
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Online Profiling and Adaptation ofQuality Sensitivity in Internet Video

YIHUA CHENG, JUNCHEN JIANG

Video streaming systems separate two processes: (1) online video streaming (which optimizes quality metrics, such
as higher bitrates, and fewer stalls), and (2) offline modeling of quality sensitivity (i.e., how the quality metrics affect
average user experience). As bandwidth scarcity and resource contention worsen, it is pressingly needed to better
allocate resources by finer-grained modeling of how quality sensitivity varies during each video. However, per-video
quality-sensitivity modeling has been impractical, especially for live videos, as traditional offline user studies can be too
slow for a new video before viewers watch it.

We explore an alternative architecture, where quality sensitivity is modeled online by analyzing user actions in real
video sessions as they stream the same video. The challenge is how to model quality sensitivity reliably and apply it in
near-realtime to improve concurrent and future video sessions. We address the challenge in the context of SensitiFlow,
a controller that orchestrates adaptive-bitrate (ABR) logic of video sessions to optimize the common user-satisfaction
metric of user engagement (view time per session). SensitiFlow creates an online control loop that (i) gradually profiles
quality sensitivity per video segment as more user experience-related feedback (e.g., exit or skip) is received from video
sessions, and (ii) optimizes the ABR decisions of the video sessions to jointly improve their user engagement and
generate more feedback. SensitiFlow’s control loop is fast enough to profile quality sensitivity online and optimize
bitrate decisions under common viewer arrival patterns of live events (e.g., live sports and TV shows). Using the real
traces collected from 7.6M video sessions, we show that compared to a state-of-the-art (baseline) ABR logic agnostic to
the variation of quality sensitivity within a video, SensitiFlow (without using more bandwidth) can realize 80% of the
improvement in engagement that would have been obtained by a hypothetical “oracle” system having the knowledge of
quality sensitivity in advance. Our user study also confirms that SensitiFlow can improve the mean opinion score (MOS)
by 40% over the baseline ABR logic, suggesting that SensitiFlow’s online profiling of quality sensitivity is effective.

1 INTRODUCTION

Service providers across wired, wireless, and cellular networks struggle to catch up with the rapid growth
of video traffic fueled by the proliferation of mobile videos, live content, ultra-high resolution videos, etc [1].
The challenge can be particularly acute in live videos, in which bandwidth demands may spike anytime,
causing tremendous bandwidth contention [4, 7, 14, 20].

A key driving force for the high bandwidth demand is the traditional assumption that users’ experience is
equally sensitive to the quality throughout a video. Fortunately, recent works suggest that this assumption is
unnecessary—user’s true quality sensitivity varies greatly with the content in a video, e.g., normal playtime
in a sports video vs. key moments such as scoring, or heated conversations in a drama video vs. slow
scenic transitions [36, 37, 73]. Thus, by prioritizing quality on more quality-sensitive video segments video
streaming systems could improve user experience (or serve more users) without more bandwidth.

This observation has so far been studied only on a few example videos using lab-based or crowdsourced
surveys with limited scales. Before applying it to a broader context, we perform the first-of-its-kind study

Author’s address: Yihua Cheng, Junchen Jiang.
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(a) Today’s architecture: profiling quality sensitivity offline. (b) This work: profiling quality sensitivity online.

Online modeling of 
quality sensitivity

Control 
logic

Video sessions

Offline-profiled 
quality sensitivity

Offline user study

Video sessions

Fig. 1. The traditional approach (offline modeling of user experience) vs. our approach (online profiling of quality sensitivity).

based on a large real-world measurement dataset (§2.1). Unlike previous works that use session-level metrics
(e.g., average bitrate or rebuffering ratio over an entire session of 10s of minutes) [9, 19, 20, 45], we aggregate
individual quality incidents and user actions (e.g., skip, quit) per video chunk. We show that substantial
variability of quality sensitivity exists among video segments in both on-demand (VoD) and live videos
(§2.2). For instance, a one-second rebuffering stall can make users 3× more likely to exit if the stall occurs
during one video segment than if a one-second stall occurs in another video segment within 15 seconds.
To leverage such variability of quality sensitivity, prior works [73, 74] offline profile quality sensitivity

of individual video segments (Figure 1(a)), which requires crowdsourced tests or a large pre-determined
number of history sessions. However, they suffer from two problems. (i) Offline modeling can take too
long, making it impractical to optimize for live videos (e.g., it takes the state-of-the-art scheme [73] tens of
minutes to model the quality sensitivity of even a short video). (ii) Even for on-demand videos, it is difficult
to pre-determine how much data (crowdsourcing ratings or user feedback from history sessions) to collect
for offline profiling. Too much data will waste time, and fewer users will be optimized based on quality
sensitivity, but insufficient data will have too much noise to guide correct decisions.
This paper explores an alternative architecture (Figure 1(b)), where quality sensitivity is profiled online

(rather than offline) using user-satisfaction-related actions (e.g., quit, replay, skip) of real video sessions
watching the same videos to improve the user-satisfaction metric of user engagement (view time per
session)1. We present a concrete system of the new architecture (§3), called SensitiFlow, which orchestrates
the adaptive-bitrate (ABR) logic of video sessions. SensitiFlow gradually profiles quality sensitivity per
video segment as it collects more user actions and quality information from different video sessions, and in
the meantime, it uses the profiled quality sensitivity to make ABR decisions in a way that trades the quality
of less quality-sensitive video segments for higher quality during more quality-sensitive ones.

SensitiFlow addresses the key challenge facing online profiling of quality sensitivity: how to make online
profiling fast enough for live videos, despite measurement noises of user actions. It leverages two empirical
1While there are other measures of user satisfaction (e.g.,mean-opinion-score as in [73]), the online video industry often use engagement
as a key user experience metric for three reasons. First, user engagement can be calculated by directly observing user actions (skip,
replay, exit, etc) logged in passively collected data from all clients, while subjective user ratings must be actively elicited by surveys
that have limited or biased user samples. Second, user engagement could differentiate quality’s impact on different user actions (skip vs.
exit), while survey-based rating only summarizes user experience in only one number. Third, substantial literature on video streaming
has shown that user experience measured by user engagement is strongly correlated with video quality metrics [21, 29].
Manuscript submitted to ACM 2023-04-26 19:47. Page 2 of 1–26.
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insights driven by the analysis of large-scale measurement data. First, most views of a video segment in
live videos (both live events and live TV shows) span 30-90 seconds (or longer), which corroborates with
our conversation with domain experts and industry reports on live streaming delays [13, 15, 17, 18]. This
provides a short time window, which if used carefully could allow early viewers’ user-action feedback to be
used to profile quality sensitivity and improve overall user experience. Second, despite the inherent noise in
user actions, such measurement noise can be compensated by a large number of video sessions of popular
live videos (this does not apply to videos with very few viewers). Fortunately, for over 70% video segments
in our dataset, quality sensitivity of early sessions is highly correlated (with Pearson’s coefficient of 0.7)
with that of later sessions, suggesting that feedback from different users can inform quality sensitivity of
other users watching the same video.
SensitiFlow embraces these opportunities with several optimizations (§4). First, unlike offline profiling

that uses a pre-determined number of user study samples, SensitiFlow tries to optimize more sessions by
dynamically determining whether current estimates of quality sensitivity are sufficient to inform ABR
decisions of a given video session (e.g., it will not explore the suboptimal quality of a video segment if the
uncertainty of its quality sensitivity is low enough to make the best ABR decision that maximizes user
experience). Moreover, SensitiFlow restricts its ABR decisions to those that are not worse than the classic
ABR baseline that is agnostic to quality sensitivity (e.g., the same number of bitrate switches or rebuffering
but occurring in different positions).

