ → Z, q′ → q

given decision allocation, where a decision allocation is the number of requests assigned with

each possible decision (e.g., in a distributed database the possible decisions are the different

replicas). The top level uses a simple hill-climbing search to try different decision allocations,

find the best request-decision mapping for each allocation (by invoking the bottom level),

and repeating until a decision allocation with the best QoE is found. The rationale behind

this search strategy is that requests are functionally identical, so the server-side delay model

depends only on the decision allocation—e.g., the number of requests assigned to each replica,

not which specific requests are assigned—allowing us to drastically reduce the search space

from all possible resource allocations to all possible decision allocations. Since the number

of possible decisions is typically small (e.g., the number of replicas or priority levels), this is

a large savings.

On the other hand, finding the best request-decision mapping for a given decision alloca-

tion can be done optimally and efficiently, by viewing it as a graph matching problem. We

present the details of this algorithm next.
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2.4.3 Request-decision mapping algorithm

For a given decision allocation, we compute the optimal assignment of requests to decisions

by following a four-step process, illustrated in Figure 2.12 through the example of a replica

selection scenario:

1. Figure 2.12(a): Create n “slots” corresponding to the decision allocation and obtain

their server-side delays from G(·). In this case there are three slots, two for replica x

and one for replica y, with server-side delays sx, sx, sy.

2. Figure 2.12(b): Construct an n-to-n bipartite graph where nodes on the left are

requests and nodes on the right are slots, and the weight of the edge from request ri to

slot s is Q(ci + s), i.e., the expected QoE of the request if assigned with this decision.

3. Figure 2.12(c): Find a maximum bipartite matching, i.e., a subgraph where each

node has exactly one edge and the total weight is maximized.

4. Figure 2.12(d): Translate the matching to a request-decision assignment: each re-

quest is assigned the decision corresponding to the slot it is linked to. In this example

the final decisions are: c2 → x, c3 → x, c1 → y.

The key insight is to cast the problem of maximizing the QoE of a request-decision mapping

to that of maximizing a matching in a bipartite graph, for which polynomial-time algorithms

exist [77, 56]. The polynomial is cubic in the number of requests, so care must be taken to

ensure an efficient implementation; this is addressed in §2.5.

In practice, the server-side delay model G(·) estimates a distribution of the server-side

delay, not an exact value, so the request-decision mapping algorithm (Figure 2.12) needs to

be modified as follows. Instead of labeling each slot with a fixed value in Figure 2.12(a)

(e.g., sx), we label it with a probability distribution fx(s) (provided by G(·)), and label

the edge in Figure 2.12(b) between request ri and the slot with the expected QoE over this

distribution, i.e.,
∫∞
0 Q(ci + s)fx(s)ds.
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2.5 E2E: Decision overhead

E2E’s has to make a resource allocation decision for each request, and this decision might

change if one or more of the input variables (QoE model, external delay model, server-side

delay model) changes. This overhead can quickly become unscalable if left unchecked.

Our idea for reducing the decision-making overhead is to coarsen the granularity of deci-

sions along two dimensions: (1) spatially grouping requests with similar characteristics, and

(2) temporally caching decisions that are updated only when a significant change occurs in

the input variables. Although these are heuristics with no formal guarantees, we find that

they work well in practice (§2.7).

2.5.1 Coarsening spatial granularity

We coarsen decisions spatially by grouping requests into a constant number of buckets based

on their external delays. Specifically, we split the range of external delays into k intervals, and

all requests whose external delays fall in the same interval are grouped in the same bucket.

We then run E2E’s decision-making policy over the buckets rather than individual requests,

and assign the same final decision to all requests in a bucket. This coarsening ensures that

the running time of the decision-making process is always constant, rather than growing with

the cube of the number of requests (the fastest bipartite matching algorithm [56, 77]). To

minimize the amount of QoE degradation caused by making decisions at the bucket level,

the external delay intervals satisfy two criteria: (1) they evenly split the request population,

and (2) the span of any interval does not exceed a predefined threshold δ. Our evaluation

shows these criteria are effective.

2.5.2 Coarsening temporal granularity

We have empirically observed that the same decision assignment can yield close-to-optimal

QoE even if some of the inputs to E2E’s decision-making policy have changed slightly. There-
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fore, E2E caches its decision assignment in a decision lookup table that the shared-resource

service can query for every new request. The keys in this table are the buckets of the exter-

nal delays, and the corresponding value is the decision assigned to each bucket. The exact

definition of decisions varies across use cases. For instance, in a distributed database, the

decision of a specific external delay bucket is the probability of sending a request to each

of the replicas, if the request’s external delay falls in the bucket. The lookup table is only

updated when one of the input variables has changed by a “significant amount”. The policy

for deciding this is orthogonal and not something we prescribe; e.g., it could be if the J-S

divergence [93] between the new and old distributions exceeds a certain threshold.

2.5.3 Fault tolerance of E2E controller

In E2E, a request needs to wait for its resource allocation decision from the E2E controller,

which can therefore become a single point of failure for the whole system. This can be

mitigated in three ways. First, if the E2E controller fails, the shared-resource service can

still make QoE-aware decisions by looking up the request’s external delay in the most re-

cently cached decision lookup table (see above). Second, the E2E controller is replicated

with the same input state (QoE model, external delay model, server-side delay model), so

when the primary controller fails, a secondary controller can take over using standard leader

election [35, 72]. Finally, in the case of total E2E failure, the shared-resource service can

simply bypass E2E and use its default resource allocation policy.

2.6 Use Cases

We demonstrate E2E’s practical usefulness by integrating it into two popular web infras-

tructure services, depicted in Figure 2.13: replica selection in a distributed database and

message scheduling in a message broker. In both cases, E2E makes minimal changes to

the shared-resource service and only relies on the control interface exposed by them. We
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Figure 2.13: Use cases of E2E

evaluate E2E’s overhead in §2.8.7.

2.6.1 Use case #1: Distributed database.

We choose Cassandra [2] as the distributed database, and use E2E to select the replica for

each request (this operation is common to other distributed databases, and not specific to

Cassandra). In particular, we made two changes. First, we modified the existing replica

selection logic (getReadExecutor of ReadExecutor) of the Cassandra client. Our new logic

stores the decision lookup table (§2.5) received from the E2E controller in a local data

structure. When a new request arrives, it looks up the request’s external delay in the table

to get the selected replica’s IP. Second, we modified the client service callback function (in

RequestHandler) to keep track of the load (number of concurrent requests) and the observed

(server-side) delay of each replica. In practice, the replication level, i.e., the number of

replicas for each key, is usually much smaller than the total number of servers. A simple

replication strategy, adopted by Cassandra and other databases like MongoDB [10], is to

divide the servers into replica groups and store a copy of the entire database in each group.

This replication strategy is a good fit for E2E, which now simply has to choose a replica

group for each incoming request. It also allows E2E to affect server-side delays by ensuring

that some replica groups are less loaded and used to process QoE-sensitive requests.
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2.6.2 Use case #2: Message broker.

We choose RabbitMQ [11] as the message broker (other message brokers can work with

E2E in a similar way). RabbitMQ manages its resource by using priority queues and as-

sociating each request with a priority level. Requests with high priority are served be-

fore requests with low priority. Similar to the Cassandra implementation, we made two

changes to integrate E2E. First, we wrote the E2E controller logic in a python script

and pass it to RabbitMQ as the default scheduling policy (through queue_bind) when

the RabbitMQ service is initialized. Second, we modified the per-request callback function

(confirm_delivery) to track each request’s progress and the queueing delay in the message

broker.

2.6.3 Implementation details

E2E requires three models as input in order to run. We describe our realizations of these

models below, though other approaches are certainly possible.

• QoE model: Our E2E prototype uses the QoE models derived from the Microsoft

traces and our MTurk user study, shown in Figure 2.3 and detailed in Appendix .2.

The QoE model needs to be updated only when the web service changes its content

substantially; we do not update it in our prototype.

• External delay model: Our E2E prototype builds the external delay distribution from

per-request external delay measurements in recent history. The external delays are

currently provided by our traces and are not calculated in real-time for each request,

though the latter is necessary in a production deployment (see §2.10). We use batched

updates to reduce the overhead of keeping the distribution up-to-date. Specifically,

we found in our traces that it is sufficient to update the external delay distribution

every 10 seconds, because a 10-second time window usually provides enough requests
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to reliably estimate the distribution, and the distribution remains stable within this

window.

• Server-side delay model: Our prototype builds the server-side delay model offline, by

measuring the service delay distributions induced by different resource allocations. For

instance, to build a server-side delay model for the distributed database, we measure

the processing delays of one server under different input loads: {5%, 10%,…, 100%} of

the maximum number of requests per second. For the message broker the profiling is

slightly more complicated: we have to consider both the number of requests at each

priority level and the total number of requests at higher priority levels. In practice we

need not profile all possible allocations: it is sufficient to sample some of them and

extrapolate the others. Also, the requests are homogeneous in both of our uses cases,

as is typically the case in web services. For services that serve heterogeneous requests

(e.g., both CPU-intensive and memory-intensive jobs), or where the effects of different

resource allocations do not easily extrapolate to each other, more advanced techniques

may be required to ensure the profiling is efficient.

2.7 Evaluation

We evaluate E2E using a combination of trace-driven simulations and real testbed experi-

ments. Our key findings are:

• E2E can substantially improve QoE: Users spend 11.9% more web session time (more

engagement) compared to the default resource allocation policy in our traces; this

improvement accounts for 77% of the best-possible improvement if server-side delays

were zero. (§2.8.4)

• E2E has low system overhead: E2E incurs only 0.15% additional server-side delay and

requires 4.2% more compute resources per request. (§2.8.7)
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• E2E can tolerate moderate estimation errors (up to 20%) on the external delays, while

still retaining over 90% of the QoE improvement attainable if there are no errors.

(§2.8.11)

2.8 Methodology

Both our trace-driven simulator and our testbeds use the external delay model derived from

our traces (Table 2.1) and the QoE model from Figure 2.3. The simulator is described in

more detail in §2.2.5.

2.8.1 Testbed setup

To complement our trace-driven simulations, which unrealistically assume the server-side

delay distribution is fixed, we create two real testbeds on Emulab—one for Cassandra and

one for RabbitMQ, as described in §.5. We feed requests from our traces to each testbed in

chronological order with their recorded external delays, and use the actual testbed processing

time as the server-side delays. To show the impact of system load, we speed up the replay

by reducing the interval between two consecutive requests by a speedup ratio (e.g., a speed-

up ratio of 2 means we halve the interval between every two consecutive requests). In the

Cassandra (distributed database) testbed, each request is a range query for 100 rows in

a table of 5 million keys, which are replicated to three replicas (three Emulab nodes), so

each replica has a copy of each key. The key size is 70B and the value size is 1KB. In the

RabbitMQ (messaging broker) testbed, each request is a 1KB message sent to RabbitMQ

(one Emulab node), and a consumer pulls a message from RabbitMQ every 5ms. Each

Emulab node has one 3.0GHz Intel Xeon processor, 2GB RAM, and 2x146GB HDD storage,

and are connected to each other by a 1Gbps Ethernet link.

We do not claim that this testbed is a faithful replication of the production system that

generated our traces. Rather, we use the testbeds to allow resource allocation policies to
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affect the server-side delay distributions, as opposed to being constrained by the fixed server-

side delays in our traces. We use the traces only to reflect the real external delays of users

issuing requests to a service.

2.8.2 Baselines

We compare E2E against two baseline policies:

• Default policy (unaware of the heterogeneity of QoE sensitivity): In the simulator, it

simply gives each request its recorded server-side delay. In RabbitMQ, it uses First-In-

First-Out (FIFO) queueing. In Cassandra, it balances load perfectly across replicas.

• Slope-based policy (aware of the heterogeneity of QoE sensitivity but suffers from the

problem described in §2.3.2): In the simulator, it gives the shortest server-side delay

to the request whose external delay has the steepest slope in the QoE model, and so

forth (see §2.2.5). In RabbitMQ, it gives the highest priority to the request whose

external delay has the steepest slope in the QoE model, and so forth. In Cassandra, it

is the same as E2E’s policy, except it replaces the request-decision mapping algorithm

with the slope-based algorithm above.

