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To Mom and Dad



You may forget but

let me tell you
this: someone in
some future time
will think of us

-Sappho
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ABSTRACT

A type system is weakly normalizing if every typable expression has a normal form, and is

strongly normalizing if no typable expression appears in an infinite reduction sequence. The

Barendregt-Geuvers-Klop conjecture asks if weak normalization implies strong normalization

for all pure type systems, a class of systems which generalizes the λ-cube. There are two

natural techniques based on type-preserving translations for proving strong normalization

from weak normalization. The first is to define a translation from expressions to I-expressions

(i.e., expressions in which λ-bound variables must be used). Strong normalization then

readily follows from weak normalization by a conservation result along the lines of the one

proved by Church [1941] for the untyped λ-calculus. This was first done by Xi [1996] and

Sørensen [1997] for a subset of the λ-cube, and was generalized to a class of pure type

systems by Barthe et al. [2001]. The second technique is to define an infinite-reduction-

path-preserving translation to a weak sub-system for which the conjecture is known to hold.

Then, by a straightforward boot-strapping argument, the conjecture can be shown to hold

for the full system. Translations of this form were first presented by Geuvers and Nederhof

[1991] and Harper et al. [1993] for systems in the λ-cube, and similar techniques were used

by Roux and Doorn [2014] for a class of pure type systems.

These syntactic techniques have the further benefit that they are proof-theoretically weak,

and so can be used to address the stronger form of the conjecture noted by Xi [1997], which

asks if the proof of strong normalization from weak normalization can be carried out in Peano

arithmetic, or even Heyting arithmetic. This is notable insofar as Girard [1972] proved that

the normalization of the pure type system λ2 implies the consistency of Peano arithemtic

(within Peano arithmetic), so these results imply proof-theoretic results.

In what follows, I present three translations, one of the first form and two of the second

form. The first is a generalization of the thunkification translation of Xi [1997], which maps

expressions to I-expressions using a more fine-tuned padding scheme than the one used
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by Barthe et al. [2001], leading to fewer technical restrictions on the class of systems to

which it applies. The second is a generalization of the dependency-eliminating translation

of Geuvers and Nederhof [1991] to a class of pure type systems which are known to be

strongly normalizing, but for which the stronger form of the conjecture is demonstrated

for the first time. The third is a novel application of ideas from Roux and Doorn [2014]

(and, consequently, from Geuvers and Nederhof [1991]) for a class of pure type systems with

“irrelevant” structure. These systems have properties like dependent types (albeit, a very

weak notion of dependent types) which have not appeared in any of the classes of systems

previously considered.

All of this work is done in the framework of tiered pure type systems, a simple class

of persistent pure type systems which are concretely specified but sufficient to study in

most cases regarding questions of normalization. I consider the introduction of this class of

systems one of the more important contributions of this work; their combinatorial nature

makes them easier to study than previously considered classes of systems. They encompass,

in some sense, the simplest extension of the λ-cube, and have many desired meta-theoretic

properties, but also leave much to be further developed.
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CHAPTER 1

INTRODUCTION

1.1 Background

This dissertation is concerned with the relationship between weak and strong normalization

of pure type systems, a class of typed λ-calculi. I’d like to begin by motivating said concern

with a very brief (read: caricatured) historical outline of the relevant material. As much as

I would like the following material to be based in first principles, the pedagogical problem of

presenting type theory without first presenting a course-worth of material so far eludes me,

and so I will be assuming general familiarity with basic logical concepts.

1.1.1 The Untyped Lambda Calculus

Church [1941] introduced what is now called the untyped λ-calculus as a theory of “functions

as rules”1 (e.g., the function “given x, add 1 to x”) as opposed to functions as graphs in the

set-theoretic tradition (e.g., the “function” {(x, 1 + x) : x ∈ N}). It is an equational theory

over expressions from T, defined inductively as follows:

• V ⊂ T;

• x ∈ V and M ∈ T implies λx. M ;

• M ∈ T and N ∈ T implies MN ∈ T;

where V is a fixed set of variable symbols.2 The construct ‘λx. M ’ is referred to as abstraction

(over the variable x), and is thought of as yielding a function on x (e.g., abstracting over x

in the expression “add 1 to x” yields the function “given x, add 1 to x”). The construct ‘MN ’

1. This phrase is quoted by Barendregt [1984], who does not give a citation, but refers to it as “old
fashioned,” and so must have pulled it from the rarefied air of those times.

2. I take the usual liberty of being agnostic regarding the ontological status of “symbols.”
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is referred to as application (of one expression to another), and it has been noted by many

(Barendregt [1984] included) that this is a mild misnomer, as application in this setting is a

syntactic notion and should be thought of as yielding the application itself, not the value of

applying the function to its argument (e.g., “ ‘given x, add 1 to x’ applied to 2” as opposed

to “3”). In subsequent exposition, I use Backus-Naur form grammars to describe inductively

defined expressions, e.g.

T ::= V | λV. T | TT

The theory has at its core an interest in computation—the notion of rules invoking more

computational associations than graphs3—and describes a convertibility relation via a single

computational rule which, for historical reasons, is called β:

(λx. M)N = M [N/x]

where M [N/x] is the result of substituting N for x in M (eliding the nasty details of sub-

stitution with which seasoned readers are keenly aware). This relation is lifted compatibly

through the structure of expressions, i.e., β-reductions can be done anywhere in the expres-

sion, not just at the top level; pictorially speaking:

(. . . (λx. M)N . . . ) = (. . .M [N/x] . . . )

Formally, the theory is the equational presentation of the compatible equivalence closure of

β; viewed as a relation,

β = {((λx. M)N,M [N/x]) | M,N ∈ T}

3. It seems worth noting that students are so often confused when we refer to graphs as functions, since
they look nothing like the functions of our imaginations, at least for the seeming majority of us.
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and its compatibility closure ‘→β ’ is the smallest relation containing β such that M →β N

implies

λx. M →β λx. N

MP →β NP

PM →β PN

I have avoided up to this point discussing any tricky technicalities in the definition of this

theory, but I will note now that expressions are considered equal up to α-conversion, or the

renaming of bound variables (so, for example, λx. λy. x = λz. λw. z) and I will observe the

Barendregt variable convention, which states that when writing down an expression, bound

variables are chosen to be distinct from free variables (a standard proviso for logical syntax).

There is a rich line of work regarding the λ-calculus as a logical theory (see, e.g., the ency-

clopedic text by Barendregt [1984]), but it is sufficient for the purposes of this dissertation to

consider the λ-calculus as an abstract reduction system. For the other systems considered in

this introduction, I will ignore the associated equational theory altogether, and focus strictly

on the associated reduction system as well.

1.1.2 Abstract Reduction Systems

An abstract reduction system is simply a set X together with a binary relation R on X,

with the “attitude”4 of viewing R as a notion of reduction, i.e., xRy means x reduces to y.

Notation and Terminology. Fix a reduction system (X,R).

• →R stands for R.

• ↠+
R stands for the transitive closure of R.

4. I recently discovered the nLab [2023] page for the notion of a “concept with an attitude” which is used
to describe the added psychological structure implicit in a mathematical object. I quite like this term.
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• ↠R stands for the reflexive transitive closure of R, and x ↠R y is read “x reduces to

y.”

• =R stands for the equivalence closure of R.

• A reduction sequence is a potentially infinite sequence of elements x1, x2, . . . such

that

x1 →R x2 →R . . .

It is straightforward to verify that x ↠R y if there is a finite reduction sequence

starting at x and ending at y, and that x ↠+
R y if the sequence is non-empty.

• An element y is an R-normal form (or is in R-normal form) if it is irreducible, i.e.,

there is no element z such that yRz. It is an R-normal form of x if x ↠R y.

Properties. There are multitudes one may wish to verify of a given reduction system, but

I restrict myself to the core four of interest here (and really, only the last two will play a

substantial role).

• A system has the Church-Rosser property if x =R y implies there is an element z

such that x ↠R z and y ↠R z.

• A system has unique normal forms if x ↠β y and x ↠β z and both y and z are

normal forms implies y = z.

• A system is weak normalizing (or has the weak normalization property) if every

element of has an R-normal form. A particular element is weakly normalizing if it has

an R-normal form.

• A system is strong normalization (or has the strong normalization property) if no

element appears in an infinite reduction sequence. A particular element is strongly

normalizing if it does not appear in an reduction sequence.
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The study of abstract reduction systems postdates the study of the λ-calculus, with

(T,→β) being an oft cited example of a prototypical reduction system (see, e.g., the expo-

sition of Bezem et al. [2003]). Church and Rosser [1936] proved that this system satisfies

the first eponymous property, as well as the second (up to α-equivalence). From this, it is

possible to show that normalizing β-equivalent expressions reduce to the same normal form,

which indicates that β-reduction captures a reasonable notion of computation. The last two

properties—which are the focus of this dissertation—do not hold of (T,→β). The expression

Ω ≜ (λx. xx)(λx. xx)

has no normal form since Ω →β Ω and this is the only reduction that can be performed on

Ω. Even the sub-reduction-system restricted to the weakly normalizing expressions is not

strongly normalizing; given

I ≜ λx. x

K ≜ λx. λy. x

KIΩ →β I and I is a normal form but KIΩ →β KIΩ →β KIΩ . . .

1.1.3 The Lambda-I Calculus

The previous remark is perhaps unsurprising; it seems a mere platitude to note that strong

normalization is a stronger notion than weak normalization. But it is natural to consider

under what conditions it is not.

The λI-calculus is the fragment of the λ-calculus in which every expression of the form

λx. M is required to have x appear in M . I will use TλI to denote the set of such ex-

pressions. The expression K, for example, is not in TλI , but Ω is (in particular, there

are non-normalizing expressions in TλI). The reason KIΩ is weakly normalizing but not
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strongly normalizing is that K can “throw away” its non-normalizing argument, which de-

pends heavily on the fact that K is not in TλI . Church [1941] proves that the inability to

do this is a sufficient condition for weak and strong normalization to coincide.

Theorem 1. (Church [1941], Conservation for λI) For any λI-expression M , if M is weakly

normalizing then M is strongly normalizing.

This is, in a loose sense, a reverse mathematical result. It may be equivalently stated

that every λI-expression is either non-normalizing or strongly normalizing, but the more

interesting reading (to me) is that weak normalizing is a sufficient assumption for proving

strong normalization. So from the perspective of reduction systems, and with an eye towards

what is to come, in order to show that a sub-system of (TλI ,→β)
5 is strongly normalizing,

it is sufficient to show that it is weakly normalizing.

It may be of some interest to the historically inclined that λI-calculus was the first

calculus presented by Church [1941], but the calculus as we known it now (sometimes referred

to as the λK-calculus) became the dominant form. Barendregt [1984] (pp. 38) cites some

potential reasons for the shift.

1.1.4 The Simply Typed Lambda Calculus

Church [1940] introduced the simply typed λ-calculus—here on out denoted by λ→—as an

extension of the simple types of Russell and Whitehead [1910, 1912, 1913] to include notions

from the λ-calculus. In its modern form (and as it is presented here) we have a new grammar

of types

Ty ::= B | Ty → Ty

where B is a set of base types. The construct ‘A → B’ is a function type and is used to

describe expressions which look like functions. In the tradition of Church-style typing, we

5. Here and in future iterations, I allow the reduction relation to be defined on a super-set, so as not to
require notation for restricting the relation.
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work over a slightly different expressions grammar

T ::= V | λVTy. T | TT

in which abstracted variables are annotated with types.6 Judgments of the form

x1 : A1, . . . , xk : Ak ⊢ M : A

read as

“x1 is of type A1, and . . . and, xk is of type Ak implies M is of type A”

are then used to delineate a class of “well-behaved” expressions. Roughly speaking, types

acts as a simple syntactic description of intended semantic behavior of their expressions.

The rules for building typing judgments are as one might expect if we understand function

types to delineate the expressions we presume to look and behave like functions.

Typing Judgments. A variable x is fresh if it does not appear in on the left side of the

turnstile.

• Start. For any type A (i.e., A ∈ Ty) and any variable x

x : A ⊢ x : A

• Variable Introduction. For any type B and variable x which is fresh with respect

to Γ

Γ ⊢ M : A
Γ, x : B ⊢ x : B

• Weakening. For any type B and variables x which is fresh with respect to Γ

6. There is also a notion of Curry-style typing. This is sometimes called “domain-free” and the former
“domain-full.” See the work of Barthe and Sørensen [2000] for more details.
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Γ ⊢ M : A
Γ, x : B ⊢ M : A

• Abstraction.

Γ, x : A ⊢ M : B

Γ ⊢ λxA. M : A → B

• Application.

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

The rules as presented are a bit non-standard, but better mirror the shape of the rules

for pure type systems considered in the next section. Despite this, I hope that they represent

reasonable intuitions about how functions should behave. The application rule, for example,

reads “if M is a function of type A → B, and N is of type A, then it is well-defined to apply

M to N and we should expect the result to be of type B.” For a more concrete example, if

Nat ∈ B, then it is possible to derive

Z : Nat, S : Nat → Nat, A : Nat → (Nat → Nat) ⊢ λxNat. A(SZ)x : Nat → Nat

a slightly obfuscated but potentially familiar example.

Given these typing rules, we can then consider the rewrite system (Tλ→ ,→β) where Tλ→

is the subset of expressions which are typable according to the above rules (formally, M is

typable if there is a type A and a context Γ such that Γ ⊢ M : A is derivable). Gandy

[1980] notes that his advisor Alan Turing—in a letter he wrote in the 1940s—was the first to

prove that λ→ is weakly normalizing via a measure on expressions which is monotonically

decreasing in a particular reduction strategy. It would take several decades before Tait [1967]

proved it is strongly normalizing via a more complicated proof which, in essence, uses logical

relations as described by Plotkin [1973]. Xi [1996] and Sørensen [1997] recognized that, since

the proof of weak normalization is a fair bit simpler, it is useful to derive strong normalization
8



from weak normalization, and both achieve this via a translation into the λI-calculus. Again,

we have a reverse mathematical question: is weak normalization of (Tλ→ ,→β) a sufficient

condition to more easily prove its strong normalization?

1.1.5 Beyond Simple Types

In the unlikely event that I have piqued the interest of a non-expert, I recommend at this

point reading any of the great introductory texts in the field (Type Theory and Formal Proof

by Nederpelt and Geuvers [2014] is a favorite of mine). What remains will be informal and

cursory.

The decades after the introduction of simple types saw an explosion of type theories for

logic, linguistics, computer science, and many other sister subjects. Type systems may be

fancified with a number of new constructions, shapes, annotations, etc., but there were three

features of particular importance during this development, which were noted by Barendregt

[1991] to share the property that they blurred the line between types and terms.

• Polymorphism. (or abstraction over type variables in terms) This allows for functions

which are, in a sense, agnostic to the type of their argument. Example. given Type,

the type of types, the expression λAType. λxA. x can be applied to different types to

yield differently typed identity functions.7

• Type Constructors. (or abstraction over type variables in types) This allows for

functions that can return types themselves. Example. given an empty type ⊥, it may

be useful to write the function λAType. A → ⊥, which returns the negated form the

type, in the sense of the Curry-Howard isomorphism.8

• Dependent Types. (or abstraction over term variables in types) This allows for the

7. A typical mouth-full when discussing impredicativity.

8. The Curry-Howard isomorphism says that types can be read as mathematical statements and terms
can be read as proofs. See for details.
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definition of predicates whose types are of the form A → Type and whose inhabiting

terms are evidence that the predicate holds on its argument (again, in the sense of the

Curry-Howard isomorphism). Example. given a definition of natural numbers, it is

possible to define even : Nat → Type where even 2 represents “2 is even.”

These three features form the “basis” of a class of eight systems called the λ-cube, introduced

by Barendregt [1991], which uniformly describes these three features in single framework.

The systems in the λ-cube vary in which of the three above features they have (hence, the

cube structure).

System Polymorphism? Type Constructors? Dependent Types?

λ→ no no no

λ2 yes no no

λω no yes no

λω yes yes no

λP no no yes

λP2 yes no yes

λPω no yes yes

λC yes yes yes

The most important systems in the λ-cube, by name, are

• (λ→) simply typed lambda calculus, introduced by Church [1940].

• (λ2) second-order lambda caluclus, introduced independently by Girard [1972] and

Reynolds [1974].

• (λω) higher-order polymorphic lambda calculus, introduced by Girard [1972].

• (λP ) logical framework (roughly speaking), based on ideas of De Bruijn [1968] and

perhaps most notably implemented by Harper et al. [1993].

10



• (λC) calculus of constructions, introduced by Coquand and Huet [1986].

I choose not to present them formally here, in part because the are so similar to the pure type

systems of the next section. I instead refer the reader to the survey by Barendregt [1993].

Every system in the λ-cube is strongly normalizing. As mentioned above, Tait [1967]

proved strong normalization of λ→. Girard [1972] proved strong normalization of λ2 and

λω by an extension of Tait’s method. The exact first proof of strong normalization of λC is

tricky to pin down, because a number of the first proofs had mistakes; Coquand and Gallier

[1990] (Section 7) give a fair timeline of these results. The proof of strong normalization

of λC which is most relevant here is the one by Geuvers and Nederhof [1991], which shows

strong normalization of λC be defining an infinite-reduction-path-preserving translation from

λC ot λω and then bootstrapping with strong normalization with λω. Harper et al. [1993]

use a similar result to prove strong normalization of λP , which is translated down to λ→.

Beyond the λ-cube the picture is much less clear. The systems λU and λU−, which are

mild extension of λω, were shown by Girard [1972] and Coquand [1995] to be non-weakly

normalizing. On the other hand, Luo [1990] presented an extention of λC with an infinite

heirarchy of universes call the extended calculus of constructions (denote by ECC) and showed

it is strongly normalizing. The class of pure type systems captures these extensions along

with a slew of others, about many of which normalization is unknown.

At this point, I think it appropriate to transition to more formal definitions. Note that I

give a statement of the problem considered in this dissertation, as well as the contributions

made, in Section 1.3.

1.2 Definitions

The class of pure type systems is the basis of a very general framework for describing type

systems and their meta-theory. These systems vary in their sort structure and their product

type formation rules, and include the entire λ-cube. Barendregt cites Berardi [1988] and
11



Terlouw [1989] for their conception, though Geuvers and Nederhof [1991] are cited as having

given the first explicit definition, based on the previous two works. The presentations of

Barendregt [1991, 1993] are perhaps the best known sources.9

A pure type system is specified by a triple of sets (S,A,R) satisfying A ⊂ S × S and

R ⊂ S×S×S. The elements of S, A, and R are called sorts, axioms and rules, respectively.

I use s and t as meta-variables for sorts.10

For each sort s, fix a Z+-indexed set of expression variables Vs. Let svi denote the ith

expression variable in Vs and let V denote
⋃

s∈S Vs. I use x, y, and z as meta-variables

for expression variables. The choice to annotate variables with sorts is one of convenience.

The annotations can be dropped for the systems I consider, and are selectively included in

the exposition. This observation regarding variable annotations was first made by Geuvers

[1993] (Definition 4.2.9).

1.2.1 Expressions

The set of expressions of a pure type system with sorts S is described by the grammar

T ::= S | V | ΠVT. T | λVT. T | TT

I use capital Modern English letters like M , N , P , Q, A, B, and C as meta-variables for

expressions.

The sub-expressions of a given expression are defined by the function sub : T → 2T

9. I am of the opinion that, after the development of the lambda cube, the notion of pure type systems
was soon to follow, and that all aforementioned should be cited as originators.

10. For any subsequent meta-variables, I use positive integer subscripts and tick marks, e.g., s1, s2, and
s′. Note, however, that in later sections, si will refer to a particular sort in tiered systems. I will try to be
as clear as possible when distinguishing between these two cases of notation.
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inductively.

sub(sj) ≜ {sj}

sub(sjx) ≜ {sjx}

sub(ΠxA. B) ≜ sub(A) ∪ sub(B) ∪ {ΠxA. B}

sub(λxA. M) ≜ sub(A) ∪ sub(M) ∪ {λxA. M}

sub(MN) ≜ sub(M) ∪ sub(N)

I will write N ⊂ M for N ∈ sub(M).

‘Π’ and ‘λ’ bind variables in their respective terms. The free variables of an expression

are defined by the function FV : T → 2V inductively.

FV(si) ≜ ∅

FV(x) ≜ {x}

FV(ΠxA. B) ≜ FV(A) ∪ FV(B) \ {x}

FV(λxA. B) ≜ FV(A) ∪ FV(B) \ {x}

FV(MN) ≜ FV(M) ∪ FV(N)

The compatible closure of a relation R on expressions, typically written →R is the

smallest relation containing R such that M →R N implies

ΠxM . P →R ΠxN . P ΠxP . M →R ΠxP . N

λxM . P →R λxN . P λxP . M →R λxP . N

MP →R NP PM →R PN

13



The renaming of the free variable x to y is defined as follows.

sj [y/x]
r ≜ sj

z[y/x]r ≜


y z = x

z otherwise

ΠzA. B[y/x]
r
≜


ΠzA[y/x]r . B z = x

ΠzA[y/x]r . B[y/x]r otherwise

λzA. M [y/x]
r
≜


λzA[y/x]r . M z = x

λzA[y/x]r . M [y/x]r otherwise

MN [y/x]r ≜ M [y/x]rN [y/x]r

Define the relation α as:

ΠxA. B α ΠyA. B[y/x]r

λxA. M α λyA. M [y/x]r

for all expressions A, B, and M and variables x and y, where y /∈ FV(ΠxA. B) in the first

case and y /∈ FV(λxA. M) in the second case. Define α-equivalence, denote by ‘=α’, to be

the compatible equivalence closure of α. All expressions are considered up to α-equivalence.

14



The substitution of x with N is defined as follows.

sj [N/x] ≜ sj

y[N/x] ≜


N y = x

y otherwise

ΠyA. B[N/x] ≜ ΠzA[N/x]. B[z/y]r[N/x] (where z /∈ FV(N) ∪ FV(B))

λyA. M [N/x] ≜ λzA[N/x]. M [z/y]r[N/x] (where z /∈ FV(N) ∪ FV(M))

PQ[N/x] ≜ P [N/x]Q[N/x]

Define the relation β as:

(λxA. M)N β M [N/x]

for any expressions A, M , and N , and any variable x. I will use the notation:

→β compatible closure of β

↠+
β transitive closure of →β

↠β transitive reflexive closure of →β

=β equivalence closure of →β

An expression M β-reduces to an expression N if M ↠β N . I will not consider any other

notions of reduction (e.g., η) so I will often simply write of “reductions.” A reduction

sequence is a (possibly infinite) sequences of expression M1,M2, . . . such that

M1 →β M2 →β . . .

An expression M is in normal form (or is a normal form) if there is no expression N such

that M →β N . Alternatively: a redex of M is a sub-expression of the form (λxA. P )Q,
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and an expression is in normal form if it has no redexes. In order to more easily discuss

redexes, we use single-holed expressions,11 denoted by C⟨·⟩, which are defined inductively

as follows.

• ⟨·⟩ is a single-holed expression.

• For any variable x, expression M , and single-holed expression C⟨·⟩, the following are

all single-holed expressions.