To quantify SensitiFlow’s benefits, we create a testbed driven by the large measurement dataset of 7.6M
sessions and realistic network bandwidth traces. We show that for both VoD and live videos, compared to a
state-of-the-art ABR logic agnostic to quality sensitivity within a video, SensitiFlow (without using more
bandwidth) can achieve 80-85% of the improvement in engagement that would have been obtained by a
hypothetical “oracle” system having the knowledge of quality sensitivity in advance (i.e., offline profiling
but excluding the profiling overheads). Alternatively, SensitiFlow can maintain the same average user
engagement as the baseline ABR logic but serve 50-100% more concurrent video sessions. Our real user
study on 840 participants also confirms that SensitiFlow’s online profiling technique can improve the mean
opinion score (MOS) by 40% over the baseline ABR algorithm, suggesting that SensitiFlow’s online profiling
of quality sensitivity is highly effective.

2 MOTIVATION

Previous studies have shown, on 10s of participants and short videos, that users’ sensitivity to low-quality
incidents (e.g., a one-second rebuffering or a drop of bitrate) varies greatly with video content. Yet, a
thorough study on the variation of quality sensitivity in videos in the wild remains missing.
To fill this gap, we first analyze a large measurement dataset (summarized in Table 1), which includes

18 days of user-side measurements collected from 7.6M sessions of 4 popular content providers.2 Due to
business and anonymity considerations, we anonymize the names of the videos and providers. Similar video

2Each session is a single view of a video by a user.We use “user” and “viewer” interchangeably, and “session” and “view” interchangeably.
2023-04-26 19:47. Page 3 of 1–26. Manuscript submitted to ACM
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Number of days 18
Sessions (views) 7.6M
Unique viewers 2.5M
View hours 3.09M
Video hours 233

Content providers 4
Table 1. Dataset summary

(a) Session-wide analysis (traditional) (b) Segment-level analysis (this paper)

time

Per-segment quality
e.g., stall ratio per seg

Per-segment experience
(% skipped/exit per seg)

time

Session-wide quality
e.g., stall ratio per session

Session-wide experience
(% viewed per video)

Buffering stall
Bitrate 
drop

Session

Buffering stall
Bitrate 
drop

Viewed

Segments

Fig. 2. Measuring the variation of quality sensitivity across video segments.

datasets exist, but our analysis is unique in the following sense. We use the dataset to calculate not only
session-level quality metrics (e.g., aggregated rebuffering ratio over a 20-minute session), but individual
quality incidents (e.g., duration of each buffering event) and the associated viewer actions (e.g., skip, quit),
allowing us to associate the change of engagement in response to low-quality incident within a video
segment, rather than an entire session. The dataset has a favorable density of measurements—e.g., among
the video segments (15 seconds for VoD and 3 seconds for live), 90% of them have at least 6.5K unique views.

2.1 Terminology

Per-segment quality metrics: Traditional video quality is measured per session, by aggregating all
quality-related incidents (buffering, bitrate switch, etc) during a view of a video [47, 69]. To understand
users’ sensitivity to per-segment quality, we first chop a VoD (or live) video into shorter segments of chunk
length (Figure 2(b)). We define per-segment quality as a linear function of BufRatio (the fraction of time
spent in buffering stalls), AvgBitrate (average bitrate in Mbps), and BitrateSwitch (the sum of bitrate switches
in Mbps) when playing a video segment 𝑖 .

𝑞𝑖 = 𝛼 · BufRatio𝑖 + 𝛽 · AvgBitrate𝑖 + 𝛾 · BitrateSwitch𝑖 (1)

with 𝛼 = −30, 𝛽 = 1, 𝛾 = −1. These weights are borrowed from prior session-wide quality models [47, 69],
so if we average the segment-level quality over a video, we will conveniently get the same session-level
quality as in prior work. That said, this paper does not depend on particular weights.

Per-segment quality sensitivity: For a video segment 𝑖 , quality sensitivity is how per-segment quality
(defined above) affects average user engagement while users watch the segment. Specifically, given a
segment 𝑖 and a per-segment quality level3 𝑞, quality sensitivity is defined in two aspects:

• Engagement drop is the reduction of average segment-level engagement (i.e., view time) 𝐸𝑛𝑔𝑎𝑔𝑒 (𝑞, 𝑖)
when the segment has quality 𝑞 from the segment-level engagement 𝐸𝑛𝑔𝑎𝑔𝑒 (𝑞∗, 𝑖) when the segment
has the perfect quality 𝑞∗ (i.e., no rebuffering, highest bitrate throughout).

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐷𝑟𝑜𝑝 (𝑞, 𝑖) = 𝐸𝑛𝑔𝑎𝑔𝑒 (𝑞∗, 𝑖) − 𝐸𝑛𝑔𝑎𝑔𝑒 (𝑞, 𝑖)
𝐸𝑛𝑔𝑎𝑔𝑒 (𝑞∗, 𝑖) (2)

3We bucketize video quality to discrete quality levels and calculate the average engagement of sessions per quality bucket. The buckets
are created with a fixed bucket range of 2 (equivalently, 6.6% more buffering, 2Mbps lower bitrate, or 2Mbps more bitrate switches),
starting from the highest quality 𝑞∗. For instance, the quality buckets of a video with max bitrate 6Mbps will be (−∞, 0.2) [0.2, 2.2) ,
[2.2, 4.2) , [4.2, 6) , [6, 6] (i.e., 𝑞∗). Appendix A describes more details.
Manuscript submitted to ACM 2023-04-26 19:47. Page 4 of 1–26.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Online Adaptation to Dynamic Quality... 5

0.0

2.0

4.0

6.0

 0  100  200  300

E
n
g
a
g
e
m
e
n
t 
d
ro
p

 (
%
)

Video time (secs)

Quality level 1
Quality level 2
Quality level 3

0.0

1.5

3.0

4.5

6.0

7.5

9.0

 0  100  200  300

R
e
te
n
ti
o
n

 d
ro
p

 (
%
)

Video time (secs)

Quality level 1
Quality level 2
Quality level 3

(a) Live video

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0  100  200  300  400  500

R
e
te
n
ti
o
n

 d
ro
p

 (
%
)

Video time (secs)

Quality level 1
Quality level 2
Quality level 3

0.0

2.0

4.0

6.0

8.0

 0  100  200  300  400  500

R
e
te
n
ti
o
n

 d
ro
p

 (
%
)

Video time (secs)

Quality level 1
Quality level 2
Quality level 3

(b) VoD video
Fig. 3. Substantial variability of quality sensitivity at each quality level in an example VoD video and an example live
video. The error bar represents the standard deviation of the corresponding engagement drop and retention drop.

• Retention drop is the reduction of retention rate 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑖) (i.e., fraction of viewers not exiting the
session at the segment 𝑖) from the retention rate 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞∗, 𝑖) under perfect quality 𝑞∗.

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐷𝑟𝑜𝑝 (𝑞, 𝑖) = 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞∗, 𝑖) − 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑖)
𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞∗, 𝑖) (3)

Caveats: These metrics of quality sensitivity are relative. For instance, an engagement drop of 20% does
not mean viewers always watch 80% of the video segment; instead, it means viewers under a given low
quality watch 20% less than viewers who watch the video segment in perfect quality—this normalization
helps to reduce such quality-agnostic influence on engagement as low-interestingness content.
Eq. (2) and Eq. (3) assume that user engagement in a segment is associated largely with the quality of

the segment. We validate this assumption by showing that exits at one segment have much more marginal
correlations with other segments’ quality than their correlations with the same segment’s quality (details in
Appendix C). Intuitively, this might be a result of the memory effect that the impact of historical events tend
to be less than that of recent events.
For enough statistical confidence, we only compute engagement and retention drops only on video

segments with >100 views at each quality level. We also restrict our analysis to videos where viewers of
different segments have similar distributions of geographic locations, player platforms, and network speeds,
in order to minimize confounders of the variation of quality sensitivity across segments.

