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To Mom and Dad



You may forget but

let me tell you
this: someone in
some future time
will think of us

-Sappho
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ABSTRACT

A type system is weakly normalizing if every typable expression has a normal form, and is

strongly normalizing if no typable expression appears in an infinite reduction sequence. The

Barendregt-Geuvers-Klop conjecture asks if weak normalization implies strong normalization

for all pure type systems, a class of systems which generalizes the λ-cube. There are two

natural techniques based on type-preserving translations for proving strong normalization

from weak normalization. The first is to define a translation from expressions to I-expressions

(i.e., expressions in which λ-bound variables must be used). Strong normalization then

readily follows from weak normalization by a conservation result along the lines of the one

proved by Church [1941] for the untyped λ-calculus. This was first done by Xi [1996] and

Sørensen [1997] for a subset of the λ-cube, and was generalized to a class of pure type

systems by Barthe et al. [2001]. The second technique is to define an infinite-reduction-path

preserving translation to a weak sub-system for which the conjecture is known to hold. By

a straightforward boot-strapping argument, the conjecture can be shown to hold for the full

system. Translations of this form were first presented by Geuvers and Nederhof [1991] and

Harper et al. [1993] for systems in the λ-cube, and similar techniques were used by Roux

and Doorn [2014] for a class of pure type systems.

These syntactic techniques have the further benefit that they are proof theoretically weak,

and so can be used to address the stronger form of the conjecture noted by Xi [1997], which

asks if the proof of strong normalization from weak normalization can be carried out in Peano

arithmetic (PA), or even Heyting arithmetic (HA). This is notable insofar as Girard [1972]

proved that the strong normalization of the very simple pure type system λ2 implies the

consistency of PA within PA, so these results imply a proof-theoretic impossibility results.

In what follows, I present three translations, one of the first form and two of the second

form. The first is a generalization of the thunkification translation of Xi [1997], which maps

expressions to I-expressions using a more fine-tuned padding scheme than the one used
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by Barthe et al. [2001], leading to fewer technical restrictions on the class of systems to

which it applies. The second is a generalization of the dependency-eliminating translation

of Geuvers and Nederhof [1991] to a class of pure type systems which are known to be

strongly normalizing, but for which the stronger form of the conjecture is demonstrated

for the first time. The third is a novel application of ideas from Roux and Doorn [2014]

(and, consequently, from Geuvers and Nederhof [1991]) for a class of pure type systems with

"irrelevant" structure. These systems have properties like dependent types (albeit, a very

weak notion of dependent types) which have not appeared in any of the classes of systems

previously considered.

All of this work is done in the framework of tiered pure type systems, a simple class of

persistent pure type systems which are concretely specified but sufficient to study in most

cases regarding questions of normalization. I consider the introduction of this class of systems

one of the more important contributions of this work, as their combinatorial nature makes

them easier to study than previously considered classes of systems, and allows for better

classification of systems for which current techniques do not apply. They encompass in some

sense the simplest extension of the λ-cube which have the desired meta-theoretic properties,

while also leaving much to be further developed, and I believe the conjecture restricted to

this class of systems strikes well the balance between challenging and approachable.
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with the relationship between weak and strong normalization

of pure type systems, a class of typed λ-calculi. I’d like to begin by motivating said concern

with a very brief (read: caricatured) historical outline of the relevant material. As much as

I would like the following material to be based in first principles, the pedagogical problem of

discussing type theory without presenting a course-worth of material so far eludes me, and

thus I will be assuming general familiarity with basic logical concepts.

1.0.1 The Untyped λ-Calculus

Church [1941] introduced what is now called the untyped λ-calculus as a theory of "functions

as rules"1 (e.g., the function "given x, add 1 to x") as opposed to functions as graphs in the

set-theoretic tradition (e.g., the "function" {(x, 1 + x) : x ∈ N}). It is an equational theory

over expressions from T, defined inductively as follows:

• V ⊂ T;

• x ∈ V and M ∈ T implies λx. M ;

• M ∈ T and N ∈ T implies MN ∈ T;

where V is a fixed set of variable symbols.2 The construct "λx. M" is referred to as abstrac-

tion over the variable x, and is thought of as yielding a function on x (e.g., abstracting over

x in the expression "add 1 to x" yields the function "given x, add 1 to x"). The construct

"MN" is referred to as application of one expression to another, and it has been noted by

1. This phrase is quoted by Barendregt [1984], who does not give a citation, but refers to it as "old
fashioned," and so must have pulled it from the rarefied air of those times.

2. I take the usual liberty of being agnostic regarding the ontological status of "symbols"
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many (Barendregt [1984] included) that this is a mild misnomer, as application in this set-

ting is a syntactic notion and should be thought of as yielding the application itself, not the

value of applying a function to its argument (e.g., "add 1 to x, applied to 2" as opposed to

"3"). In subsequent exposition, I will instead use Backus-Naur form grammars to describe

inductively defined expressions, e.g.

T ::= V | λV. T | TT

The theory has at its core an interest in computation—the notion of rules invoking more

computational associations than graphs3—and describes a convertibility relation via a single

computational rule which, for historical reasons, is called β:

(λx. M)N = M [N/x]

where M [N/x] is the result of substituting N for x in M (eliding the nasty details of sub-

stitution with which seasoned readers are keenly aware). This relation is lifted compatibly

through the structure of expressions, i.e., β-reductions can be done anywhere in the expres-

sion, not just at the top level; pictorially speaking:

(. . . (λx. M)N . . . ) = (. . .M [N/x] . . . )

But formally speaking, the theory is the equational presentation of the compatible equiva-

lence closure of β; viewed as a relation,

β = {((λx. M)N,M [N/x]) | M,N ∈ T}

3. It seems worth noting that students are so often confused when we refer to graphs as functions, since
they look nothing like the functions of our imaginations, at least for the seeming majority of us.
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and its compatibility closure →β is the smallest relation containing β such that M →β N

implies

λx. M →β λx. N

MP →β NP

PM →β PN

I have avoided to this point discussing any tricky technicalities in the definition of this theory,

but I will note now that expressions are considered equal up to α-conversion, or the renaming

of bound variables (so, for example, λx. λy. x = λz. λw. z) and I will observe the Barendregt

variable convention, which states that when writing down an expression, bound variables are

chosen to be distinct from free variables and from each other (a standard proviso for logical

syntax).

There is a rich line of work regarding the λ-calculus as a logical theory (see, e.g., the

encyclopedic text by Barendregt [1984]), but it is sufficient for the purposes of this disserta-

tion to consider the λ-calculus as an abstract reduction system. And for the other systems

considered in this introduction, I will ignore the associated equational theory altogether, and

focus strictly on the associated reduction system as well.

1.0.2 Abstract Reduction Systems

An abstract reduction system is simply a set X together with a binary relation R on X,

with the "attitude"4 of viewing R as a notion of reduction, i.e., xRy means x reduces to y.

Notation and Terminology. Fix a reduction system (X,R).

• →R stands for R.

4. I recently discovered the nLab [2023] page for the notion of a "concept with an attitude" which is used
to describe the added psychological structure implicit in a mathematical object I quite like this term.
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• ↠+
R stands for the transitive closure of R.

• ↠R stands for the reflexive transitive closure of R, and x ↠R y also reads as x reduces

to y.

• =R stands for the equivalence closure of R.

• A reduction sequence is a potentially infinite sequence of elements x1, x2, . . . such

that

x1 →R x2 →R . . .

It is straightforward to verify that x ↠R y if there is a finite reduction sequence

starting at x and ending in y, and that x ↠+
R if there is a non-empty such sequence.

• An element y is an R-normal form (or is in R-normal form) if it is irreducible, i.e.,

there is no element z such that yRz. It is an R-normal form of x if x ↠R y.

Properties. There are multitudes one may wish to verify of a given reduction system, but

I restrict myself to the core four of interest here (and really, only the last two will play a

substantial role outside of this introduction).

• Church-Rosser. For every element x and y, if x =R y, then there is an element z

such that x ↠R z and y ↠R z.

• Unique Normal Forms. For every element x, if y and z are normal forms of x then

y = z.

• Weak Normalization. Every element of X has an R-normal form. A particular

element is (weakly) normalizing if it has an R-normal form.

• Strong Normalization. No element of X appears in an infinite reduction sequence.

A particular element x is strongly normalizing if there is no reduction sequence starting

at x.
4



The study of abstract reduction systems postdates the study of the λ-calculus, with

(T,→β) being an oft cited example of a prototypical reduction system (see, e.g., the expo-

sition of Bezem et al. [2003]). Church and Rosser [1936] proved that this system satisfies

the first eponymous property, as well as the second (up to α-equivalence). From this, it is

possible to show that normalizing β-equivalent expressions reduce to the same normal form,

which indicates that β-reduction captures a reasonable notion of computation. The last two

properties—which are the focus of this dissertation—do not hold of (T,→β). The expression

Ω ≜ (λx. xx)(λx. xx)

has no normal form since Ω →β Ω and this is the only reduction that can be performed

on Ω. Even the sub-system restricted to the weakly normalizing expressions is not strongly

normalizing; given

I ≜ λx. x

K ≜ λx. λy. x

KIΩ →β I and I is a normal form but KIΩ →β KIΩ →β KIΩ . . .

1.0.3 The λI-Calculus

The previous remark is perhaps unsurprising; it seems a mere platitude to note that strong

normalization is a stronger notion than weak normalization. But it is natural to consider

under what conditions it is not.

The λI-calculus is the fragment of the λ-calculus in which every expression of the form

λx. M is required to have x appearing in M . I will use TλI to denote the set of such

expressions. The expression K, for example, is not in TλI . It can then be seen that the

reason KIΩ is weakly normalizing but not strongly normalizing is that K can "throw away"
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its non-normalizing argument, i.e., that K is, in fact, not in TλI . Church [1941] proves that

the inability to do this is a sufficient condition for weak and strong normalization to coincide.

