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ABSTRACT
Neural methods have brought a revolution in automated
Machine Translation processes, with most highly-spoken
languages having robust training datasets and near-human
performance. However, these methods have lacked the same
effect in Case-Marked Free-Order languages. A free-order
language is one that has no specific word order, i.e. the sub-
ject, verb, and object can be anywhere in the sentence with-
out violating the rules of the grammar. Case-marked means
that additional information about the word, such as the num-
ber and function, are encoded in morphological features of
the word, such as case or conjugation. As a target language,
we use Latin, which is a FOCM language with extremely
poor machine translation tools existing. We have created
a first-of-its-kind Parallel Translation Dataset consisting of
roughly 100k pairs, and evaluated its performance in Neural
Machine Translation, with novel methods of preprocessing
to encode morphology, and new investigations into transfer
learning. We achieve a best performance BLEU of 22.4 on
the test dataset, which beats the current State of The Art
Google Translate model by over 4.2 BLEU, and publish our
pre-processing pipelines for further research usage.

1 INTRODUCTION
Machine Translation (MT) is a technology that allows for
the automatic translation of text from one language to an-
other. Throughout the past few decades, MT has evolved
from rules-based, leveraging 1 to 1 dictionaries, to Statistics-
based, learning phrase probabilities from corpora, and finally
arriving to Neural Machine Translation, leveraging the flex-
ibility of Deep Learning. A key factor in the evolution of
these technologies has been the acquisition of large parallel
text datasets, allowing for machines to learn correlations
and rules on their own, without human translators writing
heuristic algorithms by hand.
MT research is conducted primarily on widely-spoken

languages, because they have the greatest potential impact
for an automatic translator. The most common language
pairs for MT research include English to/from other major
languages such as Chinese, Spanish, and French. These lan-
guages have large global populations, and are often used to
as the basis of business, trade, and international communica-
tion. In addition, the availability of large amounts of parallel
text data for these language pairs makes them well-suited
for training and evaluating MT systems.

This focus on common language pairs in MT research
can be disadvantageous for less used languages, like Latin.
These languages have smaller, if any, global populations and
may not have as much, if any, parallel text data available for
training and evaluating MT systems. As a result, there may
be less research and development in MT for these languages,
leading to lower quality translation systems.
Additionally, the lack of focus on smaller languages in

NLP research may lead to a lack of understanding of the
unique challenges and characteristics of these languages. For
example, Latin is a case-marked free-order language, which
poses obstacles to MT systems that may not be addressed in
research focused on common language pairs. This paradigm
is explained below.

While the classification of "Free-Order Case-Marking"may
have only been coined recently [2], the linguistic phenome-
non has existed for centuries, and has plagued MT systems
for decades [1].

A Free-Order language is one that does not have a set word
order, meaning that unlike many common languages which
follow the Subject Verb Object/OSV/VOS scheme, these three
constituents may appear anywhere in the sentence, with any
number of other words intervening. It is a common joke
among Classicists that to find the verb in a Cicero sentence,
you only need to turn the page.
A Case-Marked language is one that expresses semantic

and grammatical functions of words through rich morpholo-
gies. In Latin, Nouns often have 2 "roots", one for the Nomina-
tive and one for all others (usually based off of the Genitive),
which then expands to 10 possible inflections. Verbs have
4 principle parts, which can expand to up to 249 different
inflections [11]. However, all of these forms stem from the
same "root" of meaning, and only differ in the context of how
the word is expressed (tense, who is doing the action, voice,
etc).
Combining these two properties of language results in a

language that frustrates many MT techniques. Due to being
Free-Order, the concept of using word order to identify the
main constituents is inapplicable - it becomes indeterminable
whether the three words in the middle of the sentence are
SVO, OSV, or three randomwords that only add slight seman-
tic meaning. Statistical methods lose the ability to exploit
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their "look ahead/behind" method, because there is no guar-
antee that the adjacent words are related to the current word.
Neural methods rely far more heavily on learning an adapt-
able attention function, as the model can no longer rely on
only local words having an effect.

In this paper, we study the creation of a Machine Transla-
tion pipeline for Latin, a notable Case-Marked, Free-Order
language. In addition to these challenges, Latin-English is
classified as a Very Low Resource translation pair. While
many modern NMT systems are trained on hundreds of mil-
lions to billions of translation pairs, at the start of this project
there were none for Latin-English. First, we create a first-of-
its-kind dataset consisting of roughly 100 thousand parallel
sentences. Then, we evaluate existing and novel methods of
NMT on these translation pairs. We achieve a best result of
a 22.4 BLEU on our test dataset, generating coherent transla-
tions from the vast majority of our data, while still struggling
with larger sentences and those with more confusing word
orders.

2 RELATEDWORK
2.1 Latin Translation
Historically, Latin has been the target for infrequent study
amongMachine Translation researchers, startingwith heuris-
tic morphology parsers, then rule-based jigsaw translators,
and finally modern NLP pipelines with NMT.

2.1.1 Whitaker’s Words. The first attempt at utilizing com-
puters to aid in translation was Whitaker’s Words [20], a
Latin-English dictionary and translation tool developed by
William Whitaker. The system allows users to quickly look
up the meanings of Latin words and phrases. One of the key
features of Whitaker’s Words is its comprehensive coverage
of Latin vocabulary, including entries for over 39,000 Latin
words, covering both common and obscure terms. Addition-
ally, Whitaker’s Words can automatically parse an inflected
Latin word into its root form and corresponding morpholog-
ical information. Tremendous effort went into the inflection
parser and internal dictionary, resulting in the most robust
and faithful-to-grammatical-rules parser in existence. We
leverage this program in our processing pipeline to enrich
our inputs with morphological information.