2.2 Variability of quality sensitivity

We begin with the video-wide variability of quality sensitivity over an entire video at a given quality level
and then the session-wide variability of quality sensitivity during a video session, in which a real user might
watch a portion of a video at time-varying quality.

Variation of sensitivity with content: Figure 3 shows two concrete examples (one VoD video and one
live video), which have substantial video-wide variability of quality sensitivity in both engagement drops
and retention drops. The peaks of each curve mark the video segments where the average user engagement
is most sensitive to low video quality during a segment. For instance, the engagement drop due to low
quality (quality level 1) around 50th second of the VoD video is about 3× higher than around 100th second,
and the quality sensitivity in the live video varies by 1.5-2× within tens of seconds.
2023-04-26 19:47. Page 5 of 1–26. Manuscript submitted to ACM
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(a) Live videos
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(b) VoD videos
Fig. 4. Substantial variability of quality sensitivity among the consecutive segments requested by the same session.

Dynamics of sensitivity within a session: Next, we focus on its variation within a short time window
(of three consecutive video segments) during real video sessions in our dataset. Focusing on short time
windows makes the findings actionable (e.g., ABR algorithm in [73] can decide bitrates and buffering events
for chunks within a buffer). For each time window of three segments, we calculate the sensitivity variation
by 𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥
of segment-level quality sensitivity (in engagement drops and retention drops). For instance,

Figure 4 shows that for 40% of the three-segment windows in live sessions, the engagement drop (and
retention drop) at the lowest quality level vary by over 51% (and 62%).

To give an intuition of how video content affects quality sensitivity, we zoom-in on two example segments.
One segment is part of a fairly predictable conversation between two people. When quality is bad, viewers
tend to skip the content probably in the hope to catch important content later, rather than abandoning
the session, causing high engagement drop on bad quality (though not a high retention drop). The other
segment has a high retention drop than an engagement drop. Upon a closer look, we found it is part of a
long interlude after a scene just ends. In this case, any buffering stalls tend to cause people to abandon the
session altogether rather than waiting for the interlude to end. These content-related quality sensitivity
corroborate previous small-scale studies [36, 37, 73]. We stress that our goal is not to establish causality
between content and quality sensitivity, but to show their potential correlation.

2.3 Challenge of estimating quality sensitivity

We have shown the variability of quality sensitivity, which arises as a consequence of video content’s impact
on user engagement. The natural question then is how to estimate the variability of quality sensitivity in a
new video. Two high-level approaches to this problem exist but they suffer following limitations.

Survey-based methods are too slow: One approach relies on offline survey studies. It recruits a set
of participants (in lab studies or on crowdsourced platforms), asks them to watch and rate the quality of
multiple versions of the videos with each version being played at different video quality levels, and finally
aggregates their ratings to model users’ sensitivity to video quality.

However, such offline survey studies can be quite slow. A recent effort tries to automate crowdsourcing
for the estimation of quality sensitivity [73], thus reducing the survey delay compared to the traditional
in-lab studies (e.g., [32]). Unfortunately, it still takes at least 78 minutes to accumulate enough crowsourced
user ratings to profile quality sensitivity of a 30-second video, which is too slow for most live videos.
Manuscript submitted to ACM 2023-04-26 19:47. Page 6 of 1–26.
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(b) Live videos
Fig. 5. Correlations between actual quality sensitivity and different estimators. Compared to using session time, view count,
and visual quality (VMAF), naive SensitiFlow (which uses early sessions) shows the highest correlation.

Heuristics-based methods are inaccurate: Alternatively, one may use heuristics, which use pixel values
or viewing history to infer quality sensitivity. They do not require offline survey studies, but how well
they correlate with quality sensitivity and its variation remains unclear. Here, we consider three particular
heuristics: (1) VMAF [16], a popular pixel-based visual quality index (e.g., [50]), (2) the time position during
a session, which is believed to affect users’ sensitivity to video quality (e.g., [45]), and (3) the popularity of
the segment (the number of views of a segment), which intuitively indicates user attention when viewing
the segment (e.g., if viewers tend to skip a part of the video, they will likely exit when the quality is poor).
Figure 5 (the first three bars in each subfigure) shows, for each heuristic and each video, the Pearson’s

correlation coefficients between these heuristics and the segment-level engagement drops and retention
drops of sessions watching the same video. The figure 5 shows the distribution of the correlation coefficients
over the 50 videos, and we can see that they are weakly correlated (if at all) with quality sensitivity (absolute
Pearson’s correlation coefficients lower than 0.3). This suggests that the impact of video content on quality
sensitivity might be more complex than what can be captured by these heuristics (though it remains an open
question if a more sophisticated heuristic, e.g., a computer-vision model, could predict quality sensitivity).

Summary of findings: In summary, this section shows that:

• Quality sensitivity varies significantly with a temporal variation of video content in both VoD and live
videos. For instance, in response to the same low-quality incident, the drop of engagement can vary by
50% depending on where the low quality occurs within a 3-segment window.

• Existing methods are unable to estimate quality sensitivity both accurately and quickly. Heuristics such
as VMAF are not accurate indicators of quality sensitivity (engagement drops and retention drops), while
an offline survey-based study is too slow, especially for live videos.

3 SENSITIFLOW: ONLINE PROFILING AND ADAPTATION OF QUALITY SENSITIVITY

We present SensitiFlow, a controller for ABR logic of video players. Unlike prior work that relies on offline
user studies, SensitiFlow profiles quality sensitivity using online feedback from real video sessions.

3.1 Overview of SensitiFlow

Figure 6 depicts SensitiFlow’s high-level workflow. SensitiFlow’s global coordinator constantly collects online
measurements of per-segment quality metrics and engagement-related feedback (e.g., exit or skip) from
2023-04-26 19:47. Page 7 of 1–26. Manuscript submitted to ACM
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Online service 
sensitivity modeling

ABR

ABR

Latest quality-
sensitivity profiles

1st session

2nd session

Measurements (User 
actions & video quality)

Fig. 6. Each session in SensitiFlow uses the latest quality-
sensitivity profile to make ABR decisions and updates the
global coordinator with the latest user actions and video
quality.

Key
<Segment ID, Quality level>

Value
<EngagementDrop, RetentionDrop>

<Seg 1, QualityLevel 2> <20%, 18%>
<Seg 2, QualityLevel 2> <13%, 9%>
<Seg 5, QualityLevel 1> <25%, 29%>

… …

Fig. 7. An example quality-sensitivity profile: a key-value
mapping from each quality level of a segment to the user
sensitivity to the quality (average engagement drop and
retention drop) at the segment.

video sessions to maintain an up-to-date view of the quality-sensitivity profile of each video. It then shares
the profile with each client, which makes ABR decisions based on both dynamic network conditions and
the quality-sensitivity profile. This high-level framework is compatible with existing logically centralized
control platforms (e.g., [5, 6, 11, 35, 43, 49]), operated by content providers and third parties that have
client-side instrumentation to measure viewers’ reactions to video quality and share information with
clients.

From an abstract view, a quality-sensitivity profile maps each segment and quality level to the estimation
and variance of quality sensitivity, in engagement drops (Eq. (2)) and retention drops (Eq. (3)). Thus, it can
answer the “what-if” question needed by the clients:what would the expected drop in engagement/retention for
a given quality at each segment? When a session finishes playing a segment, it calculates the segment-level
quality and engagement and sends it to the global controller to update the quality sensitivity profile. When
a session’s ABR logic decides the bitrate of the next video segment, it will query the quality-sensitivity
profiles and execute the quality-sensitivity-aware algorithm described in the next section.