Theorem 1. (Conservation for λI, Church [1941]) For any λI-expression M , if M is weakly

normalizing then M is strongly normalizing.

This is, in a loose sense, a reverse mathematical result. It may be equivalently stated

that every λI-expression is either non-normalizing or strongly normalizing, but the more

interesting reading (at least to me) is that weak normalizing is a sufficient assumption for

proving strong normalization. Or, with a more constructive bent, a single reduction path

may be used to reason about all reduction paths. So from the perspective of reduction

systems, and with an eye towards the next section, in order to show that a sub-system of

(TλI ,→β)
5 is strongly normalizing, it is sufficient to show that it is weakly normalizing.

It may be of some interest to the historically inclined that λI-calculus was the first

calculus presented by Church [1941], but the calculus as we known it now (sometimes referred

to as the λK-calculus) became the dominant form. Barendregt [1984] (pp. 38) cites some

potential reasons for the shift.

1.0.4 The Simply Typed λ-Calculus

Church [1940] introduced the simply typed λ-calculus—here on out denoted by λ→—as an

extension of the simple types of Russell and Whitehead [1910, 1912, 1913] to include notions

from the λ-calculus. In its modern form, as presented here, the grammar of types is given

by

Ty ::= B | Ty → Ty

where B is a set of base types. The construct A → B is a function type and is used to

describe expressions which behave like functions. In the tradition of Church-style typing, we

5. Here and in future iterations, I allow the reduction relation to be defined on a super-set, so as not to
require notation for restricting the relation.
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work over a slightly different expressions grammar

T ::= V | λVTy. T | TT

in which abstracted variables are annotated with types. Typing judgment of the form

x1 : A1, . . . , xk : Ak ⊢ M : A

read as

"x1 is of type A1, . . . , xk is of type Ak implies M is of type A"

are then used to delineate a class of "well-behaved" expressions. Roughly speaking, type

acts as a simple syntactic description of their semantic behavior. The rules for building

typing judgments are as one might expect if we understand function types to delineate the

expressions we presume to behave like functions.

Typing Judgments. A variable x is fresh if it does not appear in on the left side of the

turnstile.

• Start. For any type A (in Ty) and any variable x

x : A ⊢ x : A

• Variable Introduction. For any type B and variable x which is fresh with respect

to Γ

Γ ⊢ M : A
Γ, x : B ⊢ x : B

• Weakening. For any type B and variables x which is fresh with respect to Γ

Γ ⊢ M : A
Γ, x : B ⊢ M : A

7



• Abstraction.

Γ, x : A ⊢ M : B

Γ ⊢ λxA. M : A → B

• Application.

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

The rules as presented are non-standard, but better mirror the shape of the rules for

general pure type systems considered in the next section. Despite this, I hope that they

represent natural intuitions about how function types should behave. For example, if M is

a function of type A → B, and N is of type A, then it is well-defined to apply M to N and

we should expect the result to be of type B. For a more concrete example, if Nat ∈ B, then

it is possible to derive

Z : Nat, S : Nat → Nat, A : Nat → (Nat → Nat) ⊢ λxNat. A(SZ)x : Nat → Nat

a slightly obfuscated but potentially familiar example.

Given these typing rules, we can then consider the rewrite system (Tλ→ ,→β) where

Tλ→ is the subset of expressions which are typable according to the above rules. Turing, in

the 1940s, was the first (as recorded by Gandy [1980]) to prove that this system is weakly

normalizing via a measure on expressions which is monotonically decreasing in a particular

reduction strategy. It would take several decades before Tait [1967] proved it is strongly nor-

malizing via a more complicated proof which, in essence, uses logical relations. Xi [1996] and

Sørensen [1997] recognized that, since the proof of weak normalization is a fair bit simpler, it

would be reasonable to try to derive strong normalization from weak normalization, and both

achieve this via a translation into a system which has a conservation theorem like the one

for the λI-calculus. Again, we have a reverse mathematical question: is weak normalization

of (Tλ→ ,→β) a sufficient condition to more easily prove its strong normalization?
8



1.0.5 Beyond Simple Types

In the unlikely event that I have piqued the interest of a non-expert, I recommend instead

reading any of the great introductory texts in the field (Type Theory and Formal Proof

by Nederpelt and Geuvers [2014] for example). What remains of this introduction will be

informal and cursory.

The decades after the introduction of simple types saw an explosion of type theories

for logic, linguistics and computer science. Type systems may be fancified with a number

of new constructions, shapes, annotations, etc. but there were three features of particular

importance, which were noted by Barendregt [1991] to share the property that they blurred

the line between types and terms.

• Polymorphism. Or abstraction over type variables in terms, which allows for func-

tions which are, in a sense, agnostic to the type of their argument. The expression

λAType. λxA. x can be applied to different types to yield different typed identity func-

tions.

• Type Constructors. Or abstraction over type variables in types, which allows for

functions that can return types themselves. Given an empty type ⊥, it may be useful

to write the function λAType. A → ⊥, which returns the negated form the type.

• Dependent Types. Or abstraction over term variables in types. Given dependent

types, it is possible to define predicates of types like Nat → Type, for which inhabiting

terms are evidence that the predicate holds on its argument.

These three features form the "basis" of a class of systems called the λ-cube, introduced

by Barendregt [1991], which uniformly describes these three features in single type system.

There are a number of proofs of strong normalization for every system in the λ-cube, so the

relationship between weak normalization and strong normalization is determined. I chose to

not present these systems, in part because they are so similar to pure types systems which
9



are presented in the next section, and are a natural extension of the λ-cube. I instead refer

the reader to the survey by Barendregt [1993]. Pure type systems including the inconsistent

system λU of Girard [1972], leaving the relationship between weak normalization and strong

normalization unclear. For any pure type system, we can play the same game as above by

considering the reduction system associated with typable expressions in the system. This is

the core of the Barendregt-Geuvers-Klop conjecture:

Weak normalization implies strong normalization for all pure types systems.

Given this conjecture remains unsolved, I consider it as being truly motivated by two ques-

tions.

• First, the same reverse mathematical question as above: is weak normalization a suf-

ficiently strong assumption to prove strong normalization? This question takes on a

more interesting role here in that it is known that not all pure type systems are weakly

normalizing. Furthermore, Girard [1972] proved that strong normalization of λ2 im-

plies the consistency of Peano Arithmetic, so the reverse mathematical strength can

be better calibrated, as is done in the strong form of the conjecture, which asks if the

proof of strong normalization from weak normalization can be carried out in Peano

arithmetic, or even Heyting arithmetic.

• Falsifying this conjecture would in essence require finding a system with an expression

that is weakly normalizing but not strongly normalizing. What would such an expres-

sion look like? The expression KIΩ in the untyped λ-calculus hides a non-normalizing

expression which could not be typable in a normalizing type system. There are ex-

amples of more complicated λ-expressions using fixed-points which have the property

that every sub-expression is weakly normalizing, but it is unknown if such fixed-points

are typable.

10



At this point, I transition into more formal definitions. I will conclude the introduction

with an outline of the contributions of this dissertation to this question.

1.1 Definitions

A pure type system is specified by a triple of sets (S,A,R) satisfying A ⊂ S × S and

R ⊂ S×S×S. The elements of S, A, and R are called sorts, axioms and rules, respectively.

I use s and t as meta-variables for sorts.6

For each sort s, fix a Z+-indexed set of expression variables Vs. Let svi denote the ith

expression variable in Vs and let V denote
⋃
s∈S Vs. I use x, y, and z as meta-variables for

expression variables. The choice to annotate variables with sorts is one of convenience. The

annotations can be dropped for the systems I consider, and are selectively included in the

exposition.

The set of expressions of a pure type system with sorts S is described by the grammar

T ::= S | V | ΠVT. T | λVT. T | TT

I use capital Modern English letters like M , N , P , Q, A, B, and C as meta-variables for

expressions. Free variables, bound variables, α-congruence, β-reduction, substitution, sub-

expressions, etc. are defined as usual (see, for example, Barendregt’s presentation Barendregt

[1993]). Substitution of x with N in M is denoted M [N/x], and I write N ⊂ M for “N is a

sub-expression of M ."

A statement is a pair of expressions, denoted M : A. The first expression is called

the subject and the second is called the predicate. A proto-context is a sequence of

statements whose subjects are expression variables. The statements appearing in proto-

6. For any subsequent meta-variables, I use positive integer subscripts and tick marks, e.g., s1, s2, and
s′. Note, however, that in later sections, si will refer to a particular sort in tiered systems. I will try to be
as clear as possible when distinguishing between these two cases of notation.
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contexts are called declarations. I use capital Greek letters Γ, ∆, Φ, and Υ as meta-

variables for contexts. Often the sequence braces of contexts are dropped and concatenation

of contexts is denoted by comma-separation. The β-equality relation and substitution extend

to contexts element-wise. For a context Γ and statement (x : A) I write (x : A) ∈ Γ if that

statement appears in Γ, and Γ ⊂ ∆ if (x : A) ∈ Γ implies (x : A) ∈ ∆.

A proto-judgment is a proto-context together with statement, denoted Γ ⊢ M : N .

The designation “judgment" is reserved for proto-judgments that are derivable according

to the rules below. Likewise, the designation “context" is reserved for proto-contexts that

appear in some (derivable) judgment.7

Definition 1. The pure type system λS specified by (S,A,R) has the following rules for

deriving judgments. In what follows, the meta-variables s and s′ range over all sorts in S

when unspecified. A variable sx is fresh with respect to a context Γ if it does not appear

anywhere in Γ.