2.8.3 Metric of QoE gain

We measure the QoE gain of E2E (and its variants) by the relative improvement of their

average QoE over that of the default policy, i.e., (QE2E −Qdefault)/(Qdefault).

2.8.4 End-to-end evaluation

2.8.5 Overall QoE gains

Figure 2.14 compares the QoE gains of E2E and the slope-based policy over the existing

default policy, in our traces and our testbeds. For page types 1 and 2 we use time-on-site
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Figure 2.14: Overall QoE improvement of E2E and the slope-based policy over the default
policy.

as the QoE metric (with Figure 2.3(a) as the QoE model), and for page type 3 we use user

rating as the QoE metric (with Figure 2.3(b) as the QoE model). Using user rating vs. time-

on-site has negligible impact on our conclusions, as they lead to very similar QoE models

(Figure 2.3).

Figure 2.14(a) shows that in our traces, E2E achieves 12.6–15.4% better average QoE

than the default policy, whereas the slope-based policy has only 4–8% improvement. This

suggests that E2E addresses the limitation of the slope-based policy discussed in §2.3.2. To

put these gains into perspective, we consider an idealized policy (labeled “idealized” in the

figure) that cuts all server-side delays to zero (i.e., the best a web service could possibly

do by cutting server-side delays). We see that the QoE gain of E2E already accounts for

74.1–83.9% of the QoE gain of this idealized policy.

Figure 2.14(b) also compares the QoE of E2E and the baseline policies when feeding

requests of page type 1 to the Cassandra and RabbitMQ testbeds. We used a 20× speedup

ratio to sufficiently load the systems (we explore the tradeoff between system load and QoE

gain below). The results show similar gains in QoE, with both systems achieving a large

fraction of the best possible gains.
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2.8.6 Better QoE-throughput tradeoffs

Figure 2.15 compares the QoE of E2E and the default policy under different loads, in our

traces and our testbeds. E2E strikes a better QoE-throughput tradeoff than both the default

policy and the slope-based policy.

Figure 2.15(a) shows the results for different hours of the day in our traces (12am, 4am,

3pm, 8pm, 10pm all in US Eastern Time), which exhibit a natural variation in load. Com-

pared to the off-peak hour (leftmost, at 0.6), the peak hour (rightmost, at 1.0) sees 40%

more traffic and, as a result, has 20.1% lower QoE. E2E achieves similar QoE during the

peak hour as the default policy does during the off-peak hour. In other words, E2E achieves

40% higher throughput than the default policy without a drop in QoE.

Figures 2.15(b) and (c) compare the QoE of E2E with those of the baseline policies in

our testbeds, while varying the load (speedup ratio 15× to 25×, normalized as 0.6 to 1

throughput). E2E always improves QoE, though to varying degrees. E2E’s gain is marginal

under low load, since all decisions have similar, good performance (e.g., all replicas have low

read latency when Cassandra is under-loaded). As the load increases, however, E2E’s gain

grows rapidly: at system capacity, E2E achieves 25% QoE gain over the default policy. This

can be explained as follows (using Cassandra as an example). The default policy (perfect
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Figure 2.16: The additional overhead of E2E vs. the total overhead of running the testbeds.

load balancing) drives every replica to a moderately high load, so all requests are affected

by bad tail latencies. In contrast, E2E allocates load unevenly so that at least one replica is

fast enough to serve the QoE-sensitive requests.

2.8.7 Microbenchmarks

We examine the overheads incurred by E2E in computing cost, decision delay, and fault

tolerance.

2.8.8 System overhead

We compare the total resource consumption of running each testbed with and without E2E.

Figure 2.16 shows the additional overhead of E2E in CPU and RAM usage. We see that

the overhead of E2E is several orders of magnitude lower than the total overhead of running

the Cassandra or RabbitMQ testbeds themselves. Moreover, the CPU and RAM overheads

grow more slowly than those of the testbed service as the load increases.

2.8.9 Decision delay

Figure 2.17 shows the effectiveness of our two decision delay-reduction optimizations (§2.5),

using the Cassandra testbed (with speedup ratio 20x). We see that (1) spatial coarsening
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Figure 2.17: Per-request delay reduction due to spatial and temporal coarsening (§2.5).

(bucketization of external delays) reduces the decision delay by four orders of magnitude, and

(2) temporal coarsening (caching E2E decisions in a lookup table) reduces the decision delay

by another two orders of magnitude. The resulting per-request response delay is well below

100µs, less than 0.15% of Cassandra’s response delay. At the same time, we see that these

reductions in decision-making delay only have a marginal impact on QoE. Note that E2E

does not need to make a decision on the arrival of each request, due to these optimizations.

Instead, decisions are made periodically and cached in the local memory of each Cassandra

client; so when a request arrives, its decision can be read directly from the client’s memory.

2.8.10 Fault tolerance

Finally, we stress test our prototype of E2E by disconnecting the E2E controller from the

Cassandra testbed. Figure 2.18 shows a time-series of the QoE gain of requests. We dis-

connect the controller at the 25th second. First, we see that Cassandra’s replica selection

still uses the latest E2E’s decisions cached in the lookup table, so although the QoE gain

drops (as the lookup table becomes stale), it is still better than the default policy. At the

50th second, a backup controller is automatically elected, and by the 75th second, the new

controller starts to make the same decisions as if the controller was never disconnected.
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Figure 2.18: E2E can tolerate loss of the controller.

2.8.11 In-depth analysis

2.8.12 Operational regime

Figure 2.19 tests E2E’s performance across a wide range of workloads, along three dimensions

that influence E2E’s performance. We synthetically generate requests by drawing external

delays and server-side delays from two normal distributions, respectively, and test them

on the trace-driven simulator using the QoE model from Figure 2.3. Although the server-

side and external delays in our traces do not exactly follow normal distributions, modeling

them in this way allows us to test E2E’s performance under different distribution conditions.

For instance, we can test the impact of increasing the mean of server-side delay on E2E’s

performance while keeping the external delay distribution fixed.

We set the default mean and variance of each distribution to match those of the page type

1 requests in our traces, and vary one dimension at a time. We see that at the beginning,

E2E does not yield any QoE gain, since there is no variability in the external and server-side

delays for it to exploit. Then, the QoE gain of E2E starts to grow almost linearly with

the server-side/external delay ratio, external delay variance, and server-side delay variance,

which confirms that E2E is able to utilize the variance in external and server-side delays. To

put this in the perspective of our traces, the workload in our traces is on the “fast-growing”

part of all curves (red spots in Figure 2.19). This means we will see more QoE gain if the

workload moves to the right in any of these dimensions.
33



0

10

20

30

0 .2 .4 .6 .8 1

Our traces
Q

oE
 g

ai
n 

(%
)

(a) Server delay /
external delay

.5 1 1.5 2

Our traces

(b) Std over mean of 
 external delay

.5 1 1.5 2

Our traces

(c) Std over mean of 
 server side delay

Figure 2.19: The impact of three key workload dimensions on E2E’s effectiveness. The red
spot shows where the workload in our traces lies.

0

4

8

12

0% 5% 10% 15% 20%

Q
oE

 g
ai

n 
(%

)

(a) Relative prediction error
(External delay)

0% 5% 10% 15% 20%

(b) Relative prediction error
(RPS)

RabbitMQ
Cassandra

Figure 2.20: Sensitivity of QoE improvement to prediction errors in external delay and
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2.8.13 Robustness to prediction errors

Figure 2.20 shows the impact that prediction errors, in the external delays and the number of

requests per second (RPS), have on E2E’s performance. We feed page type 1 requests to the

Cassandra testbed (speedup ratio 20x), and inject a controllable error on the actual value to

obtain the estimated value. Figure 2.20(a) shows that even if the external delay prediction

is off by 20% on each request, E2E still retains over 90% of its QoE gain. Predicting

the external delay with 20% (or 100-200ms) error seems reasonable for most users [105].

Figure 2.20(b) shows that E2E retains 91% of its QoE gain if the RPS is predicted with 10%

error. Empirically, we find that 10% prediction error is possible when using the RPS history

from the last 10 seconds (not shown).
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Figure 2.21: E2E vs. Timecard (with different total delay deadlines).

2.8.14 QoE fairness

A natural concern is that E2E may create a less fair QoE distribution. As an example, we

use the QoE distributions of E2E and the default policy from Figure 2.14(a) and page type

1. We calculate Jain’s Fairness Index of the requests’ QoE values, and find that E2E’s Jain

index (0.68) is lower but still very close to that of the default policy (0.70). This is because

E2E only deprioritizes requests that are insensitive to QoE; these requests experience only

a marginal improvement in QoE when using the default policy.

2.8.15 E2E vs. deadline-driven scheduling

Unlike E2E, some prior work (e.g., [105, 44]) models the impact of total delay on QoE as

a hard deadline: QoE drops to zero immediately after the total delay exceeds the deadline.

We use Timecard [105] as a canonical example of a deadline-driven scheduling policy, and

compare E2E to it. Timecard sets a total delay deadline and, given the external delay of each

request, tries to maximizes the number of requests served by the deadline. We compare E2E

with Timecard under total delay deadlines of 2.0, 3.4, and 5.9 seconds, using RabbitMQ as

the testbed. As Figure 2.21 shows, the QoE gain of E2E is consistently better than Timecard

under different deadline settings. This is because the deadline-driven scheduler is agnostic

to the different QoE sensitivities of requests that have already exceeded the deadline.
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2.9 Related work

We briefly survey the most related work on web QoE, cloud resource allocation, and web

performance measurements.

2.9.1 Web QoE modeling/optimization

QoE has been intensively studied in the context of web services (e.g., [27, 46]), mobile

apps (e.g., [21]), video streaming (e.g., [50, 28]), and measurement tools (e.g., [128]). Prior

work (e.g., [34, 59, 98]) has observed a similar non-linear relationship between page loading

time and QoE. Although E2E uses a specific QoE model (based on our trace analysis), it can

benefit from more precise models of how page loading time affects QoE. Unlike prior QoE op-

timization techniques that tune client-side knobs [36, 97] or provide server-side resources for

individual sessions (e.g., [111, 110]), E2E intelligently allocates server-side resources shared

across a large number of heterogeneous users.

2.9.2 Web service resource allocation

There is a large literature on cutting the tail/median server-side delays through better web re-

source management, including distributed databases (e.g., [120, 136]), partition-aggregation

workloads (e.g., [74, 82]), and caching (e.g., [32, 33]). Cloud providers optimize WAN latency

through better server selection (e.g., [87, 40]) and WAN path selection [139, 112]. E2E is

conceptually compatible with many existing resource sharing techniques (e.g., replica selec-

tion and message scheduling). What distinguishes E2E is that it does not seek to minimize

the median or tail performance; instead, it takes into account the QoE sensitivity of different

users when allocating server-side resources.
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2.9.3 End-to-end performance analysis

There have been attempts to measure the contribution of cloud, WAN, and client-side devices

to end-to-end delays [104, 43, 42]. Our observations on heterogeneous QoE sensitivity corrob-

orate some prior work (e.g., [43]) that show that cloud-side delays are not a constant fraction

of end-to-end delays for all users. These studies offer useful insights for improving web service

infrastructure [88, 80, 38] and building real-time resource management systems [44, 105, 20].

The works most closely related to E2E are Timecard [105] and DQBarge [44], which

share with us the high-level idea of making server-side decisions based on the QoE of end

users [75]. In particular, they estimate the “slack” time between receiving a request and its

end-to-end delay deadline, and utilize this slack to maximize the quality of the response.

Although they allocate different resources to different requests, they optimize individual

requests in isolation, which can cause resource contention when the system is under stress or

many requests have low slack time. In contrast, E2E optimizes QoE and resource allocation

across requests, by harnessing their inherent heterogeneity. We also empirically show that

when the QoE curve is like Figure 2.3, a deadline-based QoE model can be less effective than

E2E (§2.8.11).

E2E is similar to work (e.g., [83, 84]) that considers requests with soft deadlines: i.e.,

QoE decreases gradually to zero after the total delay exceeds a time threshold. These

soft-deadline-driven schedulers set the same threshold for all requests and do not take the

heterogeneity of web requests into account, whereas the resource allocation in E2E considers

different QoE sensitivities.