Why online profiling of quality sensitivity? Unlike offline modeling of quality sensitivity, the key
advantage of SensitiFlow, as illustrated in Figure 1, is that it can profile quality sensitivity on the fly as more
viewers of a new video joint. It thus could enable new quality-sensitivity-driven optimizations on any new
videos (especially live videos), which would be impractical with offline profiling of quality sensitivity.

Though VoD video traffic is still important, live videos pose particular challenges for a multitude of
reasons [1]. Live videos’ unpredictable workloads and flashcrowd nature make demand prediction and
resource provisioning particularly challenging (e.g., many live events do not have enough history to predict
their real popularity). At the same time, live viewers often pay more attention to content and tend to be
fairly sensitive to low quality. In this context, SensitiFlow’s potential to profile quality sensitivity online
and improve user experience without more bandwidth is well-suited.

That said, there are two potential concerns with SensitiFlow’s online profiling of quality sensitivity. First,
compared to offline user studies, measuring user engagement in real video sessions could be as noisy (if not
more). Fortunately, since we only use the average quality sensitivity across users, such measurement noise
could be compensated by a large number of video sessions. Popular live videos such as those in our dataset
Manuscript submitted to ACM 2023-04-26 19:47. Page 8 of 1–26.
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(a) A typical live-linear video (TV show)
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(b) A typical live-event video (sports event)

Fig. 8. Example arrival patterns of views of a live video segment. Even in live-event videos, 20% of sessions watch the
same content at least 3 seconds earlier than 60% of sessions.

do contain enough sessions to reduce the statistical variances. For instance, Figure 5 (the last three bars in
each subfigure) shows that average quality sensitivity calculated based on the first 10-30% views of each
segment is strongly correlated with the quality sensitivity calculated based on the last 70% sessions (which
do not overlap with the first 10-30% views). Therefore, the online measurements of user engagement from
early sessions can be used to accurately predict the quality sensitivity for other sessions.
Second, if most sessions of live videos watch the same content almost simultaneously, it will cripple

the possibility of using the quality sensitivity of early sessions to optimize other sessions. Fortunately, our
analysis shows that most views of a live video segment occur during a non-trivial time span of 30-40 seconds
after it first being viewed. Figure 8a and 8b show the relative wall-clock time of sessions watching a chunk
of a live-linear video and a live-event video As shown in Figure 8, live linear streaming[8] refers to those
24/7 live programs. The content of live linear videos usually includes talk shows, TV plays, and movies.
Live event streaming represents those standalone live programs of a few hours, such as sports events.
Our conversation with domain experts has confirmed that such time discrepancies among live video

viewers is commonly accepted. While during the early days of the internet video industry, users expected
to watch live broadcasts synchronously (much like today’s video conferencing), over the last decades, the
modest time difference (of 10-30 seconds) among viewers has become an accepted feature (rather than a bug)
of live internet videos (e.g., people usually share live scores over out-of-band channels, such as chat or social
media), and the industry has been lukewarm to increase system complexity for reduced asynchronicity4. As
a result, the view pattern shown in Figure 8 is unlikely to change in the conceivable future.

3.2 Profiling and adaptation of quality sensitivity

So far, we have seen that online profiling of quality sensitivity could be feasible. To this end, SensitiFlow’s
ABR control logic needs to use the latest quality-sensitivity profile to maximize the overall engagement for
sessions watching the same video while avoiding any sessions having worse video quality than a default
ABR logic agnostic to quality sensitivity. To motivate our design, let us first consider a natural strawman
which works in two phases.

4Some notable exceptions are online conferencing and gaming. In both cases, synchronicity is crucial, but they target a much smaller
group of audience compared to large-scale live events, and they are built on a different software stack (based on WebRTC and UDP).
2023-04-26 19:47. Page 9 of 1–26. Manuscript submitted to ACM
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Profiling phase: For each video, a base ABR logic (e.g., FastMPC[69]) is used by the first 𝑁 sessions, whose
per-segment user engagement and quality metrics are collected and used to estimate the quality sensitivity
of the segment. 𝑁 should be set such that the quality sensitivity of each segment and each quality level can
be reliably estimated based on the feedback of these sessions (Figure 5). The value of 𝑁 is dependent on the
popularity of the video and the network conditions of its viewers, and we found 𝑁 = 4000 works empirically
better in our dataset than other values. This phase produces reliable estimates of quality sensitivity without
negatively impacting the early sessions’ quality compared to the default ABR logic.
Optimization phase: After 𝑁 sessions, each session runs a variant of the quality-sensitivity-aware ABR

algorithm proposed in [73]. The algorithm takes as input the player’s current state (history throughput,
buffer length, etc) and the quality sensitivity of the next 𝐻 segments in the look-ahead horizon, and returns
as output ABR decision for the next chunk. More specifically, new ABR logic picks the action 𝑎 = (𝐵, 𝑡)
(bitrate and inserted rebuffering time [73] for the next chunk5) that maximizes the reward defined as

𝑅(𝑎) = −
∑︁
𝑖∈𝐻

(𝑙seg
𝑖

· 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐷𝑟𝑜𝑝𝑖 (𝑄 (𝑎, 𝑖)) + 𝑙rest𝑖 · 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐷𝑟𝑜𝑝𝑖 (𝑄 (𝑎, 𝑖))) (4)

where𝑄 (𝑎, 𝑖) is the quality caused by the action 𝑎 at segment 𝑖 in the lookahead horizon 𝐻 , and 𝑙 seg
𝑖

and 𝑙 rest𝑖

are the lengths of segment 𝑖 and the remaining content after 𝑖 , respectively. Effectively, Eq. 4 is the negate of
the expected decrement on overall engagement caused by using quality 𝑞𝑖 at segment 𝑖 , where the first term
is the engagement drop per segment (𝑙 seg

𝑖
· 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐷𝑟𝑜𝑝𝑖 (𝑞𝑖 )) and the second term is how more likely

the quality would cause viewers to exit without watching the remaining content (𝑙 rest𝑖 ·𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐷𝑟𝑜𝑝𝑖 (𝑞𝑖 )).
Unfortunately, this strawman is not efficient in practice on live videos (Figure 8), because the measure-

ments collected during the profiling phase can take several seconds, which we refer to as the propagation
gap (Figure 9), to collect (e.g., viewers must watch the segments first) and update the quality-sensitivity
profile of the segments in the lookahead horizon of sessions that arrive during the optimization phase. As
live viewers watch the same segment within a relatively short time frame (tens of seconds), many sessions
that arrive after the profiling phase may fall within the propagation gap and thus will not be optimized.

4 OPTIMIZATIONS OF SENSITIFLOW

SensitiFlow entails several optimizations to make this strawman more effective, especially for live videos.

Optimized objective: One insight is that SensitiFlow’s online quality-sensitivity profiling and sensitivity-
aware ABR logic can be cast as a multi-armed bandit problem: at a high level, for each session and each
segment, the ABR logic selects an action from a list of available ones to maximize the overall reward (user
experience) defined in Eq. (4) across sessions. Thus, we build SensitiFlow’s ABR logic on the common
framework of Upper Confidence Bound (UCB) algorithm [38].