2.1.2 BlitzLatin. BlitzLatin, developed by the same William
Whitaker along with Cambridge University classicist John
White, was the first attempt at creating a true Latin to English
Machine Translator, beyond simply referencing dictionary
entries. Employing algorithms modeled after chess AI, and
leveraging the Whitaker’s Words tool, BlitzLatin includes
hundreds of individual heuristics to pick out correct mean-
ings for words [20] [21]. However, limited both by the man-
ual work required to determine the heuristics along with

processing power of early 2000s, it did not produce highly
successful translations. Work has continued since its original
development, and translation quality has improved (unfor-
tunately they do not provide us with a BLEU), but it still
remains primarily based upon manual inputs of rules and
mappings. While we are unable to use this program directly,
it heavily influenced prior research into Latin-English ma-
chine translation and provides inspiration for our work.

2.1.3 CLTK. While not intended specifically for Machine
Translation, the CLTK (Classical Languages Toolkit) [12] is
an open-source Python Library developed and maintained
by the Open Philology Project, offering tools and resources
for natural language processing (NLP) tasks on classical lan-
guages. The toolkit includes a range of tools for text analysis,
including tools for stemming, lemmatization, and tokeniza-
tion. It also provides a robust API for integrating its own
processes with new sources, which we utilize to integrate
Whitaker’s Words into our NLP pipeline.

2.1.4 NMT Approaches. Recently, a larger amount of inter-
est in the field of Digital Classics has caused research into
NMT on Latin to pick up, albeit not into English. In Machine
Translation of 16th Century Letters from Latin to German by
researchers at the University of Zurich, they create a first-
of-its kind parallel dataset between Latin and German, and
then perform experiments on creating novel MT training
methods [6]. They generate their parallel data using bitext
mining from online sources, leveraging Facebook’s LASER
framework of multilingual sentence embeddings. However,
a not-insignificant amount of their mined data comes from
recent, and some might say, unfaithful sources - such as a
Latin Wikipedia Article about Grand Theft Auto III. While
these articles are likely still written in valid Latin, they in-
troduce words not found in old Latin vocabulary, and can
possibly befuddle the training process. Beyond just train-
ing their models, they also innovate by re-training on back-
translations, adding additional normalizations to the text
(all js turn into is, removal of accents), and pre-training
with Italian to German data first. They employ the Sock-
eye MT toolkit to perform these experiments, and achieve
a best-case BLEU of 19.5. Building on their work, we use
the Sockeye MT framework in our experiments to build our
models, but in contrast we avoid Wikipedia bitext mining
and only utilize professionally-translated data in order to
prevent over-complication and contamination of our dataset.

Additionally, in Latin-Spanish Neural Machine Translation:
from the Bible to Saint Augustine, researchers experiment
in creating NMT systems from Latin to Spanish [15]. They
use the Bible Vulgate, along with the letters of St Augustine
as a dataset. Similarly, they base their experiments on the
Transformer architecture, but instead utilize the OpenNMT
toolkit. They use a shared vocabulary between the source
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and target, and employ Sentencepiece for tokenization. They
achieve a best-case BLEU of 10.1, due to the relative lack of
training data. They also remark on the potential for Unsuper-
vised Machine Translation processes to aid in the training,
in which the models are first trained on monolingual cor-
pora. We build on their work by incorporating the Vulgate
bible into our dataset, but avoid the utilization of a shared
vocabulary and OpenNMT.

In A Latin-Catalan Parallel Corpus for Statistical MT, re-
searchers created a corpus of parallel Latin and Catalan texts,
and then trained Statistical MT models on them [8]. They
achieve a best case BLEU of 11.6, again due to the relative
scarcity of data. However, they introduce the idea of leverag-
ing previous tools (again, Whitaker’s Words) to enrich their
data with morphological features. Their best case BLEU is
achieved on a dataset where each word has been split into a
lemma and suffix, providing a boost of 0.7 over the baseline.

2.2 Factored/Morphological Translation
Models

Factored Translation models are a type of machine transla-
tion (MT) approach that decompose the translation process
into multiple stages, each of which focuses on a specific
aspect of the translation [14]. For example, a Factored Trans-
lationmodel might include separate modules for lexical trans-
lation, syntactic translation, and semantic translation. In our
context, we are interested in Factored Translation Models by
means of decomposing a single word into its corresponding
features - part of speech, case marking, dependencies - which
we are able to figure out heuristically.

In the paper "Sublemma-Based Neural Machine Transla-
tion," [16] the authors propose a new approach to machine
translation that uses sublemmas, which are sub-units of lem-
mas, as the basic units of translation. They break downwords
to their root forms, for which they then learn embeddings,
and then concatenate further features based on the word’s
morphology and dependencies, encoding domain knowledge
into the embedding vector itself. These features are trained
embeddings, although the authors do not explain how the
embeddings are trained. However, encoding features such as
Part of Speech and word type should aid the Attention mech-
anism in determining relationships between Subjects, Verbs,
and Objects, regardless of order. We do not have a method of
directly adding/editing embeddings used in pre-trained mod-
els, but we intend on building on this work by pre-processing
terms into multiple tokens encoding both the root and mor-
phological features of each word, and allowing the model
to learn separate embeddings for the morphology-specific
tokens.