• Axioms. For any axiom (s, s′)

⊢λS s : s′

• Variable Introduction. For a variable sx which is fresh with respect to Γ

Γ ⊢λS A : s

Γ, sx : A ⊢λS sx : A

• Weakening. For a variable sx which is fresh with respect to Γ

Γ ⊢λS M : A Γ ⊢λS B : s

Γ, sx : B ⊢λS M : A

• Product Type Formation/Generalization. For any rule (s, s′, s′′)

7. Alternatively, in any non-trivial pure type system λS, a proto-context Γ is a context if Γ ⊢ s : s′ for
any axiom (s, s′).
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Γ ⊢λS A : s Γ, sx : A ⊢λS B : s′

Γ ⊢λS ΠsxA. B : s′′

• Abstraction.

Γ, sx : A ⊢λS M : B Γ ⊢λS ΠsxA. B : s′

Γ ⊢λS λsxA. M : ΠsxA. B

• Application.

Γ ⊢λS M : ΠsxA. B Γ ⊢λS N : A

Γ ⊢λS MN : B[N/sx]

• Conversion. For any terms A and B such that A =β B

Γ ⊢λS M : A Γ ⊢λS B : s

Γ ⊢λS M : B

The subscript on the turnstile is dropped when there is no fear of ambiguity. The anno-

tations on variables in Π-expressions and λ-expressions are non-standard, and will in most

cases be dropped, but they are occasionally useful to maintain (e.g., see Lemma 1). It is

also standard to write A → B for ΠxA. B in the case that x does not appear free in B, and

to use the derived inference rule

Γ ⊢λS A : s Γ ⊢λS B : s′

Γ ⊢λS A → B : s′′

An expression M is said to be derivable in λS if there is some context Γ and expression

A such that Γ ⊢λS M : A. Although there is no distinction between terms and types, it is

useful to call a judgment a type judgment if it is of the form Γ ⊢ A : s where s ∈ S, and a

term judgment if it is of the form Γ ⊢ M : A where Γ ⊢ A : s for some sort s. I also write

that M is a term and A is a type in this case. By type correctness (Lemma 3), a judgment

that is not a type judgment is a term judgment, though some judgments are both type and

term judgments. In the system specified by ({s1, s2}, {(s1, s2)}, ∅), for example,

• ⊢ s1 : s2 is a type judgements but not a term judgment,
13



• x : s1 ⊢ x : s1 is a type judgment and a term judgment, and

• x : s1, y : x ⊢ y : x is a term judgment but not a type judgment.

1.1.1 Meta-Theory

I collect here the meta-theoretic lemmas necessary for the subsequent results. I choose not

to present any proofs, and instead refer the reader to any of the great resources on pure type

systems (Barendregt [1993], Barthe et al. [2001], Kamareddine et al. [2004], among others).

For the remainder of the section, fix a pure type system λS.

Lemma 1. (Generation) For any context Γ and expression A, the following hold.

• Sort. For any sort s, if Γ ⊢ s : A, then there is a sort s′ such that A =β s′ and

(s, s′) ∈ A.

• Variable. For any sort s and variable sx, if Γ ⊢ sx : A, then there is an type B such

that Γ ⊢ B : s and (sx : B) appears in Γ and A =β B.

• Π-expression. For any sort s and expressions B and C, if

Γ ⊢ ΠsxB . C : A

then there are sorts s′, and s′′ such that

Γ ⊢ B : s and Γ, sx : B ⊢ C : s′

and (s, s′, s′′) ∈ R and A =β s′′.

• λ-expression. For any sort s and expressions B and M , if

Γ ⊢ λsxB . M : A

14



then there is a type C and sort s′ such that such that

Γ ⊢ ΠsxB . C : s′ and Γ, sx : B ⊢ M : C

and A =β ΠsxB . C.

• Application. For expressions M and N , if Γ ⊢ MN : A, then there is a sort s and types

B and C such that Γ ⊢ M : ΠsxB . C and Γ ⊢ N : B and A =β C[N/sx].

Lemma 2. (Substitution) For contexts Γ and ∆ and expressions M , N , A and B, if

Γ, x : A,∆ ⊢ M : B and Γ ⊢ N : A

then

Γ,∆[N/x] ⊢ M [N/x] : B[N/x]

Lemma 3. (Type Correctness) For any context Γ and expressions M and A, if Γ ⊢ M : A

then A ∈ S or there is a sort s such that Γ ⊢ A : s.

Lemma 4. (Thinning) For contexts Γ and ∆ and expressions M and A, if Γ ⊂ ∆ and

Γ ⊢ M : A, then ∆ ⊢ M : A.

Lemma 5. (Permutation) For contexts Γ and ∆, variables x and y, and expressions A, B,

M , and C, if x does not appear free in B and

Γ, x : A, y : B,∆ ⊢ M : C

then

Γ, y : B, x : A,∆ ⊢ M : C

Definition 2. A pure type system is functional if
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• for all axioms (s, s′) and (t, t′) if s = t then s′ = t′;

• for all rules (s, s′, s′′) and (t, t′, t′′) if s = t and s′ = t′ then s′′ = t′′.

Lemma 6. (Type Unicity) If λS is functional then for any context Γ and expressions M ,

A, and B, if Γ ⊢ M : A and Γ ⊢ M : B, then A =β B.

Definition 3. A sort s is a top-sort if there is no sort s′ such that (s, s′) ∈ A.

Lemma 7. (Top-Sort Lemma) For any context Γ, variable x, expressions A and B, and

top-sort s the following hold.

1. Γ ̸⊢ s : A

2. Γ ̸⊢ x : s

3. Γ ̸⊢ AB : s

4. Γ ̸⊢ λxA. B : s.

1.1.2 Tiered Pure Type Systems

General pure type systems are notoriously difficult to work with so it is typical to consider

classes of pure type systems satisfying certain properties (e.g., functionality). Here I choose

to work with a simple class of systems I call tiered pure type systems, which have a very

concrete description.

Definition 4. Let n be a positive integer. A pure type system is n-tiered if it has the form

S = {si | i ∈ [n]}

A = {(si, si+1) | i ∈ [n− 1]}

R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}
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s1 s2 s3

Figure 1.1: A visual representation of the system λU

From this point forward, I freely use the notation (s, s′) for the rule (s, s′, s′). A couple

remarks about these systems:

• these systems can be envisioned as graphs as in Figure 1.1, which is a visual represen-

tation of the 3-tiered system λU . In such representations, an arrow (si, sj) indicates

the presence of the rule (si, sj). Axioms are not represented in the graph except in the

ordered the nodes are presented;

• the 2-tiered systems are the lambda cube together with all systems in the lambda cube

minus the rule (s1, s1);

• the n-tiered systems are considered in passing by Barthes et al. (Remark 2.39, Barthe

et al. [2001]). They include natural subsystems of ECCn (as defined in Luo [1990]) with

only the 2-sorted rules;

• we can also naturally consider Z+-tiered, Z−-tiered, and Z-tiered systems. These are

essentially tiered systems without endpoints.

Working in tiered systems simplifies the arguments in the following section because of their

explicit structure, and they are sufficient to consider in so far as their normalization is

equivalent to that of a previously considered classes of systems defined in terms of less

concrete properties. In particular, we can characterize separable persistent pure type systems

as disjoint unions of tiered systems (including the infinite tiered systems mentioned in the

remark above).

Definition 5. A pure type system λS is persistent if it is functional (Definition 2) and
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• for all axioms (s, s′) and (t, t′) if s′ = t′ then s = t;

• RλS ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}.

Let ‘≤A’ denote the reflexive transitive closure of A, and let ‘<A’ be defined as usual.

Furthermore, let ‘=A’ denote the equivalence closure of A. The subscript is dropped when

there is no fear of ambiguity.

Definition 6. A pure type system λS is separable if (s, s′) ∈ RλS implies s =AλS
s′.

In order to state the following equivalence, we work in the structural theory of pure type

systems of Roux and van Doorn Roux and Doorn [2014].

Definition 7. For pure type systems λS and λS′, the disjoint union λS ⊔ λS′ is specified

by

SλS⊔λS′ ≜ SλS ⊔ SλS′

AλS⊔λS′ ≜ AλS ⊔ AλS′

RλS⊔λS′ ≜ RλS ⊔RλS′

Lemma 8. A pure type system is separable and persistent if and only if it is the disjoint

union of tiered pure type systems.

Proof. It is straightforward to verify that tiered systems are persistent and separable, and

that the same is true for disjoint unions of such systems, so we focus on the other direction.

Let λS be a pure type system that is persistent and separable and consider the partition P

of S into =A-equivalence classes. Let Sp be such a =A-equivalence class. Persistence ensures

that Sp is totally ordered by ≤A. Furthermore, it is possible to show that for any two sorts

si and sj in SP , there is a unique finite sequence of sorts t1, . . . , tk such that si = t1 and

sj = tk or si = tk and sj = t1 and (ti, ti+1) ∈ A for all i ∈ [n− 1]. Let λSp denote the pure

18



system specified by

SλSp ≜ Sp

AλSp ≜ AλS ∩ (Sp × Sp)

RλSp ≜ RλS ∩ (Sp × Sp × Sp)

Then λSp is n-, Z+-, Z−-, or Z-tiered depending on the existence of a top-sort and a bottom-

sort in Sp.

The axioms and rules of the systems for each equivalence class are clearly pairwise disjoint.

They also cover all axioms by fiat and rules by separability. Therefore, we can view λS as

the system
⊔
Sp∈P λSp. Formally, they are isomorphic pure type systems.8

This paper is concerned with non-dependent persistent pure type systems, which are

separable by definition.

Definition 8. A tiered pure type system λS is non-dependent if its rules are non-dependent,

i.e., if (s, s′) ∈ RλS implies s ≥AλS
s′.

Roux and van Doorn Roux and Doorn [2014] show that the (strong) normalization of

a disjoint union of pure type systems is equivalent to the (strong) normalization of each of

its individual summands. So on questions of normalization regarding separable persistent

systems it suffices to consider tiered systems. Furthermore, we can make the following very

simple observation.