5The action of inserting a rebuffering stall was first proposed in Sensei [73]. The idea is that if a stall is expected to occur in the next
chunk, which is more quality sensitive to the current chunk, then it would make sense to deliberately add a short stall early in the
hope to avoid stalls in the more quality-sensitive chunk. This is shown to give a better user experience than traditional ABR schemes
which only initiate rebuffering events when the buffer is empty.
Manuscript submitted to ACM 2023-04-26 19:47. Page 10 of 1–26.
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Our method: 
avoid LQ on s2

Naïve method:
Use default ABR

Total engagement drop = 0.6 ± 0.3 Total engagement drop = 0.2 ± 0.1 

LQ
HQ

𝑠1 𝑠2
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HQ

𝑠1 𝑠2

>

Fig. 10. An example showing the opportunity to improve a
session during the profiling phase: Despite high uncertainty
in sensitivity measurements, limited history data is enough
to show that actively avoiding low quality (LQ) on 𝑆2 is better
than using the default ABR.

More specifically, SensitiFlow’s ABR algorithm will pick the action 𝑎 that maximizes the sum of the
reward 𝑅(𝑎) and the upper confidence bound𝑈 (𝑎), where 𝑅(𝑎) is defined in Eq. (4). For a given lookahead
horizon 𝐻 , we define 𝑈 (𝑎) as: 𝑈 (𝑎) = ∑

𝑖∈𝐻

√︃
𝐶𝑖,𝑄 (𝑎,𝑖 )
𝑁𝑖,𝑄 (𝑎,𝑖 )

, where 𝑄 (𝑎, 𝑖) is the quality caused by the action 𝑎

at segment 𝑖 in the lookahead horizon 𝐻 . 𝑁𝑖,𝑄 (𝑎,𝑖 ) represents the number of sessions that have already
watched segment 𝑖 at quality 𝑄 (𝑎, 𝑖), and 𝐶𝑖,𝑄 (𝑎,𝑖 ) is the number of sessions that have the predicted quality
𝑄 (𝑎, 𝑖) for the unwatched segment 𝑖6.𝑈 (𝑎) is effectively defining how UCB algorithm should explore the
action space: (i) an action will be prioritized if it has been tried less often (i.e., 𝑁𝑖,𝑄 (𝑎,𝑖 ) is smaller), and (ii)
An action will be prioritized if later sessions are more likely to take it (i.e., 𝐶𝑖,𝑄 (𝑎,𝑖 ) is larger) .

Unlike the naive method (§3.2), the optimized objective allows dynamically determining whether to apply
the sensitivity-aware optimization, which enables optimizing early sessions that arrive during the profiling
phase. Figure 10 illustrates an example : An early session comes during the profiling phase, and it is about
to experience low quality in one of the coming segments 𝑠1 and 𝑠2. The naive algorithm will not optimize
the session as it is in the profiling phase. However, if measurements received so far are enough to show 𝑠2

is more sensitive to low quality than 𝑠1, a better action can selected: e.g., adding a rebuffering event in 𝑠1 (to
improve quality during 𝑠2) instead of waiting for the buffer to draw out and buffering in 𝑠2.

Avoid being worse than default ABR: In practice, using the UCB algorithm has a problem: when the
uncertainty of the quality-sensitivity profiles is high, it may choose to explore an action that leads to the
quality worse than using the default ABR. To avoid such a problem, we manually limit the action space
before applying the UCB algorithm.

First, we add the actions that are highly likely better than the default ABR’s action based on the current
quality-sensitivity profiles. More specifically, for each action and its subsequent quality 𝑞𝑖 at each segment 𝑖
in the look-ahead horizon, the quality-sensitivity profiles return the distribution (mean-variance pair) of
𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐷𝑟𝑜𝑝𝑖 (𝑞𝑖 ) and that of𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐷𝑟𝑜𝑝𝑖 (𝑞𝑖 ), based onwhichwe can then calculate the distribution
(a mean-variance pair) of the reward (Eq. (4)) of the action. Now, based on these estimations, we compare if

6To help calculate 𝐶𝑖,𝑞𝑖 , we let each video session update the global coordinator with the predicted quality levels of future video
segments in the look-ahead horizon (this is already done by traditional ABR logics, such as RobustMPC [69] and Fugu [67]).
2023-04-26 19:47. Page 11 of 1–26. Manuscript submitted to ACM



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

12 Anonymous and Yihua Cheng, Junchen Jiang

one of the actions is already very likely better than another: the action with a mean reward 𝜇 and variance
𝜎2 such that the other action whose mean reward 𝜇′ and variance 𝜎 ′2 is worse than the first one by a large
margin, i.e., 𝜇 − 𝜇′ ≥ (𝜎 ′2 + 𝜎2) 1

2 .
Another key observation is that within a horizon, different actions may lead to similar quality, but they

may help quality-sensitivity profiling to a different extent. For example, two different actions may have the
same rebuffering length in the horizon while the rebuffering event happens at different segments. In such a
case, they will share the same quality calculated by the QoE function defined in Eq. (1), but they will update
different quality levels at different segment Therefore, we extend the action list with the actions that lead to
the same QoE value (calculated by Eq. (1)), which allows us to prioritize profiling a specific quality while
not worsening the overall quality of a given session.

Minimizing the propagation gap: Finally, we reduce the propagation gap by minimizing the communi-
cation and computing overhead of SensitiFlow’s global coordinator. To maintain the quality-sensitivity
profiles, logically the global coordinator must collect the playback quality, user actions (engagement per
segment), and the predicted quality from all ongoing video sessions at the boundary of each video segment.
A naive implementation therefore would have prohibitive overheads in communication and computation.
For instance, in Figure 8, the peak number of concurrent sessions from video sessions is 1M per second.
According to our microbenchmarking on the SparkStreaming-based global coordinator (Figure 21), the
update delay would be 5 seconds (with 8 cores), which lower bounds the propagation delay. This puts a
tremendous strain on live video systems whose resource provisioning is already challenging.

To reduce the overhead, we leverage the following key characteristics of our framework: By aggressively
caching the history states of quality-sensitivity profiles, we only need to update them when the video player
changes its state (e.g., start rebuffering, bitrate switch, or user exit), which is relatively rare: by letting
sessions update only when one of these events happen, we can reduce the number of updates by about 70%.
We also reduce the number of requests sent by the sessions as follows. If all segments in the look-ahead
horizon can already have the perfect quality, the session will not request the quality-sensitivity profiles
from the global coordinator, which further reduces the number of requests by about 50% in our dataset.

5 EVALUATION

Finally, we evaluate the potential of SensitiFlow in the context of improving user engagement and/or
serving more sessions without using more bandwidth. We leverage the real-world video viewing patterns
and quality sensitivity derived from the dataset collected by the production streaming systems (§2). Our
trace-driven experiments and real user studies show the following.

• Hypothetically, If the per-segment quality sensitivity is known in advance (i.e., offline profiling but
without the profiling cost or delay), under realistic video-viewing workloads, average user engagement
can be improved by 8-13.5%, compared to a default ABR logic (an impressive gain based on our interaction
with content providers). Using optimized online profiling of quality sensitivity, SensitiFlow can realize

Manuscript submitted to ACM 2023-04-26 19:47. Page 12 of 1–26.
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60-80% of this gain (i.e., normalized engagement gain), whereas the gains of a state-of-the-art ABR logic
and an unoptimized version of SensitiFlow over the default ABR logic are much less.

• Using real user study, we show that SensitiFlow can improve the mean opinion score (MOS) by 40% over
the baseline ABR algorithm, suggesting that SensitiFlow ’s online profiling of quality sensitivity and ABR
algorithm is highly effective.

• Our implementation of SensitiFlow’s global coordinator can achieve a peak update and query rate of 2
million concurrent sessions using a single machine with moderate resources.