Another paper, "Incorporating source syntax into transformer-
based neural machine translation" [4], proposes incorpo-
rating constituency parsing into the translation system by
means of a mixed encoder. The encoder takes in a linearized
constituency parse, which is represented by the original
source sentence with syntactical annotations interwoven -
"you have not been elected" turns into "ROOT (S (NP you
) (VP have not (VP been (VP elected ) ) ) . ) )" This allows
them to improve performance without altering the internal
architecture at all, while still being able to incorporate source
syntax. Similar to the prior work, we build on this paper by
pre-processing the morphology directly in the text, allow-
ing the Transformer to learn relationships directly, without
additional attention or embedding mechanisms.

2.3 Low Resource Machine Translation
Within Low Resource MT, there are a few techniques that
are primarily used to aid training of models, namely back
translation [9] and transfer learning.
Many researchers use back-translation to improve their

NMT performance [18]. Back-translation operates under the
assumption that an NMT model has the same capacity to
learn information as a normal Language Model. One first
trains a model translating from target language to source
language, and then uses that model to generate its own
translations on novel target-language text, resulting in a
dataset consisting of gold-standard target translations and
silver-standard source translations. The synthetic data is
then added to the source-target training set in order to boot-
strap the decoder’s training. In "Iterative Back-Translation
for Neural Machine Translation", researchers use this system
to create increasingly accurate synthetic data by updating
the training samples as the model improves, thereby improv-
ing the model’s performance by training on better data. We
will utilize back-translation in an attempt to improve decoder
coherence and fluency, providing it more English to learn
with.

Additionally, transfer learning on similar language pairs is
a common method to pre-train NMT models. For example, as
done in the Latin → German paper, the model is pretrained
on a larger parallel dataset consisting of Italian to German
sentences. As Italian is still a commonly spoken language
utilized in the EuroParl EU corpus, there is a far larger corpus
of parallel translation pairs between the two languages. Ital-
ian is a direct descendent from Latin, and despite changing
much over time, shares many morphological and grammati-
cal features. Training on Italian to German allows the model
to learn an decoder representation of German, while also
learning an encoder representation of a language extremely
close to Latin, allowing for more efficient training with the
low resource dataset. We intend to experiment with the reuse
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of multiple pre-trained <Language> → English models, to
determine the importance of the similarity of the source
languages to the performance of a transfer-learned NMT
model.

3 METHODOLOGY
3.1 Data
Being a Very Low Resource translation pair, prior to this
project, there existed no public parallel dataset consisting
of Latin-English translations. However, there exist plenty of
full-length translations of historical Latin texts, albeit not
granularly-aligned. We construct a first-of-its kind dataset of
100k sentence-aligned translation pairs to train our model on,
and for others to use in their research.1 This dataset can be
found at Huggingface. To construct this dataset, we source
our translation pairs from three primary sources - Perseus,
Loeb, and Vulgate. We partition our dataset by first shuffling
it, and then randomly taking roughly 99k as training, roughly
1000 as valididation, and another 1000 as test.

3.1.1 On Alignment. For all of the data sources (except the
Vulgate), manual alignment was necessary to fragment the
scraped volumes into sentence-by-sentence pairs. This was a
manual task and required great amounts of labor by an expert
in Latin translation. First, parallel sources were scraped at
the page level, after removing all footnotes and line numbers.
Then, as some sentences bled between pages, pages were
concatenated, and then the Latin was re-split into individual
sentences by common punctuation marks. Finally, English
sentencesweremanually alignedwith the Latin sentences. Of
note, this manual labor was not being done in the translation
- the translations have already been created, peer-reviewed,
and are generally regarded as Gold Standards in the classical
community. The only additional error that may be introduced
in alignment is that two sentences may not be perfectly
aligned, and either the Latin or English may be missing/have
added a few extra words.
In Quality Assurance trials, 100 translation pairs were

randomly sampled, with the context of the pairs directly
before and after them, and 99 of them were found to be
perfectly aligned (in reference to the given translation), with
only 1 having an extra English word that corresponded to
the pair directly following.

3.1.2 Perseus. The Perseus Digital Library [3] is a digital
repository of Ancient Greek and Latin texts. For many of
the ancient works, they also catalog English translations.
However, the translations are not aligned beyond the level of
paragraph or section. After scraping this source, additional
alignment was performed to break the parallel translations
1The English targets, as described in 4.7, are not the originals, due to Copy-
right restrictions

into sentences. Due to the messiness of the source data, we
source only our translations of Julius Caesar’sDe Bello Gallico
from Perseus, representing roughly 3% of our dataset.

3.1.3 Loeb Digital Classical Library. The Loeb Library has
been the Gold Standard of classics translations for a century.
The library includes over 520 volumes of Latin, Greek, and
English texts, including works of literature, history, science,
and more. Recently, all of their translations have been con-
verted to a digital format and have been uploaded to their
website. All Loeb volumes feature parallel translations, with
the left page containing the source material and the right side
containing the translation, lined up roughly by paragraph.
Gaining access to the translations through scholarly creden-
tials, we were able to scrape parallel translations from the
Loeb volumes. We were able to automatically segment the
Latin into sentences, but for consistency and accuracy sake
the alignment with English is done manually as described
above. We source the vast majority of our non-Vulgate trans-
lation pairs, roughly 65k, from Loeb.