Fact 1. Let C be a set of tiered pure type systems with the following property: if λS is a

Z+-, Z−-, or Z-tiered pure type system in C, then for every finite tiered sub-system λS′ of

λS, there is a finite tiered subsystem λS′′ such that λS′ ⊂ λS′′ ⊂ λS and λS′′ ∈ C. It then

8. The definition of a pure type system homomorphism is as one might expect, see Roux and Doorn [2014]
for more details.
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follows that every system in C is (strongly) normalizing if and only if every finite system in

C is (strongly) normalizing.

This is simply because derivations are finite, and must be constructable in some finite

fragment. So we can restrict our focus to n-tiered systems for well-structured classes of

systems.

One of the primary benefits of working in persistent systems in general (and tiered systems

in particular) is that derivable expressions can be classified by the level in the system at which

they are derivable. This property is shown by defining a degree measure on expressions and

classifying expressions according to their degree. This result is due to Berardi Berardi [1990],

and the presentation here roughly follows the same course.

Definition 9. The degree of an expression is given by the following function deg : T → N.

deg(si) ≜ i+ 1

deg(six) ≜ i− 1

deg(ΠxA. B) ≜ deg(B)

deg(λxA. M) ≜ deg(M)

deg(MN) ≜ deg(M)

I will let Tj denote the set {M ∈ T | deg(M) = j} and let T≥j denote the set {M ∈

T | deg(M) ≥ j}.

Lemma 9. (Classification) Let λS be an n-tiered pure type system. For any expression A,

the following hold.

• deg(A) = n+ 1 if and only if A = sn.

• deg(A) = n if and only if Γ ⊢λS A : sn for some context Γ.
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• For i ∈ [n− 1], we have deg(A) = i if and only if Γ ⊢λS A : B and Γ ⊢λS B : si+1 for

some context Γ and expression B.

In particular, for context Γ and expressions M and A, if Γ ⊢ M : A then deg(A) = deg(M)+

1.

Finally, some useful facts about degree. See the presentation by Barendregt Barendregt

[1993] for proofs in the 2-tiered case.

Lemma 10. Let λS be a tiered pure type system and let A and B be expressions derivable

in λS.

• If deg(B) = j − 1 then

deg(A[B/sjx]) = deg(A)

• If A ↠β B, then deg(A) = deg(B).

1.2 Outline

With the above context, I can now more easily state the contributions of this dissertation.

Beyond weak and strong normalization, this dissertation is concerned with type-preserving

translations, which are used for type-theoretic conservation theorems. Forthcoming.
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CHAPTER 2

WEAK AND STRONG NORMALIZATION OF

NON-DEPENDENT PERSISTENT PURE TYPE SYSTEMS VIA

THUNKIFICATION

This work appears in a standalone paper which is available on Arxiv.

2.1 Introduction

As noted in the previous chapter, one approach to deriving strong normalization from weak

normalization is to pass through some form of the λI-calculus, the fragment of the lambda

calculus in which lambda-bound variables must appear in the bodies of their lambda ex-

pressions. In this setting, strong normalization readily follows from weak normalization by

a conservation theorem along the lines of the one proved by Church and Rosser Church and

Rosser [1936]. The argument is roughly as follows: suppose a system λS is weakly normal-

izing. Define a translation from expressions to λI-expressions which preserves (1) typability

in λS and (2) infinite reduction paths. Translated expressions are weakly normalizing by

being typable in λS and, hence, are strongly normalizing by the conservation theorem. And

since the translation preserves infinite reduction paths, the untranslated expressions are

themselves strongly normalizing.

This technique was originally used by Sørensen Sørensen [1997] and Xi Xi [1996] via a

continuation-passing-style (CPS) translation, and Xi Xi [1997] subsequently presented an

alternative proof via thunkification that is arguably simpler; rather than passing around

continuations, expressions are thunkified and thunks are padded via uninterpreted variables

with sub-expressions necessary for translating to λI-expressions. Both are essentially typed

versions of Klop’s ι-tranlsation, though the thunkification translation is more direct. See

the survey in the work of Gortz et al. Gørtz et al. [2003] for many more details on the
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relationships between these translations and many others.

Barthe et al. Barthe et al. [2001] generalized Xi’s and Sørensen’s result to prove that weak

normalization implies strong normalization in generalized non-dependent clean negatable pure

type systems.1 In a previous report Mull [2022], I presented the analogous generalization

for Xi’s thunkification translation to the same class of systems. The primary contribution of

this paper is a strengthened version of the BHS result, proved via a non-standard extension

of this thunkfication translation. The following points outline the technical contributions,

as they pertain to dealing with negatability, cleanliness, and generalized non-dependence,

respectively.

• In the informal outline of Sørensen’s and Xi’s technique above, the first step is doing

quite a bit of work; translated expressions are weakly normalizing only because they

are still derivable in λS which is weakly normalizing by assumption. The endomorphic

nature of the translation is what requires negatability. This property ensures the

system is expressive enough for thunkified (or CPS-ified) expressions to be typable.

But it suffices to show that translated expressions are typable in an extension of λS,

and even a non-normalizing extension of λS, if it is possible to give a combinatorial

proof that the translation preserves weak normalization at the level of terms. Applying

techniques from the study of reduction strategies, I give a combinatorial proof of weak

normalization preservation for a variant of the translation which can be applied to

non-negatable systems.

• Cleanliness, the second major technical restriction by BHS, ensures the variables men-

tioned above which are used for padding expressions are, in fact, typable. Roughly

speaking, expressions are padded using variables injected in the context of the form

(padA : A → ⊥ → ⊥), where ⊥ is the type of the thunk expression • (a distinguised

1. In subsequent exposition, I will refer to this result as the BHS result, or simply BHS, for Barthe,
Hatcliff and Sørensen.
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variable). Given an expression N of type A, a thunkified expression M of type ⊥ → B

can be evaluated as M(padAN•), so that the expression N is padded into M . The

challenge is that the type A may have variables which appear in the context, and ab-

straction and generalization (i.e., the formation of λ-terms and Π-types, respectively)

both remove variables from the context, potentially making A no longer typable. This

is, in some sense, the primary feature of these constructions, the ability to express

dependencies at the level of terms instead of at the level of variables in scope. Clean-

liness, thus, disallows abstractions and generalizations which remove variables that

appear in the types of padding variables. For the translation presented in this paper, I

use a different scheme for typing padding variables which allows for more fine-grained

control of these dependencies. This technique requires two technical lemmas which

may be of independent interest. The first is, in essense, a type-theoretic Skolemization

lemma, which allows for contexts to be permuted modulo additional generalizations

(Corollary 1). This allows for generalization over the variables that appear in the types

of padding variables, eliminating the dependence at the level of variables in scope. The

second is a generalization of Corollary 2.46 from BHS (Lemma 12), which characterizes

the degree of sub-expressions, and which is also useful in determining when variables

can commute with padding variables.

• In the interest of further simplification, I also present a class of basic, concrete pure

type systems I call tiered pure type systems. Despite their simplicity they are sufficient

to consider with regards to questions about normalization. In particular, I characterize

non-dependent persistent systems as disjoint unions of possibly infinite tiered systems.

And by a simple compactness-style argument, it follows that we can restrict ourselves

to the finite tiered systems when considering certain classes of systems.

In what follows I present some preliminary material, which includes some exposition

on tiered systems and reduction strategies. I then present the generalized thunkification
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translation in two parts: one part for the type-level translation and one part for term-

level translation. The term-level translation is further divided into two parts, the negatable

and non-negatable cases. For each term-level translation, I include a proof of typability

preservation and infinite reduction path preservation, both necessary for the main result

(Theorem 6), which is presented in subsection 2.3.3 for completeness.

2.2 Preliminaries

Outside of the preliminary material presented in the section on definitions in the introductory

chapter (Section 1.1), I include this short section with an important lemma about non-

dependent pure type systems, as well as some information about reductions.

One difficulty with dependencies is that they allow expressions to have sub-expressions

of a lower degree than themselves. This makes it very difficult to reverse induct on degree,

which is an important proof technique for these systems. In non-dependent systems, the

sub-expression of a given expression must have degree at least that of the given expression.

Typically, a simplified version of this fact suffices, which says that the degree of variables

appearing in an expression must be at least that of the expression itself.

Lemma 11. Let λS be a non-dependent tiered pure type system. For any expression A, if a

variable sjx appears free in A, then j > deg(A).

I present a slightly stronger version which is a generalization of Corollary 2.46 from BHS,

and for which the previous lemma is a corollary. It captures exactly the possible degrees of

sub-expressions, using the following definition for keeping track of potential dependencies.

It is worth noting, in future sections, the similarity with cleanliness (Definition 19).

Definition 10. Let λS be a non-dependent tiered pure type system. Define set DλS(i) be

the smallest set satisfying these properties.

• i ∈ DλS(i)
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• if (sj , si) ∈ RλS then DλS(j) ⊂ DλS(i)

• if (sj , si+1) ∈ RλS, then DλS(j) ⊂ DλS(i).

These sets are well-defined because they can be constructed by reverse induction on

degree.

Lemma 12. Let λS be a non-dependent tiered pure type system. There is an expression M

derivable in λS such that deg(M) = i with a sub-expression N such that deg(N) = j if and

only if j ∈ DλS(i).

Proof. First, the left direction, by reverse induction on degrees. I prove the stronger fact

that M is a derivable type, i.e., there is a context Γ and sort si such that Γ ⊢ M : si. Note

that DλS(n) = {n} so it suffices that ∅ ⊢ sn−1 : sn. For arbitrary i, there are three cases to

consider. First suppose j = i. If i > 1, then ∅ ⊢ si−1 : si and otherwise x : s1 ⊢ x : s1. Next

suppose j ∈ DλS(k) where (sk, si) ∈ RλS . By the inductive hypothesis, there is context Γ

and expressions A and B such that Γ ⊢ A : sk, where B ⊂ A and deg(B) = j. If i > 1, then

Γ ⊢ A → si−1 : si

and otherwise

Γ, x : s1 ⊢ A → x : s1.