5.1 Setup

Trace-driven simulator: We built a custom simulator that takes the following configurations as input: (1)
session-related (e.g., each session’s arrival time, hashed identifier of the video, and starting position in the
video) and video-related (e.g., each video’s chunk length and the chunk size at each bitrate) the information
obtained from the same dataset described in §2, and (2) the empirically observed probability distributions of
engagement drops and retention drops at each video segment and each video quality bucket.

The simulator replays the sessions that watch the same video in their logged chronological order. In each
session, the client runs a state-of-the-art ABR algorithm (FastMPC [69]) to decide when to download each
chunk at which bitrate. The per-session simulation is logically equivalent to prior work (e.g., [47]): each
time a client requests a chunk, the simulator uses the assigned bandwidth timeseries (explained shortly)
and chunk size (obtained from static information of the video) to estimate the delay of downloading each
chunk, and the player updates its buffer length when a chunk is received. A client plays the content as soon
as the buffer has at least one video chunk and keeps playing until the buffer drains or the simulator decides
to exit based on the empirical probability distributions in the dataset.
Our trace-driven simulator embeds a necessary assumption: different users share the same distribution

of quality sensitivity at the same video segment and video quality. Given the inherent randomness of user
actions, it is hard to simulate the exact same actions of different users at each segment and each quality level.
But we make sure that when the simulator is fed with the same segment-level quality logged in the trace of
each session, the distribution of user engagement matches the distribution of the logged user engagement
with negligible differences. (see Appendix D for details.)

Emulator testbed: We also developed an emulator for real-world experiments. As shown in Figure 11, our
emulator has three components: a video content server, an emulated video player, and the global coordinator.
The global coordinator maintains the measured quality-sensitivity information and sends the corresponding
part to the player based on its request. The emulated player can run both baseline ABR and SensitiFlow to
determine which bitrate to download for a video chunk. It then downloads the video chunks from the video
content server (an HTTP server hosting the video chunks at different bitrates). We emulate the network
between the video content server and player by Mahimahi [51].

Strategies: We implement five strategies.
2023-04-26 19:47. Page 13 of 1–26. Manuscript submitted to ACM
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Fig. 12. Normalized engagement gain of a strategy measures howmuch
of the gain obtained by a hypothetical system that knows quality sensi-
tivity in advance can be obtained by the strategy under consideration.

1. Base ABR:We implement a base ABR logic that selects the highest possible bitrate that will not cause
rebuffering in the current segment. This will serve as the basis to calculate the performance gain.

2. FastMPC: Decisions (bitrate adaptation) are made by maximizing quality objective in Eq. 1 using the
state-of-art ABR algorithm of FastMPC [69]. This can be viewed as an intelligent ABR logic that is
agnostic to the variation of quality-sensitivity within a video.

3. Strawman SensitiFlow:We apply the optimization strategy proposed in §3.2: first 4000 sessions of each
video will be controlled by the baseline algorithm while their information is fed to the online quality-
sensitivity profiling algorithm, and after 4000 sessions,future sessions will use the measured quality-
sensitivity for optimizations. (§3.2).

4. Optimized SensitiFlow: Decisions are made based on the algorithm proposed in §4.

5. Oracle: This is a hypothetical design that optimizes SensitiFlow’s objective but knows quality sensitivity
in advance. This can be seen as an oracle point of comparison with hindsight information.

Metrics: We use the normalized engagement gain (Figure 12) to measure the improvement of “Baseline”,
“strawman”, and SensitiFlow over the “Dumb ABR”. Normalized engagement gain measures the increase
of average engagement by the new algorithm over the increase of average engagement by the “Oracle”
algorithm (i.e., SensitiFlow’s ABR with knowing quality-sensitivity profile for all segments in advance).
For instance, a normalized engagement gain of 20% means achieving 20% of the maximum potential gain
obtained by “Oracle”. While we do not use absolute engagement values (which depend on the popularity of
video content itself), we confirm that the engagement values are higher than 50% for most videos.

Bandwidth settings: To evaluate our quality-sensitivity-aware optimizations on realistic network condi-
tions, we created a corpus of network traces using the public broadband dataset provided by FCC[12]. The
FCC dataset contains over 1 million throughput traces, each of which logs the average throughput over 30
minutes, at a 5-second granularity. We generate 2000 traces for our test set, each with a duration of 5000
seconds, by concatenating randomly selected traces from the “Web browsing” category in the June 2015
collection. We only selected original traces whose average throughput ranges from 0.5 to 7.5 Mbps, as it
covers the average logged bitrate of each session in our measurement.
Manuscript submitted to ACM 2023-04-26 19:47. Page 14 of 1–26.
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(c) Different VoD videos
Fig. 13. On various live and VoD videos, SensitiFlow achieves much more engagement improvement than the baselines.
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(b) VoD videos
Fig. 14. Engagement gains grouped by different available bandwidth buckets. Though the relative differences vary, Sensiti-
Flow is consistently better.

5.2 Improvement analysis

Engagement improvement across videos: Figure 13 shows that, across different videos, the normalized
engagement gains of the strawman method are 61-69% and 52-64% when using the session arrival pattern
of live linear videos and live events (an example is shown in Figure 8), respectively. With the optimizations
proposed in §4, the normalized engagement gain can be further improved to 76-84% and 66-81% for both
types of live videos. SensitiFlow can also provide a gain of 73-85% for VoD videos (though the improvements
over the strawman strategy is relatively marginal). These findings suggest that without more bandwidth
resources, existing optimizations (by leveraging quality sensitivity) can achieve 60-80% of the maximum
improvement achievable by the oracle system that knows the exact quality sensitivity in advance. We also
make sure that the improvement of “Oracle” itself is non-trivial: among all the videos, it can improve the
average engagement by 8-13.5%.

Impact of bandwidth on engagement improvement: Figure 14 shows the normalized engagement gain
of both the strawman and optimized SensitiFlow grouped by sessions under various average bandwidth
buckets. In all bandwidth buckets, the optimized SensitiFlow has normalized engagement gains about
64-89% and 78-93% for live and VoD videos, respectively. Generally, SensitiFlow is most effective when the
available bandwidth is when ABR logic is most needed (when bandwidth is in the moderate range.)

Fairness of improvements: One concern is that SensitiFlow might lead to unfair outcomes as later
sessions get more improvements. We compare Jain’s fairness index of engagement across video sessions
grouped by the available bandwidth. The result shows Jain’s fairness index of all the methods is larger than
0.95 and SensitiFlow rarely decreases the fairness index compared to the baseline.
2023-04-26 19:47. Page 15 of 1–26. Manuscript submitted to ACM
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Fig. 15. The impact of viewership on the
gain of SensitiFlow.
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(b) VoD video

Fig. 16. When sessions share a bandwidth bottleneck, SensitiFlow can
serve 15-100% more sessions than the base ABR while keeping similar
user engagement.
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Fig. 18. Trace-driven emulation: Effectiveness of different strategies on
sessions with different delays when watching the same segment.

 0.74
 0.76
 0.78

 0.8
 0.82
 0.84
 0.86

 90  105  120  135  150N
o
rm
. 
e
n
g
a
g
e
m
e
n
t

Time (mins)

FastMPC 

Optimized SensitiFlow 

Fig. 19. Emulated test under stress. After a
100% surge in arrived sessions, SensitiFlow has
much higher engagement than the baseline.

Impact of video popularity: Figure 15 shows the normalized engagement gain on a live video with the
same arrival pattern distribution but different total numbers of views, i.e., different number of sessions will
come within the same period of time. Optimized SensitiFlow achieves normalized engagement gains around
65-81% when the viewership is ranging from 7.5K to 25K. SensitiFlow’s gains approach the oracle strategy
at a higher number of views, though with a non-negligible gap: this is because, despite the optimization of
SensitiFlow, the propagation delay cannot be completely eliminated.