2.10 Discussion

2.10.1 Incentives of other service providers

One concern about using E2E is that another service provider (e.g., an ISP) may try to

manipulate the external delays of its users to get better service from E2E, by making them
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look more urgent. However, we prove in Appendix .1 that it is impossible to improve a group

of users’ QoE without reducing at least some of their external delays. In other words, E2E

creates an incentive for other service providers to reduce their delays, rather than gaming

E2E by deliberately adding delays.

2.10.2 Security threat

In theory, E2E may introduce a new attack, in which a large group of users hurt the QoE

of other users by making themselves look more urgent, thus starving the other users of re-

sources (similar to a Denial-of-Service attack). We can envision several detection/mitigation

techniques for such an attack, such as detecting abnormal changes to the external delay dis-

tribution, or adding randomization to the actual server-side delays. We leave investigation

of these security issues to future work.

2.10.3 Interaction with existing policies

A web service provider often integrate multiple resource allocation policies. Conceptually,

E2E is compatible with other prioritization schemes; they can be included as input into

E2E’s decision-making policy (e.g., by upweighting the Q(·) values of premium traffic), or

E2E can be applied separately to each priority class (e.g., premium users vs. basic users).

2.10.4 Complex request structures

In a real web framework like Microsoft’s, a high-level web request usually results in calls to

multiple backend services, and the request is not complete until it hears a response from

all the backend services [32]. A straightforward way to handle this request structure is to

apply E2E to each service in isolation. However, this approach is suboptimal, because it

may cause a service to prioritize requests whose server-side delays are determined by other

backend services. For example, in Figure 2.11(a), E2E prioritizes request B over A, since
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prioritizing A would cause B to suffer a significant QoE drop. But if B also depends on

another, much slower service, speeding up B will not have a direct impact on the user’s

QoE. In this case, it would have been better to prioritize A, whose QoE could actually have

been improved. We can see that an optimal resource allocation scheme for requests with

complex structure needs to take these backend service dependencies into account. We leave

this problem to future work.

2.10.5 Deployment at scale

E2E must face the following issues when deployed in a large-scale production system.

• Multiple agents: For a web service to scale, it typically uses distributed agents (e.g.,

Cassandra clients or RabbitMQ message brokers), each making resource-allocation

decisions independently. In E2E, although each agent might see a different subset

of web requests, its decisions are based on a global decision lookup table built upon

the global external delay distribution. In the unlikely event that the requests are

load balanced poorly across the agents, it is possible for the resulting decisions to be

suboptimal: e.g., in the case of RabbitMQ, if one message broker only sees insensitive

requests, those requests will be at the head of its queue (there are no sensitive requests

to place ahead of them). We have not investigated such scenarios in our current

evaluation.

• Real-time external delay estimation: Our current prototype relies on the external delays

provided by our traces, but a real deployment would need to compute the external

delay in real-time for each request. E2E could accomplish this by borrowing ideas

from Timecard [105] and Mystery Machine [43]. Like Timecard, the WAN-induced

delay of a request could be derived from the round-trip time of the TCP handshake

packets and the TCP sliding window size. To estimate the browser rendering time of

a request, E2E could use a model trained on historical traces (Mystery Machine) or
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on traces and the system configuration (Timecard). Timecard provides more accurate

estimates but requires user permission to access the system configuration. Mystery

Machine does not need user cooperation but has lower accuracy, especially for first-

time users. Since E2E is not very sensitive to the accuracy of the external delay

estimates (Figure 2.20(a)), Mystery Machine’s method could allow E2E to scale out

and support more requests.
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CHAPTER 3

SENSEI: ALIGNING VIDEO STREAMING QUALITY WITH

DYNAMIC USER SENSITIVITY

3.1 Introduction

An inflection point in Internet video traffic is afoot, driven by more ultra-high resolution

videos, more large-screen devices, and ever-lower user patience for low quality [3, 13]. At the

same time, the video streaming industry, after several decades of evolution, recent adaptive

bitrate (ABR) algorithms (e.g., [94, 71, 138]) achieve near-optimal balance between bitrate

and rebuffering events, and recent video codecs (e.g., [118, 91]) improve encoding efficiency

but require an order of magnitude more computing power than their predecessors. The

confluence of these trends means that the Internet may soon be overwhelmed by online

video traffic,1 and new ways are needed to attain fundamentally better tradeoffs between

bandwidth usage and user-perceived QoE (quality of experience).

We argue that a key limiting factor is the conventional wisdom that users care about

quality in the same way throughout a video, so video quality should be optimized using the

same standard everywhere in a video. This means that lower quality—due to rebuffering,

low visual quality, or quality switches—should be avoided identically from the beginning

to the end. We argue that this assumption is not accurate. In sports videos (e.g., the

one in Figure 3.1), a rebuffering event that coincides with scoring tends to inflict a more

negative impact on user experience than rebuffering during normal gameplay. But there are

also sports videos where scoring is not the most quality-sensitive part. Thus, user quality

sensitivity varies with the video content dynamically over time.

Unfortunately, both the literature on ABR algorithms and the literature on QoE modeling

adopt the conventional wisdom. Most ABR algorithms completely ignore the content of

1. This is vividly illustrated by the recent actions taken by YouTube and Netflix (and many others) to
lower video quality in order to save ISPs from collapsing as more people stay at home and binge watch online
videos [15].
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each video chunk: they focus on balancing high bitrates and low rebuffering times, and thus

consider only the size and download speed of the chunks. Traditional ways of modeling QoE

are also agnostic to the substance of videos, although recent QoE models—e.g., PSNR [62],

SSIM [134], VMAF [14], and deep-learning models [55, 79]—try to find frames that users

are more sensitive to by studying the structure of pixels and motions to gauge their saliency.

These heuristics seek to generalize across all videos and thus resort to generic measures (like

pixel-level differences), but it is unclear if any heuristic can capture the diverse and dynamic

influence a video’s content can have on users’ sensitivity to quality.

For example, models like LSTM-QoE [55] assume that users are more sensitive to re-

buffering events in more “dynamic” scenes. In sports videos, however, non-essential content

like ads and quick scans of the players can be highly dynamic, but users may care less about

quality during those moments. In the video in Figure 3.1, LSTM-QoE considers normal

gameplay to be the most dynamic part, but the most quality-sensitive part of the video

according to our user study is the goal. A key insight is that the impact of the substance of

a video on users’ sensitivity to quality cannot be fully explained by pixel-level patterns or

cross-frame motions. Some recent work tries to predict user’s dynamic sensitivity, but they

either need access to users’ viewing history [58] or use off-the-shelf computer-vision saliency

models [57] whose predictions have little correlation with quality sensitivity on videos they

have never seen before (§3.2.3 elaborates on this).

The dynamic nature of quality sensitivity suggests a new avenue for improvement. One

can achieve higher QoE with the same bandwidth by carefully lowering the current quality

in order to save bandwidth and allow higher quality when users become more sensitive.

Similarly, one can attain similar QoE with less bandwidth by judiciously lowering the quality

when quality sensitivity is indeed low. In short, we seek to align higher (lower) quality of

video chunks with higher (lower) quality sensitivity of users.

We present Sensei, a video streaming system that incorporates dynamic quality sensitivity

into its QoE model and video quality adaptation. Sensei addresses two key challenges.
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Challenge 1: How do we profile the unique dynamic quality sensitivity of each video in an

accurate and scalable manner?

Crowdsourcing the true quality sensitivity per video: Instead of proposing another

heuristic, Sensei takes a different approach. We run a separate crowdsourcing experiment for

each video to derive the quality sensitivity of users at different parts of the video. Specifically,

we elicit quality ratings directly from real users (obtaining a “ground truth” of their QoE) for

multiple renderings of the same video, where each rendering includes a quality degradation

in some part of the video. Sensei automates and scales this process out using a public

crowdsourcing platform (Amazon MTurk), which provides a large pool of raters, while using

pruning techniques to reduce the number of rendered videos that need to be rated. We

then use these ratings to estimate a weight for each video chunk that encodes its quality

sensitivity, independent of the quality of other chunks. While crowdsourcing has previously

been used to model QoE, Sensei is to our knowledge the first to scale it to per-video QoE

modeling.

Challenge 2: How do we incorporate dynamic quality sensitivity into a video streaming

system to enable new decisions? Today’s video players are designed to be “greedy”: they

pick a bitrate that maximizes the quality of the next chunk while avoiding rebuffering events.

But in order to utilize dynamic quality sensitivity, a player must “schedule” bitrate choices

over multiple future chunks, each having a potentially different quality sensitivity. This

means that some well-established behaviors of video players, e.g., only rebuffer when the

buffer is empty, may need to be revisited.

Refactoring ABR logic to align with dynamic quality sensitivity: Sensei works

within the popular DASH framework. It integrates the aforementioned per-chunk weights

into existing ABR algorithms to leverage the dynamic quality sensitivity of upcoming video

chunks when making quality adaptation decisions. The per-chunk weights enable new adap-

tation actions that “borrow bandwidth” from low-sensitivity chunks and give them to high-

sensitivity chunks. For example, Sensei may lower the bitrate even when bandwidth is
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sufficient, or initiate a rebuffering event with a non-empty buffer, to afford higher bitrates

when quality sensitivity becomes higher. We apply Sensei to two state-of-the-art ABR al-

gorithms: Fugu [138], a more traditional rule-based algorithm, and Pensieve [94], a deep

reinforcement learning-based algorithm.

Using its scalable crowdsourcing approach, Sensei can predict QoE more accurately than

state-of-the-art QoE models. For example, with a budget of just $31.4/minute video, Sensei

achieves 55% less QoE prediction error than existing models. Compared to state-of-the-art

ABR algorithms, Sensei improves QoE on average by 15.1% or achieves the same QoE with

26.8% less bandwidth across various video genres.

Contributions and roadmap: Our key contributions are:

• A measurement study revealing substantial temporal variability in users’ quality sensitivity

and its potential for improving video streaming QoE and bandwidth usage (§3.2).

• The design and implementation of Sensei, including: 1) a scalable crowdsourcing solution

to profiling the true dynamic quality sensitivity of each video (§3.4,§3.5),2 and 2) a new

ABR algorithm that incorporates dynamic user sensitivity into existing algorithms and

frameworks (§3.6).

3.2 Motivation

We begin by showing that existing approaches to modeling video streaming QoE fail to

accurately capture the true user-perceived QoE (3.2.1). We then present user studies that

reveal a missing piece in today’s QoE modeling: users’ quality sensitivity varies dynamically

throughout a video (§3.2.2), and this dynamic quality sensitivity is hard to capture using

prior heuristics or vision models (§3.2.3). However, by incorporating dynamic quality sensi-

tivity into existing ABR algorithms, we can significantly improve QoE and save bandwidth

(§3.2.4).

2. Our study was IRB-approved (IRB18-1851).
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Figure 3.1: Example of dynamic quality sensitivity. Users are asked to rate the quality (on a
scale of 1 to 5) of different renderings of a source video (Soccer1), where a 1-second rebuffer-
ing event occurs at a different place in each rendering. We observe substantial differences in
the QoE impact (measured by mean opinion score, or MOS) across the renderings.

3.2.1 Prior QoE modeling and their limitations

QoE models are crucial to modern video streaming systems. A QoE model takes a streamed

video as input and returns a predicted QoE as output. When streaming a video, the video

player optimizes QoE by adapting the bitrate of each video chunk to the available bandwidth.

QoE is often measured by the mean opinion score (MOS) assigned by a group of users to

the quality of a video.3

Quality metrics: Today’s QoE models consider two aspects.

• Pixel-based visual quality tries to capture the impact of visual distortion on QoE. These

metrics, such as PSNR and VMAF, are based on pixel/motion-based patterns [62, 134,

133, 114, 14, 79, 106] and recently on visual attention [49, 142, 70].

• Streaming quality incidents during the streaming process can negatively impact user ex-

perience, such as rebuffering, low bitrate, and bitrate switches. Their impact is modeled

3. Our methodology extends to other QoE metrics as well.
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by metrics, such as rebuffering ratio, average bitrate, and frequency of bitrate switches

during a video (e.g., [50, 28]).