Finally suppose j ∈ DλS(k) where (sk, si+1) ∈ RλS . Let Γ, A, and B be as in the previous

case. Then Γ ⊢ A → si : si+1. If i > 1, then Γ, y : A, x : A ⊢ si−1 : si so we have

Γ, y : A ⊢ (λxA. si−1)y : si

This concludes the left direction.

The other direction also follows by reverse induction on i, and then by induction on

the structure of derivations. It is straightforward to verify that the sub-expressions of any
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derivable expression of degree n is also of degree n. So let M be an derivable expression such

that deg(M) = i. It will follow by induction on the structure of derivations that if N is a

sub-expression of M then deg(N) ∈ DλS(i). I focus on the cases on which the definition of

DλS(i) depends.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si

Γ ⊢ ΠxA. B : si

where (sj , si) ∈ RλS . Let C be a sub-expression of A. If j > i, then C ∈ DλS(j) by the first

inductive hypothesis, which is a subset of DλS(i) by assumption. If j = i, then C ∈ DλS(i)

by the second inductive hypothesis. The case in which C is a sub-expression of B is similar.

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : si+1

Γ ⊢ λxA. M : ΠxA. B

where (sj , si+1) ∈ RλS . If C ⊂ A, then C ∈ DλS(j) by the first inductive hypothesis. If

C ⊂ M , then C ∈ DλS(i) by the second inductive hypothesis.

2.2.1 Reduction and Normalization

Since I am taking a generally more combinatorial approach to proving weak normalization

preservation, I include this short section on reductions to collect some useful terminology,

notation, and machinery. First, the terminology:

• A β-redex of an expression M is a sub-expression of the form (λxA. P )Q. In typical

abuse of terminology, I will also call an expression of the form (λxA. P )Q a redex, and

will call the left expression in a redex the ‘re’ and the right expression the ‘dex.’ The

expression P [Q/x] is the reduct of the redex (λxA. P )Q.

• An expression M is in β-normal form if it does not have any β-redexes, M is weakly

normalizing if there is a reduction sequence starting at M which ends in a normal
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form, and M is strongly normalizing if M does not appear in any infinite reduction

sequence. I will use the following notation:

NF ≜ {M | M is in normal form}

WN ≜ {M | M is weakly normalizing}

SN ≜ {M | M is strongly normalizing}.

So, for example, we say that a pure type system λS is weakly normalizing if all ex-

pressions derivable in λS are also in WN. As an abuse of notation, Finally, I’ll write

NF also for the function which maps expressions in WN to their normal forms in NF.

Next, the machinery. First is the notion of a single-holed expression, which is typically

used to notate the relationship between an expression and one of its sub-expressions. These

are called contexts in other settings (again, see Barendregt’s exposition Barendregt [1984]),

but I’ve used a different name so as not to clash with the above introduced notion of contexts.

Definition 11. A single-holed expression, denoted C⟨·⟩, is defined inductively as follows.

• ⟨·⟩ is a single-holed expression.

• For any variable x, expression M , and single-holed expression C⟨·⟩, the following are

all single-holed expressions.

– ΠxC⟨·⟩. M

– ΠxM . C⟨·⟩

– λxC⟨·⟩. M

– λxM . C⟨·⟩

– C⟨·⟩M

– M(C⟨·⟩)
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Let C⟨M⟩ denote the expression resulting from replacing ⟨·⟩ in C⟨·⟩ with M .

Second, a useful result due to Levy Lévy [1978], regarding maximal reductions.

Definition 12. Let µ : T → N ∪ {∞} be the function which maps an expression M to the

length of the longest reduction sequence starting at M (where µ(M) = ∞ if no such sequence

exists).

Lemma 13. Lévy [1978] For any expressions A, M , N1, . . . , Nk and variable

µ((λxA. M)N1 . . . Nk) ≤ 1 + µ(A) + µ(N1) + µ(M [N1/x]N2 . . . Nk)

Lemma 13 will be used in subsequent sections to analyze the normalization behavior of

translated expressions.

2.3 The Translation

Xi’s thunkification translation Xi [1997] was introduced as a simpler approach to deriving

strong normalization from weak normalization in typed lambda calculi, as compared to its

CPS counterpart Sørensen [1997], Xi [1996]. Roughly speaking, rather than passing con-

tinuations, Xi’s translation pervasively thunkifies expressions, using uninterpreted padding

variables to store sub-expressions in the evaluation of thunkified expressions. This allows

for expressions to be mapped to I-expressions, where strong normalization is more readily

proved from weak normalization (Lemma 14). The translation is, in a sense, a direct typed

implementation of Klop’s ι-translation Klop et al. [1993].

The CPS translation was generalized by BHS to generalized non-dependent, clean, negat-

able pure type systems Barthe et al. [2001]. In a research report, I extended Xi’s translation

by analogy Mull [2022], which yielded a simple alternative proof of the BHS result. In this

section, I present a refinement of this translation which eliminates the requirement of negata-
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bility and weakens the requirement of cleanliness. Before presenting the translation, I give

an overview of the approach.

One of the fundamental features of non-dependent systems is that expressions cannot

depend on other expressions of lower degree (Lemma 12). It is, thus, natural to prove prop-

erties of derivable expressions by reverse induction on degree. This motivates the following

definition.

Definition 13. A non-dependent n-tiered pure type system is i-secure if deg(M) ≥ i implies

M ∈ SN for all derivable expressions M .

For the remainder of the section, fix an n-tiered pure type system λS and suppose that

λS is weakly normalizing. We prove that λS is i-secure for every i, reverse inductively, and in

doing so define two families of translations, one for types {ρi}ni=1 and one for terms {τi}ni=1,

which is possible exactly because of this fundamental property of non-dependent systems;

the degrees of terms are lower than the degree of their types, so there is no need for mutual

dependency between the type translations and the term translations.

We then prove the following implications for every expression of degree i − 1 (that is,

terms whose types are degree i).

M ∈ WN ⇒ τi(M) ∈ WN

⇒ τi(M) ∈ SN

⇒ M ∈ SN.

The analysis at each level differs in character according to whether si is negatable.

Definition 14. A sort si is negatable with if (si, si) ∈ RλS. An n-tiered pure type system

is i-negatable if si is negatable in λS.

In the case that si is already negatable, τi preserve typability in the same system and the

first implication follows by fiat. The second implication follows the fact that τi translates
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expressions to I-expressions, an appropriate generalization of the λI-calculus for this setting,

and for which there is an analogous conservation lemma.

Definition 15. An expression M is an I-expression at level j if the following hold.

• deg(M) ≥ j

• If λxA. N ⊂ M and deg(λxA. N) = j, then x appears free in N .

Lemma 14. (Lemma 5.16, Barthe et al. [2001]) Let λS be a non-dependent tiered pure type

system that is i-secure. Then for every derivable I-expression M at level i− 1, if M ∈ WN

then M ∈ SN.

In the case si is not negatable, ρi and τi are allowed to translate into a negatable ex-

tension, but the first implications will need to be proved combinatorially (Lemma 31) and

the second implication needs to be shown to still hold (Lemma 25). In particular, the above

lemma requires that λS be i-secure, so i-security needs to be preserved in the negatable

extension. In both cases, the last implication follows from a standard argument that τi

preserves infinite reduction paths (Lemma 33).

For the following two translations, fix a level i and suppose that λS is a weakly

normalizing non-dependent i-secure n-tiered pure type system. The subscript ‘i’

will be included in definitions, but will typically be dropped in the following exposition.

2.3.1 The Type-Level Translation

We need a distinguished type ⊥i for each sort si to stand for the type of thunks. In the case

of s1, this requires an additional type variable in the context.

Definition 16. If i > 1, let ⊥i denote si−1 and, otherwise, let ⊥1 be a distinguished variable.

Likewise, if i > 1 let ∆i denote the empty context, and otherwise, let ∆1 denote the context

(⊥1 : s1).
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The translation ρ gives the types of thunkified terms. This means pervasively replacing

each type A where deg(A) = i with its corresponding thunkified form, e.g., ⊥i → ρi(A).

Definition 17. Define the functions

ρi : T≥i → T≥i and ρ′i : T≥i → T≥i

simultaneously as follows.

ρi(sj) ≜ sj (where j ≥ i− 1)

ρi(
sjx) ≜ sjx (where j ≥ i+ 1)

ρi(Π
sjxA. B) ≜ Πsjxρ

′
i(A). ρi(B)

ρi(λ
sjxA. M) ≜ λsjxρi(A). ρi(M)

ρi(MN) ≜ ρi(M)ρi(N)

ρ′i(A) ≜


⊥i → ρi(A) deg(A) = i

ρi(A) otherwise.

The function ρ′i is extended to contexts as follows.

ρ′i(∅) ≜ ∅

ρ′i(Γ,
sjx : A) ≜


ρ′i(Γ),

sjx : ρ′i(A) j ≥ i

ρ′i(Γ) otherwise.

The type-level translations are required to commute with substitution and preserve β-

equivalence. These two features are necessary for translating application and conversion

inferences in the next section. The following two lemmas are standard.

Lemma 15. (ρ and ρ′ commute with substitution) For variable sjx and expressions M and
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N where deg(N) = j − 1 the following hold.