Serving more sessions without more bandwidth: We also evaluate that when a bottleneck link is being
shared, how many users SensitiFlow can serve while keeping the same engagement same as using the
baseline. We start the experiment by simulating multiple sessions sharing the same bottleneck link using
the baseline and the optimized SensitiFlow’s ABR, and keeping their engagement the same. Figure 16 shows
that SensitiFlow can serve 50-100% more concurrent video sessions for live videos (15-80% more for VoD
videos) while maintaining the user engagement same as the baseline.

Engagement gain over time: To show how the performance of different strategies evolves, we run an
emulation on 25 sessions coming at different time points (as shown on the x-axis of Figure 18), while the
global coordinator simulates a whole population of 20K sessions following the arrival timeseries shown
in Figure 8. Figure 17a shows that on a VoD video, the strawman strategy ends its profiling phase around
the 200th minute, after which the normalized engagement gain climbs up from around 35% to 75-100%. In
contrast, optimized SensitiFlow can further improve the sessions arrived between the 50th and the 250th

minute with a gain ranging from 55-80%. Figure 17b presents a similar trend in a live video: optimized
SensitiFlow can further improve the engagement of sessions arriving between the 5th and the 14th second,
which accounts for 32% of total sessions.
Manuscript submitted to ACM 2023-04-26 19:47. Page 16 of 1–26.
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Fig. 21. The performance of the global coordinator. With 8 CPU cores, SensitiFlow can handle the requests from 2M
concurrent sessions, while updating the quality sensitivity profiles every 2 seconds.

Performance under stress: Finally, we evaluate the performance of SensitiFlow under a scenario that the
system is “under stress” by the emulation. We start the experiment by letting all sessions share the same
bottleneck link. At the 95th minute, the session arrival rates doubled, but the bottleneck link bandwidth
does not change. Figure 19 shows the engagement normalized against the maximum potential engagement
(i.e., when the session has the perfect video quality among all the segments) for different strategies facing
such overloading: while the baseline algorithm shows a fast drop in the engagement, the proposed strategy
can maintain the user’s engagement for a longer time.

5.3 Scalability of Global Coordinator

In SensitiFlow, the component that might become a performance bottleneck is the global coordinator
(Figure 6) which maintains the latest view of the quality-sensitivity profiles. Other components (e.g., client-
side instrumentation) are already used by current content providers and third parties (e.g., [5, 6, 11, 35]).

Prototype implementation: We build a prototype of the global coordinator on a server that runs Ubuntu
18.04 with 64G RAM and 32-core Platinum 8269CY 3.10GHz CPU. The quality sensitivity measurements
(each of 10-20Bytes) are fed to a cluster with Kafka [3] and SparkStreaming [71]. The SparkStreaming
instance will read the measurements from Kafka and then update per-segment quality-sensitivity profiles
maintained in an RDD [70] in a streaming fashion. SparkStreaming uses micro-batches to update RDDs,
instead of merging each update immediately. This implementation fits our needs, since the freshness
requirement of quality-sensitivity profiles is in seconds, not milliseconds.

Scalability tests: We test the performance of the prototype with the optimization proposed in §4 (optimized
SensitiFlow) vs. without the optimization (the strawman strategy). Figure 21 shows the throughput of both
methods, in terms of measurement updates per second and queries per second. We see that the global
coordinator scales out horizontally with more compute resources. With 8 CPU cores, the prototype of
optimized SensitiFlow can handle the updates and the requests from 2M and 2.5M concurrent sessions,
respectively, while updating the quality-sensitivity profiles every 2 seconds.
To put these numbers in context, the most demanding workloads are large-scale live events, where

millions of sessions tune in to watch a video in a short period of time and the profiling has to be done with
a short delay. As Figure 8b shows, a propagation gap of 5 seconds can exclude about 40% of sessions from
2023-04-26 19:47. Page 17 of 1–26. Manuscript submitted to ACM
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Fig. 23. User study result. Comparing mean opinion
score (MOS) of the baseline ABR (FastMPC) and Sensi-
tiFlow on seven sampled videos.

the quality-sensitivity-based optimization. However, by reducing the update delay of the global coordinator
to 2 seconds, the ratio of sessions arriving during the propagation gap will decrease to only 15%.

5.4 Real User Study

To complement the trace-driven evaluation, we also set up a real user study on Amazon MTurk [2] to test
SensitiFlow’s effectiveness in the real world. We compare two particular strategies: optimized SensitiFlow

and the baseline ABR logic (FastMPC) which is agnostic to quality sensitivity profiles. We run 𝑘 batches of
tests (i.e.,MTurk campaigns), each collecting user ratings from a fixed number of participants. When an
MTurk user signs up for our study, the user will be randomly assigned to rate their user experience (with a
Likert scale of 1-5) on the videos rendered by one of the two strategies (we will explain how the videos are
rendered shortly). This avoids any user-specific confounders that bias their ratings of different algorithms.
Figure 23 shows the average rating (i.e., mean opinion score or MOS) on the videos from each strategy.

A key difference between the user study and previous evaluations is that here we measure user experience
by their average rating (MOS), rather than user engagement or quit rate, of each strategy. While it has a
pragmatic reason not to rely on MTurkers’ user engagement7, MOS has been a standard user experience
metric [73], and it shows the versatility of SensitiFlow to take different user experience metrics as input.
When the 𝑘-th MTurk campaign finishes, SensitiFlow will update the quality-sensitivity profile by the

user ratings of users assigned to SensitiFlow in the previous 𝑘 campaigns, which will be used to decide
the quality levels (which bitrate for each chunk and where rebuffering stalls occur) during the 𝑘 + 1-th
campaign. For simplicity, we choose not to update the quality sensitivity of SensitiFlow, within each MTurk
campaign, so the tested SensitiFlow uses the same quality-sensitivity-aware ABR logic, but the online
quality-sensitivity profile is updated once every campaign.

Due to proprietary reasons, we do not use the videos from the measurement dataset. Instead, we randomly
sample 7 test videos from a public user-generated dataset, YouTube-UGC [63] covering three video genres:
sports, gaming and animation. Video chunk (segment) length is 3 seconds and the available bitrates are
{1000, 4000, 9000}Kbps, and the bandwidth trace is between 2.5Mbps to 7.5Mbps, forcing ABR algorithm to
7MTurkers will tend to always quit a session early if they are paid a fixed amount, and they will watch the video fully if their
compensation is proportional to how long they watch.
Manuscript submitted to ACM 2023-04-26 19:47. Page 18 of 1–26.
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adapt their bitrates. Each campaign will wait for 30 participants selected and calibrated by the same criteria
specified in [73]. Each strategy has accumulated ratings from 840 Master MTurkers 8 of age between 25 and
50. SensitiFlow outperforms the baseline among all the videos we selected. On average, SensitiFlow’ ABR
improves the MOS by 40% compared to the baseline ABR, from 2.53 to 3.30.

6 RELATEDWORK

Modeling perceptual quality: Traditional approaches focus on how user’s perception is affected by
pixel-level distortion (e.g., [16, 39, 44, 55, 58, 65]) and streaming-related metrics, such as rebuffering and
quality switches (e.g., [19–23, 26, 28, 29, 31–33, 45, 48]), and inferring video-specific metrics from encrypted
network traffic (e.g., [25, 41]). Modeling the impact of video content on user experience has only recently
gained attention [36, 37, 73]. Our work differs on two key fronts. The first is scale. Prior works use small-scale
experiments, while our study is based on event-level logs from millions of sessions, which reveals to what
extent quality sensitivity varies within sessions and across sessions. Second, they fall short of providing a
viable strategy to accurately predict quality sensitivity for any new (live) video in an online fashion. Using
real measurements, we make a case for using feedback from real users to profile quality sensitivity online.