Some work also considers contextual factors (e.g., viewer’s emotion, acoustic conditions,

etc.), but these are orthogonal to our focus on the video’s content.

QoE models: Recent QoE models combine both pixel-based visual quality metrics and

quality-incident metrics for more accurate QoE prediction. We consider three such QoE

models: KSQI [51], P.1203 [109], and LSTM-QoE [55], which were proposed within the past

two years and have open-source implementations. KSQI combines VMAF, rebuffering ratio,

and quality switches in a linear regression model. P.1203 combines QP (quantization pa-

rameter) and quality incident metrics in a random-forest model. Most recently, LSTM-QoE

takes STRRED [114] and individual quality incidents as input to a long short-term memory

(LSTM) neural network designed to capture the “memory effect” of human perception of

past quality incidents. (We discuss related work in §3.8.)

User study methodology: We evaluate these QoE models (KSQI, P.1203, LSTM-QoE)

on 16 source videos randomly selected from four public datasets [60, 31, 52, 132], covering a

wide range of content genres (sports, scenic, movies, etc.). These videos are streamed using

one of three ABR algorithms: Fugu [138], Pensieve [94], and BBA [71], over 7 throughput

traces randomly selected from real-world cellular networks [108, 6], with bandwidths ranging

from 200Kbps to 6Mbps. §2.8 and Appendix .3 provide more details on the videos and

network traces. This creates 336 (16×7×3) rendered videos. To obtain the ground truth

QoE of each rendered video, we elicit QoE ratings from crowdsourced workers on Amazon

MTurk [1]. We obtain at least 30 ratings from different MTurkers and use the MOS over

these ratings as the true QoE of the rendered video §3.4 and §3.5 describe our crowdsourcing

methodology in detail.

QoE prediction accuracy: Given the ground-truth QoE, we evaluate the three QoE

models both with their pre-trained parameters and after customizing (retraining) them on

315 of the rendered videos selected at random. All models are tested on the remaining 21
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Figure 3.2: Existing QoE models exhibit substantial QoE prediction errors (x-axis), which
cause them to frequently mis-predict the relative QoE ranking between two ABR algorithms
on the same video, i.e., a discordant pair (y-axis).

videos; we scale their output range and the true QoE to [0, 1]. The x-axis of Figure 3.2 shows

the mean relative prediction error of each QoE model on the test set; relative prediction error

is defined as |Qpredict−Qtrue|/Qtrue, where Qpredict and Qtrue are the predicted and true QoE of

the video. We see that these errors are nontrivial; even the most accurate QoE model has

over 10.4% error on average.

We also examine whether these models can correctly rank the QoE achieved by two

different ABR algorithms. For each pair of source video and throughput trace, we first

rank every two of the three ABR algorithms using their true QoE and then again using the

predicted QoE. If the rank is different, this pair is called a discordant pair. The y-axis of

Figure 3.2 shows the fraction of discordant pairs among all possible pairs (a common measure

used in rank correlation): over 10.2% of pairs are discordant even for the most accurate QoE

model. This suggests that using QoE predictions to compare different algorithms (e.g.,

[94, 138, 71]) may not be reliable.

3.2.2 Temporal variability of quality sensitivity

Figure 3.2 shows that, unlike prior methods, our QoE model (§3.4) can predict QoE and rank

ABRs significantly more accurately when applied on the same train/test set. We argue that
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this gap stems from a common assumption shared by all previous QoE models, which is that

all factors affecting QoE can be captured by a handful of objective metrics. This premise

ignores the impact of high-level video content (rather than low-level pixels and frames) on

users’ sensitivity to quality at different parts of the video. We now demonstrate how this

quality sensitivity varies as video content changes.

Quantifying dynamic quality sensitivity: Users’ sensitivity to quality at a certain part

of a video is reflected by the QoE drop when a low-quality incident occurs at that part of the

video, i.e., ∆=Qbefore−Qafter, where Qbefore is the MOS of the video without the low-quality

incident and Qafter is the MOS of the video with the low-quality incident. To measure the

true quality sensitivity at different parts of a source video, we create a rendered video series as

follows. Rendered videos in a video series have the same source content and highest quality

(highest bitrate without rebuffering), except that a low-quality incident (a rebuffering event

or a bitrate drop) is deliberately added at different positions, e.g., at the 4th second, 8th

second, and so forth. Then, as before, we use Amazon MTurk to crowdsource the true QoE

of each rendered video, following our crowdsourcing methodology (§3.4,§3.5).

Figure 3.1 shows an example video series created using a 25-second soccer video as the

source video and a one-second rebuffering event as the low-quality incident. We observe

significant differences between the QoE drops caused by the rebuffering event at different

parts of the video. The highest QoE drop (caused by rebuffering at the 15th second) is

2.1× higher than the lowest QoE drop (rebuffering at the 10th second). This shows that

a low-quality incident can have a significantly higher/lower impact on user experience if it

occurs a few seconds earlier or later.

Quality sensitivity is inherent to video content: Our user study also suggests that

the type of low-quality incident does not affect the ranking of QoE drops within a video

series, even though it affects the absolute QoE drops. In other words, quality sensitivity

seems to be inherent to different parts (contents) of the video. Figure 3.6 shows the dy-

namic user sensitivity of three low-quality incidents on the same source video: 1-second
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Figure 3.6: Impact of different quality incidents at different points in the video in Figure 3.1.
The pattern of variability remains the same across the different quality incidents. Error bars
show standard deviation of the means.
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rebuffering, 4-second rebuffering, and a bitrate drop from 3Mbps to 0.3Mbps for 4 seconds.

Although the absolute values of the QoE drops depend on the particular quality incident,

the relative rankings are identical. The strong rank correlation (measured by Spearman’s

rank coefficient) is persistent across all videos in our dataset: 0.95 rank coefficient between

the 1-second and 4-second rebuffering events and 0.94 between the 1-second rebuffering and

bitrate drop.

Sources of dynamic quality sensitivity: We speculate that the dynamic quality sen-

sitivity stems from users paying different degrees of attention to different parts of a video.

In our dataset, we identify at least three types of moments when users tend to be more (or

less) attentive to video quality than usual. The first are key moments in the storyline of a

video when tensions have built up; e.g., in BigBuckBunny (animation) when the bullies fall

into a trap set by the bunny, or in Soccer1 when a goal is scored. The second are moments

when users must pay attention to get important information; e.g., showing the scoreboard

in sports videos (Soccer2), or acquiring supplies after killing an enemy (FPS2). The third

are transitional moments with scenic backgrounds, when users tend to be less attentive to

quality; e.g., the universe background in Space.

3.2.3 Modeling quality sensitivity

Can it be captured by QoE models? Traditional QoE models predict the same QoE

for all rendered videos in a video series. Even models that do predict different QoE assume

that the impact of video content can be captured by pixels and motions; e.g., VMAF [14]

(the visual quality metric used by KSQI) gives lower QoE estimates if a bitrate drop occurs

when the frame pixels are more “complex”. Unfortunately, the impact of content on user

sensitivity discussed above cannot be fully captured by pixel-level patterns. In Figure 3.1,

the true highest QoE drop occurs when the low-quality incident occurs during the goal, but

both VMAF and LSTM-QoE predict that it occurs during normal gameplay.

Can it be captured by vision saliency? User sensitivity is conceptually similar to
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Figure 3.7: Soccer1
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Figure 3.9: QoE rating drop when adding a 1-sec rebuffering at different points in the video,
compared to chunk sensitivity levels inferred by saliency models.
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temporal saliency in computer vision. Can saliency/highlight detection models capture user

sensitivity to quality? We examine three representative approaches.

• Traditional motion-based models, such as AMVM (average motion-vector magnitude) [89,

19], use the motion vector magnitudes of pixels in a chunk to indicate user sensitivity—i.e.,

users are more sensitive to more dynamic scenes.

• Interestingness score per frame (highlight detection), such as Video2GIF [63] and [57],

train a regression model (using C3D [123] neural network as the spatio-temporal feature

extractor) on videos with human-annotated per-frame interestingness scores.4 The model

then produces a per-frame interestingness score which might indicate user sensitivity.

• Video summarization models, such as dppLSTM [144] and DSN [149], infer how important

each frame is to the whole story of a video, by extracting vision features [121] and using

an LSTM to model temporal dependencies. The more important a frame is, the higher

user sensitivity might be.

Figure 3.9 shows the average saliency scores (normalized to [0, 1]) returned by these models

at each chunk of two example videos. We see a weak correlation between the QoE drops

caused by a 1-sec rebuffering event at different chunks and the true user sensitivity. Overall,

such correlation is low for all videos in our dataset: less than 0.23 (Pearson’s correlation)

and 0.18 (Spearman’s rank correlation). To see an example, in the soccer video (Figure 3.1),

the part right before the goal is the most quality sensitive. However, the highlight detection

and motion-based models highlight the highly dynamic scenes that pan across the audience,

and the video summarization model picks diverse moments of a video, such as shot/rewind

clips, whereas users pay more attention to when a goal might be scored. Appendix .6 gives

more discussions. As a result, ABR logic based on saliency scores performs poorly (§2.7).

4. We notice that some content providers passively monitor the number of viewers at different parts of a
video (e.g., [7]), which is an alternative way of identifying highlights or high-interestingness chunks.
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Figure 3.10: Distribution of sensitivity variability when a low-quality incident (1-second
rebuffering, 4-second rebuffering, or a bitrate drop for 4 seconds) is added at different points
in the same video. The trend is similar even if the low-quality incident and QoE gap are
localized to a 12-second window.

3.2.4 Potential gains

Dynamic quality sensitivity is prevalent: We repeat the same experiment from Fig-

ure 3.1 on all 16 source videos in our dataset and three low-quality incidents: 1-second

rebuffering, 4-second rebuffering, and a bitrate drop from 3Mbps to 0.3Mbps for 4 seconds.

This creates 48 video series in total. Figure 3.10 plots the sensitivity variability defined

by (∆max−∆min)/∆min for each video series, where ∆max and ∆min are the maximum and

minimum QoE drop of the videos in a series. We see that 21 of the 48 video series have

a sensitivity variability of over 0.99, while some have less than 0.20 variability. A similar

trend holds even if we localize the low-quality incident and sensitivity gap measurement to

12-second windows. The fact that quality sensitivity varies substantially even among very

nearby chunks suggests a new opportunity: we can lower the quality when sensitivity is low

in order to save bandwidth for nearby chunks whose sensitivity is high.

Potential sensitivity-aware improvement: The above suggests that we can improve

ABR algorithms to optimize QoE and save bandwidth by aligning quality adaptation with

dynamic user sensitivity. We demonstrate the potential gains using an idealistic but clean

experiment. We create two simple ABR algorithms whose only difference is the QoE model

they optimize: one algorithm optimizes KSQI, the most accurate QoE model from Figure 3.2
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Figure 3.11: Being aware of dynamic quality sensitivity can significantly improve QoE and
save bandwidth.

that is unaware of dynamic quality sensitivity, and the other optimizes our eventual QoE

model from §3.4, which is aware of dynamic quality sensitivity. Both algorithms take as

input an entire throughput trace and the same 4-second video chunks encoded using the

same bitrate levels. They then determine a bitrate-to-chunk assignment that maximizes

their respective QoE model. Note that these ABR algorithms are idealistic because they

have access to the entire throughput trace in advance, and hence know the future through-

put variability. However, this allows us to eliminate the confounding factor of throughput

prediction. We pick one of the throughput traces (results are similar with the other traces)

and rescale it to {20, 40, . . . , 100}% to emulate different average network throughputs.

For each source video, we create the rendered video as if it were streamed by each ABR

algorithm (with bitrate switches, rebufferings, etc.). We use Amazon MTurk as before to

assess the true QoE of the rendered video. Figure 3.11 shows the average QoE of the two

ABR algorithms across 16 source videos and different average bandwidths. We see that

being aware of dynamic quality sensitivity could improve QoE by 22-52% while using the

same bandwidth, or save 39-49% bandwidth while achieving the same QoE.

3.3 Overview of Sensei

To unleash this potential, we present Sensei, a video streaming system that unearths and

leverages dynamic quality sensitivity. Here, we overview Sensei (§3.3.1) and then introduce
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Figure 3.12: Overview of Sensei.

our crowdsourcing-based approach to per-video QoE modeling and its limitations (§3.3.2).