3.1.4 Vulgate. The Vulgate is a Latin translation of the Bible,
commissioned by the Pope in the 4th century AD. It is one of
the most important and influential translations of the Bible,
and it became the standard version used in the Western
Church for many centuries. Church scholars have translated
specifically the Vulgate edition of the Bible into English, and
have published a line-by-line aligned translation onto the
internet. We are able to scrape this and use it as a data source,
resulting in roughly 32k translation pairs.

3.2 Distribution
The breakdown between Author and representation in the
Training set is seen in Figure 1. Note that while the Vulgate
was officially written by the author Jerome, the version on
the site may have additional edits, so we attribute them solely
under the category "Vulgate".

3.3 Preprocessing
To address the challenges of translating a Free Order Case
Marked language, in addition to using the source text directly
we introduce two novel preprocessing methods.

3.3.1 Stem/Case Split. Given that there are 350 unique mor-
phological forms in Latin, we attempt to reduce the com-
plexity by splitting each word into two parts: its root, and
its case-marked ending. By performing this split, instead of
having to learn every inflection of every word separately, the
model should be able to learn the definition of a word based
on its root, and then the context semantics (tense, person,
etc) based on the ending. For example, the Latin word Putavit
gets split into two tokens: [𝑝𝑢𝑡𝑎𝑣,𝐶𝐴𝑆𝐸_𝑖𝑡] - intending for
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Figure 1: Data Distribution by Author

the model to learn putav = to think and CASE_it = 3rd per-
son singular, past tense. We prepend each case form with
the string CASE_ so that we can add special tokens to the
tokenizer/model separating it from the string of characters
"it". Indeclinable tokens are not split in any way, leaving
just the base word. This word segmentation is powered by
interfacing Whitaker’s Words, which was described in the
Related Work section.

3.3.2 Stem andMorphology. The Stem/Case split is the most
intuitive way to encode the morphological features, but it
fails to address case overloading. Case overloading is the
phenomenon where a given word ending can represent more
than one morphology, depending on the word it is attached
to. For example, the ending -is can represent the 3rd person
plural ablative or dative cases for a first declension noun, the
1st person genitive for a third declension noun, or a second
person active imperative case for a third conjugation verb.

However, we know fairly well what class/part of a speech
the root is going to be, so we can encode exactly what the
ending means instead of the ending itself. For a verb, this
corresponds to the features [Is_Verb, Conjugation, Person,
Number, Tense, Voice, Mood], for a Noun, [Is_Noun, Declension,
Number, Case, Gender], and similar information for other
parts of speech. Encoding this information directly into the
token embedding itself is an interesting and promising idea,
however this was impossible using the NMT framework we
were using without directly modifying the underlying code.

In an attempt to mimic this functionality, we represent
this as a string and add it in place of the "case" information
described above. However, contrary to the Stem/Case split,
indeclinable words are still augmented with their context.
As an example, the preposition ob, taking the Accusative
case, gets annotated into the two tokens [ob, PREPACC].

Putavit, the example given above, is represented as [putav,
V11PERFACTIVEIND3S]. In addition to preventing the end-
ings from being overloaded, this has the added bonus of Part
of Speech Annotation. Given that there is no set word order,
having knowledge of what words in a sentence are verbs,
nouns, etc., intuitively should aid in translation performance.
Adding morphology has a few caveats. First, these are

seemingly nonsensical strings of characters. In a naivemethod-
ology, the sub-word tokenizer will break these down, result-
ing in a possible loss of actual utility, and perhaps confusing
the model even more as the signal/noise ratio is reduced.
We remedy this by adding all possible morphological forms
as new tokens to the model’s embedding before training,
resulting in the avoidance of subword tokenization, along
with the model learning embeddings for each morphology.

Additionally, each morphology string is possibly too rich
with information - it encodes what "class" of noun/verb a
word may be, which relates to its morphological inflection,
but does not provide any additional information when we
have parsed the morphology already. For example, "femina"
is a feminine singular nominative noun, but it’s also 1st
declension 1st type, so it gets encoded as "N11SNF", while
"dies", which is a feminine singular nominative noun, but 3rd
declension 2nd type, is "N32SNF". So, even though in a gram-
matical sense they serve the same role, their morphology
tokens are distinct and are learned separately. We experi-
ment with removing these distinguishing characteristics and
simplifying the morphology strings.

3.3.3 General Preprocessing. All 3 experimental datasets
(untouched, stem/case, stem/morphology) underwent the
same pre-processing after their generation. First, in the Latin
source, all punctuation was removed under the assumption
that each pair was a sentence. This may be an over-zealous
preprocessing step, but any punctuation found in the text in
fact was added by editors far after the source was written
[10]. This also solved technical issues with the segmentation
of words for the two special preprocessing methods, related
to the Whitaker’s Words tokenizer. Afterwards, all datasets
were tokenized with a SentencePiece scheme with a vocab-
ulary size of 65k words, or 67k with special morphological
tokens, or 65,351 with simplified morphological tokens. Pairs
were trimmed to a maximum length of 128 tokens.