• ρ(M [N/sjx]) = ρ(M)[ρ(N)/sjx]

• ρ′(M [N/sjx]) = ρ′(M)[ρ(N)/sjx]

Proof. We prove both simultaneously by induction on the structure of M . To start, in the

case of ρ′, if deg(M) = i then by Lemma 10, deg(M [N/x]) = i as well. So

ρ′(M [N/x]) = ⊥ → ρ(M [N/x])

= ⊥ → ρ(M)[ρ(N)/x]

= ρ′(M)[ρ(N)/x]

where the second equality follows from the inductive hypothesis. And if deg(M) ̸= i, then

ρ′(M [N/x]) = ρ(M [N/x])

= ρ(M)[ρ(N)/x]

= ρ′(M)[ρ(N)/x]

So we can proceed by induction on M for the case of ρ. The cases in which M is a sort or a

variable are straightforward. The following are the cases for Π-expressions and λ-expressions.

Π-Expression. If M is of the form ΠyA. B then

ρ((ΠyA. B)[N/x]) = ρ(ΠyA[N/x]. B[N/x])

= Πyρ
′(A[N/x]). ρ(B[N/x])

= Πyρ
′(A)[ρ(N)/x]. ρ(B)[ρ(N)/x]

= ρ(ΠyA. B)[ρ(N)/x]
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λ-Expression. If M is of the form λyA. P then

ρ((λyA. P )[N/x]) = ρ(λyA[N/x]. P [N/x])

= λyρ(A[N/x]). ρ(P [N/x])

= λyρ(A)[ρ(N)/x]. ρ(P )[ρ(N)/x]

= ρ(λyA. P )[ρi(N)/x]

The case that M is an application is similar.

Lemma 16. (ρ and ρ′ preserve β-reductions) For derivable expressions M and N , if M →β

N then ρ(M) →β ρ(N) and ρ′(M) →β ρ′(N). Furthermore, if M =β N then ρ(M) =β ρ(N)

and ρ′(M) =β ρ′(N).

Proof. The case of β-equality follows immediately from the case of one-step β-reduction. We

prove the one-step case for both ρ and ρ′ simultaneously by induction on the structure of

the one-step β-reduction relation. It is straightforward to show that the lemma holds in the

case of ρ′ given that it holds inductively for ρ. So we proceed by induction in the case of ρ.

In the case of a redex,

ρ((λxA. M)N) = (λxρ(A). ρ(M))ρ(N)

→β ρ(M)[ρ(N)/x]

= ρ(M [N/x])

It is then straightforward to verify that this property holds up to congruence.

We also note here the important fact that this translation is simple enough not to affect

the normalization behavior of the expression after translation.
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Fact 2. For any expression M , if M ∈ NF, then ρ(M) ∈ NF. Furthermore, M ∈ WN (resp.,

SN) if and only if ρ(M) ∈ WN (resp., SN) and µ(M) = µ(ρ(M)).

Next is typability preservation. This ensures type derivations can be used in proving that

the term-level translation preserves typability, e.g., for translating the derivation of Π-type

judgments for abstraction. The translation targets the super-system of λS for which si is

negatable, i.e., where it is possible define types of the form ⊥ → A when deg(A) = i.

Definition 18. For any n-tiered pure type system λS, let λS¬i be the n-tiered pure type

system with the rules RλS¬i ≜ RλS ∪ {(si, si)}.

Lemma 17. (ρ and ρ′ preserve typability) For context Γ and expressions M and A, the

following hold.

1. If Γ ⊢λS M : A and degM ≥ i then ∆, ρ′(Γ) ⊢λS¬ ρ(M) : ρ(A).

2. If Γ ⊢λS A : sj and degA ≥ i then ∆, ρ′(Γ) ⊢λS¬ ρ′(A) : sj.

Proof. We prove both simultaneously by induction on the structure of derivations. For

item 2, note that by item 1, we have the inference ∆, ρ′(Γ) ⊢ ρ(A) : sj . So if degA ̸= i,

we’re done, and otherwise we have

∆, ρ′(Γ) ⊢ ⊥ : si ∆, ρ′(Γ) ⊢ ρ(A) : si
∆, ρ′(Γ) ⊢ ⊥ → ρ(A) : si

Note that this judgment is derivable in λS¬ by construction.

For item 1, we proceed with each case. The case in which the derivation is a single axiom

is straightforward.

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj
Γ, x : A ⊢ x : A

where j ≥ i+ 1. Note that ρ′(A) = ρ(A) since deg(A) > i. So by the inductive hypothesis,

we have
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∆, ρ′(Γ) ⊢ ρ(A) : sj

∆, ρ′(Γ), x : ρ(A) ⊢ x : ρ(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ, x : B ⊢ M : A

By the inductive hypothesis, ∆, ρ′(Γ) ⊢ ρ(M) : ρ(A), so if deg(B) ≤ i, then we’re done.

Otherwise, we have

∆, ρ′(Γ) ⊢ ρ(M) : ρ(A) ∆, ρ′(Γ) ⊢ ρ′(B) : sj

∆, ρ′(Γ), x : ρ′(B) ⊢ ρ(M) : ρ(A)

where the right antecedent judgment also follows from the inductive hypothesis.

Product Type Formation. If the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

then by the inductive hypothesis, we have

∆, ρ′(Γ) ⊢ ρ′(A) : sj ∆, ρ′(Γ), x : ρ′(A) ⊢ ρ(B) : sk

∆, ρ′(Γ) ⊢ Πxρ
′(A). ρ(B) : sk

where k ≥ i. Note we can apply the inductive hypothesis to the left antecedent judgment

since deg(A) ≥ deg(B) by non-dependence and so

deg(A) ≥ deg(ΠxA. B) ≥ i.

Abstraction. Suppose the last inference is of the form

Γ, x : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

Since deg(M) = deg(λxA. M) ≥ i, we have deg(B) > i, and by non-dependence, we have

deg(A) ≥ deg(B) > i. In particular, ρ′(A) = ρ(A). Therefore, we have

∆, ρ′(Γ), x : ρ(A) ⊢ ρ(M) : ρ(B) ∆, ρ′(Γ) ⊢ Πxρ(A). ρ(B) : sj

∆, ρ′(Γ) ⊢ λxρ(A). ρ(M) : Πxρ(A). ρ(B)

Application. Suppose the last inference is of the form
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Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

By non-dependence, degA ≥ degB > degM ≥ i and ρ′(A) = ρ(A). So by the inductive

hypothesis we have

∆, ρ′(Γ) ⊢ ρ(M) : Πxρ(A). ρ(B) ∆, ρ′(Γ) ⊢ ρ(N) : ρ(A)

∆, ρ′(Γ) ⊢ ρ(M)ρ(N) : ρ(B)[ρ(N)/x]

where ρ(B)[ρ(N)/x] = ρ(B[N/x]) by Lemma 15.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B

where j ≥ i and A =β B. By the inductive hypothesis, we have

∆, ρ′(Γ) ⊢ ρ(M) : ρ(A) ∆, ρ′(Γ) ⊢ ρ(B) : sj

∆, ρ′(Γ) ⊢ ρ(M) : ρ(B)

where ρ(A) =β ρ(B) by Lemma 16.

2.3.2 The Term-Level Translation

Next we define the translation of terms. At a high level, we need to add uninterpreted

padding variables to our context for collecting expressions in the bodies of λ-expressions so

that the translation maps expressions to I-expressions. There are two issues that need to be

addressed.

1. The system λS may not be expressive enough to carry out the translation.

2. The types of the padding variables may depend on variables in the context, which

restricts our ability to generalize or abstract over those variables.

BHS handles these two problems by requiring λS to satisfy two technical restrictions. The

first is negatability, which was covered in the previous section, and is necessary to derive

the types of translated terms. The second is cleanliness, which disallows generalizing or

abstracting over variables on which the types of padding variables depend.
37



Definition 19.

• A rule (si, sj) is generalizable if (si+1, sj) ∈ RλS.

• A rule (si, sj) is harmless if neither (sk, sj) nor (sk, sj−1) are in RλS when k > j.

An n-tiered pure type system λS is clean if all its rules are generalizable or harmless.

BHS uses the notion of cleanliness to characterize systems in which padding variables are

definable. These padding variables are polymorphic when possible, in which case they are

typed as ΠAsj . A → ⊥ → ⊥. But if the rules for defining this type are not available (i.e., the

rule (sj , si) is not generalizable) the padding variables are typed as ρ(A)′ → ⊥ → ⊥, with

the understanding that ρ′(A) may depend on variables in the context. For an expression M

derivable in the context Γ, its translation τ(M) is derived in a context of the form

∆, ρ′(Γ),Υ

where Υ contains padding variables depending on variables in ∆, ρ′(Γ). The challenge is

then translating abstractions and generalizations (though the latter is significantly more

problematic). To illustrate this, consider that the left antecedent judgment of abstraction is

translated roughly to

∆, ρ′(Γ), x : ρ′(A),Υ ⊢ τ(M) : ρ(A)

so in order to abstract over the variable x, it must commute with the entire context Υ of

padding variables, i.e., it must be that x does not appear free any of the types in Υ. By

Lemma 11, the only types which can depend on the variable x are those with higher degree

than that of ρ′(A), so cleanliness requires that either

• (generalizability) all types of degree larger than deg(ρ′(A)) have polymorphic padding

variables, or
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• (harmlessness) there are no rules for abstracting or generalizing over variables whose

types have larger degree than deg(ρ′(A)).

In the next two sections, I present two variants of the term-level translation τ , depending

on whether si is negatable. In the non-negatable case, τ targets an extension of λS, but

is otherwise an application of the ideas in the BHS paper. The deviation is in the new

requirement that weak normalization preservation, i-security, and infinite reduction path

preservation must be proved explicitly, as we can no longer assume that the target system of

τ is weakly normalizing. In the negatable case, τ is a novel variant of the thunkification trans-

lation which uses a more complex padding scheme that reduces the structural restrictions

on λS, the details of which will be covered in Section 2.3.2.

The Non-Negatable Case

BHS handles the case of irrelevant non-negatable sorts by an argument leveraging the sparse

inhabitation of types at irrelevant sorts.