Video content popularity and user behavior: The rapid growth of the Internet video industry has
spurred research towards better modeling of content popularity, including video genre or video virality
(e.g., [24, 34, 52, 53, 61]), per video (e.g., [27, 42]) or per segment (e.g., [60, 64]). Parallel to the modeling of
content popularity, there have also been efforts to understand user behavior when watching online/live
videos, in particular, the abandonment behavior (e.g., [20, 29, 45, 46, 57]) and more recently user migration
across platforms (e.g., [68]), but these studies analyze user behaviors at the session level, with little attention
on the impact of time-varying video content.

Control decisions in video streaming: Most commercial video players today implement client-side bitrate
adaptation based on industry standards [10] and a range of ABR algorithms (e.g., [30, 47, 59, 67, 69, 72]).
Besides client-side adaptation, resource allocation in the network and content placement has also led to
many research efforts (e.g., [40, 42, 50, 66]), some of which also leverages the heterogeneity in popularity
across video segments. In this context, the goal of SensitiFlow is not to propose new mechanisms for quality
optimization; rather, it presents a solution to enable existing solutions to utilize the variability of quality
sensitivity in video sessions.

7 DISCUSSION

While we study only video systems in this paper, we think that the general approach of SensitiFlow may be
applicable to other network applications such as gaming and mobile-web. In particular, the online control
loop should include user engagement and actions as real-time input. In the case of SensitiFlow, to improve
user experience under limited resources, the system continuously monitors online user actions (e.g., exit,
8Master MTurkers are a class of reliable MTurkers who have participated in over 1000 surveys and whose feedback was accepted for
over 99% of their prior surveys
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skip) from video sessions to estimate quality sensitivity and uses it to drive online adaptation. Similar
observations are made in other contexts too. For instance, users’ tolerance to web page loading time is more
difficult to capture by static analysis on page content than by observing users’ natural actions (e.g., [62, 74]).
SensitiFlow shows the early promise of a more user-centric approach, where measurements on user

experience and actions are first-class citizens of system monitoring and optimization. Just like systems
metrics indicate current system states, user actions and engagement reveal individual user’s experience,
as they watch a video, browse a web page, or use a mobile app. In SensitiFlow, we use video view time as
user metric, but there is a broad range of choices for user metrics, some are readily measurable (e.g., user
rating of apps, how long a web user stays active on a web page/site, how often Zoom users ask for others to
repeat themselves) and some will be in the near future (e.g., gaze tracking, brain-signal acquisition). Current
instrumentation for these signals may be subject to data noise and sparsity, but once they can be measured
with sufficient precision and intensity, more research will be needed towards the efficient and automatic
measurement of user experience so that systems can be driven directly by user experience measurements.

The user-centric approach also calls for novel system designs which adapt both spatially (across users) and
temporally (as a user interacts with the application). This may resemble prior systems that are cognizant of
differences among video genres [50, 54, 56] or viewing devices [21]). However, a key distinction is that these
differences are known prior to the start of a session, whereas the nature of user perception means that it
can only be measured online, and often with non-trivial delays (users do not react as fast as system metrics).
Thus, a user-centric approach must feature a tight control loop between user experience measurement
and system adaptation. SensitiFlow takes a step in this direction by utilizing the limited user feedback
about quality sensitivity. Working toward such a perception-driven system is an active direction of future
research.

8 CONCLUSION

Wepresent the first large-scale measurements that reveal the dynamics of quality sensitivity during real video
sessions, and present the first online system, SensitiFlow, that automatically estimates quality sensitivity as
new videos (including live videos) are streamed to users. SensitiFlow shows that online user feedback (e.g.,
exit, replay and skip) from real video sessions can be used to model the fluctuation of quality sensitivity,
and presents a scalable controller that collects online feedback from massive concurrent sessions and
jointly adapt their bitrates to cope with dynamic network conditions and dynamic quality sensitivity.
Our trace-driven simulation and emulation show that user engagement of both VoD and live videos can
be substantially improved without using more bandwidth resource. Our real user study also confirms
SensitiFlow can significantly improve the mean opinion score on real users

Ethics Considerations: The measurement study on user quality traces presented as part of this work is
IRB-approved. In the dataset shared by industry, all user-sensitive personal identifiable information (PII) is
appropriately anonymized before the data was shared with the research team. Thus, this work does not
raise any ethical issues.
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A BUCKETIZING VIDEO QUALITY

For each video, we will generate the thresholds to bucketize video quality values into quality levels. The
generated thresholds should satisfy that: (1) There are at least 40K sessions in each quality level. (2) The
stride between thresholds is not smaller than 2 (equivalently, 6.6% more buffering, 2Mbps lower bitrate, or
2Mbps more bitrate switches). In practice, we use the following steps to generate the thresholds:

• Step 1: Sort all the logged quality values from small to large.
• Step 2: Find the smallest value which satisfies the conditions above. Add it to the threshold list.
• Repeat step 2, until all quality values can be bucketed into quality levels. If the number of sessions in
the highest quality level is less than 40K, it will be merged to the second-highest quality level.

B SEGMENT-LEVEL QUALITY SENSITIVITY

Wemeasure segment-level quality by redefining the session-wide qualitymetrics within each segment 𝑖 . There
are two corner cases: (1) if a segment is not viewed in a session, then the segment-level quality/engagement
Manuscript submitted to ACM 2023-04-26 19:47. Page 24 of 1–26.
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Fig. 24. Pearson’s correlation coefficient between user actions and segment quality

is undefined; and (2) if a segment is viewed multiple times, then we take all of them into account to calculate
an average segment-level quality and engagement.

We measure the user experience of a session by the viewer’s engagement—the fraction of a video watched
by the viewer before the session ends (viewer exits). While there are other aspects of user experience beyond
engagement, such as user studies and opinions. They are no doubt useful, but engagement can be objectively
evaluated.

We take three specific steps. First, to ensure engagement drops (Eq. (2)) and retention drops (Eq. (3)) are
statistically reliable, we only consider video segments that have sufficient (>100) sessions with segment-level
quality falling in each of the quality buckets. Second, we also make sure that viewers of different segments
in a video have a similar distribution of geographic locations, player platforms and network speeds, so the
dynamic segment-level quality sensitivity is not caused by the segments being watched by very different
populations. Third, since short buffering events may naturally occur after user actions like long forward
seeks that reset the buffer, we remove the buffering events subsequent to long seeks from the quality
calculation.

C CORRELATION VALIDATION

To justify other segments’ quality only have a negligible correlation with the current segment’s user action,
we consider the following three metrics: (1) The quality of the current segment. (2) The average quality of
segments before the current segment. (3) The average quality of all segments in the video. For each segment,
we calculate Pearson’s correlation coefficient with its engagement drop. Figure 24 shows that the quality
of other segments has a much weaker correlation with the user actions in the current segment: For over
60% of segments, the correlation coefficient between engagement drops and current segment quality is less
than -0.8. However, there are only 17% and 10% of segments have a correlation coefficient less than -0.8 for
metrics (2) and (3) respectively.

D SIMULATOR VALIDATION

To validate our simulator, we feed the logged segment-level quality from different sessions to it and compute
the distribution of normalized user engagement. We assume that every session exits at the same time as in
2023-04-26 19:47. Page 25 of 1–26. Manuscript submitted to ACM
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the logged trace to remove the influence of random logouts. Figure 25 shows that the difference between
distributions of logged engagement and simulated engagement is negligible.
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