4 RESULTS
4.1 Google Translate Baseline
As described in the Literature Review, there are no pub-
lished Latin to English models whose results we can compare
against. BlitzLatin is the only available specialized translator
that we could theoretically compare against, but we lack
the licensing to run it. As such, we will be using Google
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Translate as our baseline to compare model performance
against. Before 2021, Google Translate utilized Phrase-Based
Machine Translation methods for Latin, leading to poor qual-
ity translations, causing educators worldwide to discourage
students from using it.
A Reddit post [7] provides a good explanation for the

poor performance of the old model. However, in fall 2021,
Google updated the Latin translation models to their Neu-
ral Machine Translation framework, substantially improv-
ing performance. It still has many issues, as is discussed in
the subreddit and Stack Exchange forum, but is generally
regarded as able to output coherent text with some under-
standing of nuance.
We benchmarked both directions of English-Latin and

Latin-English Google Translate by utilizing the Google Cloud
Batch Translation service, which is presumably the same ser-
vice underlying the commercial Google Translate application.
We used each direction of the test set as the source text, with
the other as the reference for BLEU calculation. For the Latin
to English direction, Google Translate achieves a BLEU of
18.12. For the English to Latin direction, Google Translate
achieves a BLEU of 15.62. We treat these both as the previous
"State of The Art", as they are the only publicly available
models for either direction.

4.2 Architecture
All models were based on the Transformer architecture. Ini-
tial experiments were performed using standard PyTorch
Seq2Seq training, and subsequently the Sockeye NMT toolkit
[5]. For each of the 3 experimental datasets, we train 3 mod-
els of varying size. The "small" model consisted of a 2 layer
model, with 4 attention heads, and a model embedding size
of 384. All models were trained for 40,000 Gradient Updates,
which is roughly 10 epochs, with an initial Learning Rate
of 0.005 and an Inverse Square Root Decay Learning Rate
schedule. Validation checkpoints were taken every 4000 gra-
dient updates, computing the validation perplexity and BLEU,
along with reporting the current training perplexity value.

Subsequently, experiments were based on the MarianMT
[13] framework, using pretrainedmodels published byHelsinki-
NLP on Huggingface. After hyperparameter tuning, models
were finetuned for 5 epochs with a learning rate of 0.001.
Validation was performed each epoch, with an optimized loss
being Cross Entropy, and validation loss being the BLEU.
All experiments were performed on the Argonne Polaris

supercomputer, using NVIDIA A100 GPUs.

4.3 Training from Scratch
4.3.1 Sockeye Framework. Initial experiments focused on
training the model from scratch, using the limited dataset to
learn both a Latin Encoder and an English Decoder. Utilizing

the Sockeye NMT framework, which performed no subword
tokenization, and therefore resulted in a significant presence
of <unk> tokens, we achieved a best case BLEU of 10.8 uti-
lizing morphological strings, 9.9 for stem + case split, and
8.9 for the raw text.

Qualitative inspection of the translations revealed that for
small sentences, that follow a word order resembling SVO,
the model’s output was relatively satisfactory. Compare the
model’s output “Blessed are all that love thee: and they that
rejoice over thy peace.” with the ground truth “Blessed are all
they that love thee, and that rejoice in thy peace,”. However,
with sentences that do not follow a SVO/OVS/SOV word or-
der (which are grammatically correct in Latin), performance
diminishes and use of the <unk> token greatly increases,
along with confusions of subjects/objects: compare “When it
is a vine which is to be cut off as a <unk>” with the ground
truth “When it is two years old, cut off the branch below the
basket”.
Additionally, the consequences of training an English

model solely on archaic translations become evident when
observing vocabulary choices - "thy" and "thee" are extremely
common in the outputs, and some words that are no longer
utilized in colloquial English due to offensive connotations
are also found. Having the Bible compose roughly half of
the training dataset becomes clear, as well - there is a lot
of "the Lord" and "Jerusalem" output, especially in contexts
with new or unseen words.

4.3.2 PyTorch Transformer. While Sockeye is a great frame-
work for training simple NMT models, it is unfortunately
not easy to extend or modify in any substantial manner. In
an attempt to explore some novel/unsupervised techniques
for our research, we then attempted to replicate our results
in a vanilla PyTorch setting, which we could then modify
easily with novel experimental techniques.

Unfortunately, we were unable to replicate our results in
a PyTorch environment. Despite utilizing online tutorials
and published code, we were unable to get our model to be
coherent with sentences longer than 2 words at all. Mod-
els seemed to develop a dictionary understanding of words
mapping to each other - they could translate "Troiae" as "of
Troy" and "qui" as "who", which are both correct, but were
unable to combine words and ideas with any coherence. De-
spite our efforts to investigate the reason, we were unable
to determine why the vanilla Transformer, with seemingly
identical architectures, failed to produce coherent results.
Consequently, we decided to move on from this approach.
The highest BLEU score it attained was 2.1, which is consid-
erably unsatisfactory.
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4.4 Transfer Learning
With training from scratch proving difficult, we decided to
pivot to utilizing Transfer Learning to leverage a pretrained
English Decoder. Following the work of [6], for our first
experiment we chose an Italian-English model as our base
model. As we are translating into English, a pre-trained Eng-
lish Decoder was a clear choice. Our rationale behind using
an Italian Encoder is that Italian is a direct descendent of
Latin, and while a lot of the morphology has been simplified,
the semantic meaning of many of the roots has remained.