– ΠxC⟨·⟩. M

– ΠxM . C⟨·⟩

– λxC⟨·⟩. M

– λxM . C⟨·⟩

– C⟨·⟩M

– M(C⟨·⟩)

Let C⟨M⟩ denote the expression resulting from replacing ⟨·⟩ in C⟨·⟩ with M . The difference

with variable substitution is that we do not concern ourselves with variable capture or

renaming.

An expression M is weakly normalizing if there is some normal form N such that

M ↠β N . It is strongly normalizing if it does not appear in any infinite reduction

sequence. I will use the notation:

NF ≜ {M | M is in normal form}

WN ≜ {M | M is weakly normalizing}

SN ≜ {M | M is strongly normalizing}

11. These are called “contexts” in other settings, but I’ve used a different name so as not to clash with the
notion of contexts introduced below.
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Just as in the case of the domain-free case, expressions in T satisfy the Church-Rosser proprty

as well as the unique normal forms property. So by an abuse of notation, I will also use the

function NF : WN → NF which maps weakly normalizing expressions to their unique normal

forms.

1.2.2 Typing Judgments

A statement is a pair of expressions, denoted by M : A. The first expression is called

the subject and the second is called the predicate. A proto-context is a sequence of

statements whose subjects are expression variables. The statements appearing in proto-

contexts are called declarations. I use capital Greek letters like Γ, ∆, Φ, and Υ as meta-

variables for contexts. Often the sequence braces of contexts are dropped and concatenation

of contexts is denoted by comma-separation. The β-equality relation and substitution extend

to contexts element-wise. For a context Γ and declaration (x : A) I write (x : A) ∈ Γ if that

declaration appears in Γ, and Γ ⊂ ∆ if (x : A) ∈ Γ implies (x : A) ∈ ∆. A proto-judgment

is a proto-context together with statement, denoted Γ ⊢ M : N . The designation “judgment”

is reserved for proto-judgments that are derivable according to the rules below. Likewise,

the designation “context” is reserved for proto-contexts that appear in some (derivable)

judgment.

The pure type system λS specified by (S,A,R) has the following rules for deriving

judgments. In what follows, the meta-variables s and s′ range over all sorts in S when

unspecified. A variable sx is fresh with respect to a context Γ if it does not appear anywhere

in Γ.

• Axioms. For any axiom (s, s′)

⊢λS s : s′

• Variable Introduction. For a variable sx which is fresh with respect to Γ
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Γ ⊢λS A : s

Γ, sx : A ⊢λS sx : A

• Weakening. For a variable sx which is fresh with respect to Γ

Γ ⊢λS M : A Γ ⊢λS B : s

Γ, sx : B ⊢λS M : A

• Product Type Formation/Generalization. For any rule (s, s′, s′′)

Γ ⊢λS A : s Γ, sx : A ⊢λS B : s′

Γ ⊢λS ΠsxA. B : s′′

• Abstraction.

Γ, sx : A ⊢λS M : B Γ ⊢λS ΠsxA. B : s′

Γ ⊢λS λsxA. M : ΠsxA. B

• Application.

Γ ⊢λS M : ΠsxA. B Γ ⊢λS N : A

Γ ⊢λS MN : B[N/sx]

• Conversion. For any terms A and B such that A =β B

Γ ⊢λS M : A Γ ⊢λS B : s

Γ ⊢λS M : B

The subscript on the turnstile is dropped when there is no fear of ambiguity. The anno-

tations on bound variables in Π-expressions and λ-expressions are non-standard, and will in

most cases be dropped, but they are occasionally useful to maintain (e.g., see Lemma 1). It

is also standard to write A → B for ΠxA. B in the case that x does not appear free in B,

and to use the derived rule

Γ ⊢ A : s Γ ⊢ B : s′

Γ ⊢ A → B : s′′
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An expression M is said to be derivable in λS if there is some context Γ and expression

A such that Γ ⊢λS M : A. Although there is no distinction between terms and types, it is

useful to call a judgment a type judgment if it is of the form Γ ⊢ A : s where s ∈ S, and a

term judgment if it is of the form Γ ⊢ M : A where Γ ⊢ A : s for some sort s. I also write

that M is a term and A is a type in this case. By type correctness (Lemma 3), a judgment

that is not a type judgment is a term judgment, though some judgments are both type and

term judgments. In the system specified by ({s1, s2}, {(s1, s2)}, ∅), for example,

• ⊢ s1 : s2 is a type judgements but not a term judgment,

• x : s1 ⊢ x : s1 is a type judgment and a term judgment, and

• x : s1, y : x ⊢ y : x is a term judgment but not a type judgment.

1.2.3 Meta-Theory

I collect here many of the standard the meta-theoretic lemmas necessary for the subsequent

results. Much of the meta-theory of pure type systems was worked out by Geuvers and

Nederhof [1991], and can be found in several of the great available resources on pure type

systems (see the work of Barendregt [1993], Barthe et al. [2001], Geuvers [1993], Kamareddine

et al. [2004], among others) so proofs are omitted. For the remainder of the section, fix a

pure type system λS.

Lemma 1. (Generation) For any context Γ and expression A, the following hold.

• Sort. For any sort s, if Γ ⊢ s : A, then there is a sort s′ such that A =β s′ and

(s, s′) ∈ A.

• Variable. For any sort s and variable sx, if Γ ⊢ sx : A, then there is an type B such

that Γ ⊢ B : s and (sx : B) appears in Γ and A =β B.
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• Π-expression. For any sort s and expressions B and C, if

Γ ⊢ ΠsxB . C : A

then there are sorts s′, and s′′ such that

Γ ⊢ B : s and Γ, sx : B ⊢ C : s′

and (s, s′, s′′) ∈ R and A =β s′′.

• λ-expression. For any sort s and expressions B and M , if

Γ ⊢ λsxB . M : A

then there is a type C and sort s′ such that such that

Γ ⊢ ΠsxB . C : s′ and Γ, sx : B ⊢ M : C

and A =β ΠsxB . C.

• Application. For expressions M and N , if Γ ⊢ MN : A, then there is a sort s and types

B and C such that Γ ⊢ M : ΠsxB . C and Γ ⊢ N : B and A =β C[N/sx].

Lemma 2. (Substitution) For contexts Γ and ∆ and expressions M , N , A and B, if

Γ, x : A,∆ ⊢ M : B and Γ ⊢ N : A

then

Γ,∆[N/x] ⊢ M [N/x] : B[N/x].
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Lemma 3. (Type Correctness) For any context Γ and expressions M and A, if Γ ⊢ M : A

then A ∈ S or there is a sort s such that Γ ⊢ A : s.

Lemma 4. (Thinning) For contexts Γ and ∆ and expressions M and A, if Γ ⊂ ∆ and

Γ ⊢ M : A, then ∆ ⊢ M : A.

Lemma 5. (Permutation) For contexts Γ and ∆, variables x and y, and expressions A, B,

M , and C, if x does not appear free in B and

Γ, x : A, y : B,∆ ⊢ M : C

then

Γ, y : B, x : A,∆ ⊢ M : C

Definition 1. A pure type system is functional if

• if (s, t) ∈ A and (s, t′) ∈ A then t = t′;

• if (s, t, u) ∈ R and (s, t, u′) ∈ R, then u = u′;

Lemma 6. (Type Unicity) If λS is functional then for any context Γ and expressions M ,

A, and B, if Γ ⊢ M : A and Γ ⊢ M : B, then A =β B.

Definition 2. A sort s is a top-sort if there is no sort s′ such that (s, s′) ∈ A. It is a

bottom-sort if there is no sort s′ such that (s′, s) ∈ A.

Lemma 7. (Top-Sort Lemma) For any context Γ, variable x, expressions A and B, and

top-sort s the following hold.

1. Γ ̸⊢ s : A

2. Γ ̸⊢ x : s

3. Γ ̸⊢ AB : s
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s1 s2 s3

Figure 1.1: A visual representation of the system λU

1.2.4 Tiered Pure Type Systems

General pure type systems are notoriously difficult to work with so it is typical to consider

classes of pure type systems satisfying certain properties, e.g., persistence as subsequently

defined.

Definition 3. A pure type system λS is persistent if it is functional (Definition 1) and

• if (s, t) ∈ A and (s′, t) ∈ A then s = s′;

• RλS ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}.

From this point forward, I freely use the notation (s, s′) for the rule (s, s′, s′). One minor

issue with properties like this is that it is often difficult to envisage the systems which satisfy

them. In particular, the results tailored to a class of systems defined as such may use more

meta-theoretic machinery than necessary. I choose, instead, to work with a simple class of

systems I call tiered pure type systems, which have a very concrete description.

Definition 4. Let n be a non-negative integer. A pure type system is n-tiered if its has the

form

S = {si | i ∈ [n]}

A = {(si, si+1) | i ∈ [n− 1]}

R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

where [n] ≜ {1, . . . , n}.

A couple remarks about these systems:
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• these systems can be envisaged as graphs as in Figure 1.1, which is a visual represen-

tation of the 3-tiered system λU . In such representations, an arrow (si, sj) indicates

the presence of the rule (si, sj). Axioms are not represented in the graph except in the

ordered the nodes are presented;

• the only 0-tiered system is the empty pure type system; there are two 1-tiered systems,

specified by either ({s1}, ∅, ∅) or ({s1}, ∅, {(s1, s1)}), neither of which have derivable

expressions; the 2-tiered systems which contain the rule (s1, s1) are exactly the lambda

cube;

• the n-tiered systems are considered in passing by Barthe et al. [2001] (Remark 2.39).

They include natural subsystems of ECCn (as defined by Luo [1990]) with only the

two-sorted rules;

A large class of natural pure type systems can be classified as disjoint unions of tiered

systems. In order to state this equivalence, I work in the structural theory of pure type

systems presented by Roux and Doorn [2014].

Definition 5. For pure type systems λS and λS ′, the disjoint union λS ⊔ λS ′ is specified

by

SλS⊔λS ′ ≜ SλS ⊔ SλS ′

AλS⊔λS ′ ≜ AλS ∪ AλS ′

RλS⊔λS ′ ≜ RλS ∪RλS ′

We begin by noting some basic facts about persistent systems. First, let A(s) denote the

set of axioms in which s appears, i.e., {(s′, t′) ∈ A | s′ = s or t′ = s}. Alternatively, viewing

A as a graph, this is the set of edges in the neighborhood graph of s. If λS is persistent,

then |A(s)| ≤ 2 for any sort s. Let ‘<A’, ‘≤A’, and ‘≈A’ denote the transitive, reflexive-
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transitive, and equivalence closure of A, respectively. Equivalently, s ≤A t if there is a finite

sequence of sorts t1, . . . , tk such that t1 = s and tk = t and (ti, ti+1) ∈ A where i ∈ [k − 1].

Call this a sequential chain of length k − 1 from s to t (note that a sequential chain is

not required to have distinct elements). If λS is persistent, then this is the unique chain of

length k − 1 starting at s, or ending at t.

Proposition 1. Let λS be a persistent pure type system. For any sort s in SλS and any k,

there is at most one chain of length k starting at s, and likewise, at most one chain of length

k ending at s.

A class of systems which can be characterized by disjoint unions must be partitionable

into atoms which can be analyzed individually.

Definition 6. A pure type system λS is separable if (s, s′) ∈ RλS implies s ≈A s′. It is

atomic if s ≈A s′ for all sorts s and s′.

There are, of course, many examples of important non-separable persistent pure type

systems, e.g., systems from the logic cube Barendregt [1991, 1993], Berardi [1990], Geuvers

[1993, 1995] like Berardi’s formulation of λPREDω which is specified by

S ≜ {∗s,□s, ∗p,□p}

A ≜ {(∗s,□s), (∗p,□p)}

R ≜ {(∗p, ∗p), (□p, ∗p), (□p,□p), (∗s, ∗p), (∗s,□p)}

The rules (∗s, ∗p) and (∗s,□p) “cross” between two tiered systems. Despite this, there are

also useful classes of systems which are separable, e.g., generalized non-dependent systems

are separable by fiat.

Definition 7. Let λS be a pure type system.
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• λS satisfies the ascending chain condition if <A does, i.e., there is no infinite

sequence of sorts s, s′, s′′, . . . such that s < s′ < s′′ . . . ; it satisfies the descending

chain condition if there is no infinite sequence of sorts s, s′, s′′, . . . such that s > s′ >

s′′ . . . ; it is bounded if it satisfies both the ascending and descending chain conditions.

• λS is weakly non-dependent if (s, s′, s′′) ∈ R implies s ≥ s′ ≥ s′′.

• λS is stratified if it satisfies the ascending chain condition and is weakly non-depen-

dent.

• λS is generalized non-dependent if it is stratified and persistent. If λS is also

bounded, I will write that it is bounded non-dependent. If λS is also tiered, I will

simply write that it is non-dependent.

We can now characterize tiered systems in terms of the above properties.

Lemma 8. A pure type system is tiered if and only if it is persistent, bounded, and atomic.

Proof. It is straightforward to verify that tiered systems are persistent, bounded, and atomic,

so I focus on the other direction. Suppose λS is persistent, bounded, and atomic. If λS is

empty, then it is 0-tiered, so suppose λS is non-empty. If |S| = 1, then by boundedness, λS is

1-tiered (in particular, (s1, s1) ̸∈ A), so suppose |S| ≥ 2. First, we prove that ‘<A’ is a strict

total order (and, hence, ‘≤A’ is a total order). If there is a positive length sequential chain

from s to itself, then there is an infinite ascending chain, so ‘<A’ is irreflexive. Transitivity is

immediate. For connectedness, suppose s and t are sorts such that s ̸= t. Note that ‘≈A’ can

be viewed as the equivalence closure of ‘<A’ and we can prove by induction on the definition

that s ≈ t implies s < t or t < s. The only interesting case is transitivity. Suppose there is

sort s′ such that s ≈ s′ and s′ ≈ t. Then by the inductive hypothesis, s < s′ or s′ < s and

s′ < t or t < s′. The cases in which transitivity of ‘<A’ is not immediately applicable are

(1) s < s′ and t < s′ or (2) s > s′ and t > s′. In the first case, there are sequential chains
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from s to s′ and from t to s′, and by Proposition 1, one must be a suffix of the other. This

yields a chain from s to t or from t to s, depending on the lengths of the chains from s to s′

and t to t′ (these lengths must be distinct since s = t otherwise). The second case is similar.

Next, note that, by boundedness there must be a unique top-sort and a unique bottom-

sort in S (every finite non-empty total order has a unique maximum element and unique

minimum element). By Proposition 1, there is a unique chain from s to t. Since λS is

atomic, this sequence includes all sorts. By the bound on the number of axioms in which a

sort can appear, this chain includes all axioms. By persistence, the rules are as required by

the definition of tiered systems.

It is then straightforward to lift this to disjoint unions of tiered systems.

Lemma 9. A pure type system is persistent, bounded, and separable if and only if is the

disjoint union of tiered pure type systems.

Proof. Let λS be a pure type system that is persistent, bounded, and separable and consider

the partition P of S into ≈A-equivalence classes. Let Sp be such an equivalence class and

let λSp denote the pure system specified by

SλSp
≜ Sp

AλSp
≜ AλS ∩ (Sp × Sp)

RλSp
≜ RλS ∩ (Sp × Sp × Sp)

The system λSp is persistent and bounded because λS is, and it is atomic by definition, so

by Lemma 8 it is tiered. We can then view λS as the system
⊔

Sp∈P λSp.12 Note that all

axioms are accounted for by fiat and all rules are accounted for by separability.

12. Formally, they are isomorphic pure type systems. The definition of a pure type system homomorphism
is as one might expect, see the definition of Geuvers [1993] (Definition 4.2.5)—which is also used by Roux
and Doorn [2014]—for more details.
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Corollary 1. A pure type system is bounded non-dependent if and only if it is the disjoint

union of non-dependent tiered pure types systems.

Roux and Doorn [2014] show that the (strong) normalization of a disjoint union of pure

type systems is equivalent to the (strong) normalization of each of its individual summands.

So on questions of normalization regarding persistent, bounded, separable systems it suffices

to consider tiered systems.

Proposition 2. If weak normalization implies strong normalization for all tiered pure type

systems, then the same is true for all persistent, bounded, separable pure type systems. In

particular, if weak normalization implies strong normalization for all non-dependent pure

type systems, then the same is true for all bounded non-dependent pure type systems.

This all sits in a more general theory. There are two natural extensions of tiered systems.

First, to infinite tiered systems. A Z+-tiered pure type system is one of the form

S = {si | i ∈ Z+}

A = {(si, si+1) | i ∈ Z+}

R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

A Z−-tiered pure type system is one of the form

S = {si | i ∈ Z−}

A = {(si, si+1) | i ≤ −2}

R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}
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And a Z-tiered pure type system is one of the form

S = {si | i ∈ Z}

A = {(si, si+1) | i ∈ Z}

R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

It is straightforward to verify that a pure type system is atomic and generalized non-

dependent if it is finite n-tiered or Z−-tiered. Furthermore, we can make the following

simple observation.

Proposition 3. Let C be a set of tiered pure type systems with the following property: if

λS is an infinite tiered pure type system in C, then for every finite tiered sub-system λS ′ of

λS, there is a finite tiered subsystem λS ′′ such that λS ′ ⊂ λS ′′ ⊂ λS and λS ′′ ∈ C. It then

follows that every system in C is (strongly) normalizing if and only if every finite system in

C is (strongly) normalizing.

This is simply because derivations are finite, and must be constructable in some finite

fragment. So we can restrict our focus to n-tiered systems for well-structured classes of

systems.

Corollary 2. If weak normalization implies strong normalization for all non-dependent n-

tiered pure type systems, then the same is true for all generalized non-dependent pure type

systems.

The second extension is to cyclic n-tiered pure type systems, which are n-tiered

systems with the additional axiom (sn, s1). The directed graph induced by A of a persistent

pure type system has the property that every vertex has in-degree and out-degree at most 1.

Such a graph is made up of connected components of cycles and lines (which may be length

0, i.e., points). Thus, the most general version of the above fact can be stated as follows.
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Proposition 4. If weak normalization implies strong normalization for all cyclic and non-

cyclic finite tiered pure type systems, then the same is true for all persistent separable pure

type systems.

Moving foward, when I write ‘tiered’ I mean the finite non-cyclic case.

I close this section with some useful features of tiered systems. One of the primary benefits

of working in persistent systems in general (and tiered systems in particular) is that derivable

expressions can be classified by the level in the system at which they are derivable. This

property is shown by defining a degree measure on expressions and classifying expressions

according to their degree. This result is due to Berardi [1990] and Geuvers and Nederhof

[1991], and the presentation here roughly follows the same course.

Definition 8. The degree of an expression is given by the following function deg : T → N.

deg(si) ≜ i+ 1

deg(six) ≜ i− 1

deg(ΠxA. B) ≜ deg(B)

deg(λxA. M) ≜ deg(M)

deg(MN) ≜ deg(M)

Let Tj denote {M ∈ T | deg(M) = j} and let T≥j denote {M ∈ T | deg(M) ≥ j}.

Lemma 10. (Classification) Let λS be an n-tiered pure type system. For any expression A,

the following hold.

• deg(A) = n+ 1 if and only if A = sn.

• deg(A) = n if and only if Γ ⊢λS A : sn for some context Γ.

• For i ∈ [n− 1], we have deg(A) = i if and only if Γ ⊢λS A : B and Γ ⊢λS B : si+1 for

some context Γ and expression B.
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In particular, for context Γ and expressions M and A, if Γ ⊢λS M : A then deg(A) =

deg(M) + 1.

Finally, some useful facts about degree. See the presentation by Barendregt [1993] for

proofs in the 2-tiered case.

Lemma 11.

• If deg(B) = j − 1 then deg(A[B/sjx]) = deg(A).

• If A ↠β B, then deg(A) = deg(B).

1.3 Outline

First, the enticingly simple conjecture which is the topic of this dissertation.

Conjecture 1. For all pure type systems λS, if λS is weakly normalizing, then λS is strongly

normalizing.

This can be regarded as the same sort of game as above: considering the reduction system

associated with typable expressions in a given pure type system, does the assumption of weak

normalization aid in proving strong normalization of this reduction system?

This conjecture was first made by Geuvers [1993] is his PhD thesis. Barendregt is noted by

Barthe et al. [2001] to have presented the conjecture at the Second International Conference

on Typed Lambda Calculi and Applications (1995), and Klop is the co-author of a preprint

which includes the conjecture (Ketema et al. [2004], Conjecture 1.1); it has come to be known

as the Barendregt-Geuvers-Klop conjecture.

This conjecture is motivated, in part, by the fact that, despite weak normalization clearly

being the weaker of the two properties, it is often sufficient for proving other important meta-

theoretic properties; that is, strong normalization does not yield much beyond the ability

to be agnostic to the choice of reduction strategy. If the type system encodes a logic,
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then weak normalization is sufficient to for consistency. It is also sufficient in the proof of

Girard [1972] that normalization of λ2 implies the consistency of arthmetic. Normalization is

required in many proofs of the deciability of type checking (see, e.g., the references given by

Barthe [1999]), but again weak normalization is sufficient. It is also worth noting that many

proofs of normalization in the literature are, in fact, strong normalization proofs. Except in

the case of λ→, its unclear if and when weak normalization is easier to prove than strong

normalization.13 Observations to this effect were also made by Geuvers in his PhD thesis.

That this conjecture remains unsolved leads me to believe it is motivated by two distinct

questions.

• First, the same reverse mathematical question as above: is weak normalization a suf-

ficiently strong assumption to prove strong normalization? This question takes on a

more interesting role in this setting, as it is known that not all pure type systems

are weakly normalizing. Furthermore, since Girard [1972] proved normalization of λ2

implies the consistency of Peano Arithmetic, the reverse mathematical question can be

better calibrated: can the proof of strong normalization from weak normalization can

be carried out in Peano arithmetic, or even Heyting arithmetic? The import, of course,

is that we cannot, in Peano arithemtic, prove this by first proving normalization. This

conjecture was first noted by Xi [1996].

• Falsifying this conjecture would in essence require finding a system with an expression

that is weakly normalizing but not strongly normalizing. What would such an expres-

sion look like? The expression KIΩ in the untyped λ-calculus hides a non-normalizing

expression which could not be typable in a normalizing type system. There are ex-

amples of more complicated λ-expressions using fixed-points which have the property

that every sub-expression is weakly normalizing, but it is unknown if such fixed-points

13. This sentiment is not quite correct contemporarily, with the greater occurence of normalization-by-
evaluation proofs. See the Habilitationsschrift of Abel [2013] for an overview.
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are typable (see, e.g., the work of Geuvers and Verkoelen [2015]).

Beyond weak and strong normalization, this dissertation is concerned with type-preserving

translations, which are used for type-theoretic conservation theorems. In particular, there

are two natural techiques for proving strong normalization from weak normalization via type

preserving translations.

• Translate expression into the I-fragment of the system, i.e., the subsystem in which all

λ-bound variables must be used in the bodies of their λ-expressions, in analogy with

the λI-calculus. In the I-fragment, strong normalization readily follows from weak

normalization by a conservation theorem akin to the one proved by Church [1941].

This was done by Xi [1996] and Sørensen [1997] via a continuation-passing-style (CPS)

translation for λ→, λ2 and λω, the non-dependent side of the λ-cube. Barthe et al.