3.3.1 Sensei’s approach

As shown in Figure 3.12, Sensei has two main components.

Per-video QoE modeling: Before streaming a video, Sensei profiles the quality sensitivity

of its chunks. As we saw in §3.2.2, prior QoE models fail to capture content-induced user

sensitivity to quality. Instead, we advocate for directly asking human viewers to rate the

quality of rendered videos with quality incidents inserted at various chunks. This reveals the

true user sensitivity to quality incidents. Since quality sensitivity is unique to each video,

this user study must be scaled to many videos. Sensei uses crowdsourcing to automate and

scale the per-video QoE modeling, by addressing two challenges: (1) how many (and which)

rendered videos must be rated to build a sensitivity-aware QoE model (§3.4); and (2) how

to get reliable ratings from crowdsourced workers (§3.5).

Sensitivity-aware ABR: Video players today are designed to maximize bitrate without

rebuffering on every chunk. This is ill-suited to our goal of aligning quality adaptation

with dynamic quality sensitivity: quality should be optimized in proportion to the quality

sensitivity of the content. To achieve this, Sensei refactors the control logic of video players

to enable new adaptation actions that “borrow” resources from low-sensitivity chunks and

give them to high-sensitivity chunks. We discuss the details in §3.6.

Instead of building a separate QoE model for each video, Sensei reuses existing QoE
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models but reweights each chunk by its quality sensitivity. This is inspired by our observation

that relative quality sensitivity is inherent to the content, rather than the specific quality

incident (§3.2.2). Thus we assign a weight to each chunk to encode its inherent quality

sensitivity. The abstraction of per-chunk weights has two benefits. First, it allows us to

reuse existing QoE models by simply reweighting the quality of different chunks. Second,

by using the sensitivity weights as input, the same Sensei ABR algorithm can be used to

optimize QoE for any new video.

3.3.2 Crowdsourcing quality sensitivity per video

Sensei directly elicits quality ratings from human viewers to reveal their quality sensitivity

to various quality incidents. However, these user ratings must be elicited per video and the

sheer scale of this feedback can be prohibitive! To put it into perspective, QoE models are

usually built from user ratings on just a handful of source videos [31, 53], but getting enough

user ratings requires a lab environment (or survey platform) to recruit participants and have

them watch over two orders of magnitude more video content than the source videos. 5 This

does not scale if we repeat the process per video.

To address this, we use crowdsourcing platforms like Amazon MTurk [1] to automate

the user studies and scale them out to more videos. Crowdsourcing reduces the overhead

of participant recruitment, survey dissemination, and result collection (down to about 78

minutes), and provides a large pool of participants. This allows for repeated experiments to

help control for human-related statistical noise. Although the crowdsourcing cost grows with

video length, Sensei offers several techniques to reduce the cost (see §3.4). Thus, the content

providers can decide whether and how to initiate profiling given their budgets. Note that

our reliance on crowdsourcing makes some scenarios, e.g., live video streaming, currently

inapplicable (see §3.9).

5. For instance, in the WaterlooSQOE-III dataset [53], each video is streamed over 13 throughput traces
with 6 ABR algorithms, and each rendered video is then rated by 30 users.
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Figure 3.13: Workflow of profiling dynamic quality sensitivity using a crowdsourcing plat-
form. The arrow back to the scheduler means that crowdsourced ratings may be used to
suggest more rendered videos to iteratively refine the QoE modeling.

3.4 Profiling Quality Sensitivity at Scale

In this section, we show how to build an accurate and cost-efficient QoE model using crowd-

sourcing. We overview our workflow (§3.4.1) and then discuss low-cost methods for chunk-

level reweighting (§3.4.2) and crowdsourcing scheduling (§3.4.3).

3.4.1 QoE modeling workflow

Figure 3.13 shows Sensei’s workflow for QoE modeling. Sensei takes a source video and

a monetary budget as input and returns a QoE model that incorporates dynamic quality

sensitivity (customized for this video) as output.

• Rendered video scheduling (§3.4.3): We first generate a set of rendered videos from the

source video. Each rendered video is created by injecting a carefully selected low-quality

incident at a certain point in the video.

• MTurk campaign (§3.5): The rendered videos are published on the MTurk platform and we

specify how many participants (MTurkers) to recruit for this campaign. When an MTurker

signs up, they start a survey that asks them to watch K rendered videos and, after each

video, rate its QoE.

• QoE modeling (§3.4.2): Finally, we use the MOS of each rendered video as its QoE and use

regression to derive the per-chunk weights, which are then incorporated into an existing

QoE model to derive the QoE model for this video.
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3.4.2 Cutting cost via chunk-level reweighting

While crowdsourcing scales QoE profiling elastically, profiling each video can still be pro-

hibitively expensive. Since a QoE model must capture the impact of both quality incidents

and the quality sensitivity of each chunk, a strawman solution would build a QoE model with

O(N · P ) parameters, where N is the number of chunks and P is the number of parameters

in a traditional QoE model. This could require a prohibitive number of ratings to build

(e.g., KSQI has tens of parameters).

Encoding quality sensitivity with per-chunk weights: We leverage the insight that

quality sensitivity at a chunk is inherent to its video content (§3.2.2). Thus, Sensei assigns

a single weight to each chunk irrespective of the quality incident, reducing the number of

model parameters to O(N). Then, Sensei reuses an existing QoE model but reweights the

chunks by their quality sensitivity. If the QoE model is additive, e.g., the overall QoE is the

sum of the QoE estimates of individual chunks qi, or Q =
∑N

i=1 qi, then Sensei can directly

reweight the chunks by their quality sensitivity. Though some QoE models are non-additive

(e.g., LSTM-QoE), many mainstream QoE models including KSQI and others [141, 94] are.

For KSQI, the qi take into account the impact of visual quality, rebuffering, and quality

switches. Sensei reweights the QoE model as follows:

Q =
∑N

i=1
wiqi, (3.1)

where wi is the weight of the ith chunk, reflecting how much more sensitive users are to

quality incidents in this chunk than in other chunks.

Weight inference: Given any V rendered videos, if Qj is the QoE (MOS) of the jth

rendered video and qi,j is the estimated QoE of the ith chunk of the jth rendered video, then

we can write V equations, Qj =
∑N

i=1wiqi,j for j = 1, . . . , V . We can then infer the wi

using a linear regression.

In the remainder of the paper, we assume that KSQI reweighted by Equation 3.1 is the

58



Rebuffering causes similar 
QoE drops at chunks 2 and 
3, so they can share weights

Step 1: Insert a quality incident at
each chunk to identify chunks that 
share quality sensitivity (and weights)

MOS
Source video

Time
1 2 3

Step 2: Enumerate quality incidents 
at each chunk that have different 
weights (e.g., chunks 1 and 2)

1 2 3

1-sec rebuf.

1 2 3
1 2 3
1 2 3

Identifying chunks 
that share weights

2 31

Low bitrate with a 1-sec rebuf.

2 31

2 31

1 32

1 32

1 32

Weight 
inference

Figure 3.14: A running example of the crowdsoucring scheduler for a source video with 3
chunks, 2 bitrate levels (high and low), 2 rebuffering event levels (0 and 1 second).

QoE model of Sensei.

3.4.3 Crowdsourcing scheduler

We now turn our attention to compiling a small set of rendered videos that, after being

rated, will produce enough data to reliably estimate the per-chunk weights.

Two-step scheduling: Given a source video, Sensei’s scheduler uses a two-step process to

decide which rendered videos to publish and how many participants to elicit ratings from.

• First, Sensei creates a set of N rendered videos, each with a single 1-second rebuffering

event at a different chunk (recall N is the number of chunks). It then publishes these

videos and asks M1 participants to rate each video. The total rendered video duration is

O(N ·M1). Once the videos are rated, we infer the per-chunk weights as described above.

• Second, we pick N ′ ≪ N chunks whose inferred weights are α-high or low (e.g., 6 % higher

or lower than the average weight). We then repeat the first step with two differences: (1)

low-quality incidents are added only to these chunks, and (2) the quality incidents include

B bitrates (below the highest bitrate) and F rebuffering events (1,2,…seconds). We publish

the rendered videos and ask M2 participants to rate them, for a total video duration of

O(N ′ · B · F ·M2).

The purpose of the first step is to use a small number of participants (M1) to get a noisy

59



but indicative estimate of which chunks have quality sensitivity that is very high or low,

so we can focus the second iteration on these chunks using a larger number of participants

(M2). In general, for an ABR algorithm to improve QoE-bandwidth tradeoffs, it is more

important to identify which chunks have very high/low quality sensitivity than to precisely

estimate the quality sensitivity of every chunk. §3.5 discusses the number of participants;

we evaluate the effect of α,B and F in §3.7.4. These parameters are empirically selected

and held constant throughout our tests.

Figure 3.14 shows an example two-step schedule for a source video. In the first step,

we generate a series of rendered video with the same rebuffering event injected at different

chunks. By examining the ratings of these videos from the MTurkers, we determine that

chunks 2 and 3 have similar sensitivity to the rebuffering event, allowing them to share the

same chunk-level weight. Thus, in the second step, we only need to enumerate the quality

incidents for chunks 1 and 2. In practice, for a 20-second video, we generate 5 rendered

videos in the first step for the N = 4 chunks, of which N ′ = 2 chunks may have high/low

sensitivity, and generate 15 rendered videos in the second step for these chunks.

Quality incidents used in profiling: For the set of B bitrates, we use the bitrate levels

of YouTube videos and pick three of them to cover high, medium and low visual quality;

we found this to be a practical compromise. The set of rebuffering events F are chosen to

match those we plan to proactively add to the video (see §3.6). Testing on a larger set of

quality incidents would yield more data points, but our microbenchmarking results in §3.7.4

show that this only marginally improves model accuracy, while significantly increasing the

cost.

3.5 Reliable QoE Crowdsourcing

Sensei’s QoE model crucially depends on the reliability of MTurkers’ quality ratings. This

section describes our user survey procedure and techniques for increasing reliability. While

Sensei mostly follows known practices [69, 67, 95], we provide some key details that arose
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from our experience (described below and in Appendix .4).

Single-survey procedure: As shown in Figure 4, each survey starts with the instructions

and rejection criteria under which the ratings will be rejected. The MTurker then watches

an example video that includes a quality incident, so they know what their ratings should be

based on. Then the MTurker is asked to watch a sequence of rendered videos (determined by

the scheduler) and, after each video, rate its quality on a scale of 1-5. Finally, the MTurker

does an exit survey.

Quality control per survey: Several measures are taken to prevent and filter out spurious

user ratings. First, we show the test videos in a randomized order to each MTurker. This

eliminates biases due to viewing order and which videos were previously watched. Second,

we add reliability checks: we show a video without any quality incident at a random position

among the test videos, and if an MTurker does not give the highest score to this video, we

discard all of their ratings. We also ask the MTurker what quality incident(s) they just saw

in the last video, and if they report more quality incidents than were included, that rating

is discarded. This may occur if the MTurker’s network connection is poor and new quality

incidents are introduced. Third, we implement an engagement test to verify if the MTurker

watched the video in its entirety, by monitoring the time spent on the video playback page

and discarding the rating if the time is shorter than the video length. We also implement

other filters, such as limiting the number or length of videos per MTurker to prevent fatigue.

Use of Master MTurkers: We follow a common practice (e.g., [90]) and restrict our tests

to Master MTurkers, a class of reliable MTurkers who have participated in over 1000 surveys

and whose feedback was accepted for over 99% of their prior surveys. We find that our

rejection rate from Master MTurkers is over 4× lower than normal MTurkers. One lesson

we learned is that Master MTurkers are more willing to participate if the publisher (us)

historically has a low rejection rate because they wish to maintain their rejection rate below

1%.

Sanity check of our dataset: To check if MTurker ratings are similar to prior lab
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studies [129, 67], we select three 12-second videos from a public dataset [53] whose quality

ratings are collected in a lab environment, and obtain MTurker ratings for these videos. We

find that the MTurker responses are similar to the in-lab study: after normalizing the ratings

to the same range, the MTurkers’ MOS differs by less than 3% from the in-lab study’s MOS

on the same video.