4.4.1 Initial Transfer Learning Experiments. We utilized the
Helsinki-NLP IT-EN [19] model as our base for finetuning.
Interestingly enough, our Latin text, when tokenized, only
uses 7258 unique tokens out of the model’s vocabulary of
80,378, or only about 9%. Many of the most common tokens
from our tokenized set are individual characters, or com-
mon case endings. Before finetuning, this model had a BLEU
of 0.37, and essentially just repeated the Latin back as its
"translation." This model, finetuned on our data, produces a
test BLEU of 21.29, already beating Google Translate by 3
BLEU points. Further, the translations are coherent English,
which we hypothesize is due to the pretrained English de-
coder. Qualitatively, it appears that the model is far better
at handling Proper Nouns. However, it still struggles with
ambiguity of subjects and objects, and frequently confuses
between them.

We then experimented with Helsinki-NLP’s Helsinki-NLP
Romance-IT [19], intended to translate from any Romance
language (which includes Latin) to English. We hypothesized
that a synthesis of all Romance languages, including Latin
(although the training data was highly suspicious) would
outperform just Italian in a fine-tuning setting. In this case,
our text utilized 7489 unique tokens out of 65,001, or about
11.5%. Before fine-tuning, this model achieved a BLEU of 6.77,
which is higher than the Italian model, but still worse than
our Sockeye attempts. With the exact same finetuning setup,
this model achieved a test BLEU of 21.65, or 0.36 BLEU points
higher than the Italian-only. After the initial training, we
discovered that this model, in order to disambiguate between
source languages, required a prefix to each sentence noting
the language - for Latin, it was "»la«". With no finetuning
and this prefix, we get a BLEU of 6.56, which is actually lower
than if we did not specify that we were using Latin at all.
After adding this prefix, though, we achieved a test BLEU
of 22.32, beating the Italian-only model by over 1 full BLEU
point.

4.4.2 Non-Romance Finetuning Sources. Based on these find-
ings, we had a reasonable degree of certainty that employing
a pre-trained encoder, which has been exposed to the source
language, is advantageous during the fine-tuning process.

However, we aimed to further examine the extent to which
the performance could be attributed to the encoder itself
or to a coherent English decoder. So, we decided to take
three other models, Arabic-English, German-English, and
Chinese-English, and compare fine-tuned performance.

Utilizing the Arabic to English model, our source text uses
1253 unique tokens out of the 62,833, or only 2% of the tokens.
This makes sense, as the majority of Arabic text does not
include Latin characters. The vast majority of the tokens
are either individual characters or pairs of characters, acting
as subword units. With no finetuning, this model achieves
a BLEU of 0.32, again just copying back the original Latin.
With an identical finetuning setup to prior experiments, we
achieve a test set BLEU of 19.53, which is lower than the
Italian/Romance models but not by an exceedingly large
margin.
Utilizing the Chinese to English model, our source text

uses 983 unique tokens out of the 65,000, or only 1.5%. Sim-
ilarly, the majority of Chinese text does not include Latin
characters. With no finetuning, this model achieves a BLEU
of 0.17, this time outputting a strange mix of English and
Latin. The majority of English output was repetitive "I’m
sorry, but I don’t know." After finetuning, we achieve a test
BLEU of 18.54, which is again lower than the Italian/Romance
models, but still even beats the Google Translate model.
Utilizing the German to English model, our source text

uses 4355 unique tokens out of the 58,100, or 7.5% of the
tokens. This is significantly higher utilization than either of
the Arabic/Chinese models, but still less than both the Ital-
ian/Romance models, given that German is a non-Romantic
language and likely has less language similarity. With no
finetuning, we achieve a BLEU of 0.41, again essentially just
copying over the input text as the "translation." Fine-tuned,
we achieve a BLEU of 20.33, which is within 1 point of the Ital-
ian model despite having a totally different source grammar
and vocabulary.

Figure 2: BLEU vs Source Vocabulary Usage
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In Figure 2, we see a weak positive relationship between
percent of tokens used within a vocabulary, and the fine-
tuned BLEU of the model. Theoretically, a model with perfect
coverage (with a vocabulary trained solely on our dataset)
would perform the best, but in doing so we would lose the ad-
vantage of using a pre-trained model. This relationship, and
the relatively decent performance of even the fine-tuned Chi-
nese model, suggests that a large portion of the performance
of the pretrained models comes from using a pretrained Eng-
lish Decoder that is able to output coherent and sensible
translations, once finetuned, regardless of the original input
encoding.

4.5 Preprocessing Experiments
The results of transfer learning were quite strong, signifi-
cantly improving upon the Google Translate baseline. As
they were far more powerful than training other models from
scratch, we decided to base the remainder of our experiments
on these transfer models in an attempt to further increase
performance. We chose the Romance language based model,
and experimented using both the Stem/Case split and Mor-
phological preprocessing.

4.5.1 Stem/Case Split. We first fine-tune the Romance lan-
guage model on our basic Stem/Case split dataset, with an
identical setup as our previous experiments. We achieve a
test set BLEU of 21.00 with this model, which is better than
Google Translate but worse than training either the Romance
or Italian model on just the raw text. Looking at the transla-
tions, we see a similar if not more exacerbated problem of
confusion between subject/object and constituency parsing.
This can likely be attributed to the relative lack of exposure
to the CASE_ tokens, resulting in inaccurate embeddings
and possibly confusing the model more than enlightening.
Overall, though, translation quality is relatively high.