[2001] generalize this result to a class of non-dependent pure type systems. It is actually

still an open problem to give a direct translation of this form for any dependent system,

even on the dependent side of the λ-cube, e.g., for λC.

• Define an infinite-reduction-path from a pure type system to one of its sub-systems for

which the conjecture is known to hold. It then follows by a boot-strapping argument

that the conjecture holds for the super-system: if λS is weakly normalizing, then its

sub-system λS ′ is weakly normalizing, which is then strongly normalizing by assump-

tion, and so λS is strongly normalizing via the path-preserving translation. As noted

above, this was done by Geuvers and Nederhof [1991] for λC to λω and by Harper

et al. [1993] for λP to λ→. The original purpose of both of these translations was a

proof of strong normalization, but they can be used as black-box results for the same

boot-strapping argument above. A version of this argument was generalized to a class

of pure type systems by Roux and Doorn [2014].

In the following chapters, I present three translations, one of the first form and two of

the second form. Below is a rough sketch of the results in each chapter.
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• Chapter 3. I prove strong normalization from weak normalization for a class of non-

dependent systems, which directly strengthens the result by Barthe et al. [2001]. Their

result holds for clean, negatable, generalized non-dependent pure type systems, and is

proved via a CPS translation injected with uninterpreted padding variables which can

be used to ensure variables get used in the bodies of λ-expressions. Via a technical

analysis of the reduction behavior, I eliminate the condition of negatability. Roughly

speaking, negatablility is required in order for the translation to even be definable.

Rather than enforcing this restriction, the translation I present maps to expressions

that are derivable in a stronger system which is negatable. This comes at the cost of

no longer being able to easily preserve weak or strong normalization; this has to be

proved separately and combinatorially. I also weaken the condition of cleanliness via

two new meta-theoretic lemmas for pure type systems. One characterizes the degree of

sub-expressions, and the other acts as a kind of type-theoretic Skolemization lemma,

which is used to give a finer-grained padding scheme.

• Chapter 4. I present a path-preserving translation from a pure type system to its non-

dependent restriction, the system with all dependent rules removed. This is a direct

generalization of the translation from λC to λω by Geuvers and Nederhof [1991] and

the one from λP to λ→ by Harper et al. [1993]. The restriction on the class of systems

to which this applies is unfortunately quite strong, and thus only applies to a class of

systems which are known to be strongly normalizing. But because the translation is

proof-theoretically simple, the argument can be carried out in Peano arithmetic, giving

a proof of the strong form of the conjecture for a new class of systems.

• Chapter 5. I present a novel path-preserving translation based on that of Roux and

Doorn [2014] from a pure type system to one of its subsystems in which some irrelevant

rules are removed (these rules are irrelevant with respect to normalization, but not

respect to derivablity). The translation leverages sparse inhabitation of certain types
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to essentially pre-reduces λ-expressions on those types, yielding an expression that no

longer needs those rules to be derived. This extends the conjecture to a larger class of

systems with dependent rules, non-negatable sorts.

As I conclude this introduction, I note that remarks about future work are scattered

throughout the dissertation, in part because there is a very obvious open question remaining.

But one form of future work which is not addressed below is formalization. The results below

are technical, but they are also fairly formal. This makes them good candidates for being

mechanically checked, which would greatly improve my trust in them. I leave this as one of

the more important remaining pieces of forthcoming work to be done.
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CHAPTER 2

WEAK AND STRONG NORMALIZATION OF GENERALIZED

NON-DEPENDENT PURE TYPE SYSTEMS VIA

THUNKIFICATION

2.1 Introduction

As noted in the previous chapter, one approach to deriving strong normalization from weak

normalization is to pass through some form of the λI-calculus, the fragment of the λ-calculus

in which λ-bound variables must be used. In this setting, strong normalization readily fol-

lows from weak normalization by a conservation theorem along the lines of the one proved by

Church [1941]. The argument is roughly as follows: suppose a system λS is weakly normal-

izing. Define a translation from expressions to I-expressions which preserves (1) typability

in λS and (2) infinite reduction paths. Translated expressions are weakly normalizing by

being typable in λS and, hence, are strongly normalizing by the conservation theorem. And

since the translation preserves infinite reduction paths, the untranslated expressions are

themselves strongly normalizing.

This technique was originally used by Xi [1996] and Sørensen [1997] via a continuation-

passing-style (CPS) translation, and Xi [1997] subsequently presented an alternative proof

via thunkification that is arguably simpler; rather than passing around continuations, expres-

sions are thunkified and thunks are padded via uninterpreted variables with sub-expressions

necessary for translating to I-expressions. Both are essentially typed versions of Klop’s ι-

tranlsation, though the thunkification translation is more direct. See the survey in the work

of Gørtz et al. [2003] for many more details on the relationships between these translations

and others.

Barthe et al. [2001] generalized Xi’s and Sørensen’s result to prove that weak normal-

ization implies strong normalization in generalized non-dependent clean negatable pure type
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systems.1 In a research report, I presented the analogous generalization for Xi’s thunkifica-

tion translation to the same class of systems. The primary contribution of this chapter is a

strengthened version of the BHS result, proved via a non-standard variant of this thunkfica-

tion translation. The following points outline the technical contributions, as they pertain to

dealing with negatability and cleanliness, respectively.

• In the informal outline of Xi’s and Sørensen’s technique above, point (1) is doing quite

a bit of work; translated expressions are weakly normalizing only because they are

still derivable in λS which is weakly normalizing by assumption. The endomorphic

nature of the translation is what requires negatability. This property ensures the

system is expressive enough for thunkified (or CPS-ified) expressions to be typable.

But it suffices to show that translated expressions are typable in an extension of λS

(which is expressive enough to type translated expressions) and even a non-normalizing

extension of λS, if it is possible to give a combinatorial proof that (1) the translation

preserves weak normalization at the level of terms and (2) the target system has the

required conservation result for I-expressions. I give a such a combinatorial proof of

weak normalization preservation and conservation for a variant of the translation which

can be applied to non-negatable systems (see Definition 12).

• Cleanliness, the second major technical restriction set by BHS, ensures the padding

variables mentioned above are, in fact, typable. Roughly speaking, expressions are

padded using variables injected in the context of the form (pad : A → ⊥ → ⊥), where

⊥ is the type of the thunk expression • (a distinguised variable). Given an expres-

sion N of type A, a thunkified expression M of type ⊥ → B can be evaluated as

M(padN•), so that the expression N is padded into M . The challenge is that the type

A may have variables which appear in the context, and abstraction and generalization

1. In subsequent exposition, I will refer to this result as the BHS result, or simply BHS, for Barthe,
Hatcliff and Sørensen.
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(i.e., the formation of λ-expressions and Π-expressions, respectively) both remove vari-

ables from the context, potentially making A no longer typable. Cleanliness disallows

abstractions and generalizations which remove variables that appear in the types of

padding variables. For a variant of the translation presented here, I use a different

scheme for typing padding variables which allows for more fine-grained control of these

dependencies. This technique requires two technical lemmas which may be of inde-

pendent interest. The first is, in essense, a type-theoretic Skolemization lemma, which

allows for contexts to be permuted modulo additional generalizations (Corollary 3).

So we can generalize over the variables that appear in the types of padding variables,

eliminating the dependence at the level of variables in the context. The second is a

generalization of Corollary 2.46 from BHS (Lemma 13), which characterizes the degree

of sub-expressions, and which is also useful in determining when variables can commute

with padding variables.

In what follows I present some preliminary material, which one of the aboved mentioned

meta-theoretic lemmas, as well as an important lemma in the area of maximal reductions. I

then present the generalized thunkification translation in two parts: one part for the type-

level translation and one part for the term-level translation. The term-level translation is

analyzed in two parts, the negatable and non-negatable cases. I present the main result

(Theorem 2) in isolation (Section 2.3.3) for completeness.

2.2 Preliminaries

Outside of the preliminary material presented in the section on definitions in the introductory

chapter (Section 1.2), I include this short section with an important lemma about non-

dependent pure type systems, as well as a lemma about perpetual reduction.

One of the benefits of working with non-dependent systems is that sub-expressions of a

given expression cannot have lower degree than the expression itself. This makes it possible to
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reverse induct on degree, which is an important proof technique for these systems. Typically,

a simplified version of this fact suffices, which says that the degree of variables appearing in

an expression must be at least that of the expression itself.

Lemma 12. Let λS be a non-dependent n-tiered pure type system. For any expression A,

if a variable sjx appears free in A, then j > deg(A).

I present a slightly stronger version which is a generalization of Corollary 2.46 from BHS,

and for which the previous lemma is a corollary. It captures exactly the possible degrees of

sub-expressions, using the following definition for keeping track of potential dependencies.

It is worth noting, in future sections, the similarity with cleanliness (Definition 17).

Definition 9. Let λS be a non-dependent n-tiered pure type system. Define set DλS(i) be

the smallest set satisfying the following properties.

• i ∈ DλS(i);

• if (sj , si) ∈ RλS then DλS(j) ⊂ DλS(i);

• if (sj , si+1) ∈ RλS , then DλS(j) ⊂ DλS(i).

These sets are well-defined because they can be constructed by reverse induction on

degree.

Lemma 13. Let λS be a non-dependent n-tiered pure type system. There is an expression

M derivable in λS such that deg(M) = i with a sub-expression N such that deg(N) = j if

and only if j ∈ DλS(i).

Proof. First, the left direction, by reverse induction on degrees. I prove the stronger fact

that M is a derivable type, i.e., there is a context Γ and sort si such that Γ ⊢ M : si. Note

that DλS(n) = {n} so it suffices that ∅ ⊢ sn−1 : sn. For arbitrary i, there are three cases to

consider. First suppose j = i. If i > 1, then ∅ ⊢ si−1 : si and otherwise x : s1 ⊢ x : s1. Next
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suppose j ∈ DλS(k) where (sk, si) ∈ RλS . By the inductive hypothesis, there is context Γ

and expressions A and B such that Γ ⊢ A : sk, where B ⊂ A and deg(B) = j. If i > 1, then

Γ ⊢ A → si−1 : si

and otherwise

Γ, x : s1 ⊢ A → x : s1.

Finally suppose j ∈ DλS(k) where (sk, si+1) ∈ RλS . Let Γ, A, and B be as in the previous

case. Then Γ ⊢ A → si : si+1. If i > 1, then Γ, y : A, x : A ⊢ si−1 : si so we have

Γ, y : A ⊢ (λxA. si−1)y : si

and otherwise, Γ, z : s1, y : A, x : A ⊢ z : s1 so we have

Γ, z : s1, y : A ⊢ (λxA. z)y : s1

This concludes the left direction.

The other direction also follows by reverse induction on i, and then by induction on

the structure of derivations. It is straightforward to verify that the sub-expressions of any

derivable expression of degree n is also of degree n. So let M be an derivable expression such

that deg(M) = i. It will follow by induction on the structure of derivations that if N is a

sub-expression of M then deg(N) ∈ DλS(i). I focus on the cases on which the definition of

DλS(i) depends.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si

Γ ⊢ ΠxA. B : si

where (sj , si) ∈ RλS . Let C be a sub-expression of A. If j > i, then C ∈ DλS(j) by the first
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inductive hypothesis, which is a subset of DλS(i) by assumption. If j = i, then C ∈ DλS(i)

by the second inductive hypothesis. The case in which C is a sub-expression of B is similar.

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : si+1

Γ ⊢ λxA. M : ΠxA. B

where (sj , si+1) ∈ RλS . If C ⊂ A, then C ∈ DλS(j) by the first inductive hypothesis. If

C ⊂ M , then C ∈ DλS(i) by the second inductive hypothesis.

The second lemma presented here useful result due to Lévy [1978], regarding maximal

reductions. It will be used in subsequent sections to analyze the normalization behavior of

translated expressions.

Definition 10. Let µ : T → N ∪ {∞} be the function which maps an expression M to the

length of the longest reduction sequence starting at M (where µ(M) = ∞ if M has an infinite

reduction sequence).

Lemma 14. Lévy [1978] For any expressions A, M , N1, . . . , Nk and variable

µ((λxA. M)N1 . . . Nk) ≤ 1 + µ(A) + µ(N1) + µ(M [N1/x]N2 . . . Nk)

2.3 The Translation

The thunkification translation of Xi [1997] was introduced as a simpler approach to deriving

strong normalization from weak normalization in typed lambda calculi, as compared to its

CPS counterpart (presented by himself and Sørensen [1997]). Roughly speaking, rather than

passing continuations, the translation pervasively thunkifies expressions, using uninterpreted

padding variables to store sub-expressions in the evaluation of thunkified expressions. This

allows for expressions to be mapped to I-expressions, where strong normalization is more

readily proved from weak normalization (Lemma 15). The translation is, in a sense, a direct

typed implementation of Klop’s ι-translation Klop et al. [1993].
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The CPS translation was generalized by BHS to generalized non-dependent, clean, negat-

able pure type systems Barthe et al. [2001]. In a research report, I extended Xi’s translation

by analogy, which yielded a simple alternative proof of the BHS result. In this section, I

present a refinement of this translation which eliminates the requirement of negatability and

weakens the requirement of cleanliness. Before presenting the translation, I give an overview

of the approach.

One of the fundamental features of non-dependent systems is that expressions cannot

depend on other expressions of lower degree (Lemma 13). It is, thus, natural to prove prop-

erties of derivable expressions by reverse induction on degree. This motivates the following

definition.

Definition 11. A non-dependent n-tiered pure type system is i-secure if deg(M) ≥ i implies

M ∈ SN for all derivable expressions M .

For the remainder of the section, fix an n-tiered pure type system λS and sup-

pose that λS is weakly normalizing. We prove that λS is i-secure for every i, reverse

inductively, and in doing so define two families of translations, one for types {ρi}ni=1 and one

for terms {τi}ni=1, which is possible exactly because of this fundamental property of non-

dependent systems; the degrees of terms are lower than the degrees of their types, so there

is no need for mutual dependency between the type translations and the term translations.

We then prove the following implications for every expression of degree i − 1 (that is,

terms whose types are degree i).

M ∈ WN ⇒ τi(M) ∈ WN

⇒ τi(M) ∈ SN

⇒ M ∈ SN.

The analysis at each level differs in character according to whether si is negatable.

41



Definition 12. A sort si is negatable if (si, si) ∈ RλS . An n-tiered pure type system is

i-negatable if si is negatable in λS.

In the case that si is already negatable, τi preserve typability in the same system and the

first implication follows by fiat. The second implication follows the fact that τi translates

expressions to I-expressions, an appropriate generalization of the λI-calculus for this setting,

and for which there is an analogous conservation lemma.

Definition 13. An expression M is an I-expression at level j if the following hold.

• deg(M) ≥ j

• If λxA. N ⊂ M and deg(λxA. N) = j, then x appears free in N .

Lemma 15. (Barthe et al. [2001], Lemma 5.16) Let λS be a non-dependent tiered pure type

system that is i-secure. Then for every derivable I-expression M at level i− 1, if M ∈ WN

then M ∈ SN.

In the case si is not negatable, ρi and τi are allowed to translate into a negatable ex-

tension, but the first implications will need to be proved combinatorially (Lemma 32) and

the second implication needs to be shown to still hold (Lemma 26). In particular, the above

lemma requires that λS be i-secure, so i-security needs to be preserved in the negatable

extension. In both cases, the last implication follows from a standard argument that τi

preserves infinite reduction paths (Lemma 34).

For the following two translations, fix a level i and suppose that λS is a weakly

normalizing non-dependent i-secure n-tiered pure type system. The subscript ‘i’

will be included in definitions, but will typically be dropped in the following exposition.

2.3.1 Type-Level Translation

We need a distinguished type ⊥i for each sort si to stand for the type of thunks. In the case

of s1, this requires an additional type variable in the context.
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Definition 14. If i > 1, let ⊥i denote si−1 and, otherwise, let ⊥1 be a distinguished variable.

Likewise, if i > 1 let ∆i denote the empty context, and otherwise, let ∆1 denote the context

(⊥1 : s1).

The translation ρ gives the types of thunkified terms. This means pervasively replacing

each type A where deg(A) = i with its corresponding thunkified form, e.g., ⊥i → ρi(A).

Definition 15. Define the functions

ρi : T≥i → T≥i and ρ′i : T≥i → T≥i

simultaneously as follows.

ρi(sj) ≜ sj (where j ≥ i− 1)

ρi(
sjx) ≜ sjx (where j ≥ i+ 1)

ρi(Π
sjxA. B) ≜ Πsjxρ

′
i(A). ρi(B)

ρi(λ
sjxA. M) ≜ λsjxρi(A). ρi(M)

ρi(MN) ≜ ρi(M)ρi(N)

ρ′i(A) ≜


⊥i → ρi(A) deg(A) = i

ρi(A) otherwise.

The function ρ′i is extended to contexts as follows.

ρ′i(∅) ≜ ∅

ρ′i(Γ,
sjx : A) ≜


ρ′i(Γ),

sjx : ρ′i(A) j ≥ i

ρ′i(Γ) otherwise.

The type-level translations are required to commute with substitution and preserve β-
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equivalence. These two features are necessary for translating application and conversion

inferences in the next section. The following two lemmas are standard.

Lemma 16. (ρ and ρ′ commute with substitution) For variable sjx and expressions M and

N where deg(N) = j − 1 the following hold.

• ρ(M [N/sjx]) = ρ(M)[ρ(N)/sjx]

• ρ′(M [N/sjx]) = ρ′(M)[ρ(N)/sjx]

Proof. We prove both simultaneously by induction on the structure of M . To start, in the

case of ρ′, if deg(M) = i then by Lemma 11, deg(M [N/x]) = i as well. So

ρ′(M [N/x]) = ⊥ → ρ(M [N/x])

= ⊥ → ρ(M)[ρ(N)/x]

= ρ′(M)[ρ(N)/x]

where the second equality follows from the inductive hypothesis. And if deg(M) ̸= i, then

ρ′(M [N/x]) = ρ(M [N/x])

= ρ(M)[ρ(N)/x]

= ρ′(M)[ρ(N)/x]

So we can proceed by induction on M for the case of ρ. The cases in which M is a sort or a

variable are straightforward. The following are the cases for Π-expressions and λ-expressions.
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Π-Expression. If M is of the form ΠyA. B then

ρ((ΠyA. B)[N/x]) = ρ(ΠyA[N/x]. B[N/x])

= Πyρ
′(A[N/x]). ρ(B[N/x])

= Πyρ
′(A)[ρ(N)/x]. ρ(B)[ρ(N)/x]

= ρ(ΠyA. B)[ρ(N)/x]

λ-Expression. If M is of the form λyA. P then

ρ((λyA. P )[N/x]) = ρ(λyA[N/x]. P [N/x])

= λyρ(A[N/x]). ρ(P [N/x])

= λyρ(A)[ρ(N)/x]. ρ(P )[ρ(N)/x]

= ρ(λyA. P )[ρi(N)/x]

The case that M is an application is similar.

Lemma 17. (ρ and ρ′ preserve β-reductions) For derivable expressions M and N , if M →β

N then ρ(M) →β ρ(N) and ρ′(M) →β ρ′(N). Furthermore, if M =β N then ρ(M) =β ρ(N)

and ρ′(M) =β ρ′(N).

Proof. The case of β-equality follows immediately from the case of one-step β-reduction. We

prove the one-step case for both ρ and ρ′ simultaneously by induction on the structure of

the one-step β-reduction relation. It is straightforward to show that the lemma holds in the

case of ρ′ given that it holds inductively for ρ. So we proceed by induction in the case of ρ.
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In the case of a redex,

ρ((λxA. M)N) = (λxρ(A). ρ(M))ρ(N)

→β ρ(M)[ρ(N)/x]

= ρ(M [N/x])

It is then straightforward to verify that this property holds up to congruence.

We also note here the important fact that this translation is simple enough not to affect

the normalization behavior of the expression after translation.

Fact 1. For any expression M , if M ∈ NF, then ρ(M) ∈ NF. Furthermore, M ∈ WN (resp.,

SN) if and only if ρ(M) ∈ WN (resp., SN) and µ(M) = µ(ρ(M)).

Next is typability preservation. This ensures type derivations can be used in proving that

the term-level translation preserves typability, e.g., for translating the derivation of Π-type

judgments for abstraction. The translation targets the super-system of λS for which si is

negatable, i.e., where it is possible define types of the form ⊥ → A when deg(A) = i.

Definition 16. For any n-tiered pure type system λS, let λS¬i be the n-tiered pure type

system with the rules RλS¬i ≜ RλS ∪ {(si, si)}.

Lemma 18. (ρ and ρ′ preserve typability) For context Γ and expressions M and A, the

following hold.

1. If Γ ⊢λS M : A and degM ≥ i then ∆, ρ′(Γ) ⊢λS¬ ρ(M) : ρ(A).

2. If Γ ⊢λS A : sj and degA ≥ i then ∆, ρ′(Γ) ⊢λS¬ ρ′(A) : sj.

Proof. We prove both simultaneously by induction on the structure of derivations. For

item 2, note that by item 1, we have the inference ∆, ρ′(Γ) ⊢ ρ(A) : sj . So if degA ̸= i,

we’re done, and otherwise we have
46



∆, ρ′(Γ) ⊢ ⊥ : si ∆, ρ′(Γ) ⊢ ρ(A) : si
∆, ρ′(Γ) ⊢ ⊥ → ρ(A) : si

Note that this judgment is derivable in λS¬ by construction.

For item 1, we proceed with each case. The case in which the derivation is a single axiom

is straightforward.

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj
Γ, x : A ⊢ x : A

where j ≥ i+ 1. Note that ρ′(A) = ρ(A) since deg(A) > i. So by the inductive hypothesis,

we have

∆, ρ′(Γ) ⊢ ρ(A) : sj

∆, ρ′(Γ), x : ρ(A) ⊢ x : ρ(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ, x : B ⊢ M : A

By the inductive hypothesis, ∆, ρ′(Γ) ⊢ ρ(M) : ρ(A), so if deg(B) ≤ i, then we’re done.

Otherwise, we have

∆, ρ′(Γ) ⊢ ρ(M) : ρ(A) ∆, ρ′(Γ) ⊢ ρ′(B) : sj

∆, ρ′(Γ), x : ρ′(B) ⊢ ρ(M) : ρ(A)

where the right antecedent judgment also follows from the inductive hypothesis.

Product Type Formation. If the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

then by the inductive hypothesis, we have

∆, ρ′(Γ) ⊢ ρ′(A) : sj ∆, ρ′(Γ), x : ρ′(A) ⊢ ρ(B) : sk

∆, ρ′(Γ) ⊢ Πxρ
′(A). ρ(B) : sk
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where k ≥ i. Note we can apply the inductive hypothesis to the left antecedent judgment

since deg(A) ≥ deg(B) by non-dependence and so

deg(A) ≥ deg(ΠxA. B) ≥ i.