Definition 20. A sort sj is irrelevant with respect to rules R if there is no sort sk such

that (sk, sj) ∈ R. A rule (sk, sj) is said to be j-relevant.

Lemma 18. (Lemma 5.19, Barthe et al. [2001]) Let λS be a non-dependent, weakly nor-

malizing, i-secure tiered pure type system. If si is irrelevant, then every derivable expression

M with deg(M) = i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.

The translation below handles non-negatable sorts by translating into a negatable exten-

sion of λS. This was also done in the previous section to ensure that translated types were

derivable.

Because of Lemma 12, we can work with a slightly weaker notion of cleanliness for this

translation.
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Definition 21. A rule (sj , si) is weakly harmless if for k > j, it follows that (sk, si) ∈ RλS

or (sk, si−1) ∈ RλS implies k ̸∈ DλS(j). A non-dependent n-tiered pure type system λS is

i-weakly clean if all i-relevant rules are either generalizable or weakly harmless.

As noted in the introduction to this section, the translation needs access to padding

variables so that they can be used to hide terms inside thunks, and these padding functions

will be polymorphic when possible; if (sj , si) is generalizable, then it is possible to add a

variable pad of type ΠAsj . A → ⊥ → ⊥ so that if we need to pad a term N of type ρ′(A) of

degree j into a thunkified term M of type ⊥ → τ(B), we can type the term λ•⊥M(padAN•)

as ⊥ → τ(B) as well. If (sj , si) is not generalizable, then the padding variables are typed

simply as ρ′(A) → ⊥ → ⊥ with the caveat that ρ′(A) may have free variables that appear

in the context.

Definition 22. For each index i, define Υi,M inductively on the structure of M as follows.

Υi,si−2
≜ ∅

Υi,six ≜ ∅

Υi,ΠxA. B ≜ Υi,A,Υi,B

Υi,λxA. M ≜ padx : αi,A,Υi,M

Υi,MN ≜ Υi,M

where

αi,A =


Πtsdeg(A) . t → ⊥i → ⊥i (deg(A), i) is generalizable

ρ′i(A) → ⊥i → ⊥i (deg(A), i) is weakly harmless

I will write ⟨M,N⟩ρ(A) for both padxρ(A)MN when (deg(A), i) is generalizable and

padxMN when (deg(A), i) is weakly harmless, if there is no fear of ambiguity.

Fact 3. For any derivable expression M , the context ∆,ΥM is well-formed in λS¬.
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The context of padding variables appears after the translation of a given context, as it

may depend on some the declarations in it, so to translate abstractions and generalizations,

we need some declarations to commute with the context of padding variables. The following

ensures this is possible.

Lemma 19. If (sj , si) or (sj , si−1) are in RλS then no variables (other than ⊥) of degree

j − 1 (i.e., of the form sjx) can appear free in ΥM for any derivable expression M where

deg(M) = i− 1.

Proof. By induction on the structure of M . The only interesting case is if M is of the form

λxA. N where (deg(A), i) is weakly harmless. If, for some k, the variable skx appears free

in ρ′(A), then it must also appear free in A (this is straightforward to check), and so by

Lemma 12, it must be that k > deg(A) and k ∈ DλS(deg(A)). But by weak harmlessness,

j ̸∈ DλS(deg(A)), so must be that j ̸= k.

As for the translation itself, it is quite natural. The core of the definition is in the

case of λ-expressions, where the padding variables are used to ensure our translation maps

expressions to I-expressions.

Definition 23. Define the functions

τi : Ti−1 → Ti−1 and τ ′i : Ti−1 → Ti−1
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simultaneously as follows.

τi(si−2) ≜ •i

τi(
six) ≜ six•i

τi(ΠxA. B) ≜


τi(A) → τi(B) deg(A) = i− 1

Πxρ
′
i(A). τi(B) otherwise

τi(λx
A. M) ≜ λxρ

′
i(A). τ ′i(M)⟨x, •i⟩ρ′i(A)

τi(MN) ≜ τi(M)ρi(N)

τ ′i(M) ≜ λ •⊥i
i . τi(M)

where j ≥ i− 1 and •i is a distinguished variable.

This translation must first be shown to be well-defined. In particular, it must be that

if MN is derivable, then deg(N) ≥ i, so that ρ may be applied. This is the first place

where we use non-negatability. By generation, M must be be given a Π-type ΠxA. B where

deg(B) = i by assumption and deg(A) ≥ i by non-dependence. By non-negatability, it must

in fact be that deg(A) ≥ i+ 1, and so deg(N) ≥ i.

Note that, for sorts, ⊥i = si−1, so τ(si−1) will be given the correct type. This trick is

used to ensure that the translation maps to I-expressions even for abstractions over thunks.

Fact 4. For any derivable expression M such that deg(M) = i − 1, the variable • appears

free in τ(M).

Now we verify that this translation preserves typability. This is fairly mechanical. Again,

recall that we are checking typability in a stronger system.

Lemma 20. (τ and τ ′ preserve typability) For any context Γ and expressions M and A, if

Γ ⊢λS M : A and Γ ⊢λS A : si, then
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1. ∆, • : ⊥, ρ′(Γ),ΥM ⊢λS¬ τ(M) : ρ(A)

2. ∆, ρ′(Γ),ΥM ⊢λS¬ τ ′(M) : ρ′(A)

Proof. We prove both simultaneously by induction on the structure of derivations. For

item 2, suppose that

∆, • : ⊥,ΥM , ρ′(Γ),⊢ τ(M) : ρ(A)

By typability preservation of ρ (Lemma 17) and thinning (Lemma 4) we can derive

∆, ρ′(Γ),ΥM ⊢ ⊥ → ρ(A) : si

and by permutation (Lemma 5) we can derive

∆, ρ′(Γ),ΥM , • : ⊥ ⊢ τ(M) : ρ(A)

which means by abstraction we can derive

∆,Υ, ρ′(Γ) ⊢ λ •⊥ . τ(M) : ⊥ → ρ(A)

For item 1, we consider each case.

Axiom. If the derivation is of the form

⊢ si−2 : si−1

then of course

∆, •i : ⊥i ⊢ •i : ⊥i

Recall that ⊥i = si−1 = ρ(si−1).

Variable Introduction. Suppose the last derivation is of the form
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Γ ⊢ A : si
Γ, x : A ⊢ x : A

By ρ typability preservation and thinning, we can derive

∆, • : ⊥, ρ′(Γ) ⊢ ρ′(A) : si
∆, • : ⊥, ρ′(Γ), x : ρ′(A) ⊢ x : ρ′(A)

and then we can use weakening and application to derive

∆, • : ⊥, ρ′(Γ), x : ρ′(A) ⊢ x• : ρ(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ, x : B ⊢ M : A

If j < i, then we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

directly by the inductive hypothesis. Otherwise, B is in the domain of ρ′ and by the inductive

hypothesis, ρ typability preservation, and thinning, we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ′(B) : sj

∆, • : ⊥, ρ′(Γ),ΥM , x : ρ′(B) ⊢ τ(M) : ρ(A)

Since none of the padding variables in ΥM appear in ρ′(B) it follows by permutation that

we can also derive

∆, • : ⊥, ρ′(Γ), x : ρ′(B),ΥM ⊢ τ(M) : ρ(A)

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sjx : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

If j = i− 1, then by the inductive hypothesis, and thinning we have

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(A) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(B) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ τ(A) → τ(B) : si−1
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Otherwise, A is in the domain of ρ′ and the inductive hypothesis gives us

∆, • : ⊥, ρ′(Γ), x : ρ′(A),ΥB ⊢ τ(B) : si−1

By Lemma 19, x does not appear free in ΥB , so by permutation, ρ typability preservation

and thinning, we can derive

∆, • : ⊥ρ′(Γ),ΥA,ΥB ⊢ ρ′(A) : sj
∆, • : ⊥, ρ′(Γ),ΥA,ΥB ,

sjx : ρ′(A) ⊢ τ(B) : si−1

∆, • : ⊥, ρ′(Γ),ΥA,ΥB ⊢ Πxρ
′(A). τ(B) : si−1

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : si

Γ ⊢ λxA. M : ΠxA. B

By the inductive hypothesis,

∆, ρ′(Γ), x : ρ′(A),ΥM ⊢ τ ′(M) : ⊥ → ρ(B)

and by Lemma 19 and permutation, in fact we have

∆, ρ′(Γ),ΥM , x : ρ′(A) ⊢ τ ′(M) : ⊥ → ρ(B)

By assumption, (sj , si) is generalizable or weakly harmless. In the first case, we have

∆ ⊢ ΠAsj . A → ⊥ → ⊥ : si

Otherwise, by ρ typability preservation and a couple additional steps (including a use of

generation), we can derive

∆, ρ′(Γ) ⊢ ρ′(A) → ⊥ → ⊥ : si
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so in both cases, we can apply thinning to derive.

∆, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ τ ′(M) : ⊥ → ρ(B)

Therefore, in a few steps we can derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ ⟨x, •⟩ρ′(A) : ⊥

which can be used with application to derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M , x : ρ′(A) ⊢ τ ′(M)⟨x, •⟩ρ′(A) : ρ(B)

Finally, this can be used with abstraction to derive

∆, • : ⊥, ρ′(Γ),ΥλxA. M ⊢ λxρ
′(A). τ ′(M)⟨x, •⟩ρ′(A) : Πxρ

′(A). ρ(B)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

As noted above, by non-negatability, it must be that deg(N) ≥ i, which implies N is in the

domain of ρ, so with additional thinning we have

∆, • : ⊥, ρ′(Γ),ΥM ,⊢ τ(M) : Πxρ(A). ρ(B)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ(N) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M)ρ(N) : ρ(B)[ρ(N)/x]

and ρ(B)[ρ(N)/x] = ρ(B[N/x]) by Lemma 15.