4.5.2 Morphological. We first fine-tune the Romance lan-
guage model directly on the Morphological dataset, with no
special tokens. Unfortunately, we achieve quite poor results
- a test BLEU of 15.55. This, with high certainty, is due to the
SentencePiece tokenization of the morphological strings -
they are long and are liable to be broken up into however
many subtokens.
As such, we then attempt to add all of the possible mor-

phological strings as entries into the model’s vocabulary. As
described in section 3.3.2, this adds roughly 2000 new entries
to the vocabulary, as each type of noun/verb has their own
set of morphology strings. Adding these to the vocabulary,
we now achieve a test set BLEU of 21.37, roughly equivalent
to the results of the finetuned Italian-English model on the
normal dataset, as the morphological information is being
used as actual tokens rather than confusing strings of letters.

Finally, we attempt to simplify the morphological strings.
We reduce a string such as V11PERFACTIVEIND3S to the
string Verb_Perfect_Active_Indicative_Third_Singular, which
we then add to the vocabulary as a single token - note the loss
of the two numbers up front, specifying the type of verb it is.
Performing this simplification results in 350 morphological
tokens being added to the vocabulary. Running the same
fine tuning, we achieve a test set BLEU of 21.31, which is
slightly below that of the not-simplified tokens. Perhaps
the individual information about what type of word can be
useful, but these differences also seem to be roughly within
the margin of error.

Contrary to our initial results with Sockeye, pre-processing
did not aid in performance in the transfer learning setup,
even with the case and morphological markers specifically
marked as special tokens. There are a few possible reasons
for this. First, the dataset simply could be too small to incor-
porate the addition of new tokens, and to learn a meaningful
embedding for them. Especially with nearly 2000 different
morphological strings, a training size of 100,000 might not be
enough to learn their semantics in a useful way. Second, tex-
tually pre-processing may not be the correct method when
incorporating these features in a transfer learning setting.
Possibly adding in a secondary embedding representing mor-
phology and subsequently an additional layer to the model
to incorporate these features could be a better method of
doing it, allowing the model to attend to the features in a
more direct way. These embeddings could possibly be initial-
ized by a skip-gram model trained solely on morphologies,
without stems. In either scenario, this avenue of research
merits further investigation.

4.6 Backtranslation
In an attempt to augment our training dataset for transfer
learning, we perform backtranslation on monolingual data.
The intention behind backtranslation is that by augmenting
our data with gold-standard English, translated into silver-
standard Latin, we will at the very least improve our English
decoder’s fluency, and hopefully also improve the Latin En-
coder’s robustness to partially corrupted language.

First, we train English to Latin models for all three datasets.
We build off of the corresponding Helsinki-NLP English to
Romance language models for each. As Latin is an extremely
morphologically rich language, as we have discussed before,
we do not expect the translation scores to be as high in this
direction. For English to Latin normal direction, we achieve
a BLEU of 13.15, which is unfortunately lower than Google
Translate. However, as English to Latin synthesis is not the
intent of our project or the vast majority of scholarly work,
this is not a critical research failure. With more work on
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ensuring correct morphology is generated, we could pos-
sibly learn a better model. However, this is solely for data
augmentation in our scenario, so it is less important.

For the stem/case split, we achieved a BLEU of 20.06. How-
ever, it is not feasible to directly compare this metric with
the outcomes from Google Translate or the standard results.
This is because the stem/case dataset essentially represents
a distinct language from conventional Latin, given that each
original word is divided into its stem and case components.

For the morphological processing, with no special tokens
we achieved a BLEU of 16.99. Adding special tokens, we
achieve a BLEU of 22.41. As with stem/case, this BLEU can-
not be interpreted in comparison with English to Latin given
differing target vocabularies. Given that we saw no improve-
ment using simplified Morphological tokens, we decided not
to backtranslate using them as well.
With our English to Latin/Latin variant models trained,

we then perform Backtranslation on roughly 141,000 mono-
lingual English sentences. The composition of what mono-
lingual data we would use to backtranslate was a difficult
problem, because we did not want to bring in modern day
words or technology that would simply reduce the applicabil-
ity to translating ancient works. We first chose an Anthology
of English works from the years spanning roughly 1500-1700
AD, and then added a selection of historical texts about Greek,
Roman, and Near Eastern civilizations. All texts were then
filtered to exclude any line under 50 characters or that in-
cluded a non-ASCII character, and then re-organized from
line-by-line (of each book) to sentence-by-sentence.

With our backtranslated dataset created, we then re-train
the Latin to English models from scratch with the combined
dataset. We do not perform any re-sampling or balancing, as
the datasets differ in size only slightly.

For the normal Latin to English model, after including the
backtranslated data, we see a test BLEU of 22.43, only about
a 0.1 BLEU increase over the original model. However, on
a qualitative observation, the backtranslated model seems
to do better at distinguishing between objects and indirect
objects and subjects, and additionally has a slightly more
modern vocabulary, likely due to the inclusion of modern
historical texts.

After including the backtranslated data, theMorphological
split, with no special tokens, increases in performance from
its original fine tuning model, to 16.74. However, with special
tokens, we have a BLEU of 21.28, which is 0.09 lower than
its not-backtranslated baseline.

For the split model, we again see a slight decrease in test
BLEU from 21.00 to 20.73.
The fact that all models saw a decrease or essentially no

change after performing backtranslation is disappointing,
but it possibly speaks to the effect of transfer learning from

a pretrained model. As previously described, the main in-
tention of backtranslation is to increase the fluency and co-
herence of the decoder by providing it with a gold standard
of English, with then a silver standard (reverse translated)
Latin source. It is possible that the English decoder is nearly
at convergence when we import from the pretrained model.
It is also possible that our reverse translation methods are
not good enough to generate viable synthetic data, in fact
hurting the model. Perhaps that the monolingual data be-
ing backtranslated is either out of domain or corrupted to
the point where the English isn’t coherent enough to aid in
learning. All of these warrant further investigation.