Abstraction. Suppose the last inference is of the form

Γ, x : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

Since deg(M) = deg(λxA. M) ≥ i, we have deg(B) > i, and by non-dependence, we have

deg(A) ≥ deg(B) > i. In particular, ρ′(A) = ρ(A). Therefore, we have

∆, ρ′(Γ), x : ρ(A) ⊢ ρ(M) : ρ(B) ∆, ρ′(Γ) ⊢ Πxρ(A). ρ(B) : sj

∆, ρ′(Γ) ⊢ λxρ(A). ρ(M) : Πxρ(A). ρ(B)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

By non-dependence, degA ≥ degB > degM ≥ i and ρ′(A) = ρ(A). So by the inductive

hypothesis we have

∆, ρ′(Γ) ⊢ ρ(M) : Πxρ(A). ρ(B) ∆, ρ′(Γ) ⊢ ρ(N) : ρ(A)

∆, ρ′(Γ) ⊢ ρ(M)ρ(N) : ρ(B)[ρ(N)/x]

where ρ(B)[ρ(N)/x] = ρ(B[N/x]) by Lemma 16.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B

where j ≥ i and A =β B. By the inductive hypothesis, we have

∆, ρ′(Γ) ⊢ ρ(M) : ρ(A) ∆, ρ′(Γ) ⊢ ρ(B) : sj

∆, ρ′(Γ) ⊢ ρ(M) : ρ(B)

where ρ(A) =β ρ(B) by Lemma 17.
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2.3.2 Term-Level Translation

Next we define the translation of terms. At a high level, we need to add uninterpreted

padding variables to our context for collecting expressions in the bodies of λ-expressions so

that the translation maps expressions to I-expressions. There are two issues that need to be

addressed.

1. The system λS may not be expressive enough to carry out the translation.

2. The types of the padding variables may depend on variables in the context, which

restricts our ability to generalize or abstract over those variables.

BHS handles these two problems by requiring λS to satisfy two technical restrictions. The

first is negatability, which was covered in the previous section, and is necessary to derive

the types of translated terms. The second is cleanliness, which disallows generalizing or

abstracting over variables on which the types of padding variables depend.

Definition 17.

• A rule (si, sj) is generalizable if (si+1, sj) ∈ RλS .

• A rule (si, sj) is harmless if neither (sk, sj) nor (sk, sj−1) are in RλS when k > j.

An n-tiered pure type system λS is clean if all its rules are generalizable or harmless.

BHS uses the notion of cleanliness to characterize systems in which padding variables are

definable. These padding variables are polymorphic when possible, in which case they are

typed as ΠAsj . A → ⊥ → ⊥. But if the rules for defining this type are not available (i.e., the

rule (sj , si) is not generalizable) the padding variables are typed as ρ(A)′ → ⊥ → ⊥, with

the understanding that ρ′(A) may depend on variables in the context. For an expression M

derivable in the context Γ, its translation τ(M) is derived in a context of the form

∆, ρ′(Γ),Υ
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where Υ contains padding variables depending on variables in ∆, ρ′(Γ). The challenge is

then translating abstractions and generalizations (though the latter is significantly more

problematic). To illustrate this, consider that the left antecedent judgment of abstraction is

translated roughly to

∆, ρ′(Γ), x : ρ′(A),Υ ⊢ τ(M) : ρ(A)

so in order to abstract over the variable x, it must commute with the entire context Υ of

padding variables, i.e., it must be that x does not appear free any of the types in Υ. By

Lemma 12, the only types which can depend on the variable x are those with higher degree

than that of ρ′(A), so cleanliness requires that either

• (generalizability) all types of degree larger than deg(ρ′(A)) have polymorphic padding

variables, or

• (harmlessness) there are no rules for abstracting or generalizing over variables whose

types have larger degree than deg(ρ′(A)).

In the next two sections, I present two variants of the term-level translation τ , depending

on whether si is negatable. In the non-negatable case, τ targets an extension of λS, but

is otherwise an application of the ideas in the BHS paper. The deviation is in the new

requirement that weak normalization preservation, i-security, and infinite reduction path

preservation must be proved explicitly, as we can no longer assume that the target system of

τ is weakly normalizing. In the negatable case, τ is a novel variant of the thunkification trans-

lation which uses a more complex padding scheme that reduces the structural restrictions

on λS, the details of which will be covered in Section 2.3.2.

The Non-Negatable Case

BHS handles the case of irrelevant non-negatable sorts by an argument leveraging the sparse

inhabitation of types at irrelevant sorts.
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Definition 18. A sort sj is irrelevant with respect to rules R if there is no sort sk such

that (sk, sj) ∈ R. A rule (sk, sj) is said to be j-relevant.

Lemma 19. (Barthe et al. [2001], Lemma 5.19) Let λS be a non-dependent, weakly nor-

malizing, i-secure tiered pure type system. If si is irrelevant, then every derivable expression

M with deg(M) = i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.

The translation below handles non-negatable sorts by translating into a negatable exten-

sion of λS. This was also done in the previous section to ensure that translated types were

derivable.

Because of Lemma 13, we can work with a slightly weaker notion of cleanliness for this

translation.

Definition 19. A rule (sj , si) is weakly harmless if for k > j, it follows that (sk, si) ∈ RλS

or (sk, si−1) ∈ RλS implies k ̸∈ DλS(j). A non-dependent n-tiered pure type system λS is

i-weakly clean if all i-relevant rules are either generalizable or weakly harmless.

As noted in the introduction to this section, the translation needs access to padding

variables so that they can be used to hide terms inside thunks, and these padding functions

will be polymorphic when possible; if (sj , si) is generalizable, then it is possible to add a

variable pad of type ΠAsj . A → ⊥ → ⊥ so that if we need to pad a term N of type ρ′(A) of

degree j into a thunkified term M of type ⊥ → τ(B), we can type the term λ•⊥M(padAN•)

as ⊥ → τ(B) as well. If (sj , si) is not generalizable, then the padding variables are typed

simply as ρ′(A) → ⊥ → ⊥ with the caveat that ρ′(A) may have free variables that appear

in the context.
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Definition 20. For each index i, define Υi,M inductively on the structure of M as follows.

Υi,si−2
≜ ∅

Υi,six ≜ ∅

Υi,ΠxA. B ≜ Υi,A,Υi,B

Υi,λxA. M ≜ padx : αi,A,Υi,M

Υi,MN ≜ Υi,M

where

αi,A =


Πtsdeg(A) . t → ⊥i → ⊥i (deg(A), i) is generalizable

ρ′i(A) → ⊥i → ⊥i (deg(A), i) is weakly harmless

I will write ⟨M,N⟩ρ(A) for both padxρ(A)MN when (deg(A), i) is generalizable and

padxMN when (deg(A), i) is weakly harmless, if there is no fear of ambiguity.

Fact 2. For any derivable expression M , the context ∆,ΥM is well-formed in λS¬.

The context of padding variables appears after the translation of a given context, as it

may depend on some the declarations in it, so to translate abstractions and generalizations,

we need some declarations to commute with the context of padding variables. The following

ensures this is possible.

Lemma 20. If (sj , si) or (sj , si−1) are in RλS then no variables (other than ⊥) of degree

j − 1 (i.e., of the form sjx) can appear free in ΥM for any derivable expression M where

deg(M) = i− 1.

Proof. By induction on the structure of M . The only interesting case is if M is of the form

λxA. N where (deg(A), i) is weakly harmless. If, for some k, the variable skx appears free

in ρ′(A), then it must also appear free in A (this is straightforward to check), and so by
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Lemma 13, it must be that k > deg(A) and k ∈ DλS(deg(A)). But by weak harmlessness,

j ̸∈ DλS(deg(A)), so must be that j ̸= k.

As for the translation itself, it is quite natural. The core of the definition is in the

case of λ-expressions, where the padding variables are used to ensure our translation maps

expressions to I-expressions.

Definition 21. Define the functions

τi : Ti−1 → Ti−1 and τ ′i : Ti−1 → Ti−1

simultaneously as follows.

τi(si−2) ≜ •i

τi(
six) ≜ six•i

τi(ΠxA. B) ≜


τi(A) → τi(B) deg(A) = i− 1

Πxρ
′
i(A). τi(B) otherwise

τi(λx
A. M) ≜ λxρ

′
i(A). τ ′i(M)⟨x, •i⟩ρ′i(A)

τi(MN) ≜ τi(M)ρi(N)

τ ′i(M) ≜ λ•i⊥i . τ i(M)

where j ≥ i− 1 and •i is a distinguished variable.

This translation must first be shown to be well-defined. In particular, it must be that

if MN is derivable, then deg(N) ≥ i, so that ρ may be applied. This is the first place

where we use non-negatability. By generation, M must be be given a Π-type ΠxA. B where

deg(B) = i by assumption and deg(A) ≥ i by non-dependence. By non-negatability, it must

in fact be that deg(A) ≥ i+ 1, and so deg(N) ≥ i.
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Note that, for sorts, ⊥i = si−1, so τ(si−1) will be given the correct type. This trick is

used to ensure that the translation maps to I-expressions even for abstractions over thunks.

Fact 3. For any derivable expression M such that deg(M) = i − 1, the variable • appears

free in τ(M).

Now we verify that this translation preserves typability. This is fairly mechanical. Again,

recall that we are checking typability in a stronger system.

Lemma 21. (τ and τ ′ preserve typability) For any context Γ and expressions M and A, if

Γ ⊢λS M : A and Γ ⊢λS A : si, then

1. ∆, • : ⊥, ρ′(Γ),ΥM ⊢λS¬ τ(M) : ρ(A)

2. ∆, ρ′(Γ),ΥM ⊢λS¬ τ ′(M) : ρ′(A)

Proof. We prove both simultaneously by induction on the structure of derivations. For

item 2, suppose that

∆, • : ⊥,ΥM , ρ′(Γ), ⊢ τ(M) : ρ(A)

By typability preservation of ρ (Lemma 18) and thinning (Lemma 4) we can derive

∆, ρ′(Γ),ΥM ⊢ ⊥ → ρ(A) : si

and by permutation (Lemma 5) we can derive

∆, ρ′(Γ),ΥM , • : ⊥ ⊢ τ(M) : ρ(A)

which means by abstraction we can derive

∆,Υ, ρ′(Γ) ⊢ λ•⊥. τ(M) : ⊥ → ρ(A)
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For item 1, we consider each case.

Axiom. If the derivation is of the form

⊢ si−2 : si−1

then of course

∆, •i : ⊥i ⊢ •i : ⊥i

Recall that ⊥i = si−1 = ρ(si−1).

Variable Introduction. Suppose the last derivation is of the form

Γ ⊢ A : si
Γ, x : A ⊢ x : A

By ρ typability preservation and thinning, we can derive

∆, • : ⊥, ρ′(Γ) ⊢ ρ′(A) : si
∆, • : ⊥, ρ′(Γ), x : ρ′(A) ⊢ x : ρ′(A)

and then we can use weakening and application to derive

∆, • : ⊥, ρ′(Γ), x : ρ′(A) ⊢ x• : ρ(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ, x : B ⊢ M : A

If j < i, then we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

directly by the inductive hypothesis. Otherwise, B is in the domain of ρ′ and by the inductive

hypothesis, ρ typability preservation, and thinning, we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ′(B) : sj

∆, • : ⊥, ρ′(Γ),ΥM , x : ρ′(B) ⊢ τ(M) : ρ(A)
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Since none of the padding variables in ΥM appear in ρ′(B) it follows by permutation that

we can also derive

∆, • : ⊥, ρ′(Γ), x : ρ′(B),ΥM ⊢ τ(M) : ρ(A)

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sjx : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

If j = i− 1, then by the inductive hypothesis, and thinning we have

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(A) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(B) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(A) → τ(B) : si−1

Otherwise, A is in the domain of ρ′ and the inductive hypothesis gives us

∆, • : ⊥, ρ′(Γ), x : ρ′(A),ΥB ⊢ τ(B) : si−1

By Lemma 20, x does not appear free in ΥB , so by permutation, ρ typability preservation

and thinning, we can derive

∆, • : ⊥ρ′(Γ),ΥA,ΥB ⊢ ρ′(A) : sj
∆, • : ⊥, ρ′(Γ),ΥA,ΥB ,

sjx : ρ′(A) ⊢ τ(B) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ Πxρ
′(A). τ(B) : si−1

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : si

Γ ⊢ λxA. M : ΠxA. B

By the inductive hypothesis,

∆, ρ′(Γ), x : ρ′(A),ΥM ⊢ τ ′(M) : ⊥ → ρ(B)

and by Lemma 20 and permutation, in fact we have

∆, ρ′(Γ),ΥM , x : ρ′(A) ⊢ τ ′(M) : ⊥ → ρ(B)
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By assumption, (sj , si) is generalizable or weakly harmless. In the first case, we have

∆ ⊢ ΠAsj . A → ⊥ → ⊥ : si

Otherwise, by ρ typability preservation and a couple additional steps (including a use of

generation), we can derive

∆, ρ′(Γ) ⊢ ρ′(A) → ⊥ → ⊥ : si

so in both cases, we can apply thinning to derive.

∆, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ τ ′(M) : ⊥ → ρ(B)

Therefore, in a few steps we can derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ ⟨x, •⟩ρ′(A) : ⊥

which can be used with application to derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ τ ′(M)⟨x, •⟩ρ′(A) : ρ(B)

Finally, this can be used with abstraction to derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M ⊢ λxρ
′(A). τ ′(M)⟨x, •⟩ρ′(A) : Πxρ

′(A). ρ(B)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

As noted above, by non-negatability, it must be that deg(N) ≥ i, which implies N is in the
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domain of ρ, so with additional thinning we have

∆, • : ⊥, ρ′(Γ),ΥM , ⊢ τ(M) : Πxρ(A). ρ(B)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ(N) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M)ρ(N) : ρ(B)[ρ(N)/x]

and ρ(B)[ρ(N)/x] = ρ(B[N/x]) by Lemma 16.

Conversion. Suppose the last inference is of the form.

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B

where A =β B. By the inductive hypothesis, ρ-typability preservation, thinning, and ρ

β-preservation (Lemma 17), we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ(B) : sj

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(B)

The focus of the remainder of the section is to prove the key lemmas below which state

that

• (Lemma 32) τ preserves weak normalization of terms (but not necessarily of the system

as a whole).

• (Lemma 26 i-security is preserved from λS to λS¬, and hence, the conservation lemma

(Lemma 15) holds for to λS¬.

• (Lemma 34) τ preserves infinite reduction sequences.

These encompass the three steps of the outline given at the beginning of the section. I start

with the second result since it fairly general and useful in proving the remaining to lemmas.

i-security Preservation. The basic problem is the following: λS and λS¬ derive the same

expressions of degree greater than i, but there is a small class of degree i expressions that are

derivable with the introduction of the new rule (si, si), namely function types of the form
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A → B where deg(A) = deg(B) = i (there can be no dependence because all variables of B

must have types of degree greater than i). Without loss of generality we may annotate these

types as A →i B.

It is necessary to prove that the introduction of these types does not allow for non-

strongly-normalizing expressions. Morally speaking, in degree i expressions, these function

types are equivalent to pair types; any substitution that happens in Π-types only occurs to

the right of the turnstile, when it is treated as a type. So the real challenge is to prove

that pair types for degree i types do not allow for non-strongly-normalizing expressions. I

emphasize here that this only refers to types. We don’t need to worry about how these types

are inhabited, since such an expression would be of degree i− 1.

Let M be an expression of degree i derivable in λS¬ and suppose that M has an in-

finite reduction sequence. The rough idea is to think of A →i B appearing in M as a

non-deterministic choice between A and B in the derivation of M . Considering all non-

deterministic choices, we construct a set of projections of M , which are derivable without

an uses of →i, and hence derivable in λS. It will then be possible to track the development

of reductions in these projections alongside the infinite reduction sequence of M and show

that there is always some projection which can make progress for every reduction in the

sequence. Since the set of candidates for M is finite, some candidate expression must make

infinite progress.

Definition 22. The set of projections of a derivable expression M of λS¬ is defined in-
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ductively as follows.

Proj(sj) ≜ {sj}

Proj(x) ≜ {x}

Proj(ΠxA. B) ≜ {ΠxA
′
. B′ | A′ ∈ Proj(A) and B′ ∈ Proj(B)}

Proj(λxA. M) ≜ {λxA
′
. M ′ | A′ ∈ Proj(A) and M ′ ∈ Proj(M)}

Proj(MN) ≜ {M ′N ′ | M ′ ∈ Proj(M) and N ′ ∈ Proj(N)}

Proj(A →i B) ≜ Proj(A) ∪ Proj(B)

Lemma 22. If M is derivable in λS¬, then every projection of M is derivable in λS.

Furthermore, if deg(M) = i, then every projection is of degree i as well.

Lemma 23. For derivable expression M and N such that deg(M) = i,

Proj(M [N/x]) = {M ′[N ′/x] | M ′ ∈ Proj(M) and N ′ ∈ Proj(N)}

The proofs of the above lemmas are straighforward. Unfortnately, projections do not

behave very well with respect to β-reduction. There are two issues to address.

• There may be redexes in an expression that are not represented in its projections. In

the simplest case, a redex appearing in the left hand side of the expression A →i B does

not have an analogous redex in any of the projections of B appearing in Proj(A →i B).

• Even when every projection of M is reduced along the analogous redex when it exists,

the resulting set of projections may not be a full set of projections of the reduct

of M . Reducing any redex which creates multiple copies of its argument will yield

an expression M ′ whose projections contains expressions that are not the result of

reducing projections of M .
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The first problem is addressed by inductively defining a β-reduction operation for sets of

projections, which may act as the identity on some projections. The second problem is

addressed by defining the notion of coverage; even if a set of projections does not contain all

of Proj(M), there may be sufficiently many of them that they capture enough information

about M . Roughly speaking, a set of projections covers M all non-deterministic branches in

the expression tree are considered, even if not all combinations are considered.

Definition 23. Let M and N be a derivable expressions in λS¬ such that M →β N along

the redex R, and let M ′ be a projection of M . Define βMR (M ′) by induction on the structure

of M as follows. Note that M cannot be a sort or a variable.

βΠxA. B
R (ΠxA

′
. B′) ≜


Πxβ

A
R(A′). B′ R ⊂ A

ΠxA
′
. βBR (B′) R ⊂ B

βλx
A. M

R (λxA
′
. M ′) ≜


λxβ

A
R(A′). M ′ R ⊂ A

λxA
′
. βMR (M ′) R ⊂ M

βMN
R (M ′N ′) ≜


βMR (M ′)N ′ R ⊂ M

M ′βNR (N ′) R ⊂ N

P [Q/x] R = MN = (λxA. P )Q

βA→iB
R (M) ≜


βAR(M) M ∈ Proj(A), R ⊂ A

βBR (M) M ∈ Proj(B), R ⊂ B

M otherwise

For a subset P of Proj(M), define βMR (P) ≜ {βMR (P ) | P ∈ P}.

Lemma 24. For derivable expressions M and N such that M →β N along R, if P ⊂

Proj(M), then βMR (P) ⊂ Proj(N).
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This lemma is proved by induction on the structural definition of a redex and then using

Lemma 23 in the case of redex. Next, the notion of coverage.

Definition 24. For an expression of the form ΠxA. B and a subset P of Proj(ΠxA. B) let

PA denote the set {A′ | ΠxA
′
. B′ ∈ P} and let PB denote the set {B′ | ΠxA

′
. B′ ∈ P}. I

will use the analogous notation for λ-expressions and applications. In the case of →i, let PA

denote the set P ∩Proj(A) and let PB denote the set P ∩Proj(B). For any expression M , a

set of projections P from Proj(M) covers M if the following hold.

• P covers sj if P = {sj}.

• P covers sjx if P = {sjx}.

• P covers ΠxA. B if PA covers A and PB covers B.

• P covers λxA. M if PA covers A and PM covers M .

• P covers MN if PM covers M and PN covers N .

• P covers A →i B if PA covers A and PB covers B.

The fundamental lemma of coverage is that it is preserved by β-reduction.

Lemma 25. Let M and N be expressions such that M →β N along the redex R and let P

be a set of projections of M . If P covers M then βMR (P) covers N . Furthermore, there is

some projection P of P such that P →β βMR (P ) (in particular, βMR (P ) ̸= P ).

Proof. (Sketch) This follows by induction on notion of coverage, using Lemma 23 in the case

of a redex. In this process, it is possible to build inductively a witness to the fact that some

element in P is β-reduced.

Lemma 26. If λS is i-secure, then λS¬ is i-secure.
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Proof. Suppose that λS¬ is not i-secure. Let M be an expression such that deg(M) ≥ i and

M ̸∈ SN. Since λS and λS¬ derive the same expressions of degree greater than i, it must

be that deg(M) = i. Given an infinite reduction sequence starting at M , Lemma 25 implies

there is an infinite sequences of β reductions on sets of projections starting at Proj(M) (which

trivially covers M). Since Proj(M) is finite, there some expression in Proj(M) which has an

infinite reduction sequence. Since all expression in Proj(M) are derivable in λS and are

degree i, it follows that λS is not i-secure.

Weak Normalization Preservation. First, a substitution commutation lemma akin to

Lemma 16 but for τ .

Lemma 27. (τ commutes with substitution) For variable skx and derivable expressions M

and N where deg(M) = i− 1 and deg(N) ≥ i,

τ(M [N/skx]) = τ(M)[ρ(N)/skx]

Proof. By induction on the structure of M . The cases in which M is a sort or a variable are

straightforward.

Π-Expression. Suppose M is of the form ΠyA. B. If deg(A) = i− 1, then

τ((ΠyA. B)[N/x]) = τ(A[N/x]) → τ(B[N/x])

= τ(A)[ρ(N)/x] → τ(B)[ρ(N)/x]

= τ(ΠyA. B)[ρ(N)/x]
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Otherwise,

τ((ΠyA. B)[N/x]) = Πyρ
′(A[N/x]). τ(B[N/x])

= Πyρ
′(A)[ρ(N)/x]. τ(B)[ρ(N)/x]

= Πyρ
′(A)[ρ(N)/x]. τ(B)[ρ(N)/x]

= τ(ΠyA. B)[ρ(N)/x]

The cases that M is a λ-terms or an application are similar.

Unfortunately, unlike ρ, the translation τ does not preserve β-reductions. This is by

design, as it maintains information about previously performed reductions in the padded

expressions. So, to aid the proof below, we use an auxiliary translation θ, which is simply τ

without padding. This translation does preserve β-reductions, and will act as a convenient

intermediate translation.

Definition 25. Define the functions

θi : Ti−1 → Ti−1 and θ′i : Ti−1 → Ti−1
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simultaneously as follows.

θi(si−2) ≜ •i

θi(
six) ≜ six•i

θi(ΠxA. B) ≜


θi(A) → θi(B) deg(A) = i− 1

Πxρ
′
i(A). θi(B) otherwise

θi(λx
A. M) ≜ λxρ

′
i(A). θ′i(M)•

θi(MN) ≜ θi(M)ρi(N)

θ′i(M) ≜ λ•i⊥i . θi(M)

where j ≥ i− 1 and •i is a distinguished variable.

Again, the definition of θ is exactly the same as that of τ , except in the case of λ-

expressions, where no padding occurs. In particular, θ does not map expressions to I-

expression. But it does have the same sort of substitution commutation and β-reduction

preservation lemmas as ρ, and it can further be proved that θ preserves weak normalization.

Lemma 28. (θ commutes with substitution) For variable skx and derivable expressions M

and N where deg(M) = i− 1 and deg(N) ≥ i,

θ(M [N/skx]) = θ(M)[ρ(N)/skx]

The proof is nearly identical to that of Lemma 27 above.

Lemma 29. For derivable expression M and N of degree i− 1, the following hold.