How many MTurkers are needed? We did a head-to-head comparison with WaterlooSQOE-

III [53] and found that we need 17% more MTurkers to reduce the variance of QoE ratings

down to the levels of the in-lab study. §3.7.4 shows how the number of MTurkers affects

Sensei’s performance.

Despite the above, we acknowledge that our MTurk survey methodology could be sus-

ceptible to human factors.

3.6 Sensei’s ABR Logic

The key difference between Sensei’s ABR logic and traditional ABR logic is that Sensei

aligns quality adaptation with the temporal variability of quality sensitivity. We first show

how Sensei modifies a traditional ABR framework (§3.6.1), and then show how existing ABR

algorithms can be minimally modified to benefit from Sensei (§3.6.2).

3.6.1 Enabling new adaptation actions

Sensei takes a pragmatic approach by working within the framework of existing players. It

proposes specific changes to their input and output, as highlighted in Figure 3.15.

Input: Besides the current buffer length, next chunk sizes, and history of throughput

measurements, Sensei’s ABR algorithm takes as input the sensitivity weights of the next h

chunks, where h is the lookahead horizon. A larger h allows us to look farther into the future

for opportunities to trade current quality for future quality, or vice versa. In practice, we

are also constrained by the reliability of our bandwidth prediction for future chunks. We
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microbenchmark the selection of h in §3.7.5.

Output: Sensei’s ABR algorithm selects the bitrate for future chunks as well as when the

next rebuffering event should occur.6 In contrast, traditional players only initiate rebuffering

events when the buffer is empty.

QoE model objective: If the ABR algorithm explicitly optimizes an additive QoE model,

Sensei can modify its objective as described in §3.4.2. While Sensei can be applied to most

ABR algorithms (e.g., [94, 138, 141]), some (e.g., BBA) do not have an explicit objective

that Sensei can build on.

In theory, these changes are sufficient to enable at least the following optimizations, which

traditional ABR algorithms are unlikely to explicitly do. (1) Lowering the current bitrate so

that it can raise the bitrate for the next few chunks, if they have higher quality sensitivity

(Figures 3.16(a) and (b)). (2) Raising the current bitrate slightly over the sustainable level

if quality sensitivity is expected to decrease in the next few chunks. (3) Initiating a short

rebuffering event now in order to ensure smoother playback for the next few chunks, if they

have higher quality sensitivity (Figures 3.16(c) and (d)).

6. Sensei currently makes adaptation decisions only for the next chunk, but in principle it could plan
adaptations for multiple chunks in the future.
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3.6.2 Refactoring current ABR algorithms

We apply Sensei to two ABR algorithms: Pensieve [94], based on deep reinforcement learning,

and Fugu [138], a more traditional algorithm based on bandwidth prediction.

Applying Sensei to Pensieve: Sensei leverages the flexibility of deep neural networks

(DNNs) and augments Pensieve’s input, output and QoE objective—its states, actions, and

reward, in the terminology of reinforcement learning—as described in §3.6.1. It then retrains

the DNN model in the same way as Pensieve; we call this variation Sensei-Pensieve. Sensei-

Pensive makes two minor changes to reduce the action space (which now includes rebuffering).

First, we restrict possible rebuffering times to three levels ({0,1,2} seconds) that can only

happen at chunk boundaries. Second, instead of choosing among combinations of bitrates

and rebuffering, Sensei-Pensieve either selects a bitrate or initiates a rebuffering event at the

next chunk. If it chooses the latter, Sensei-Pensieve will increment the buffer state by the

chosen rebuffering time and rerun the ABR algorithm immediately.

Applying Sensei to Fugu: Let us first explain how Fugu works. At a high level, be-
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fore downloading the ith chunk, Fugu considers the throughput prediction for the next h

chunks. For any throughput variation γ (with predicted probability p(γ)) and bitrate selec-

tion B = (bi, . . . , bi+h−1), where bj is the bitrate of the jth chunk, it simulates when each

of the next h chunks will be downloaded and estimates the rebuffering time tj(B, γ) of the

jth chunk (which could be zero). It then picks the bitrate vector (bi, . . . , bi+h−1) that maxi-

mizes the expected total quality over the next h chunks and possible throughput variations:∑
γ p(γ)

∑i+h−1
j=i q(bj , tj(B, γ)). Here, q(b, t) estimates the quality of a chunk with bitrate b

and rebuffering time t using a simplified model of KSQI.

The Sensei variation of Fugu, which we call Sensei-Fugu, uses Fugu’s throughput pre-

diction and the sensitivity weights wj of the next h chunks. Sensei-Fugu picks the bitrate

vector B = (bi, . . . , bi+h−1) and the rebuffering time vector T = (ti, . . . , ti+h−1), where tj

is the rebuffering time of the jth chunk, that maximizes the expected total quality over the

next h chunks and possible throughput variations:

∑
γ

p(γ)
i+h−1∑
j=i

wjq(bj , tj) (3.2)

Here, the chosen rebuffering times must be feasible, i.e., the buffer length can never be

negative.

In short, Sensei-Pensieve and Sensei-Fugu add an extra action (rebuffering time per

chunk), and their objective function reweights the contribution of each chunk’s quality using

the sensitivity weights provided by our QoE model.

3.6.3 Player implementation and integration

We implement Sensei on DASH.js [4], an open-source player that several commercial players

are based on. We add a new field in the DASH manifest file (under Representation)

to represent per-chunk sensitivity weights and change the parser ManifestLoader to parse
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these weights. Unlike other ABR players, Sensei may initiate rebuffering when the buffer

is not empty. We use Media Source Extensions [8] (an API that allows browsers to change

player states) to delay a downloaded chunk in the browser buffer from being loaded into the

player buffer. We also describe the implementation of our crowdsourcing pipeline for MTurk

surveys in Appendix .5.

3.7 Evaluation

Our evaluation of Sensei shows several key findings:

• Compared to recent proposals, Sensei can improve QoE by 7.7-52.5% without using more

bandwidth or can save 12.1-50.3% bandwidth while achieving the same QoE.

• The performance gains of Sensei come at a cost of $31.4/minute video, which is marginal

compared to the investments made by content providers.

• Sensei can improve QoE prediction accuracy by 11.8-37.1% over state-of-the-art QoE mod-

els.

• Sensei’s ABR algorithm consistently outperforms baseline ABR algorithms even when

bandwidth fluctuates.

3.7.1 Experimental setup

Test videos and throughput traces: Our test videos are selected from four datasets:

LIVE-MOBILE [60], LIVE-NFLX-II [31], and WaterlooSQOE-III [53] are professional-grade

datasets often used to train/compare QoE models in the literature. We complement these

sources with videos from a user-generated dataset, YouTube-UGC [132]. The videos are

randomly selected from four video genres: sports, gaming, nature, and animation. Ap-

pendix §.3 provides more details about the videos. To create an adaptive video streaming

setup, we chop videos into 4-second chunks and encode each chunk at 5 bitrate levels:

{300, 750, 1200, 1850, 2850}Kbps. We randomly select 10 throughput traces from two public
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Figure 3.21: End-to-end performance of Sensei over traditional and saliency-based ABR
baselines across all videos.
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datasets, FCC [45] and 3G/HSDPA [108], restricting our selection to those whose average

throughput is between 0.2Mbps and 6Mbps, forcing the ABR algorithms to adapt their

bitrates.

Baselines: We compare Sensei’s ABR algorithm with three baselines: Buffer-based adap-

tation (BBA) [71], Fugu [138], and Pensieve [94]. We keep their default settings (e.g., same

DNN architecture and training network traces for Pensieve, etc.). For fairness, we use KSQI

as the QoE model for Pensieve, Fugu, and the Sensei variants. This modification should

improve the quality of Pensieve and Fugu, because the QoE models used in their original

implementations are special cases of KSQI. We use Sensei-Pensieve (i.e., the application of

Sensei to Pensieve) as Sensei, but confirm that the improvements of Sensei-Fugu are similar

(Figure 3.29).

Performance metrics: We use three performance metrics. For a given source and video

and throughput trace, we report the QoE gain of one ABR algorithm (Q1) over another

(Q2), i.e., (Q1 − Q2)/Q2, where Q1 and Q2 are rated by MTurkers. We calculate Sensei’s

bandwidth saving by scaling down the throughput traces and determining how much

bandwidth each ABR algorithm needs to achieve the same QoE. We normalize all QoE

values to the range [0, 1]. We measure the crowdsourcing cost paid to MTurk to get

enough ratings to profile a 1-minute video. Only Sensei incurs this cost.

3.7.2 End-to-end improvement

QoE gains: Figure 3.17 shows the distributions of QoE gains of Sensei, Pensieve, and Fugu

over BBA, across all combinations of the 16 source videos and 10 network traces. Compared

to BBA, Sensei has at least 14.4% QoE gain for half of the trace-video combinations, whereas

Pensieve’s and Fugu’s median QoE gains are about 5.7%. The tail improvement of Sensei

is greater: Sensei’s QoE gain at the 80th percentile is 4.8%, whereas Pensieve’s and Fugu’s

are 0.2% and 0.7% respectively. The fact that Sensei’s gains over Pensieve (its base ABR

logic) are similar to Pensieve’s gains over BBA suggests the significant potential in making
68



an existing ABR algorithm aware of dynamic quality sensitivity.

Bandwidth savings: Figure 3.18 shows the average QoE of different ABR algorithms

across the source videos, under one throughput trace scaled down by different ratios (x-

axis). We confirm the results are consistent across different throughput traces. We see that

when setting a target QoE of 0.8, the bandwidth savings of Sensei is about 27% higher

compared to Pensieve and Fugu, and 32% higher compared to BBA.

QoE vs. crowdsourcing cost: Figure 3.19 shows the crowdsourcing cost and resulting

QoE of Sensei relative to Pensieve, both with and without the cost-pruning optimization

(which is evaluated separately in Figure 3.27). Compared to enumerating all combinations

of the quality incidents, we see that costs can be reduced by more than 32× with only a

3.1% degradation in QoE, and Sensei is still 14.7% better on average than its base ABR

logic (Pensieve with KSQI). This cost is equivalent to ∼$31.4 per 1-minute video, which

is a negligible cost for large content providers that may spend on the order of $10 billion

annually [5] for licensing popular TV shows (or making such shows).

Improvements by video and trace: Figure 3.22 shows the QoE gains for each video

across the network traces. We see significant variability in the QoE gains across videos and

even within the same genre. Figure 3.23 shows the QoE gains for each network trace across

all videos. Overall, Sensei yields more improvement when the average throughput is lower

(towards the left). This shows that Sensei can better maintain high QoE even when the

network is under stress.

Sensei vs. saliency-reweighted ABR: Finally, Figure 3.20 shows the QoE gains of

Sensei when the per-chunk weights are based on crowdsourcing results (our approach) and

when the weights are based on the saliency scores produced by various saliency models (see

§3.2.3). We normalize each model’s saliency scores to sum to the sum of chunk weights

of Sensei. We see that Sensei’s gain significantly reduces if the weights are based on these

saliency models, because as explained in §3.2.3, they fail to capture users’ quality sensitivity.
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Figure 3.24: QoE gains over BBA for genre and for each throughput trace (ordered by
increasing average throughput)
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Figure 3.25: QoE prediction accuracy of Sensei, Sensei’s variants, and baseline QoE models.

3.7.3 QoE prediction accuracy

We now microbenchmark Sensei’s QoE model introduced in §3.4 using all 640 rendered videos

generated by running Sensei and the baseline ABR algorithms on all combinations of source

videos and network traces. We obtain the “ground truth” QoE of each rendered video using

our MTurk survey procedure (§3.4,§3.5). We calculate Pearson’s linear correlation coefficient

(PLCC) and Spearman’s rank correlation coefficient (PRCC) between the predicted QoE and

actual user-rated QoE. Figure 3.25 compares Sensei with three baselines QoE models (KSQI,

LSTM-QoE, P.1203). The PLCC (and PRCC) of Sensei’s QoE prediction is over 0.85 (and

0.84), whereas the baselines are below 0.76 (and 0.73). We evaluated several variants of KSQI

(the best baseline QoE model) re-weighted by per-chunk saliency scores from the saliency

models in §3.2.3, but their accuracies are even lower.