4.7 Modernized Translations
Given that the majority of translations that we train our
model off of were created in the early 1900s, there is an
outsized representation of outdated vernacular - verb forms
like "dost" and "goeth", and pronouns such as "thee" and
"thou." Modern English no longer utilizes these forms, so we
experiment with updating the English part of the translation
pairs to Modern English, and tgeb transfer learning on the
modernized pairs to see if performance and readability will
improve. Additionally, as the Latin itself is in the Public
Domain due to all authors dying millenia ago, our novel
translation pairs will not be restricted by any Copyright, so
we can release them publicly for free use.

To update the translations, we utilize the OpenAI GPT-3.5
Turbo model. We use the following prompt: "Translate an old
dataset from the 1800s to modern English while preserving
the original meaning and exact same sentence structure. Re-
tain extended adjectives, dependent clauses, and punctuation.
Output the translation preceded by the text "Modern Trans-
lation: ". If a given translation is not a complete sentence,
repeat the input sentence. Original: {Original Text}". This
prompt was settled on after multiple iterations of Prompt
Engineering. The primary focus was to maintain sentence
structure, which is derived directly from Latin, while treating
the goal of updating the vocabulary as a secondary objective.

Over 99% of the output translations conformed to our stan-
dard, while there were a few that required manual correc-
tion, with the model apologizing that the input sentence was
not complete and that it required further context: "Modern
Translation: If you could please provide context or further
information, it would be helpful for me to understand the
meaning behind your statement. If not, I am afraid I cannot
provide a proper response as it is not a complete sentence."
After modernizing the translations, we first re-ran our

BLEU comparison on Google Translate, to see if it aligned
better with Modern English rather than archaic English. It
achieved a BLEU of 15.00, over 3 points worse than on the
original baseline. This is discussed below.

9



Gil Rosenthal

We then re-ran all of our prior experiments on the mod-
ernized dataset. The Base model achieved a best BLEU of
19.85, again over 2.5 points lower than the prior experiment.
Stem/Case-Split achieved a BLEU of only 19.04, once again
significantly lower than the original dataset. Morphological
split achieved a BLEU of 19.20, while Simplified Morphologi-
cal Split achieved a BLEU of 19.16.

In all cases, we see a significant decrease in performance.
There are a few possible reasons for this. Firstly, despite
our attempts at formalizing behavior through the prompt,
GPT-3.5 is a non-deterministic and unconstrained model.
Given the nature of GPT models, unless we read through
all modernization translations, we have no method of ensur-
ing it has followed the instructions in every case. Further,
even if it does follow all of our specifications, it is possible
that its decisions to modernize certain words can, in fact,
change the semantics of a sentence. Changing a translation
of audax from "bold" to "aggressive" may not appear to be a
large difference in human understanding, but it in fact will
confuse the model’s learning between different vocabulary
and result in worse translation quality. It is also possible
that our models were overfit on archaic English, so that just
outputting a "thee" and a "thou" at random has a high likeli-
hood of matching the vocabulary of a given translation and
falsely increases the BLEU. However, this line of reasoning is
likely to be more tenuous given that Google Translate, which
likely has a very good Modern English decoder model, also
suffered in the updated translations.
Further constraining generation by applying specific fil-

ters, such as Sentence Transformers Similarity [17] between
the source and output, checking actual sentence structure,
and creating a more restricted list of possible "updates" could
result in better modernized translation performance. Sourc-
ing from more modern translations to begin with would also
aid in this task, but unfortunately at the moment none seem
to be freely available.

5 CONCLUSION AND FURTHERWORK
We have shown that for a low-resource, case-marked, free-
ordered language like Latin, the best performance will be
achieved by performing transfer learning with a model that
has already learned a robust and coherent decoder into the
target language. Contrary to our preliminary results train-
ing both languages from scratch, utilizing morphological
features such as a stem/case split or a specific morphology
token does not improve performance significantly, if at all.
Back-translation provided modest gains in translation per-
formance, likely by increasing the fluency of the generated
English translations by providing the decoder withmore sam-
ples. Experiments in using modernized translations do not

aid in translation performance, likely due to methodological
flaws in the modernization process.

Most importantly, we established a new State of the Art in
Latin to English machine translation. We outperform Google
Translate by 4.2 BLEU, and provide the trained model for
public usage and development. Further, we have created a
first-of-its kind parallel dataset for further research usage.
In future work, performing novel techniques such as Un-

supervised NMT on monolingual Latin data would likely
improve performance. Other representations of source syn-
tactical information, such as a dedicated embedding for mor-
phology, or a replacement for Positional Encoding repre-
senting Parts of Speech/Constituency parsing could also aid
in incorporating domain knowledge into the model . Ad-
ditionally, maximizing the size of the training dataset will
always aid in rendering the model more robust and fluent.
Further, deeper research (beyond a simple backtranslation
model) into the opposite direction, from English to Latin,
could aid in our understanding of the ability of NMT mod-
els to learn to generate sentences in morphologically rich
languages. A similar process as our pre-processing methods
could be employed to combine the semantic sense of a word
with its relevant context information to generate an inflected
form. Additionally, inclusion of Latin into multilingual NMT
systems could aid in the discovery of parallels/similarities
with other languages, while also extending the impact of the
translator.
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