1. If M →β N , then θ(M) ↠β θ(N).

2. θ(NF(M)) ↠β NF(θ(M)).
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Proof. The proof of item 1 is straightforward, modulo Lemma 28. For the proof of item 2 it

suffices to note that performing a reduction of the form θ′(N)• →β θ(N) in θ(M) does not

produce any new redexes if M ∈ NF.

The translations τ and θ are then connected via an erasure function.

Definition 26. Define the function | · | : Ti−1 → Ti−1 which erases padding expressions

shallowly, i.e.,

|⟨P,Q⟩A| ≜ •i

|si−2| ≜ si−2

|six| ≜ six

|ΠxA. B| ≜ Πx|A|. |B|

|λxA. B| ≜ λx|A|. |B|

|MN | ≜ |M ||N |

Fact 4. |τ(M)| = θ(M) for any expression M .

Naturally, this erasure function also commutes with substitution.

Fact 5. |M [N/x]| = |M |[|N |/x] for variable skx and expressions M and N where deg(M) =

i− 1 and deg(N) = k − 1.

The key idea of the following lemma is to build a reduction sequence starting at τ(M)

which follows a reduction sequence starting at M in lockstep, and then argue that the padded

information in the reductions of τ(M) is sufficiently simple so as not to induce any potentially

infinite reduction sequences. The intermediate translation θ is used as a lens to view reduced

forms of τ(M) without the additional padding information.
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A padded expression is sufficiently simple it’s only non-thunk expressions are of degree

at least i. Since λS, and hence λS¬, is i-secure, the padded expressions must be strongly

normalizing. Note that •, and ⟨M,N⟩A are both degree i− 1, so this is not immediate, but

it is not difficult to show in the case that λS is not i-negatable.

Definition 27. An expression M is i-padded if ⟨P,Q⟩A ⊂ M implies it is of the from

⟨P1, ⟨P2, . . . , ⟨Pk, •⟩Ak
. . . ⟩A2

⟩A1

where P1, . . . , Pk (and hence, A1, . . . , Ak) are degree at least i. I will call such an expression

an i-padding term.

The above idea is captured by the following commutative diagram. Note that there are

two different kinds of arrows in this diagram; horizontal arrows are for β-reductions and

vertical arrows are for translations. In essense, the lemma says that, although τ does not

preserve β-reduction in the same way that θ does, it can be made to preserve it up to

ρ-padding, which is sufficient since τ(M) is ρ-padded by design.

Lemma 30. Let M , M ′ and N be derivable expressions such that M →β M ′ and |N | = θ(M)

and N is i-padded. Then there is a derivable expression N ′ such that N ′ is i-padded and the

following diagram commutes.

M M ′

θ(M) θ(M ′)

N N ′

θ

β

θ

β

|·|
β

|·|

Proof. Let C be a single-holed expression such that M = C⟨(λxA. P )Q⟩) and M ′ =

C⟨P [Q/x]⟩, i.e., (λxA. P )Q is the redex along which M is reduced to M ′. By definition of
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θ, there is a single-holed expression C ′ such that

θ(M) = C ′⟨(λxρ
′(A). (λ•⊥. θ(P ))•)ρ(Q)⟩

By definition of | · |, there is some context C ′′ such that

N = C ′′⟨(λxρ
′(A). λ•⊥. P ′

)Z)ρ(Q)⟩

where |P ′| = θ(P ) and |Z| = •. Note that, since | · | only removes padding information, we

know that this redex must appear in N (i.e., it is not erased by | · |) and that it does not

affect ρ-translated expressions. Since N is i-padded, it must be that

Z = ⟨T1, ⟨T2, . . . , ⟨Tk, •⟩Ak
. . . ⟩A2

⟩A1

and Z is an i-padding term. Then

C ′′⟨(λxρ
′(A). (λ•⊥. P ′

)Z)ρ(Q)⟩ →β C ′′⟨(λ•⊥. P ′[ρ(Q)/x])Z[ρ(Q)/x]⟩

→β C ′′⟨P ′[ρ(Q)/x][Z[ρ(Q)/x]/•]⟩

Take N ′ to be this last expression, which is i-padded because degree is preserved by sub-

stitution (which handles the first reduction) and substitution • in an i-padding expression

with an i-padding expression clearly preserving i-padding. Finally,

|C ′′⟨P ′[ρ(Q)/x])[Z[ρ(Q)/x]/•]⟩| = C ′⟨θ(P [Q/x])[|Z[ρ(Q)/x]|/•]⟩

= C ′⟨θ(P [Q/x])[•/•]⟩

= C ′⟨θ(P [Q/x])⟩

= θ(C⟨P [Q/x]⟩)
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|C ′′⟨P ′[ρ(Q)/x]⟩| = C ′⟨|P ′[ρ(Q)/x]|⟩

= C ′⟨θ(P )[ρ(Q)/x]⟩

= C ′⟨θ(P [Q/x])⟩

= θ(C⟨P [Q/x]⟩)

Lemma 31. Let M and M ′ be derivable expressions such that M ↠β M ′. Then there is an

expression i-padded N such that the following diagram commutes.

M M ′

θ(M) θ(M ′)

τ(M) N

θ

β

θ

β

|·|
β

|·|

Proof. By a diagram chase with Lemma 30. Note that τ(M) is i-padded by construction.

All together, this gives us the next key lemma.

Lemma 32. For any derivable expression M such that deg(M) = i − 1, if M ∈ WN then

τ(M) ∈ WN.

Proof. Consider a reduction sequence from M to NF(M). By Lemma 31, there is an reduct

N of τ(M) such that |N | = θ(NF(M)). Following the reduction sequence θ(NF(M)) ↠NF

(θ(M)) given by Lemma 29 analogously in N yields and expression N ′ such that |N ′| =

NF(θ(M)). Thus, the only sub-expressions of N ′ which have redexes are i-padding expres-

sions, which are strongly normalizing by Lemma 26.

Infinite Reduction Sequence Preservation. Finally, we prove µ(M) ≤ µ(τ(M)). Note

that I’ve already stated the upper bound for ρ (Fact 1). We take advantage of a standard

structural lemma which is also proved by BHS (Lemma 5.7).
69



Lemma 33. If M is derivable then M is a sort, a Π-expressions, or of the form

NM1 . . .Mk

where k ≥ 0 and N is a variable or a λ-expression.

Lemma 34. For any derivable expression M with deg(M) = i− 1,

µ(M) ≤ µ(τ(M)) = µ(τ ′(M))

Proof. By induction on µ(τ(M)) and the structure of M , lexicographically ordered. The

cases in which M is a sort, a variable, or a Π-expression are straightforward.

λ-Expression. Suppose M is of the form λxA. N . By Fact 1, µ(A) ≤ µ(ρ′(A)) and by the

inductive hypothesis, µ(N) ≤ µ(τ(N)) = µ(τ ′(N)), so

µ(λxA. N) = µ(A) + µ(N)

≤ µ(ρ′(A)) + µ(τ(N)) = µ(ρ′(A)) + µ(τ ′(N))

And since µ(τ ′(N)) ≤ µ(τ ′(N)⟨x, •⟩ρ′(A)) we also have that µ(λxA. N) ≤ µ(τ(λxA. N)).

Application. We consider two cases. First suppose that M is of the form xN1 . . . , Nk where

k ≥ 1. Then

µ(xN1 . . . Nk) =
k∑

j=1

µ(Nj)

≤
k∑

j=1

µ(ρ(Nj))

= µ(τ(xN1 . . . Nk)) = µ(τ ′(xN1 . . . Nk))

Otherwise, M is of the form (λxA. P )N1 . . . Nk with deg(P ) = i−1. Consider the reduction
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sequence

τ((λxA. P )N1 . . . Nk)

= (λxρ
′(A). τ

′
(P )⟨x, •⟩ρ′(A))ρ(N1), . . . ρ(Nk)

↠β (λxNF(ρ
′(A)). τ

′
(P )⟨x, •⟩ρ′(A))ρ(N1), . . . ρ(Nk)

→β τ ′(P )[ρ(N1)/x]⟨ρ(N1), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

= τ ′(P [N1/x])⟨ρ(N1), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

↠β τ ′(P [N1/x])⟨NF(ρ(N1)), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

→β τ(P [N1/x])[⟨NF(ρ(N1)), •⟩ρ′(A)/•]ρ(N2) . . . ρ(Nk)

where the above normal forms are guaranteed to exist by the assumption of i-security and

Lemma 26. Note that the fifth line follows from Lemma 27. This reduction has length at

least

2 + µ(ρ′(A))

+ µ(ρ(N1))

+ µ(τ(P [N1/x][⟨NF(N1), •⟩ρ′(A)/•])ρ(N2) . . . ρ(Nk))

and is upper bounded by µ(τ(M)). Furthermore,

µ(τ((P [N1/x])N2 . . . Nk))

= µ(τ(P [N1/x])ρ(N2) . . . ρ(Nk))

≤ µ(τ(P [N1/x][⟨NF(N1), •⟩ρ′(A)/•])ρ(N2) . . . ρ(Nk))
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since • can be replaced with ⟨NF(N1), •⟩ρ′(A) in any reduction sequence starting at

τ(P [N1/x])π(N2) . . . π(Nk).

So applying the inductive hypothesis, the above expression is lower bounded by

1 + µ(A) + µ(N1) + µ((P [N1/x])N2 . . . Nk)

Note that this is why we cannot simply induct over the structure of M , as we need to be

able to say that

µ((P [N1/x])N2 . . . Nk) ≤ µ(τ((P [N1/x])N2 . . . Nk))

Finally, by Lemma 14, this implies µ(M) ≤ µ(τ(M)).

I conclude with the main lemma of this section, which derives (i − 1)-security from

i-security.

Lemma 35. Let λS be an i-secure, weakly normalizing n-tiered pure type system which is

i-weakly clean and not i-negatable. Then every derivable expression M such that deg(M) =

i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.

The Negatable Case

At this point, we can prove that weak normalization implies strong normalization for all

non-dependent weakly clean n-tiered pure type systems. In the previous report I have been

alluding to, I use a very close variant of the translation from the previous section to given

the same result in the case that si is negatable. In addition, for negatable sorts I give

a different closure property using a novel padding technique based roughly on the notion
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of Skolem functions. This translation preserves typability in λS, so will not require the

combinatorial-style proofs as in the previous section.

I begin with the technical lemma that makes possible the padding technique. It is based

on the observation that if it is possible to abstract over a variable, then it is also possi-

ble to generalize over that variable in the types of padding variables. So a variable can

commute with the padding variables modulo generalization over that variable. The general-

ization allows padding variables to instantiate their dependencies at the level of terms, which

eliminates the dependence in the types.

This idea can almost eliminate the need for any notion of cleanliness, but unfortunately,

the situation is complicated by products types. On the one hand, product types are simpler

because they cannot be “reduced" at the level of terms except at their individual components;

substitution only occurs at the type level with application steps. The difficulty is that a type

of degree i− 1 may include generalization using the rule (sj , si−1), and it is not possible to

generalize over padding variables with this rule (the types of padding variables are degree

i), so we may not be able to use the Skolemization-style argument referenced above. So the

translation I present still requires a cleanliness-like restriction on the rules in the system,

but it is weaker.

Definition 28. A non-dependent n-tiered pure type system λS is i-upwards clean if it

satisfies the following closure property: For any j (where j ≥ i) in [n], if (sj , si−1) ∈ RλS ,

then (sj , si) ∈ RλS or j ̸∈ DλS(i).

The first condition allows for the same technique for abstraction to be used for prod-

uct type formation, i.e., the Skolemization-style argument. The second condition is based

Lemma 13, and is essentially a stronger fall-back notion of full cleanliness which captures

when variables commute by virtue of the structure of the rules, as was done in the previ-

ous section. Also note that cleanliness implies i-very weak cleanliness in the case that si is

negatable, as the existence of both the rules (sj , si−1) and (si, si) imply the generalizability
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of rules (sk, si) for i ≤ k ≤ i − 1. This not the case for weak-cleanliness, which also shows

the strength of the notion of weak harmlessness.

I continue to the above mentioned technical lemma. The following is a useful definition

and notation for generalizing over many variables at a time.

Definition 29.

• A context Γ is generalizable over a sort sj in λS if (sk, sj) ∈ RλS for each state-

ment (skx : A) appearing in Γ. In abuse of notation, for a context Γ of the form

(x1 : A1, . . . , xk : Ak), I write ΠΓ. B for

Πx2
A1 . . . .Πxk

Ak . B

and I write MΓ for Mx1 . . . xk.

• A context Γ is generalizable over a context Φ if Γ is generalizable over each sj such

that (sjx : A) appears in Φ. In further abuse of notation, for a context Φ of the form

(x1 : B1, . . . , xk : Bk), I write ΠΓ. Φ for

(x1 : ΠΓ. B1, . . . , xk : ΠΓ. Bk).

The basic idea is the following. Suppose

Γ, x : A, y : B ⊢ M(x, y) : C(x, y)2

and ΠxA. B is a derivable type. It is then possible to derive

Γ, y : ΠxA. B, x : A ⊢ M(x, yx) : C(x, yx).

2. I am using this notion to emphasize the dependence on x and y.
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The variable y is replaced with yx to recover its type in the first derivation. This is a fairly

simple syntactic trick, but it has some very nice consequences. The dependence on x in the

type of y is represented at the level of terms instead of types. So if it is possible to abstract

over x, then we can derive

Γ, y : ΠxA. B ⊢ λxA. M(x, yx) : ΠxA. C(x, yx).

And if this λ-expression is applied to another expression N and then β-reduced, the sub-

expression yx is replaced with yN , maintaining the coupling of y and x without needing it

to be expressed in the context.

What follows is the natural generalization of this idea. The translation below replaces

variables whose types may have changed with function applications to recover their original

type.

Definition 30. For contexts Γ and Ψ, define the function ξΓΨ : T → T as follows.

ξΓΨ(sj) ≜ sj

ξΓΨ(x) ≜


xΓ x ∈ Ψ

x otherwise

ξΓΨ(ΠxA. B) ≜ Πxξ
Γ
Ψ(A). ξΓΨ(B)

ξΓΨ(λx
A. M) ≜ Πxξ

Γ
Ψ(A). ξΓΨ(M)

ξΓΨ(MN) ≜ ξΓΨ(M)ξΓΨ(N)

Note that the in Ψ are irrelevant, but are included for convenience. I will write ΨΓ
y in the

case Ψ is of the form (y : A).

This translation is sufficiently simple so as to satisfy the standard substitution-commut-

ation and β-preservation lemmas fairly straightforwardly.
75



Fact 6. (ξΓy commutes with substitution) For expressions M and N , variables x and y, and

context Γ,

ξΓy (M [N/x]) = ξΓy (M)[ξΓy (N)/x].

Fact 7. (ξΓy preserves β-reductions) For expressions M and N , if M →β N , then ξΓy (M) →β

ξΓy (N). Furthermore, if M =β N , then ξΓy (M) =β ξΓy (N).

And now for the lemma itself. First, the simple case in which the context on the right is

a single variable. The more general case is a corollary. The proof follows the usual pattern.

I also note that these results can be further generalized to the case of any pure type system,

but it is simpler to present it here in the setting of tiered systems. Note that the ξ-translation

is extended to contexts in the usual way.

Lemma 36. Let Γ, Ξ, and Φ be contexts, let sjx be variable a such that Ξ is generalizable

over sj, and let A, B and M be expressions. Then

Γ,Ξ, sjx : A,Φ ⊢ M : B

implies

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ) ⊢ ξΞx (M) : ξΞx (C).

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, product type formation, or an abstraction are straightforward.

Variable Introduction. First suppose Φ = ∅. Then the last inference is of the form

Γ,Ξ ⊢ A : sj

Γ,Ξ, sjx : A ⊢ sjx : A

Since Ξ is generalizable over sj , it is easy to get to the derivation

Γ ⊢ ΠΞ. A : sj

Γ, sjx : ΠΞ. A ⊢ sjx : ΠΞ. A
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by a sequence of product type formations and a variable introduction. Then by thinning can

derive

Γ, sjx : ΠΞ. A,Ξ ⊢ sjx : ΠΞ. A

It is then similarly easy to derive

Γ, sjx : ΠΞ. A,Ξ ⊢ sjxΞ : A

by a sequence of applications. Note that x does not appear in A.

Next suppose Φ is nonempty. Then the last inference is of the form

Γ,Ξ, sjx : A,Φ′ ⊢ B : sk
Γ,Ξ, sjx : A,Φ′, sky : B ⊢ sky : B

Then by induction on the length of Φ, we can derive

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ
′) ⊢ ξΞx (B) : sk

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ
′), sky : ξΞx (B) ⊢ sky : ξΞx (B)

Weakening. Again, first suppose Φ = ∅. Then the last inference is of the form

Γ,Ξ ⊢ M : B Γ,Ξ ⊢ A : sj

Γ,Ξ, sjx : B ⊢ M : B

As in the previous case, we can derive

Γ ⊢ ΠΞ. A : sj

which, by thinning, implies

Γ, sjx : ΠΞ. A,Ξ ⊢ M : B

The case in which Φ is nonempty is similar to the analogous case for variable introduction.

Application. Suppose the last inference is of the form

Γ,Ξ, sjx : A,Φ ⊢ P : ΠyC . D Γ,Ξ, sjx : A,Φ ⊢ Q : C

Γ,Ξ, sjx : A,Φ ⊢ PQ : D[Q/y]
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This case follows by applying the inductive hypothesis to each antecedant judgment and then

applying substitution preservation for ξΞx (Fact 6) to ensure that the type of the conclusion

is correct.

Conversion. As with the previous case, we can apply in the inductive hypothesis to each

antecedent judgment and then apply β-preservation for ξΞx (Fact 7) to ensure that the type

of the conclusion is correct.

Corollary 3. Let Γ, Ξ, Ψ, and Φ be contexts, such that Ξ is generalizable over Ψ (and,

equivalently, over ξΞΨ(Ψ)), and let M and A be expressions. Then

Γ,Ξ,Ψ,Φ ⊢ M : A

implies

Γ,ΠΞ. ξΞΨ(Ψ),Ξ, ξΞΨ(Φ) ⊢ ξΞΨ(M) : ξΞΨ(A).

Proof. By repeated application of Lemma 36.

Next, we define the padding functions used in the main translation below. The types

that require padding functions are those which appear as the arguments of abstractions,

and these are inductively build up based on the term being translated; this accounts for the

dependence on the expression M in the definition below. The dependence on the context

Γ below keeps track of how the above lemma has been applied in previous steps of the

translation. Also note that there are no polymorphic padding variables. Though it would be

possible to include them, it is not terribly useful in combination with the Skolemization-style

argument.

Definition 31. Define the contexts ΥΓ
i,M as follows by simultaneous induction on the struc-
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ture of M and length of Γ, lexicographically ordered.

ΥΓ
i,si−2

≜ ∅

ΥΓ
i,six ≜ ∅

ΥΓ

i,Π
sjx

A
. B

≜


Υ
Γ,x:A
i,B (sj , si) ∈ RλS

ΥΓ
i,A,Υ

Γ
i,B otherwise

ΥΓ
i,λxA. M

≜ padΓx : Πρ′(Γ). ρ′i(A) → ⊥i → ⊥i,Υ
Γ,x:A
i,M

ΥΓ
i,MN ≜ ΥΓ

i,M ,ΥΓ
i,N

Similar to what is done in the previous section, I use the shorthand

⟨M,N⟩Γx ≜ padΓxρ
′(Γ)MN

It is possible to characterize the dependence on Γ using the generalized Π-bindings from

Definition 29.

Lemma 37. For any expression M and contexts Γ and Φ,

Υ
Γ,Φ
M = ΠΓ. ΥΦ

M .

Proof. By induction on the structure of M . The cases in which M is a sort, variable or

application are straightforward

Π-expression. Suppose M is of the form ΠxA. B. If (sj , si) ∈ RλS then

Υ
Γ,Φ
ΠxA. B

= Υ
Γ,Φ,x:A
B

= ΠΓ. Υ
Φ,x:A
B

= ΠΓ. ΥΦ
ΠxA. B
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The other cases are straightforward.

λ-expression. Suppose M is of the form λxA. B. Then

Υ
Γ,Φ
λxA. B

= padx : Π(Γ,Φ). ρ′(A) → ⊥ → ⊥,Υ
Γ,Φ,x:A
B

= padx : Π(Γ,Φ). ρ′(A) → ⊥ → ⊥,ΠΓ. Υ
Φ,x:A
B

= ΠΓ. (padx : ΠΦ. ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
B )

= ΠΓ. ΥΦ
λxA. B

Finally, the main translation of the section. It is similar to the translation in the previous

section but with a dependence on contexts. The contexts play a similar role here as they do

in the definitions above; they explicitly keep track of what needs to be ξ-translated.

Definition 32. For each context Γ, define the functions

τΓi : Ti−1 → T and τ ′Γi : Ti−1 → T

as follows by induction on the structure of its argument and the length of Γ, lexicographically

80



ordered.

τΓi (si−2) ≜ •i

τΓi (
six) ≜ six•i

τΓi (ΠxA. B) ≜


τΓi (A) → τΓi (B) deg(A) = i− 1

Πxρ
′
i(A). τ

Γ,x:A
i (B) (sj , si) ∈ RλS

Πxρ
′
i(A). τΓi (B) otherwise

τΓi (λx
A. M) ≜ λxρ

′
i(A). τ

′Γ,x:A
i (M)⟨x, •i⟩xΓ

τΓi (MN) ≜


τΓi (M)τ ′Γi (N) deg(N) = i− 1

τΓi (M)ρi(N) otherwise

τ ′Γi (M) ≜ λ•i⊥i . τ
Γ
i (M)

where j ≥ i− 1 and •i is a distinguished variable.

As above, it is useful to characterize the dependence on Γ, this time with relation to the

ξ-translation.

Lemma 38. For contexts Γ and Φ and expression M ,

τΓ,Φ(M) = ξΓ
ΥΦ
M
(τΦ(M))

Proof. By induction on the structure M . The only case of interest is the one in which M is

of the form λxA. B. In this case,

τΓ,Φ(λxA. B) = λxρ
′(A). τ ′Γ,Φ,x:A(M)(pad

Γ,Φ
x ρ′(Γ,Φ)x•)
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By the inductive hypothesis,

τΓ,Φ,x:A(M) = ξΓ
ΥΦ,x:A
M

(τΦ(M))

and since padx does not appear in τΦ(M), we have

ξΓ
ΥΦ,x:A
M

(τΦ(M)) = ξΓ
ΥΦ
λxA. M

(τΦ(M))

It is also straightforward to check that

pad
Γ,Φ
x ρ′(Γ,Φ)x• = ξΓ

ΥΦ
λxA. M

(padΦx ρ
′(Φ)x•)

and

ρ′(A) = ξΓ
ΥΦ
λxA. M

(ρ′(A))

So by definition of the ξ-translation, we have

τΓ,Φ(λxA. B)

= λxρ
′(A). τ ′Γ,Φ,x:A(M)⟨x, •⟩Γ,Φx

= ξΓ
ΥΦ
λxA. M

(λxρ
′(A). τ ′Φ,x:A(M)⟨x, •⟩Φx )

= ξΓ
ΥΦ
λxA. M

(τΦ(λxA. B))

As in the non-negatable case, the translation must preserve typability, but this time in

the same system. Note that this lemma allows for commutation with the padding variables.