3.7.4 Cost savings on crowdsourcing

We microbenchmark the effects of different crowdsourcing parameters on Sensei’s QoE model.

Impact of number of raters per video: Figure 3.26(a) shows that while the quality

ratings have substantial variance with less than 5 raters, their mean value (MOS) stabilizes

with more than 15 raters. As a result, having 15 raters per video (as used in Sensei) produces
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Figure 3.27: QoE model accuracy changes with cost.

a similar QoE prediction accuracy (b) and QoE gains (c) as having 30 raters.

Impact of crowdsourcing schedule granularity: Figure 3.27 shows the effect of re-

ducing MTurk cost by considering (a) fewer bitrate levels (B), (b) fewer rebuffering events

(F ), or (c) higher threshold α used to pick which chunks to investigate in the second step.

These terms are defined in §3.4.3. By reducing B to 3, F to 2, or raising α to 6%, we greatly

reduce the cost while incurring less than 3% drop in accuracy.

3.7.5 Sensei’s ABR logic

Finally, we microbenchmark Sensei’s ABR logic (§3.6). To scale this experiment out, we use

real videos and throughput traces but use the QoE predicted by Sensei (instead of real user

ratings) to evaluate QoE. We have confirmed that this yields the same QoE estimates on
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Figure 3.28: QoE under increasing bandwidth variance.

average as real user ratings under the same setting.

Impact of bandwidth variance: Figure 3.28 shows the performance of Sensei under

increasing throughput variance. We pick one throughput trace and increase its throughput

variance by adding unbiased Gaussian noise. The graph begins at the variance of the orig-

inal throughput trace; as variance increases, Sensei’s QoE degrades gracefully, but it still

maintains a significant gain over its base ABR logic (Pensieve or Fugu). This is because

Sensei only needs to predict how likely low throughput will occur on high quality-sensitivity

chunks, not all future chunks, so if the average throughput until the next such chunk is

predictable, it will work well. We confirm the results are similar on other throughput traces.

Performance breakdown: Figure 3.29 shows that Sensei achieves comparable improve-

ment when either Pensieve or Fugu is the base ABR logic. This suggests that Sensei’s gains

do not depend on the choice of the base ABR logic. Figure 3.30 shows that both aspects

of Sensei’s control logic contributes to its improvements: (1) making ABR logic aware of

dynamic quality sensitivity (1st vs. 2nd bar), and (2) injecting rebuffering judiciously (2nd

vs. 3rd bar). Thus, even if a content provider cannot control rebuffering, it can still benefit

significantly from Sensei’s dynamic quality sensitivity.

Impact of video contents: While the videos in our dataset have varying fractions (from

20% to 60%) of high-sensitivity chunks, Figure 3.31 tests Sensei’s performance under an

even wider range of high-sensitivity chunk fractions (from 0% to 100%). We create source

videos with the specific fractions of high and low quality-sensitivity chunks and randomize
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Figure 3.33: Understanding Sensei’s improvements.
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the positions of the chunks. Sensei has marginal improvement when the video is dominated

by either high or low quality-sensitivity chunks. However, Sensei significantly improves QoE

when high quality-sensitivity chunks are 20-40% of a video (most of our videos fall in this

range).

Lookahead horizon: Figure 3.32 tests the impact of lookahead horizon—the number of

future chunks h whose quality-sensitivity weights are revealed to the ABR algorithm. A

longer horizon increases Sensei’s ability to schedule quality events between low and high

quality-sensitivity chunks. Empirically in our dataset, the QoE gains diminish after the

lookahead horizon is greater than 4 chunks.

Systems overhead: We confirm empirically that compared to a video player without

Sensei, the runtime overhead of Sensei is less than 1% in both CPU cycles and RAM usage.

3.8 Related Work

ABR algorithms: Mainstream ABR algorithms maximize bitrate under dynamic avail-

able bandwidth. Traditional ones are buffer-based (e.g., [76, 85]) or rate-based algorithms

(e.g., [71, 116, 115]). Recent ABR algorithms explicitly optimize a given QoE objective via

control theory [141], ML-based throughput prediction [119, 138], or deep reinforcement learn-

ing [94, 58, 57]. Some ABR algorithms also rely on server-side processing [26, 140, 78]. Key

parameters of the ABR logic can be customized to the network conditions or devices [24].

Though E2E reuses existing ABR algorithms, its contribution lies in identifying minimum

changes (e.g., adaptation actions they never would have taken) needed for these algorithms

to fully leverage users’ dynamic quality sensitivity.

Modeling and optimizing user-perceived quality: Visual quality assessment (VQA)

traditionally models user’s perception of encoded video using pixel-level patterns (e.g., [62,

133, 107, 114]) as well as advanced data-driven models, such as SVM [14] and deep learn-

ing models (e.g., [79]). Adaptive quality assessment (AQA), on the other hand, models
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streaming-related incidents, including join time, bitrate switches, rebuffering (e.g., [50, 28,

81]). Recent QoE models combine VQA and AQA (e.g., [30, 29, 53, 51, 47, 39, 55]) and

sometimes uses spatial/temporal visual attention (e.g., [100, 99, 137, 57, 61, 52, 57]).

These perception-centric QoE models have inspired a large body of work that maximizes

user-perceived quality with bitrate adaptation [102, 96], adaptive video encoding [148, 113,

26], adaptive bitrate levels [22, 23], dynamic chunk lengths [86], and super resolution [147,

78, 140]. Since the user-perceived quality metrics can vary across chunks, they may also

treat video chunks differently, like E2E does. However, as elaborated in §3.2.3, E2E is

complementary to these efforts: while they propose heuristics to how pixel-/motion-based

visual features affect QoE, E2E customizes itself for each video (in a cost-efficient way) to

capture the impact of the substance of video content on true user sensitivity to video quality.

That said, actions like dynamic bitrate levels, chunk lengths, and super resolution could be

used in E2E too, though E2E only considers actions directly supported by current DASH

players.

QoE research using crowdsourcing: Prior work (e.g., [69, 41, 103, 95, 68, 135]) pro-

vides methodologies for using commercial crowdsourcing platforms, e.g., Amazon MTurk [1]

and Microworkers [9], to systematically model user perception using objective quality met-

rics [103, 69, 135, 68, 41], investigate QoE impact of different types of low-quality events (e.g.,

[54]), and build crowdsourcing platforms themselves for similar purposes (e.g., [129, 138]).

While E2E follows conventional crowdsourcing methodology (§3.5), E2E faces a unique chal-

lenge of scaling crowdsourcing to per-video QoE modeling. The cost of modeling QoE of each

video separately is prohibitive, and E2E drastically prunes the cost by reusing an existing

QoE model while profiling only a single weight per representative chunk to encode the

content-induced quality sensitivity of each chunk.
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3.9 Discussion

Participant selection bias: A concern of any crowdsourced user study is that the re-

sults could be biased because the workers who are willing to participate in the user study

might have different characteristics than the real video viewers. A common approach to

address this bias is to reweight the participant responses based on the demographics of real

users (e.g., [117, 92, 125, 48]). Sensei could apply reweighting to the user study if we have

knowledge of the target viewers’ demographics, or it could directly recruit the user study

participants from the target viewers themselves (e.g., subscribers of the content provider).

Inapplicable scenarios: Sensei does not apply to live video streaming and copyrighted

videos. Live videos have strict delay requirements which our crowdsourcing-based video

profiling cannot meet. Showing copyrighted videos to crowdsource workers poses the risk of

copyright violation, though Sensei could be used on already-released videos. Moreover, the

profiling cost of ∼ $31.4/minute video may still be impractical for videos with only a few

views. Instead, we envision that Sensei will be used for popular on-demand video by content

providers who seek to improve their QoE-bandwidth tradeoffs. For example, providers such

as Amazon, Netflix and YouTube recently lowered the default bitrate in Europe due to

increased network traffic during the COVID lockdown [12].
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CHAPTER 4

VIDPLATFORM: A PLATFORM FOR QUALITY OF

EXPERIENCE ASSESSMENT OF INTERNET APPLICATIONS

Optimizing Quality of Experience (QoE) for Internet applications, such as web services and

video streaming, has long been an important research topic. Numerous QoE-optimization

approaches have been proposed, including video encoding [113], replica server selection [124],

adaptive video streaming [141, 145, 94, 138]. Their efficacy heavily depends on accurate

QoE models, which correlate objective quality metrics (e.g., video bitrate, stall time, or

webpage loading time) with QoE measured by user subjective ratings. Moreover, many

recent proposals are built on more granular QoE models, customized per application context,

such as video/web content [37] and user groups [73], rather than assuming some one-size-

fits-all QoE model. With these QoE models, one can improve QoE in the face of limited

network resources, by allocating more network resources or using higher quality where QoE

is more sensitive to quality.

Direct QoE measurements are essential to building QoE models, yet QoE measurements

are time-consuming and expensive. Typically, a user study is conducted to collect QoE

ratings, involving recruiting participants to complete specific tasks. A participant’s task

consists of one or more assignments, during which the participant rates an application demo

with quality issues. Such QoE measurements must be carried out frequently due to the

variability in user perceptions of the same application quality. For instance, users might

assign different QoE ratings to two videos with the same perceived quality based on their

content [145]. These two videos necessitate distinct optimization strategies to provide high

QoE with minimal system resources [146, 96].

Crowdsourcing-based user studies are well-suited for QoE measurement [68], given their

flexibility in payment and working hours for workers in online human-workforce providers

(e.g., Amazon Mechanical Turk [25] and Prolific [101]). Crowdsourcing requesters can post
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tasks at any time, specifying the number and eligibility of workers (e.g., age, race, expertise).

Despite the associated costs of crowdsourcing, numerous algorithms have been proposed

to schedule crowdsourcing tasks in order to minimize monetary costs and latency while

leveraging the flexibility of crowdsourcing. For example, MAPS [122] employs dynamic

assignment pricing to expedite worker sign-up with minimal costs. CLAMShell [64] uses

various techniques to retain fast and reliable workers for the task. In [131, 130], domain-

specific knowledge can be utilized to prune assignments as QoE ratings are collected.

However, the potential savings in cost and latency promised by crowdsourcing scheduling

algorithms have not been fully realized due to the interaction interface between requesters

and algorithms. In the current interface, requesters must specify each worker’s assignment

(i.e., a fixed number of workers and assignments) for a task before the scheduling algorithm

begins. For instance, in [131, 130], the QoE ratings of certain assignments can influence

whether others need to be completed or pruned. Under the current interface, the influencing

assignments must be part of a task, and the influenced assignments should be in a subsequent

task, which must start after the completion of the task containing the influencing assign-

ments [131]. Although pruned assignments save costs, the sequence of tasks significantly

increases the latency of user studies.

In this paper, we plan to design and implement a novel open-source tool, VidPlatform,

designed to fully harness the potential improvements of crowdsourcing scheduling algorithms.

Instead of using fixed assignments and workers specified by the current interface, VidPlatform

facilitates dynamic worker recruitment and assignment allocation based on collected QoE

ratings. Rather than adhering to the current interface, VidPlatform requires requesters to

supply logic for determining subsequent assignments dynamically based on the collected

QoE ratings. When a QoE rating is received, VidPlatform invokes this logic and schedules

the following assignments according to the logic output. Consequently, there is no need to

place influencing and influenced tasks into time-sequential tasks, and an assignment can be

promptly scheduled once it is deemed necessary.
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This approach is particularly advantageous for the QoE measurement of application

demos, as it enables full utilization of two key opportunities:

• Conditional assignment dependency: Not all assignments require completion, as the

ratings of some assignments can help prune other assignments using domain-specific knowl-

edge. For instance, if workers rate a webpage load event with a 200-millisecond load time

with a perfect score, they do not need to rate other webpage load events with load times

less than 200 milliseconds. As a result, we do not have to collect QoE ratings for events

with load times shorter than 200 milliseconds before knowing the ratings of the event with

a 200 millisecond load time.

• Variable rating count requirements: Different numbers of workers are needed to

describe the distribution of QoE ratings for an assignment at a fixed confidence level. For

example, when using means to describe rating distributions, varying numbers of ratings are

required to achieve the same confidence level due to differences in distribution variances.