Lemma 39. Let λS be a non-dependent tiered pure type system and suppose Γ ⊢λS M : A

and Γ ⊢λS A : si. Further suppose that Φ is a context which is generalizable over si. Then
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Γ,Φ ⊢λS M : A implies

∆, • : ⊥, ρ′(Γ),ΥΦ
M , ρ′(Φ) ⊢λS τΦ(M) : ρ(M)

Proof. By induction on the structure of derivations and the length of Φ, lexicographically

ordered. I focus on the cases of product type formation and abstraction, which are notably

different than the analogous cases in Lemma 21.

Product Type Formation. Suppose the last inference is of the form

Γ,Φ ⊢ A : sj Γ,Φ, sjx : A ⊢ B : si−1

Γ,Φ ⊢ ΠxA. B : si−1

The case in which deg(A) = i− 1 is similar to the analogous case in Lemma 21, so suppose

deg(A) > i − 1. There are two remaining cases to consider. First, if (sj , si) ∈ RλS , then

Φ, x : A is generalizable over si, which means

∆, • : ⊥, ρ′(Γ),ΥΦ,x:A
B , ρ′(Φ), x : ρ′(A) ⊢ τ

Φ,x:A
i (B) : si−1

Otherwise, j ̸∈ DλS(i) which implies j ̸∈ DλS(k) for any rules (sk, si with i ≤ k ≤ j and by

an argument similar to the one for Lemma 20, the variable x does not appear free in Υ∅
B .

So by permutation and the inductive hypothesis,

∆, • : ⊥, ρ′(Γ), ρ′(Φ),Υ∅
B , x : ρ′(A) ⊢ τ(B) : si−1

and by product type formation, it is possible to derive

∆, • : ⊥, ρ′(Γ), ρ′(Φ),Υ∅
B ⊢ Πxρ

′(A). τ(B) : si−1
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Finally by Corollary 3, we can derive

∆, • : ⊥, ρ′(Γ),ΠΦ. Υ∅
ΠxA. B

, ρ′(Φ) ⊢ ξΦ
Υ∅
ΠxA. B

(Πxρ
′(A). τ(B)) : si−1

where

ΠΦ. Υ∅
ΠxA. B

= ΥΦ
ΠxA. B

by Lemma 37 and

ξΦ
Υ∅
ΠxA. B

(Πxρ
′(A). τ(B)) = τΦ(ΠxA. B)

by Lemma 38.

Abstraction. Suppose the last inference is of the form

Γ,Φ, sjx : A ⊢ M : B Γ,Φ ⊢ ΠxA. B : si

Γ,Φ ⊢ λxA. M : ΠxA. B

By the inductive hypothesis, we have

∆, ρ′(Γ), ρ′(Φ) ⊢ ρ′(A) : sj

and

∆, ρ′(Γ),ΥΦ,x:A
M , ρ′(Φ), x : ρ′(A) ⊢ τ ′Φ,x:A(M) : ⊥ → ρ(A)

From the first we can derive by thinning and product type formation

∆, • : ⊥, ρ′(Γ) ⊢ Πρ′(Φ). ρ′(A) → ⊥ → ⊥ : si

which by thinning can be added to the context of the second:

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ), x : ρ′(A)

⊢ τ ′Φ,x:A(M) : ⊥ → ρ(A)
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By thinning and repeated application, we can derive

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ), x : ρ′(A)

⊢ padxρ
′(Φ)x• : ⊥

and by application and abstraction we have

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ)

⊢ λxρ
′(A). τ ′(M)⟨x, •⟩xΦ : ρ(A)

The last two lemmas follow the same pattern of the previous section, but with updates in

the case of product types. See also my related research report Mull [2022] for further details.

Lemma 40. For variable skx and expressions M and N where deg(M) = i−1 and deg(N) =

k − 1, the following hold.

1. If k = i, then τΦ(M [N/skx]) ↞β τΦ(M)[τ ′Φ(N)/skx].

2. If k > i, then τΦ(M [N/skx]) = τΦ(M)[ρ(N)/skx].

Lemma 41. Let λS be a weakly normalizing non-dependent tiered pure type system. For

any derivable expression M with deg(M) = i− 1, we have

µ(M) ≤ µ(τ(M)) = µ(τ ′(M))

And, finally, the corresponding lemma for the negatable case.

Lemma 42. Let λS be an i-secure weakly normalizing n-tiered pure type system which is

i-negatable, and i-downward clean. Then every derivable expression M such that deg(M) =

i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.
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2.3.3 Main Result

I conclude this section with a statement of the main result, a special case of the Barendregt-

Geuvers-Klop conjecture, which is an extention of the result of the BHS result.

Theorem 2. Let λS be a non-dependent n-tiered pure type system which is i-weakly clean

or i-negatable and i-downward clean for each i ∈ [n− 1]. If λS is weakly normalizing then

λS is strongly normalizing.

Proof. By reverse induction on i (from n to 0) it follows that λS is i-secure, i.e., all ex-

pressions in T≥i are strongly normalizing. By the classification lemma (Lemma 10), the

only expressions of degree n are types and by the top-sort lemma (Lemma 7) and non-

dependence, they are generated at most by sn−1 and Π-types using the rule (sn, sn) if it

appears in RλS . It is straightforward to verify that this set of types is strongly normalizing.

So suppose that λS is k-secure. It then follows directly from Lemma 35 and Lemma 42 tha

λS is (k − 1)-secure.

2.4 Conclusions

I have presented an generalization of Xi’s thunkification to a class of generalized non-

dependent pure type systems which extends the BHS result. This class unfortunately

does not contain all generalized non-dependent pure type sytems, but it demonstrates that

progress can be made. I should note that the solving the conjecture is not so important, but

rather the general questions: is it possible for a typed expression to be weakly normalizing

but not strongly normalizing? What would such an expression have to look like? And,

furthermore, can this normalizing behavior be reflected in another system via translation?

What is are the limitations of type preserving translations of this form?

A final note on a feature which is not immediately obvious about the thunkification trans-

lation versus the CPS translation. One somewhat unfortunate feature of CPS translations
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is that writing down the translation itself depends on λS being weakly normalizing, as the

types of continuations need the type of the expression being translated. This is not the case

for thunkification translations. One consequence of this fact is that the translation can be

applied to non-normalizing expressions to give non-normalizing I-expressions. It is natural

to wonder if this is always possible. If λS is not weakly normalizing, is it possible to show

that its I-fragment is not strongly normalizing? This may be of independent interested, as

it relates to relevance type systems.
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CHAPTER 3

A DEPENDENCY-ELIMINATING TRANSLATION FOR

TIERED PURE TYPE SYSTEMS

This is work I presented in part at the 28th International Conference on Types for Proofs

and Programs.

3.1 Introduction

The last few decades have seen quite a few techniques for proving normalization of systems

in the λ-cube and their extensions, but many of these techniques have not been generalized

to pure type systems. The purpose of the work presented in this chapter is to generalize

one such technique which might be call dependency eliminating translations. The idea is the

following: to show that a system is strongly normalizing, it suffices to define a typability-

preserving infinite-reduction-sequence-preserving translation from that system into another

system which is already known to be strongly normalizing. Harper et al. [1993] define such a

translation from λP to λ→ and Geuvers and Nederhof [1991] extend that translation to one

from λC to λω. Both of these translations can be viewed as removing the dependent rule in

the corresponding system, i.e., the rule (∗,□) which allows types to depend on terms. For

sufficiently well-structured pure type systems, this notion of dependence can be generalized,

as is done by Barthe et al. [2001] for their definition of generalized non-dependent pure

type systems (which is similar the definition of logical non-dependent pure type systems

given by Coquand and Herbelin [1994]). I extend the above mentioned translations to

pure type systems in a way that maintains this dependent rule elimination property. The

translation can be applied to some weak sub-systems of ECCn (defined by Luo [1990]) and

can be combined with the CPS translation of Barthe et al. [2001] to provide evidence for the

strong form of the Barendregt-Geuvers-Klop conjecture, which asks if the proof of strong
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normalization from weak normalization can be carried out in Peano arithmetic or even

Heyting arithmetic.

In what follows, I present a few preliminary notions, and then I define the translation,

which is given in two parts for reasons described in the corresponding section. After this is

a short section on the applications of this translation.

3.2 The Translation

Recall that a tiered pure type system λS is non-dependent if its rules are non-dependent,

i.e., if (s, s′) ∈ RλS implies s ≥AλS s′. The translation defined in the subsequent sec-

tion eliminates the dependent part of a given tiered pure type system. This motivates the

following definition.

Definition 33. The non-dependent restriction of a tiered pure type system λS, denoted

here as λS∗, is the system specified by

SλS∗ ≜ SλS

AλS∗ ≜ AλS

RλS∗ ≜ {(s, s′, s′) ∈ RλS | (s ≥ s′)}

For all other technical notions, I refer because to the section on definitions in the intro-

ductory chapter (Section 1.2).

I present a translation from a pure type system λS with sufficiently rich non-dependent

structure to its non-dependent restriction λS∗ which preserves typability and infinite reduc-

tion sequences. The requirements on the non-dependent structure will be quite strong, but I

believe the translation to be a fairly faithful generalization of Geuvers-Nederhof translation.

At a high level, the translation eliminates dependent uses of the product type formation

rule, but because it also has to preserve infinite reduction paths, it can’t delete too much
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sub-expression information; dropping sub-expressions might eliminate redexes that account

for reduction paths in pre-translated term. The rough idea is to translate all sorts down to

the lowest sort s1, so that when there is a term M of type ΠxA. B, the translated form of

B, denoted for now as ρ(B), is of sort s1, which ensures that any product type formations

with ρ(B) as the target type are necessarily non-dependent (there are no sorts lower than

s1). The first issue is that translated terms must be typeable by these translated types,

which indicates that there need to be two separate translations, one for types and one for

terms. The second issue is that types may contain terms (e.g., (λxsi . x)A for some A where

Γ ⊢ A : si) which indicates the need for separate translation for these terms as well. This

process also needs to be iterated up to the top-sort, for which there are no subterms of this

form by the top-sort lemma (Lemma 7).

Thus, the translation is defined in two steps. First, we define a sequence of translations

that culminate in a translation ρ0 for a types. Each translation maps sorts to a lower sort

then the last, all the way down to a type 0 (a distinguished variable) of sort s1. Then we

define a translation γ for terms so that there is a context Γ∗ where Γ ⊢λS M : A implies

Γ∗ ⊢λS∗ γ(M) : ρ0(A).

The strong requirement on the non-dependent part of λS comes from the fact that each

subsequent translation includes a new variable in the context, and as more variables are

included in the context, more variables need to be abstracted over so as not to lose sub-

expression information. This motivates the following definition.

Definition 34. A tiered pure type system is (i, j)-full if its rules contain

{(sl, sk) | l ≤ i and l ≤ k ≤ j}

and is full if it satisfies the following closure property: if (si, sj) ∈ RλS then λS is (j, i)-full.

We can already see how restrictive this definition is. A system which is (i, j)-full for i ≥ 2
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and j ≥ 3 contains λU , and so is inconsistent. The strongest consistent full n-tiered system

is of the has the rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

which is a subsystem of ECCn.

For the remainder of this section, fix a full n-tiered pure type system λS.

3.2.1 Type-Level Translation

The type-level translation is the last of n + 1 inductively defined translations. Each previ-

ously defined translation is used to prove that the subsequently defined translations preserve

typability. In standard abuse of notation, sequences of Πs, λs, or applications may be empty.

Definition 35. For each i satisfying 0 ≤ i ≤ n, define the function ρi : T≥i+1 → Ti+1

inductively as follows.

ρi(sj) ≜


0 i = 0

si otherwise

ρi(
sjx) ≜ si+2x (where j ≥ i+ 2)

ρi(ΠxA. B) ≜ ΠxρdegA−1(A). . . .Πxρi(A). ρi(B)

ρi(λx
A. M) ≜ λxρdegA−1(A). . . . λxρi+1(A). ρi(M)

ρi(MN) ≜ ρi(M)ρdegN−1(N) . . . ρi(N)

where 0 is a distinguished variable. The definition of each translation is restricted to those

cases for which there are terms in the intended domain. For example, the most basic trans-

lation ρn : T≥n+1 → Tn+1 is defined only on {sn} with ρn(sn) = sn. All other cases are
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ignored. These translations are extended to contexts as follows.

ρi(∅) ≜ (0 : s1)

ρi(Γ,
sjx : A) ≜ ρi(Γ),

sjx : ρj−1(A), . . . ,
si+1x : ρi(A) j ≥ i+ 1

Note that ρj(Γ) ⊂ ρi(Γ) if i < j, a fact which is used frequently in tandem with the

thinning lemma (Lemma 4).

The following three lemmas describe the key features of the translation. First, substitu-

tion in some sense commutes the translation.

Lemma 43. (ρi commutes with substitution) For all i satisfying 0 ≤ i ≤ n, all j satisfying

1 ≤ j ≤ n, and all terms A and B such that A ∈ T≥ i+ 1 and degB = j − 1,

ρi(A[B/sjx]) = ρi(A)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x]

Proof. By reverse induction on i. It holds trivially for ρn. For fixed i, we proceed by

induction on the structure of A.

Sort. Suppose A is of the form sk where k ≥ i. Then for any value of j,

ρi(sk[B/sjx]) = ρi(sk)

= ρi(sk)[ρj+2(B)/sjx] . . .[ρi(B)/si+2x]

since sk has no free variables and 0 is distinct from all other variables.

Variable. Suppose A is of the form sky where k ≥ i+ 2. If j < i+ 2, then

ρi(
sky[B/sjx]) = ρi(

sky)
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If j ≥ i+ 2 and sky = sjx then

ρi(
sjx[B/sjx]) = ρi(B)

= si+2x[ρi(B)/si+2x]

= ρi(
sjx)[ρj−2(B)/sjx] . . .[ρi(B)/si+2(x)]

If j ≥ i+ 2 and sky ̸= sjx then

ρi(
sky[B/sjx]) = ρi(

sky)

= ρi(
sky)[ρj−2(B)/sjx] . . .[ρi(B)/si+2(x)]

Π-Expression. Suppose A is of the form ΠyC . D. If degC < i+ 1, then

ρi((ΠyC . D)[B/sjx]) = ρi(ΠyC[B/
sjx]. D[B/sjx])

= ρi(D[B/sjx])

If j < i+ 2 then by the inductive hypothesis

ρi(D[B/sjx]) = ρi(D) = ρi(ΠxC . D)

and likewise if j ≥ i+ 2 then

ρi(D[B/sjx]) = ρi(D)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x]

= ρi(ΠxC . D)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x]
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If degC ≥ i+ 1 then

ρi((ΠyC . D)[B/sjx])

= ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

If j < i+ 2 then by the inductive hypothesis

ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

= ΠyρdegC−1(C). . . .Πyρi(C). ρi(D)

= ρi(ΠyC . D)

and likewise if j ≥ i+ 2

ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

= ΠyρdegC−1(C)[ρj−2(B)/
sjx]...[ρi(B)/si+2x]

. . .Πyρi(C)[ρj−2(B)/
sjx]...[ρi(B)/si+2x]

(ρi(D)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x])

= (ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx]))

[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]

= ρi(ΠyC . D)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x]
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Note that here we are implicitly using the fact that if ρk(C[B/sjx]) = ρk(C) then

ρk(C) = ρk(C)[ρj−2(B)/sjx] . . .[ρi(B)/si+2x]

λ-Expression.. Suppose that A is of the form λxC . D. If degC < i+ 2 then

ρi((λx
C . D)[B/sjx]) = ρi(λx

C[B/
sjx]. D[B/sjx])

= ρi(D[B/sjx])

and if degC ≥ i+ 2 then

ρi(λx
C[B/

sjx]. D[B/sjx])

= λxρdegC−1(C[B/
sjx]). . . . λxρi+1(C[B/

sjx]). ρi(D[B/sjx])

The remainder of the proof of this case is similar to the one for Π-terms.

Application. Suppose A is of the form MN . If degN < i+ 1, then

ρi((MN)[B/sjx]) = ρi((M [B/sjx])(N [B/sjx]))

= ρi(M [B/sjx])

and if degN ≥ i+ 1, then

ρi((M [B/sjx])(N [B/sjx]))

= ρi(M [B/sjx])ρdegN−1(N [B/sjx]) . . . ρi(N [B/sjx])

The remainder of the proof of this case is similar to the one for Π-terms.

The next lemma says that the translation preserves β-reductions. This is necessary for
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translating conversion rules; we need to be able to replace β-equivalent types after transla-

tion. Note that the lemma does not imply the translation preserves infinite reduction paths.

This is because sub-expression information is lost in the translation,e.g., in the case of appli-

cation it may be that ρi(MN) = ρi(M) and there would be no hope in preserving an infinite

reduction sequence on the sub-expression N .

Lemma 44. For all i satisfying 0 ≤ i ≤ n, and all terms A and B such that A ∈ T≥ i+ 1

and A ↠β B, it follows that ρi(A) ↠β ρi(B).

Proof. By reverse induction on i. This holds trivially for ρn. For fixed i, we proceed by

induction on the definition of the multi-step β-reduction relation. In the case of the reducts:

ρi

(
(λxA. M)N

)
→β ρi (M [N/sdegAx])

if degN < i+ 1 (and degA < i+ 2) then

ρi

(
(λxA. M)N

)
= ρi

(
λxA. M

)
= ρi(M)

= ρi(M [sdegAx/N ])

where the last equality follows from Lemma 43, and if degN ≥ i + 1 (and degA ≥ i + 2)

then

ρi

(
(λxA. M)N

)
= ρi(λx

A. M)ρdegN−1(N) . . . ρi(N)

=
(
λxρdegA−1(A). . . . λxρi+1(A). ρi(M)

)
ρdegN−1(N) . . . ρi(N)

↠β ρi(M)[ρdegN−1(N)/sdegAx] . . .[ρi(N)/si+2x]
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Note that here we implicitly use the fact that sdegAx does not appear in A, and so

ρk(A)[ρl(N)/sl+2x] = ρk(A)

where i + 1 ≤ k ≤ degA− 1 and i ≤ l ≤ degN − 1 so each of the subsequent β-reductions

above do not change the type annotations in the associated λ-terms.

It is straightforward to verify that the translation preserves β-reductions with respect to

compatibility. For example, suppose A is of the form ΠxC . D and B is of the form ΠxC
′
. D

where C ↠β C ′. If degC < i+ 1 then

ρi(ΠxC . D) = ρi(D) = ρi(ΠxC
′
. D)

If degC ≥ i+ 1 then

ρi(ΠxC . D) = ΠxρdegC−1(C). . . .Πxρi(C). ρi(D)

↠β ΠxρdegC−1(C
′). . . .Πxρi(C

′). ρi(D)

= ρi(ΠxC
′
. D)

where

ρi(C) ↠β ρi(C
′)

by the induction on the multi-step β-reduction relation and

ρk(C) ↠β ρk(C
′)

for k > i by the induction on i. Note also that we implicitly use the fact that degC = degC ′

(Lemma 11).

Finally, it must be that the translation preserves typability. This ensures the translation
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gives well-defined types when used in combination with the term translation in the next

section. Recall that λS∗ is the non-dependent restriction of λS.

Lemma 45. For all i satisfying 0 ≤ i ≤ n the following holds. Let Γ be a context and let A

and B be terms such that A ∈ T≥ i+ 1 and Γ ⊢λS A : B. Then

ρi+1(Γ) ⊢λS∗ ρi(A) : ρi+1(B)

Proof. By reverse induction on i. This holds trivially for ρn. For fixed i, it follows by

induction on derivations.

Axiom. Suppose the derivation is of the form

⊢λS sj : sj+1

where j ≥ i. If i ≥ 1 then the translated derivation is

0 : s1 ⊢λS∗ si : si+1

and otherwise

0 : s1 ⊢λS∗ 0 : s1

This judgment is derivable because any every full system contains the rule (s1, s2).

Variable Introduction. Suppose the last inference is of the form

Γ′ ⊢λS B : sj

Γ′, sjx : B ⊢λS sjx : B

where j ≥ i+ 2 (so that deg(sjx) ≥ i+ 1). By the inductive hypothesis

ρk+1(Γ
′) ⊢λS∗ ρk(B) : sk+1
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for each k satisfying i ≤ k ≤ j − 1, and since the context ρi+1(Γ
′) is valid, as it appears in

the case with k instantiated as i, we have

ρi+1(Γ
′) ⊢λS∗ ρk(B) : sk+1

for each k by weakening. By further repeated weakening

ρi+1(Γ
′), sjx : ρj−1(B), . . . , si+3x : ρi+2(B) ⊢λS∗ ρi+1(B) : si+2

and can apply the variable introduction rule:

ρi+1(Γ
′), sjx : ρj−1(B), . . . , si+2x : ρi+1(B), ⊢λS∗ si+2x : ρi+1(B)

Weakening. Suppose the last inference is of the form

Γ′ ⊢λS A : B Γ′ ⊢λS C : sj

Γ′, sjx : C ⊢λS A : B

If j < i+ 2, then the corresponding inference is

ρi+1(Γ
′) ⊢λS∗ ρi(A) : ρi+1(B)

which is obtained by applying the inductive hypothesis to the left antecedent judgment.

Note that the variable sjx is dropped by the translation ρi+1. If j ≥ i+ 2, we use a similar

procedure as the one for the Variable introduction step above, i.e.

ρi+1(Γ
′) ⊢λS∗ ρk(C) : sk+1

for each k satisfying i ≤ k ≤ j − 1, and then by repeated weakening

ρi+1(Γ
′), sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(A) : ρi+1(B)
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Product Type Formation. Suppose the last inference is of the form

Γ ⊢λS C : sj Γ, sjx : C ⊢λS D : sk

Γ ⊢λS ΠxC . D : sk

where k ≥ i+ 1. If j < i+ 1 then

ρi+1(Γ) ⊢λS∗ ρi(D) : si+1

which is obtained by applying the inductive hypothesis to the right antecedent judgment. If

j ≥ i+ 1, then we can derive

ρk+1(Γ) ⊢λS∗ ρk(C) : sk+1

for each k satisfying i ≤ k ≤ j − 1, and each of these judgments can be weakened as

ρi+1(Γ),
sjx : ρj−1(C), . . . , sk+2x : ρk+1(C) ⊢λS∗ ρk(C) : sk+1

Then with repeated uses of the product formation rule together with

ρi+1(Γ),
sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(D) : si+1

we can derive

ρi+1(Γ) ⊢λS∗ Πxρj−1(C). . . .Πxρi+1(C). (ρi(C) → ρi(D)) : si+1

Here we use the assumption that λS∗ has the rules (sk, si+1, si+1) for each k satisfying

k ≥ i+1. Also note the use of function notation since ρi(C) does not appear in the context

above.

Abstraction.. Suppose the last inference is of the form
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Γ, sjx : C ⊢λS M : D Γ ⊢λS ΠxC . D : sk

Γ ⊢λS λxC . M : ΠxC . D

where k ≥ i+ 2. If degC < i+ 2 (i.e., if j < i+ 2), then the corresponding inference is

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(B)

since the variable sjx is dropped by the translation ρi+1. If degC ≥ i+2 then we can derive

ρi+1(Γ),
sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(M) : ρi+1(D)

and

ρi+1(Γ) ⊢λS∗ Πxρj−1(C). . . .Πxρi+1(C). ρi+1(D) : si+2

And so by repeated use of the generation lemma (Lemma 1), if degC ≥ i + 3, we can also

derive

Πxρk(C). . . .Πxρi+1(C). ρi+1(D) : si+2

in λS∗ under the context

ρi+1(Γ),
sjx : ρj−1(C), . . . , sk+2x : ρk+1(C)

for each k satisfying i + 1 ≤ k ≤ j − 2. And so by repeated use of the abstraction rule, we

can derive

λxρj−1(C). . . . λxρi+1(C). ρi(M) : Πxρj−1(C). . . .Πxρi+1(C). ρi+1(D)

in λS∗ under the context ρi+1(Γ).

Application. Suppose the last inference is of the form Since deg(MN) = degM , we can
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apply the inductive hypothesis to the left antecedent judgment:

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(ΠxC . D)

If degN < i+ 1 (and degC < i+ 2) then

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(B)

If degN ≥ i+ 1 (and degC ≥ i+ 2) then we have

ρi+1(Γ) ⊢λS∗ ρi(M) : ΠxρdegC−1(C). . . .Πxρi+1(C). ρi+1(D)

and

ρi+1(Γ) ⊢λS∗ ρk(N) : ρk+1(C)

for each k satisfying i ≤ k ≤ degN − 1. The first application ρi(M)ρdegN−1(N) has the

type

ΠxρdegC−2(C)[ρdegC−2(N)/
sdegCx]

. . .Πxρi+1(C)[ρdegC−2(N)/
sdegCx](ρi+1(D)[ρdegN−1(N)/sdegCx])

The term ρdegC−2(C) does not have the variable sdegCx, so this type simplifies to

ΠxρdegC−2(C). . . .Πxρi+1(C). (ρi+1(D)[ρdegN−1(N)/sdegCx])
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repeating this process, we have

ρi+1(Γ) ⊢λS∗ ρi(M)ρj−1(N) . . . ρi(N)

: ρi+1(D)[ρdegN−1(N)/sdegCx] . . .[ρi(N)/si+2x]

Since si+2x does not appear in ρi+1(D), the type is

ρi+1(D)[ρdegN−1(N)/sdegCx] . . .[ρi+1(N)/si+3x]

which is the same as ρi+1(B[N/x]) by Lemma 43.

Conversion. Suppose the last inference is of the form

Γ ⊢λS A : C Γ ⊢λS B : sk
Γ ⊢λS A : B

where k ≥ i+ 2. Then the corresponding derivation is

ρi+1(Γ) ⊢λS∗ ρi(A) : ρi+1(C)

ρi+2(Γ) ⊢λS∗ ρi+1(B) : si+2

ρi+1(Γ) ⊢λS∗ ρi+1(B) : si+2

ρi+1Γ ⊢λS∗ ρi(A) : ρi+1(B)

where ρi+1(B) =β ρi+1(C) by Lemma 44.

3.2.2 Term-Level Translation

I next define the translation γ : T → T0 on all expressions. This requires one of the

greater departures from the Geuvers-Nederhof translation. In their translation, variables are

occasionally substituted with dummy expression via ⊥-terms that are added to the context.

This is possible since (s2, s1) ∈ Rλω. Using this technique directly would require the rules

(si+1, si) for i ∈ [n− 1]. However, by fullness, (sj , sk) ∈ RλS implies (sl, s1) ∈ RλS for

l ∈ [k], which will allow us a product encoding variable prod : ΠAs1 . 0 → A → 0, which only

requires the rule (s2, s1), which we assume appear in λS.
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Definition 36. Define the function γ : T → T inductively as follows.

γ(si) ≜ •

γ(six) ≜ s1x

γ(ΠxA. B) ≜ prod(ΠxρdegA−1(A). . . .Πxρ0(A). 0)γ(A)

(λxρdegA−1(A). . . . λxρ0(A). γ(B))

γ(λxA. M) ≜ (λz0. λxρdegA−1(A). . . . λxρ0(A). γ(M))γ(A)

γ(MN) ≜ γ(M)ρdegN−1(N) . . . ρ0(N)γ(N)

where prod, • and z are distinguished variables.

We prove the same three lemmas as the previous section: typability preservation, substi-

tution commutation, and β-preservation.

Lemma 46. For terms A and B, if Γ ⊢λS A : B, then

0 : s1, • : 0, prod : ΠAs1 . 0 → A → 0, ρ0(Γ) ⊢λS∗ γ(A) : ρ0(B)

Proof. By induction on derivations. The cases in which the last derivation is a variable

introduction or weakening are similar to the analogous cases for Lemma 45. In what follows,

let ∆ denote the context (0 : s1, • : 0, prod : ΠAs1 . 0 → A → 0).

Axioms. If the derivation is of the form

⊢ si : si+1

then translated derivation is

∆ ⊢ • : 0
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In particular, the context is well-formed.

Product type formation. Suppose the last inference is of the form

Γ ⊢ C : si Γ, six : C ⊢ D : sj

Γ ⊢ ΠxC . D : sj

By the inductive hypothesis

∆, ρ0(Γ) ⊢ γ(C) : 0

and

∆, ρ0(Γ),
six : ρi−1(C), . . . , s1x : ρ0(C) ⊢ γ(D) : 0

By weakening, we can derive

∆, ρ0(Γ),
six : ρi−1(C), . . . , s1x : ρ0(C) ⊢ 0 : s1

Note that, by fullness, since (si, sj) ∈ RλS , it must be that (sk, s1) ∈ RλS for k ∈ [i], and

so by repeated product type formation all with the previously defined translations

ρk+1(Γ) ⊢ ρk(C) : sk+1

we can derive

∆, ρ0(Γ),
six : ρi−1(C), . . . , sk+1x : ρk(C) ⊢ Πskxρk−1(C). . . .Πs1xρ0(C). 0 : s1

where 1 ≤ k ≤ i. These may be used for each abstraction step to define

∆, ρ0(Γ) ⊢ λsixρi−1(C). . . . λs1xρ0(C). γ(D) : 0
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Finally by two applications using the previously defined derivations, we have

∆, ρ0(Γ)

⊢ prod(Πsixρi−1(C). . . .Πs1xρ0(C). 0)γ(A)(λsixρi−1(C). . . . λs1xρ0(C). γ(D))0

Abstraction. Suppose the last inference is of the form

Γ, six : C ⊢ M : D Γ ⊢ ΠxC . D : sj

Γ ⊢ λxC . M : ΠxC . D

Similar to the same case in the proof of Lemma 45, we can derive

ρ0(Γ) ⊢ λxρi−1(C). . . . λxρ0(C). γ D : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

and by weakening,

ρ0(Γ), z : 0 ⊢ λxρi−1(C). . . . λxρ0(C). γ D : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

for a fresh variable z. Furthermore, we have

ρ0(Γ) ⊢ Πxρi−1(C). . . .Πxρ0(C). ρ0(D) : s1 ρ0(Γ) ⊢ 0 : s1

ρ0(Γ) ⊢ 0 → Πxρi−1(C). . . .Πxρ0(C). ρ0(D) : s1

so by abstraction and application,

ρ0(Γ) ⊢ (λz0. λxρi−1(C). . . . λxρ0(C). γ D) γ C : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxC . D Γ ⊢ N : C

Γ ⊢ MN : D[N/sdegCx]

If degN = 0, then we have

ρ0(Γ) ⊢ γ(M) : ρ0(C) → ρ0(D) ρ0(Γ) ⊢ γ(N) : τ(C)

ρ0(Γ) ⊢ γ(M)γ(N) : ρ0(D)

106



Note that ρ0(D[N/s1x]) = ρ0(D) by Lemma 43. The case in which degN ≥ 1 is similar to

the same case in the proof of Lemma 45.

Conversion. Suppose the last inference is of the form

Γ ⊢ A : C Γ ⊢ B : si
Γ ⊢ A : B

It follows from Lemma 44 that ρ0(C) =β ρ0(B) so we have

ρ0(Γ) ⊢ γ A : ρ0(C)

ρ1(Γ) ⊢ ρ0(B) : s1

ρ0(Γ) ⊢ ρ0(B) : s1
ρ0(Γ) ⊢ γ A : ρ0(B)

Next, we again show that substitution commutes with the translation. In this case,

the role of this result is more auxiliary; it is necessary for the next lemma on β-reduction

preservation.

Lemma 47. For all j satisfying 1 ≤ j ≤ n, and all terms A and B such that degB = j− 1,

γ A[B/sjx] = γ A[ρj−2(B)/sjx] . . .[ρ0(B)/s2x][γ B/s1x]

Proof. By induction on the structure of A. The cases in which A is a sort or a variable are

straightforward.

Π-Expressions. Suppose A is of the form ΠyC . D. Borrowing notation from Barendregt, in

what follows, let M+ denote M [B/sjx] for any term M . Then

γ((ΠyC . D)+)

= γ(ΠyC
+
. D+)

= prod(Π
sdeg(C+)x

ρdeg(C+)−1(C
+)
. . . .Πs1xρ0(C

+). 0)γ(A)

(λsix
ρdeg(C+)−1(C

+)
. . . . λs1xρ0(C

+). γ(D+))
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Since all substitutions commute, either by the inductive hypothesis, or by Lemma 43, the

desired equality follows.

The case of λ-expressions and applications are similar.

Lemma 48. For all terms A and B, if A →β B, then γ A ↠+
β γ B.

Proof. By induction on the definition of the multi-step β-reduction relation. For the case of

reducts of the form

(λxA. M)N →β M [N/sdegAx]

If degN = 0 (and degA = 1), then

γ (λxA. M)N = γ λxA. M γ N

= (λz0. λxρ0(A). γ M) γ Aγ N

→β (λxρ0(A). γ M) γ N

→β γ M [γ N/s1x]

= γ M [N/s1x]

If degN ≥ 1, then

γ (λxA. M)N = γ λxA. M ρdegN−1(N) . . . ρ0(N) γ N

= (λz0. λxρdegA−1(A). . . . λxρ0(A). γ M) γ AρdegN−1(N) . . . ρ0(N) γ N

→β (λxρdegA−1(A). . . . λxρ0(A). γ M) ρdegN−1(N) . . . ρ0(N) γ N

↠β γ M [ρdegN−1(N)/sdegAx] . . .[ρ0(N)/s2x][γ N/s1x]

= γ M [N/sdegAx]

As in the proof of Lemma 44, verifying that the translation preserves β-reductions with

respect to compatibility is straightforward. The key observation is that γ appears applied
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to every sub-expression of the pre-translated expression, so compatibility preserves non-zero

β-reductions.

3.2.3 Main Result

Theorem 3. Let λS be an n-tiered pure type system that is full up to some i (where i < n).

Then λS is strongly normalizing if and only if λS∗ is strongly normalizing.

Proof. Since all derivable terms of λS∗ are also derivable in λS, if λS is strongly normalizing

then so is λS∗. So suppose that λS is not strongly normalizing. Then there is an infinite

reduction sequence

M1 →β M2 →β . . .

containing terms derivable in λS. By Lemma 46 and Lemma 48,

γ M1 ↠+
β γ M2 ↠+

β . . .

is an infinite sequence of terms derivable in λS∗, so λS∗ is not strongly normalizing either.

The only really interesting system to which this theorem can be applied are the n-tiered

system with the rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

as well as any subsystem of this one with the same non-dependent rules. Theorem 3 says

that the strong normalization of this system is equivalent to the one with the rules.

{(sk, s1) | k ∈ [n]} ∪ {(s2, s2)}

And though it would be possible to verify formally, a cursory inspection of the technique
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indicates that it is meta-theoretically weakly, and can be carried out in Peano arithmetic.

So when bootstrapped with the result of Barthe et al. [2001], we get a special case of the

strong Barendregt-Geuvers-Klop conjecture.

Corollary 4. Weak normalization implies strong normalization for the n-tiered pure type

system with rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

and, furthermore, this proof can be carried out in Peano Arithmetic.

3.3 Conclusions

In some sense, this result is a failed experiment in generalization. It is unfortunate, though

somewhat interesting, that what I believe to be the most natural generalization of the Geuver-

Nederhof translation breaks down very early when generalized to higher impredicative sys-

tems. All of my attempts to weaken the requirements on the non-dependent part of the

underlying system were met by some issue, usually in the form of non-closure under sub-

stitution or β-equivalence. It does seem as though it should be possible to make a minor

adjustment to the proof to get the same result for the n-tiered systems with rules

{(s1, sk) | k ∈ [n]} ∪ {(si, sj) | 1 ≤ i ≤ j ≤ n}

as this would seem to better capture the role of the Geuver-Nederhof result.
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CHAPTER 4

AN IRRELEVANCY-ELIMINATING TRANSLATION FOR

TIERED PURE TYPE SYSTEMS

This work appears in the Post-Proceedings of the 28th International Conference on Types

for Proofs and Programs.

4.1 Introduction

Little progress has been made on the Barendregt-Geuvers-Klop conjecture, in part because

pure type systems in general are not amenable to standard techniques. Though natural, the

generalization to pure type systems from the lambda cube is in some sense the most obvious

one, a basic syntactic ambiguation of the inference rules which allows for maximal freedom

in sort structure. The resulting systems may fail to have the meta-theoretic properties one

might expect (e.g., type unicity) so it is common to consider classes of systems which do

maintain these properties. This was the purpose of introducing tiered pure type systems.

But even in this setting, there are many systems to consider, some of which contain what

amounts to “junk” structure. The primary contribution of this chapter is a translation of

pure type systems which preserves typability and infinite reduction paths (I will simply write

“path-preserving” from this point forward) and removes some of this irrelevant structure. By

“removing structure” here, I mean that the target system of the translation is the same as

the source system but with some sorts and rules removed.

Consider, for example, the system λHOL, which may be thought of as the system λω

with an additional superkind sort △ which allows for the introduction of kind variables that

can appear in expressions but cannot be abstracted over. In λHOL, it is possible to derive

A : □ ⊢λHOL λAA. λxA. x : ΠAA. A → A.
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A judgment of this form cannot derived in λω because the variable A cannot be introduced

without the axiom ⊢λHOL □ : △. Thus, the introduction of △ is meaningful with respect

to what expressions can be derived. But both λHOL and λω are strongly normalizing. One

basic observation is that there is a single expression inhabiting △, namely □. This sparsity

of inhabitation can be leveraged to define a path-preserving translation from λHOL to λω

and, in fact, from any pure type system with an isolated top-sort to the same system but

without the top-sort. In the case of the judgment above, the variable A can be instantiated

at ∗ yielding the judgment

⊢λω λA∗. λxA. x : ΠA∗. A → A

derived which can be derived in λω.

I generalize this observation in two ways. First, I define a path-preserving translation

that eliminates not just top-sorts but also any sort which is top-sort-like. Second, I extend

this translation to eliminate not just isolated sorts, but also sorts which may appear in some

rules. This translation can be iteratively applied to λS until a fixed point λS↓ is reached.

Thus, it can be used to prove the strong normalization of systems λS for which λS↓ is

known to be strongly normalizing. It can also be bootstrapped with existing results for the

Barendregt-Geuvers-Klop conjecture. The argument is simple: if λS is weakly normalizing,

then so is λS↓ since it can be embedded in λS. By assumption, λS↓ is strongly normalizing,

and so λS is strongly normalizing by the path-preserving translation. Bootstrapping with

the result of Barthe et al. yields a proof of the Barendregt-Geuvers-Klop conjecture for a

larger class of systems. In particular, on a technical note, λS may have dependent rules and

non-negatable sorts (see Definition 2.23 and Definition 3.1 given by Barthe et al. [2001] as

well as Definition 7 for details).

This technique bears a resemblance to the one used by Roux and Doorn [2014] in their

structural theory of pure type systems, which in turn resembles the techniques of Geuvers
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and Nederhof [1991] and Harper et al. [1993]. In all these works, a translation is defined from

one pure type system into another which has fewer rules. And though it is not explicitly

stated, the translation of Roux and van Doorn can be bootstrapped in the same way as

described above. In fact, their translation can be used to eliminate some rules between tiered

systems in a disjoint union whereas the translation presented here eliminates some rules

within the individual summands in a disjoint union of tiered systems (all while preserving

strong normalization).

It is important to emphasize that this result depends on the fact that the additional

structure that can be handled is irrelevant and, in particular, irrelevant with respect to

normalization, not derivablity or expressibility. But if we do want to prove the full conjecture,

we also have to prove it for “junk” systems, ones which may not be interesting in their own

right and may have rules which don’t add much to the system. This result is perhaps more

meaningfully interpreted in the reverse direction: the systems λS↓ for which the conjecture

is not known to hold are targets for the developments of better techniques. Ideally, some

technique could handle all these systems uniformly, but as of now it may be useful to further

develop the theory regarding what barriers exist, and what systems beyond the lambda

cube—natural or not—may be important to study.

In what follows I present the irrelevancy-eliminating translation in two parts: one part

for eliminating rules and one for eliminating sorts. The final translation will be taken as the

composition of these two translations. Finally, I present its application to the Barendregt-

Geuvers-Klop conjecture and conclude with a short section on what it implies about the

systems which remain to be studied.
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4.2 Preliminaries

4.3 The Translation

Fix an n-tiered pure type system λS. I first describe the sorts which are top-sort-like. Recall

that s is a top-sort if there is no sort s′ such that (s, s′) ∈ A, so sn is the only top-sort of

λS. Top-sorts are interesting in part because they tend to be sparsely inhabited. A top-

sort-like sort si which is not a top-sort has the sort si+1 above it, but to ensure si is sparsely

inhabited, si+1 should not appear in any rules. We will also be interested in top-sort-like

sorts which themselves do not appear in any rules.

Definition 37.

• A sort si is rule-isolated if for all j, neither (sj , si) nor (si, sj) appear in RλS .

• A sort si is top-sort-like if i < n implies si+1 is rule-isolated (i.e., si is a top-sort

or its succeeding sort is rule-isolated).

• A sort si is completely isolated if si is top-sort-like and rule-isolated.

Next, I describe the structure that will be considered irrelevant with respect to nor-

malization. Roughly speaking, this includes rules on top-sort-like sorts which allow for the

derivation of redexes on expressions from sparsely inhabited types. It will be possible to

essentially pre-reduce these redexes in the translation, eliminating the need for the rules in

the target system of the translation. In what follows, it will be convenient to consider sets

of top-sort-like sorts. I call a subset I of [n] an index set for λS, and denote by SI the set

{si | i ∈ I}.

Definition 38.

• For any index set J , a sort si is J -irrelevant if there is no sort sj such that j ∈ J

and (sj , si) ∈ RλS . A sort si is irrelevant if it is [n]-irrelevant.
114



• An index set I is completely irrelevant in λS, if for each i in I,

– si is top-sort-like and irrelevant;

– si−1 is ([n] \ I)-irrelevant.

In the case of complete irrelevance, if I is a singleton set {i}, then the only rule with si−1

appearing second is (si, si−1). By considering sets of indices simultaneously, we can make

weaker assumptions on these preceding sorts. The condition of ([n] \ I)-irrelevance ensures

that si−1 becomes irrelevant after removing the rules associated with sorts in SI . Note also

that if (si, si) ∈ RλS , then any completely irrelevant index set cannot contain i − 1, i or

i+1. Finally, it is important that there is a unique maximum completely irrelevant index set.

In particular, the union of any two completely irrelevant index sets is completely irrelevant.

4.3.1 Eliminating Completely Irrelevant Rules

This section contains the translation which removes the rules associated with sorts whose

indices appear in a completely irrelevant index set. For the remainder of the section, fix such

a set I. We begin by showing that sorts in SI are sparsely inhabited.

Lemma 49. Let si be an irrelevant sort such that si is a top-sort or si+1 is irrelevant. For

every derivable expression A, if deg(A) = i then A = si−1 or A ∈ Vsi+1.

Proof. If i = n, then this follows directly from the top-sort lemma (Lemma 7) and the fact

that sn is irrelevant. In fact, in this case sn is inhabited solely by sn−1. If i ̸= n, this follows

in a similar way, i.e., by induction on the structure of derivations. The cases in which the last

inference is an axiom, variable introduction, weakening, or conversion are straightforward.

The last inference cannot be a product type formation because si is irrelevant. The last

inference cannot be an abstraction or application because si+1 is irrelevant.

This does not hold if si+1 is not irrelevant. If (si+1, si+1) ∈ RλS , for example, then

∅ ⊢ (λxsi . x)si−1 : si is derivable. This is why we require both si and si+1 to be irrelevant.
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The primary challenge moving forward is dealing with the fact that variables may appear

as types of sort si. These variables are what will necessitate si+1 being not just irrelevant,

but also isolated. Regardless, the sparsity of types of sort si induces sparsity of expressions

of degree i− 1.

Lemma 50. For index i in I, context Γ and expression M , if Γ ⊢ M : si−1, then M is of

the form Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and either B = si−2 or B ∈ Vsi.

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, variable introduction, or weakening are straightforward. The last inference clearly

cannot be an abstraction, and it cannot be an application since si is irrelevant. What follows

are the remaining two cases.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

Since si−1 is (SλS \ I)-irrelevant, it must be that j ∈ I. The desired result holds after

applying the inductive hypothesis to the right antecedent judgment.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ si−1 : si
Γ ⊢ M : si−1

where A =β si−1. Note that deg(A) = i so Γ ⊢ A : si by type correctness. Thus, A = si−1

by Lemma 49, which means the inductive hypothesis can be applied directly to the left

antecedent judgment.

Lemma 51. For index i in I, context Γ, expression A and variable si+1x, if Γ ⊢ A : si+1x,

then A ∈ Vsi.

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, variable introduction, or weakening are straightforward. The last inference clearly

cannot be a product type formation or an abstraction. The last inference cannot be an
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application because si is irrelevant. Finally, all conversions are trivial by the same argument

as in the previous lemma.

Corollary 5. For index i in I, every derivable expression M of degree i− 1 is of the form

Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and B = si−2 or B ∈ Vsi (and k may be

0).

The Translation

The following translation is defined such that it essentially pre-reduces all redexes whose

source types have degree in I. Naturally, this means it does not strictly preserve β-reductions,

but because these sources types are so sparsely inhabited, we can define a complexity measure

on expressions which is monotonically decreasing in the β-reductions that are pre-performed

by the translation. This is similar to the technique used by Sørensen [1997] for simulating

π-reductions.

The other wrinkle in defining this translation is that it is difficult to pre-reduce expressions

of variable type because even though such types are sparsely inhabited, it is unclear a priori

what the value of the expression will be after a series of reductions. By Lemma 51, we

know it reduces to a variable, but we don’t know which variable, and it may be one that is

generalized or abstracted over. We ensure this doesn’t happen by requiring si+1 is isolated,

not just irrelevant. We also introduce a distinguished variable •z of type z for each variable

z of sort si+1 in the context. This gives us a canonical term that the translation can assign

to expressions of this type.

Definition 39. Define the context-indexed function τΓ : Ctx× T → T by induction on both
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arguments as follows.