Thus, we do not need to fix the number of ratings to collect for each assignment.

My plan of VidPlatform is to leverage the two opportunities in the use cases of video

streaming and web services. I will show how those use cases will benefit from VidPlatform.
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CHAPTER 5

EXPECTED TIMELINE

The remaining work in this dissertation is the crowdsourcing-assisting tool, VidPlatform.

The proposed timeline of completing VidPlatform is

By June 10th, 2023:

• Complete the crowdsourcing-assisting tool, VidPlatform.

• Opensource VidPlatform.

By June 20th, 2023:

• Submit the initial version of the thesis to the committee for feedback.

By June 27th, 2023:

• Submit a manuscript about VidPlatform to ACM International Conference On Emerg-

ing Networking Experiments And Technologies (ACM CoNEXT), 2023.

By July 20th, 2023:

• Submit the final version of the thesis to the committee

By Aug 1st, 2023:

• Submit the final copy of the dissertation to UChicago library.
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.1 Incentive to improve latency

We show that it is impossible to improve a group of users’ QoE without reducing at least

some of their external delays. Formally, this can be expressed by the following theorem.

Theorem 1. For n requests r1, . . . , rn, suppose S and S′ are the server-side delay vector

when the external delay vector is C and C ′, respectively. Then
∑

iQ(c′i+s′i) >
∑

iQ(c′i+si)

only if there is an ri such that c′i < ci.

Proof. Our proof is by contradiction. Suppose that
∑

iQ(c′i + s′i) >
∑

iQ(ci + si) and for

all i, c′i ≥ ci (i.e., no request has a better external delay). Then

∑
i

Q(ci + si) ≥
∑
i

Q(ci + s′i) (S is better than S given C)

≥
∑
i

Q(c′i + s′i) (Q is monotonic)

which contradicts the assumption.

.2 User Study on Web Quality of Experience

We provide more details about our user study, which measures the relationship between page

load time (PLT) and quality of user experience. We conduct this study on participants hired

through Amazon MTurk [1], a crowdsourcing marketplace.

.2.1 Test procedure

Before entering the study, participants have to fill out a questionnaire about their basic

information, such as age group, nationality, gender, time spent online per day, and primary

use of internet. Each participant is asked to rate their experience of the same web page

when it is loaded with different PLTs. Since the actual PLT of a page may be affected by

many factors—e.g., the participants’ browsers, operating systems, and network conditions—
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we show each participant a video recording of the web page being loaded at a certain speed,

rather than letting them load the web page. This ensures that all the participants experience

the same PLTs. The videos of different PLTs are played in a random order. After watching

a video, the participants rate the video with a score ranging from 1 to 5 (with 1 being the

least satisfactory and 5 being the most satisfactory), and this score is regarded as the QoE

for the PLT shown in the video.

.2.2 Video recording

In our study, we need to show videos of certain PLTs. To avoid uncontrollable WAN and

server-side delays, we first download all web page content on a local machine, and then

load the pages on this machine. This reduces the factors affecting PLT to (1) the browser

rendering time on the machine, which is a function of system configuration (e.g., operating

system, computer hardware, browser version, etc.) but remains fixed, and (2) the web data

packet arrival rate. Since the data packets are loaded from the local machine itself, we can

achieve the desired PLT by tuning the per-packet delay using a Chrome developer tool called

NoThrottling. This allows us to load each web page at the desired PLT, and record a video of

the loading process. These are the videos that are downloaded and shown to the participants

during the study.

.2.3 Results

We ran the user study on the three page types in our traces (Table 2.1), as well as four other

web pages: a Google search results page and the homepages of Amazon, CNN News, and

YouTube. For each page, we use 50 MTurk participants. Figure 1 shows the results for the

four web pages. We can see that although the websites have different PLT sensitivities, a

sigmoid-like relationship between QoE and PLT exists for all of them.
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Figure 1: The relationship between page load time and user rating in different websites.

.2.4 Response validation

A common problem in crowdsourcing is the validation of participants’ responses. We filtered

invalid responses in two ways:

• Engagement: Spending too long or too short on a video may indicate that the par-

ticipant is distracted or unengaged. We set time thresholds for identifying such par-

ticipants, and remove any response that takes more than 35 seconds or less than 2

seconds.

• Outliers: We view the average of all responses as the “ground truth”. We drop responses

from participants whose ratings consistently deviate from the ground truth by 3, across

all videos.

.3 Sensei’s Dataset

Figure 2 provides screenshots and descriptions of the 16 source videos used in our dataset.

Table 1 summarizes the test videos.

.4 Reliable QoE Crowdsourcing

We provide a few additional details on our crowdsourcing methodology.

Population bias of MTurk: As mentioned in §3.9, the per-chunk quality sensitivity could

be biased by the population distribution of MTurkers. We confirm that about 43.8% (and
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(a) Basket1 : A buzzer beater in a 
basketball game

(c) Basket2 : A free throw 
followed by a one-on-one defense.

(b) Soccer1 : A goal after a 
failed shoot

(d) Soccer2: presenting the 
scoreboard after a goal

(e) Discus: A man throwing a 
discus

(f) Wrestling: Two wrestling players (g) Motor: Motor racing (h) Tank: A tank attacking a 
house

(i) FPS1: A first-person shooting 
game 

(j) FPS2: A player robbing 
supplies

(k) Mountain: Mountain scene (l) Animal:  Warthogs that are 
bathing and grooming

(m) Space: A satellite taking 
pictures for our Earth

(n) Lava: A lava is waking up(o) Girl: A girl falling off the 
cliff

(p) BigBuckBunny: A rabbit dealing 
with three tiny bullies

Figure 2: Summary of source videos in our dataset. They span four genres: sports (a -
g), gaming (h - j), natural (k - m), and animation (n - p). They are compiled randomly
from public QoE datasets: LIVE-MOBILE [60](a,k), LIVE-NFLX-II [31] (b, n), YouTube-
UGC [132] (c - j and l - o); and WaterlooSQOE-III [53] (p).

67.3%) of the received ratings come from MTurkers who participate in our survey only once

(at most twice). This suggests that the pool of MTurkers is large enough to avoid small

population bias, which corroborates our sanity-check results (§3.5) that on average MTurker

quality ratings are strongly correlated with in-lab survey results.

Fast MTurker recruitment: While the MTurk platform cuts the overhead to publish our

survey, if MTurkers sign up slowly, this can slow down the entire process. We take following

steps to speedup the recruitment of MTurkers.

• Competitive compensation: We offer an hourly rate of $10, a competitive compensation on

the MTurk platform — only 4% MTurkers are paid more than $7.25/hour [66], though we

have not explored the impact of raising/lowering this rate. To prevent people from gaming

the system by sitting on a job for too long, we pay each MTurker by the estimated amount
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Name Genre Length Source dataset
(a) Basket1 Sports 3:40 LIVE-MOBILE
(b) Soccer1 Sports 3:20 LIVE-NFLIX-II
(c) Basket2 Sports 3:40 YouTube-UGC
(d) Soccer2 Sports 3:40 YouTube-UGC
(e) Discus Sports 3:40 YouTube-UGC
(f) Wrestling Sports 3:40 YouTube-UGC
(g) Motor Sports 3:40 YouTube-UGC
(h) Tank Gaming 3:40 YouTube-UGC
(i) FPS1 Gaming 3:40 YouTube-UGC
(j) FPS2 Gaming 3:40 YouTube-UGC
(k) Mountain Nature 1:24 LIVE-MOBILE
(l) Animal Nature 3:40 YouTube-UGC
(m) Space Nature 3:40 YouTube-UGC
(o) Girl Animation 3:40 YouTube-UGC
(n) Lava Animation 3:40 LIVE-NFLIX-II
(p) BigBuckBunny Animation 9:56 WaterlooSQOE-III

Table 1: Summary of the test video set.

of time needed to finish a survey (which is proportional to the total length of the videos

per MTurker), rather than by how much time the MTurker actually spends. In practice,

this only weeds out MTurkers who spend too much time on a survey.

• Maintaining good reputation: The MTurkers’ signing-up speed also depends largely on the

reputation of the publisher (i.e., us), because MTurkers tend to sign up if the publisher

historically has a low rejection rate. Thus, it is critical to be clear upfront about our

study’s rejection criteria. In the meantime, to keep our rejection rate low, we try to target

reliable MTurkers by restricting ourselves to Master MTurkers (a common practice for

publishers on MTurk [90]).

.5 Sensei’s Implementation

Automation of MTurk tests: We implement the pipeline shown in Figure 3.13 in Python

(for the logic) and Javascript (for the video server). Given a source video, it first creates the

rendered videos by adding specific low-quality incidents in the source video (via ffmpeg). It
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Figure 3: Chunk weight difference

Example quality incidents Watch videos 1. Please rate last video’s quality
1 2 3 4 5

2. What quality incident did you see? 
None Rebuffering Low resolution

Post survey questions

1. How the quality damage affect 
your experience?

2. Is our guideline clear? Please tell 
us anything you got confused

(a) Instruction page (b) Tutorial page (c) Video player page (d) Rating page (e) Post survey question page

Survey Introduction
1.

….
….

Response rejection criteria
1.

….
….

Figure 4: A diagram of our QoE survey interface. In each survey, an MTurker is asked to
rate K rendered videos; after watching each rendered video, an MTurker is asked to rate its
quality on a scale of 1 (worst) to 5 (best).

then uploads these videos to a video server, from which MTurkers later download the video.

After that, it generates a unique link for this campaign and posts it on the MTurk website

(the only step that requires manual intervention). MTurkers can join the test by clicking

the link, which redirects them to our video server. Once an MTurker has rated all assigned

videos, the server logs the ratings and notifies us. Once enough ratings are received, the

server trains the per-chunk weights as described in §3.4.2.

Single survey procedure: As shown in Figure 4:

• (a) Each survey starts with the instructions and rejection criteria under which ratings of

an MTurker will be rejected. Each MTurker is expected to read the instructions carefully.

• (b) The MTurker then watches an example video that includes a quality incident so that

they know what their ratings should be based on.

• (c, d) After that, the MTurker is asked to watch a sequence of rendered videos (determined
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by the scheduler) and, after each video, rate the quality on a scale of 1-5.

• (d) Finally, the MTurker does an exit survey.

.6 More discussion on saliency models

Saliency models used in §3.2.3: We test four models in total, a traditional motion-based

heuristic (AMVM [89]), a highlight detection model (video2GIF [63]), and a video summa-

rization model (DSN [149], dppLSTM [144]). We used the pretrained models of Video2GIF

(https://github.com/gyglim/video2gif_code), DSN (https://github.com/KaiyangZhou/

pytorch-vsumm-reinforce), and dppLSTM (https://github.com/kezhang-cs/Video-Summarization-with-LSTM).

Saliency score vs. quality sensitivity: Although a variety of saliency models have

been proposed, we argue that these visual heuristics can be misaligned with video quality

sensitivity. For example, in the soccer video (Figure 3.1), the scene right before the goal is

most quality sensitive, but the highlight detection models and motion-based heuristics we

evaluated believe the scenes showing the audience are the most important (probably because

they show more human movements). Video summarization models pick all diverse moments

of a video, but many of them may not be quality-sensitive. For example, in the same soccer

video, the video summarization models identify every shot, rewind, and celebration clip as

important, but the users pay more attention to shots that might score a goal.

We also acknowledge the potential use of viewership information to detect video high-

lights. While the popularity of a chunk is closely related to highlights (or high interestingness

scenes) in a video, as we found in §3.2.3 and §3.7.3, these incidents may not perfectly align

with users’ sensitivity to video quality. Below are two examples specifically regarding the

potential misalignment between content popularity and quality sensitivity.

• Example 1: A less popular part of a video can still be quality-sensitive. The “animal” video

in our dataset is a part of a video about wildlife in Africa. Although a more “popular”

or “interesting” scenes is one where the lions chase antelopes, we find that users are still
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highly quality-sensitive in the scene where warthogs jump into a small pond for bathing.

• Example 2: A quality-sensitive part of a video may be a small fraction of a popular

segment. One of the soccer videos in our dataset is a compilation of highlight moments

from a long game, so all of its content is supposed to be “popular”. However, we still see

that there is heterogeneity in the sensitivity of its chunks.
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