τΓ(si) ≜ si

τΓ(
six) ≜


si−2 if i ∈ I and (six : si−1) ∈ Γ

•z if i ∈ I and (six : si+1z) ∈ Γ

six otherwise

τΓ(ΠxA. B) ≜


τΓ,x:A(B) deg(A) ∈ I

ΠxτΓ(A). τΓ,x:A(B) otherwise

τΓ(λx
A. M) ≜


τΓ,x:A(M) deg(A) ∈ I

λxτΓ(A). τΓ,x:A(M) otherwise

τΓ(MN) ≜


τΓ(M) deg(N) + 1 ∈ I

τΓ(M)τΓ(N) otherwise

where •z is a distinguished variable. This function is used to define a function on contexts

as

τ(∅) ≜ ∅

τ(Γ, sjx : A) ≜


τ(Γ) j ∈ I

τ(Γ), sjx : sj−1, •x : sjx if j − 1 ∈ I and A = sj−1

τ(Γ), sjx : τΓ(A) otherwise.

As for proving the desired features of this translation, first note if i ∈ I, then the

translation maps expressions of degree i− 1 (where i ∈ I) to a sort or a •-variable.

Proposition 5. For any index i in I, context Γ, and term A, if Γ ⊢ A : si−1, then τΓ(A) =
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si−2, and if Γ ⊢ A : si+1x for some variable si+1x, then τΓ(A) = •x.

It suffices to consider the expressions of the form specified by Corollary 5, for which the

above fact clearly holds. This turns out to be a key feature of the translation. Because the

translation is able to drop so much information about these expressions, we can pre-reduce

redexes in which they appear on the right.

We also use the fact that the context argument of the translation can be weakened when

the last variable does not appear in the expression argument.

Proposition 6. For any context Γ, expressions M , A, and B, and variable x, if Γ ⊢ M : A

and Γ ⊢ B : si then τΓ,x:B(M) = τΓ(M).

We now prove the standard substitution-commutation and β-preservation lemmas for

this translation.

Lemma 52. For any index i, context Γ, expressions M , N , A and B, and variable six, if

Γ, six : A ⊢ M : B and Γ ⊢ N : A then

τΓ(M [N/six]) =


τΓ,six:A(M) i ∈ I

τΓ,six:A(M)[τΓ(N)/six] otherwise.

Proof. By induction on the structure of M . First suppose that i ∈ I.

Sort. If M is of the form sj , then τΓ(sj [N/six]) = τΓ(sj).

Variable. First suppose M is of the form six. In particular, A =β B, and since deg(A) =

deg(B) = i, we have A = B by Lemma 49. If A = si−1, then by Proposition 5 we have

τΓ(N) = si−2 and

τΓ(
six[N/six]) = τΓ(N) = si−2 = τΓ,x:si−1

(six).
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Similarly, if A is of the form si+1y, then τΓ(N) = •y and

τΓ(
six[N/six]) = τΓ(N) = •y = τΓ,x:y(

six).

If M is of the form sjy where sjy ̸= six, then τ(sjy[N/six]) = τ(sjy).

Π-Expression. If M is of the form ΠyA. B, then

τΓ((ΠyA. B)[N/x]) = τΓ(ΠyA[N/x]. B[N/x])

=


τΓ,y:A(B) deg(A) ∈ I

ΠyτΓ(A). τΓ,y:A(B) otherwise

where the last equality follows from the definition of τ and the inductive hypothesis. This

also depends on Proposition 6 to show that τΓ,y:A(A) = τΓ(A). The cases in which M is a

λ-expression or application are similar. Furthermore, when i ̸∈ I, all cases are analogous.

Before proving the β-preservation lemma, it is convenient to partition the β-reduction

relation into two parts, one part which is directly preserved by the translation (β1) and one

part which is pre-reduced by the translation (β2).

Definition 40. Let β2 denote the notion of reduction given by

(λxA. M)N →β2 M [N/x]

where deg(A) ∈ I, extended to a congruence relation in the usual way. Let β1 denote the

same notion of reduction but with deg(A) ̸∈ I, so that β1 ∩ β2 = ∅ and β1 ∪ β2 = β.

Lemma 53. For expressions M and N derivable in the context Γ, the following hold.

• If M →β1 N , then τΓ(M) →β τΓ(N);

• if M →β2 N , then τΓ(M) = τΓ(N);
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• in particular, if M =β N , then τΓ(M) =β τΓ(N).

Proof. The last item follows directly from the first two. We prove the first two items by induc-

tion on the structure of the one-step β-reduction relation. In the case a redex (λxA. M)N ,

if deg(A) ̸∈ I, then we have

τΓ((λx
A. M)N) = τΓ(λx

A. M)τΓ(N)

= (λxτΓ(A). τΓ,x:A(M))τΓ(N)

→β τΓ,x:A(M)[τΓ(N)/x]

= τΓ(M [N/x])

and otherwise,

τΓ((λx
A. M)N) = τΓ(λx

A. M)

= τΓ,x:A(M)

= τΓ(M [N/x])

where the last equality in each sequence of equalities follows from the substitution-commut-

ation lemma (Lemma 52). To show the desired result holds up to congruences, it must follow

that expressions dropped by the translation are already in normal form.

Π-Expression. Suppose M is of the form ΠxA. B and N is of the form ΠxA
′
. B′ where

ΠxA. B →β ΠxA
′
. B′

If deg(A) ̸∈ I, then either A →β A′ and B = B′ or B →β B′ and A = A′ and the inductive

hypothesis can be safely applied. If deg(A) ∈ I, then Lemma 49 implies that A is in normal

form, so A = A′ and B →β B′, and the inductive hypothesis can be safely applied. The case

in which M is a λ-expression is similar.
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Application. Suppose M is of the form PQ and N is of the form P ′Q′ where

PQ →β1 P ′Q′

If deg(Q) + 1 ̸∈ I, then either P →β P ′ and Q = Q′ or Q →β Q′ and P = P ′ and the

inductive hypothesis can be safely applied. If deg(Q) + 1 ∈ I, Corollary 5 implies that Q

is in normal form, so Q = Q′ and P →β P ′ and the inductive hypothesis can be safely

applied.

With these two lemmas, we can now prove that the translation preserves typability. The

system we translate to is defined simply as the one in which the rules associated with sorts

in SI are dropped.

Definition 41. The irrelevance reduction of an n-tiered pure type system λS, denoted

here by λS−, is the n-tiered system specified by the rules

RλS \ {(si, sj) | i ∈ I and j ∈ [n]}.

Lemma 54. For context Γ and expressions M and A, if

Γ ⊢λS M : A then τ(Γ) ⊢λS− τΓ(M) : τΓ(A).

Proof. By induction on the structure of derivations.

Axiom. If the derivation is a single axiom ⊢ si : si+1 then the translated derivation is the

same axiom.

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : si
Γ, six : A ⊢ six : A
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First suppose i ∈ I. If A = si−1, then τΓ,x:si−1
(x) = si−2 and

τ(Γ) ⊢ si−2 : si−1

where τ(Γ) is well-formed by the inductive hypothesis; that is,

τ(Γ) ⊢ τΓ(A) : si

implies τ(Γ) is well-formed. If A is of the form si+1y, then (si+1y : si−1) ∈ Γ, which implies

(•y : si+1y) ∈ τ(Γ) and τ(Γ) ⊢ •y : si+1y where τ(Γ) is again well-formed by the inductive

hypothesis.

Next suppose i− 1 ∈ I and A = si−1. By the inductive hypothesis, we can derive

τ(Γ) ⊢ si−1 : si
τ(Γ), six : si−1 ⊢ six : si−1

and so by weakening,

τ(Γ), six : si−1 ⊢ six : si−1 τ(Γ), six : si−1 ⊢ six : si−1

τ(Γ), six : si−1, •x : six ⊢ six : si−1

The remaining cases are straightforward.

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si
Γ, six : B ⊢ M : A

By Proposition 5, we have τΓ,x:B(M) = τΓ(M). By type correctness, Γ ⊢ A : sj for some

index j, so τΓ,x:B(A) = τΓ(A). So the inductive hypothesis implies

τ(Γ) ⊢ τΓ,x:B(M) : τΓ,x:B(A)

We can then use an argument similar to the one in the previous case to extend the context

to τ(Γ, x : B).

Product Type Formation. Suppose the last inference is of the form
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Γ ⊢ A : si Γ, x : A ⊢ B : sj

Γ ⊢ ΠxA. B : sj

if i ∈ I, then τ(Γ) = τ(Γ, x : A) and τΓ(ΠxA. B) = τΓ,x:A(B) and so τ(Γ) ⊢ τΓ,x:A(B) : sj

by the inductive hypothesis applied to the right antecedent judgment. It cannot be the case

that i − 1 ∈ I and A = si−1 since si is rule-isolated in this case. The remaining case is

straightforward.

Abstraction. Suppose the last inference is of the form

Γ, six : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

If i ∈ I, then

τ(Γ) = τ(Γ, six : A)

τΓ(λx
A. M) = τΓ,x:A(M)

τΓ(ΠxA. B) = τΓ,x:A(B)

so the desired judgment follows directly from the inductive hypothesis applied to the left

antecedent judgment. Again, it cannot be the case that i − 1 ∈ I and A = si−1 since si is

rule-isolated in this case. The remaining case is straightforward.

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/six]

By type correctness, Γ ⊢ ΠxA. B : sj for some sort sj , and by generation, we have

Γ, six : A ⊢ B : sj

so by Lemma 52, if i ∈ I (i.e., deg(N) + 1 ∈ I), then τΓ(MN) = τΓ(M) and

τΓ(B[N/six]) = τΓ,x:A(B) = τΓ(ΠxA. B).
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The desired result then follows directly from the inductive hypothesis applied to the left

antecedent judgment. And if i ̸∈ I, then τΓ(B[N/x]) = τΓ,x:A(B)[τΓ(N)/x] and we have

τ(Γ) ⊢ τΓ(M) : ΠxτΓ(A). τΓ,x:A(B) τ(Γ) ⊢ τΓ(N) : τΓ(A)

τ(Γ) ⊢ τΓ(M)τΓ(N) : τΓ,x:A(B)[τΓ(N)/x]

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si
Γ ⊢ M : B

where A =β B. Then we have

τ(Γ) ⊢ τΓ(M) : τΓ(A) τ(Γ) ⊢ τΓ(B) : si
τ(Γ) ⊢ τΓ(M) : τΓ(B)

where τΓ(A) =β τΓ(B) by Lemma 53.

It remains to show that this translation is path-preserving. The guiding observation is

that β2-reductions cannot make more “complex” redexes. We define a complexity measure

which captures this observation by its being monotonically decreasing in β2-reductions.

Definition 42. The shallow λ-depth of an expression M is the number of top-level λ’s

appearing in it, i.e., the function δ : T → N is given by δ(λxA. N) ≜ 1+δ(N) and δ(M) ≜ 0

otherwise. The shallow λ-depth of a redex (λxA. M)N is the shallow λ-depth of its left

term λxA. M . I will simply write “depth” from this point forward.

Definition 43. Define µ : T → N to be the function which maps an expression to the sum

of the depths of its β2-redexes, i.e.,

µ(si) = µ(x) ≜ 0

µ(ΠxA. B) = µ(λxA. B) ≜ µ(A) + µ(B)

µ(MN) ≜


µ(M) + µ(N) + δ(MN) MN is a β2-redex

µ(M) + µ(N) otherwise.
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Finally, we prove the monotonicity lemma. It depends on the domain-full version of a

result by Lévy [1978] for the untyped lambda calculus about the creation of new redexes. I

give the statement of the result here without proof (See the work of Huet [1994], Xi [2006]

among others for the standard definition of a residual).

Lemma 55. For expressions M and N such that M →β N , if (λxA. P )Q is a redex of N

which is not a residual of a redex in M , then it is created in one of the following ways.

1. (λyB . y)(λxA. P )Q →β (λxA. P )Q;

2. (λyC . λxD. R)SQ →β (λxD[S/y]. R[S/y])Q where A = D[S/y] and P = R[S/y];

3. (λyB . R)(λxA. P ) →β R[λxA. P/y] where yQ is a sub-expression of R.

Lemma 56. For derivable expressions M and N , if M →β2 N , then µ(M) > µ(N).

Proof. Suppose M reduces to N by reducing the β2-redex (λxC . P )Q. By Corollary 5, the

expression Q is of the form Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and either

B = si−2 or B ∈ Vsi . This means reducing a β2-redex cannot duplicate existing redexes in

M , so every redex has at most one residual in N . Furthermore, if N has a new β2-redex, it

is by item 2 of Lemma 55, i.e., there are expressions C, D, R, and S, and variable z such

that P = λzD. R and

(λxC . λzD. R)QS →β (λzD[Q/x]. R[Q/x])S.

It is easy to verify that, because of the form of Q, only one new β-redex is created and,

furthermore, δ(R[Q/x]) ≤ δ(R). This implies the new redex has smaller depth than the

redex that was reduced, so even if it is a β2-redex, the complexity of M decreases.

The proof of the main theorem of this section is standard.

Theorem 4. If λS− is strongly normalizing, then λS is strongly normalizing.
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Proof. Suppose there is an infinite reduction sequence in λS

M1 →β M2 →β . . .

where M1 is derivable in λS from the context Γ. Since µ is monotonically decreasing in β2-

reductions (Lemma 56), there cannot be an infinite sequence of solely β2-reductions contained

in this sequence. This means there are infinitely many β1 reductions in this sequence, which

by Lemma 53 implies there infinitely many β-reductions in the reduction path

τΓ(M1) ↠β τΓ(M2) ↠β . . .

where τΓ(M1) is derivable in λS− by Lemma 54.

4.3.2 Eliminating Completely Isolated Sorts

We now handle completely isolated sorts. Recall that a sort si is completely isolated if si

is top-sort-like and rule-isolated. This translation is slightly simpler than the first. It is

a generalization of the observation made in the introduction that one can define a path-

preserving translation from λHOL to λω, i.e., one that eliminates the rule-isolated top-sort.

Fix an n-tiered pure type system λS with n > 2, and a completely isolated sort si.1 In

essence, the following translation removes the completely isolated sort and shifts down all

the sorts that might be above it. Because isolated sorts can only really be used to introduce

variables into the context, the translation pre-substitutes those variables with dummy values

that won’t affect the normalization behavior of the expression after translation.

One notable feature of this translation is that it does not preserve the number of sorts in

the system and, furthermore, does not preserve degree. It will be useful to be more careful

1. The restriction on n is a technicality that ensures the target system is nontrivial. See, for example,
the variable case of Definition 44.
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about variable annotations in the following definitions and lemmas.

Definition 44. Define the context-indexed function θΓ : Ctx × T → T inductively on both

arguments as follows.

θΓ(sj) ≜


sj j < i

sj−1 otherwise

θΓ(
sjx) ≜


si−2 if j = i and (six : si−1) ∈ Γ

sjx j < i

sj−1x otherwise

θΓ(Π
sjxA. B) ≜ ΠθΓ(sj)x

θΓ(A)
. θΓ,x:A(B)

θΓ(λ
sjxA. M) ≜ λθΓ(sj)x

θΓ(A)
. θΓ,x:A(M)

θΓ(MN) ≜ θΓ(M)θΓ(N)

This function is used to define a function on contexts as

θ(∅) ≜ ∅

θ(Γ, sjx : A) ≜


θ(Γ) if j = i and A = si−1

θ(Γ), θΓ(sj)x : θΓ(A) otherwise.

As with the previous translation, contexts can be weakened without changing the value

of the function (in analogy with Proposition 6 for τΓ). We go on to prove substitution-

commutation, β-reduction preservation, and typability preservation. The proofs are similar

to those in the previous sub-section and, consequently, are slightly abbreviated.

Lemma 57. For context Γ, expressions M , N , A and B, and variable sjx, if j ̸= i and

Γ, sjx : A ⊢ M : B and Γ ⊢ N : A then θΓ(M [N/sjx]) = θΓ,sjx:A(M)[θΓ(N)/θΓ(sj)x].
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Proof. By induction on the structure of M . All cases are straightforward except the case

in which M is a variable, but then the assumption that j ̸= i ensures the desired equality

holds.

Lemma 58. For expressions M and N derivable from Γ, if M →β N , then θΓ(M) →β

θΓ(N). Furthermore, if M =β N , then θΓ(M) =β θΓ(N).

Proof. The second part follows directly from the first, which follows by induction on the

structure of the one-step β-reduction relation. In the case of a redex (λxA. M)N , we have

θΓ((λx
A. M)N) = (λxθΓ(A). θΓ,x:A(M))θΓ(N)

→β θΓ,x:A(M)[θΓ(N)/θΓ(sj)x]

= θΓ(M [N/θΓ(sj)x])

where the last equality follows from Lemma 57, keeping in mind that j ̸= i since i is isolated,

so the lemma can be safely applied.

Finally, typability preservation. The target system is as expected, the completely isolated

sort si is removed and potential sorts above it are shifted down.

Definition 45. The i-collapse of λS, denote here by λS∗, is the (n − 1)-tiered systems

specified by the rules {(θ∅(sj), θ∅(sk)) | (sj , sk) ∈ RλS}.

Lemma 59. For context Γ and expressions M and A where M ̸= si−1, if

Γ ⊢ M : A then θ(Γ) ⊢ θΓ(M) : θΓ(A).

Proof. By induction on the structure of derivations. The proof differs slightly depending on

whether or not si is a top-sort. I make clear below which cases differ.

Axiom. Since M ̸= si−1, the judgment ∅ ⊢ θ∅(sj) : θ∅(sj+1) is still an axiom.

Variable Introduction. Suppose the last inference is of the form
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Γ ⊢ A : sj

Γ, sjx : A ⊢ sjx : A

If j = i and A = si−1, then θ(Γ) ⊢ si−2 : si−1 is still derivable. Note that θ(Γ) can be

proved to be well-formed by the inductive hypothesis. If j < i, then we have

θ(Γ) ⊢ θΓ(A) : sj

θ(Γ), sjx : θΓ(A) ⊢ sjx : θΓ(A)

If j > i, then in particular si is not a top-sort. This case is then similar to the previous one,

keeping in mind that this might use the axiom (si−1, si) for the translated derivation in the

system λS∗, but not in the case that si is a top-sort.

Weakening. This case follows directly from the fact that θΓ,x:B(M) = θΓ(M) whenever

M and B are derivable from Γ. It is also similar to the analogous case in the previous

sub-section.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sjx : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

Note that j ̸= i and k ̸= i since si is rule-isolated. In particular, neither A nor B are si−1.

Therefore, we can apply the inductive hypothesis directly to each antecedent judgment and

derive the desired consequent judgment.

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : sk

Γ ⊢ λxA. M : ΠxA. B

Note that j ̸= i since si is rule-isolated, and so ΠxA. B would not be derivable. Furthermore,

B ̸= si (so M ̸= si−1) since si is irrelevant. Therefore, we can apply the inductive hypothesis

directly to each antecedent judgment and derive the desired consequent judgment.

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]
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Note that deg(A) ̸= i+ 1 (and in particular N ̸= si−1), since si+1 is rule-isolated. Further-

more, deg(A) ̸= i (and deg(N) ̸= i− 1) since si is rule-isolated. Therefore, we can apply the

inductive hypothesis directly to each antecedent judgment to derive

θ(Γ) ⊢ θΓ(M)θΓ(N) : θΓ,x:A(B)[θΓ(N)/x]

where θΓ,x:A(B)[θΓ(N)/x] = θΓ(B[N/x]) by Lemma 57.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B

If M = si−1, then A =β si =β B. Then by Lemma 49, in fact A = B. If B = si−1, then by

Corollary 5 we again have A = B. Otherwise, by Lemma 58, θΓ(A) =β θΓ(B) and we can

derive θ(Γ) ⊢ θΓ(M) : θΓ(B) by the inductive hypothesis and conversion.

Since β-reductions are simulated directly, the argument for the final theorem is straight-

forward.

Theorem 5. If λS∗ is strongly normalizing then λS is strongly normalizing.

4.3.3 Final Translation

We can now consider the fixed-points of the above translations.

Definition 46. Let τ(λS) denote the fixed-point of taking the irrelevance reduction of λS

with respect to maximum completely irrelevant index sets. That is, repeat λS := λS−,

taken with respect to the maximum completely irrelevant index set of λS, until its maximum

completely irrelevant index set is empty.

Definition 47. Let θ(λS) denote the fixed-point of taking the i-collapse of λS, where i is the

maximum index of a complete isolated sort in λS, if one exists. That is, repeat λS := λS∗,
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s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 4.1: A system with a non-trivial sequence of irrelevance reductions

taken with respect to the maximum index of a completely isolated sort of λS, until it has no

completely isolated sort or is 2-tiered.

Note that a sort which does not appear in the maximum completely irrelevant index set

of λS may appear in the maximum completely irrelevant set of λS−. See Figure 4.1 for a

tiered system with a non-trivial sequence of irrelevance reductions. The maximum completely

irrelevant index set of this system is {9}, but after eliminating the rules associated with s9,

both s9 and s5 become rule-isolated, and so the next maximum completely irrelevant index

set is {4, 8}. One can then imagine how this effect can be scaled up to larger systems.

I will write λS↓ for τ(λS) and λS⇓ for θ(τ(λS)). Since no rules are remove by an i-

collapse, no sort can become completely isolated and no new completely irrelevant index set

can be created, so in fact λS⇓ is the fixed-point of θ ◦ τ .

The main two theorems are as follows.

Theorem 6. For any tiered pure type system λS, if λS⇓ is strongly normalizing, then λS

is strongly normalizing.

Theorem 7. For any tiered pure type system λS, if weak normalization implies strong

normalization for λS↓, then weak normalization implies strong normalization for λS.

In particular if λS↓ satisfies the conditions of Barthe et al. [2001] (Theorem 5.21), then

weak normalization implies strong normalization in λS. This does not immediately apply
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to λS⇓ since it is not immediate that weak normalization is preserved from λS∗ to λS; the

sorts are not preserved. Note that it is immediate in the case that the completely isolated

sort is a top-sort. Given the scope of this work, I leave this to be verified, it is a natural step

in extending these results.

4.4 Conclusions

I have presented a path-preserving translation which eliminates some irrelevant structure.

Again, this structure is irrelevant with respect to normalization, not derivability. When

combined with results for the Barendregt-Geuvers-Klop conjecture, it widens the class of

systems for which the conjecture applies. This is a step towards proving the conjecture for

all tiered systems, in particular because it highlights those systems which require further

analysis. For example, it appears that dealing with circular rules is one of the clear barriers

in strengthening these results. For 3-tiered systems, we extend the conjecture to (and can

prove strong normalization of) the system2

s1 s2 s3

but not to the same system with the additional rule (s3, s3). Circular rules break irrelevancy

and, consequently, induce much more complicated structure in the system.

Additionally, it is worth noting that the conditions on completely irrelevant index sets

cannot be trivially weakened. If, for example the irrelevance condition on preceding sorts

was removed, this technique would apply to λU (i.e., the same system presented above but

with the additional rule (s2, s2)), leading to a contradiction since λU is non-normalizing.

Circular rules again seem to be at the core of this issue. More carefully considering λU

and related non-normalizing systems through the lens of these results—particularly why the

2. This system is not covered by the Barthe et al. result because s2 is not negatable.
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techniques don’t apply to these systems—may yield a more structural understanding of the

non-normalization of λU . Regardless, I hope to have demonstrated with this translation that,

despite the full Barendregt-Geuvers-Klop conjecture seeming quite far from being solved,

there are still a number of approachable questions and avenues for further development.
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