Conversion. Suppose the last inference is of the form.

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B
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where A =β B. By the inductive hypothesis, ρ-typability preservation, thinning, and ρ

β-preservation (Lemma 16), we have

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(A)

∆, • : ⊥, ρ′(Γ),ΥM ⊢ ρ(B) : sj

∆, • : ⊥, ρ′(Γ),ΥM ⊢ τ(M) : ρ(B)

The focus of the remainder of the section is to prove the key lemmas below which state

that

• (Lemma 31) τ preserves weak normalization of terms (but not necessarily of the system

as a whole).

• (Lemma 25 i-security is preserved from λS to λS¬, and hence, the conservation lemma

(Lemma 14) holds for to λS¬.

• (Lemma 33) τ preserves infinite reduction sequences.

These encompass the three steps of the outline given at the beginning of the section. I start

with the second result since it fairly general and useful in proving the remaining to lemmas.

i-Security Preservation. The basic problem is the following: λS and λS¬ derive the same

expressions of degree greater than i, but there is a small class of degree i expressions that are

derivable with the introduction of the new rule (si, si), namely function types of the form

A → B where deg(A) = deg(B) = i (there can be no dependence because all variables of B

must have types of degree greater than i). Without loss of generality we may annotate these

types as A →i B.

It is necessary to prove that the introduction of these types does not allow for non-

strongly-normalizing expressions. Morally speaking, in degree i expressions, these function

types are equivalent to pair types; any substitution that happens in Π-types only occurs to

the right of the turnstile, when it is treated as a type. So the real challenge is to prove
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that pair types for degree i types do not allow for non-strongly-normalizing expressions. I

emphasize here that this only refers to types. We don’t need to worry about how these types

are inhabited, since such an expression would be of degree i− 1.

Let M be an expression of degree i derivable in λS¬ and suppose that M has an in-

finite reduction sequence. The rough idea is to think of A →i B appearing in M as a

non-deterministic choice between A and B in the derivation of M . Considering all non-

deterministic choices, we construct a set of projections of M , which are derivable without

an uses of →i, and hence derivable in λS. It will then be possible to track the development

of reductions in these projections alongside the infinite reduction sequence of M and show

that there is always some projection which can make progress for every reduction in the

sequence. Since the set of candidates for M is finite, some candidate expression must make

infinite progress.

Definition 24. The set of projections of a derivable expression M of λS¬ is defined in-

ductively as follows.

Proj(sj) ≜ {sj}

Proj(x) ≜ {x}

Proj(ΠxA. B) ≜ {ΠxA
′
. B′ | A′ ∈ Proj(A) and B′ ∈ Proj(B)}

Proj(λxA. M) ≜ {λxA
′
. M ′ | A′ ∈ Proj(A) and M ′ ∈ Proj(M)}

Proj(MN) ≜ {M ′N ′ | M ′ ∈ Proj(M) and N ′ ∈ Proj(N)}

Proj(A →i B) ≜ Proj(A) ∪ Proj(B)

Lemma 21. If M is derivable in λS¬, then every projection of M is derivable in λS.

Furthermore, if deg(M) = i, then every projection is of degree i as well.
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Lemma 22. For derivable expression M and N such that deg(M) = i,

Proj(M [N/x]) = {M ′[N ′/x] | M ′ ∈ Proj(M) and N ′ ∈ Proj(N)}

The proofs of the above lemmas are straighforward. Unfortnately, projections do not

behave very well with respect to β-reduction. There are two issues to address.

• There may be redexes in an expression that are not represented in its projections. In

the simplest case, a redex appearing in the left hand side of the expression A →i B does

not have an analogous redex in any of the projections of B appearing in Proj(A →i B).

• Even when every projection of M is reduced along the analogous redex when it exists,

the resulting set of projections may not be a full set of projections of the reduct

of M . Reducing any redex which creates multiple copies of its argument will yield

an expression M ′ whose projections contains expressions that are not the result of

reducing projections of M .

The first problem is addressed by inductively defining a β-reduction operation for sets of

projections, which may act as the identity on some projections. The second problem is

addressed by defining the notion of coverage; even if a set of projections does not contain all

of Proj(M), there may be sufficiently many of them that they capture enough information

about M . Roughly speaking, a set of projections covers M all non-deterministic branches in

the expression tree are considered, even if not all combinations are considered.

Definition 25. Let M and N be a derivable expressions in λS¬ such that M →β N along

the redex R, and let M ′ be a projection of M . Define βMR (M ′) by induction on the structure
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of M as follows. Note that M cannot be a sort or a variable.

βΠxA. B
R (ΠxA

′
. B′) ≜


Πxβ

A
R(A′). B′ R ⊂ A

ΠxA
′
. βBR (B′) R ⊂ B

βλx
A. M

R (λxA
′
. M ′) ≜


λxβ

A
R(A′). M ′ R ⊂ A

λxA
′
. βMR (M ′) R ⊂ M

βMN
R (M ′N ′) ≜


βMR (M ′)N ′ R ⊂ M

M ′βNR (N ′) R ⊂ N

P [Q/x] R = MN = (λxA. P )Q

βA→iB
R (M) ≜


βAR(M) M ∈ Proj(A), R ⊂ A

βBR (M) M ∈ Proj(B), R ⊂ B

M otherwise

For a subset P of Proj(M), define βMR (P) ≜ {βMR (P ) | P ∈ P}.

Lemma 23. For derivable expressions M and N such that M →β N along R, if P ⊂

Proj(M), then βMR (P) ⊂ Proj(N).

This lemma is proved by induction on the structural definition of a redex and then using

Lemma 22 in the case of redex. Next, the notion of coverage.

Definition 26. For an expression of the form ΠxA. B and a subset P of Proj(ΠxA. B) let

PA denote the set {A′ | ΠxA
′
. B′ ∈ P} and let PB denote the set {B′ | ΠxA

′
. B′ ∈ P}. I

will use the analogous notation for λ-expressions and applications. In the case of →i, let PA

denote the set P ∩Proj(A) and let PB denote the set P ∩Proj(B). For any expression M , a

set of projections P from Proj(M) covers M if the following hold.

• P covers sj if P = {sj}.
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• P covers sjx if P = {sjx}.

• P covers ΠxA. B if PA covers A and PB covers B.

• P covers λxA. M if PA covers A and PM covers M .

• P covers MN if PM covers M and PN covers N .

• P covers A →i B if PA covers A and PB covers B.

The fundamental lemma of coverage is that it is preserved by β-reduction.

Lemma 24. Let M and N be expressions such that M →β N along the redex R and let P

be a set of projections of M . If P covers M then βMR (P) covers N . Furthermore, there is

some projection P of P such that P →β βMR (P ) (in particular, βMR (P ) ̸= P ).

Proof. (Sketch) This follows by induction on notion of coverage, using Lemma 22 in the case

of a redex. In this process, it is possible to build inductively a witness to the fact that some

element in P is β-reduced.

Lemma 25. If λS is i-secure, then λS¬ is i-secure.

Proof. Suppose that λS¬ is not i-secure. Let M be an expression such that deg(M) ≥ i and

M ̸∈ SN. Since λS and λS¬ derive the same expressions of degree greater than i, it must

be that deg(M) = i. Given an infinite reduction sequence starting at M , Lemma 24 implies

there is an infinite sequences of β reductions on sets of projections starting at Proj(M) (which

trivially covers M). Since Proj(M) is finite, there some expression in Proj(M) which has an

infinite reduction sequence. Since all expression in Proj(M) are derivable in λS and are

degree i, it follows that λS is not i-secure.

Weak Normalization Preservation. First, a substitution commutation lemma akin to Lemma 15

but for τ .
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Lemma 26. (τ commutes with substitution) For variable skx and derivable expressions M

and N where deg(M) = i− 1 and deg(N) ≥ i,

τ(M [N/skx]) = τ(M)[ρ(N)/skx]

Proof. By induction on the structure of M . The cases in which M is a sort or a variable are

straightforward.

Π-Expression. Suppose M is of the form ΠyA. B. If deg(A) = i− 1, then

τ((ΠyA. B)[N/x]) = τ(A[N/x]) → τ(B[N/x])

= τ(A)[ρ(N)/x] → τ(B)[ρ(N)/x]

= τ(ΠyA. B)[ρ(N)/x]

Otherwise,

τ((ΠyA. B)[N/x]) = Πyρ
′(A[N/x]). τ(B[N/x])

= Πyρ
′(A)[ρ(N)/x]. τ(B)[ρ(N)/x]

= Πyρ
′(A)[ρ(N)/x]. τ(B)[ρ(N)/x]

= τ(ΠyA. B)[ρ(N)/x]

The cases that M is a λ-terms or an application are similar.

Unfortunately, unlike ρ, the translation τ does not preserve β-reductions. This is by

design, as it maintains information about previously performed reductions in the padded

expressions. So, to aid the proof below, we use an auxiliary translation θ, which is simply τ

without padding. This translation does preserve β-reductions, and will act as a convenient

intermediate translation.
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Definition 27. Define the functions

θi : Ti−1 → Ti−1 and θ′i : Ti−1 → Ti−1

simultaneously as follows.

θi(si−2) ≜ •i

θi(
six) ≜ six•i

θi(ΠxA. B) ≜


θi(A) → θi(B) deg(A) = i− 1

Πxρ
′
i(A). θi(B) otherwise

θi(λx
A. M) ≜ λxρ

′
i(A). θ′i(M)•

θi(MN) ≜ θi(M)ρi(N)

θ′i(M) ≜ λ •⊥i
i . θi(M)

where j ≥ i− 1 and •i is a distinguished variable.

Again, the definition of θ is exactly the same as that of τ , except in the case of λ-

expressions, where no padding occurs. In particular, θ does not map expressions to I-

expression. But it does have the same sort of substitution commutation and β-reduction

preservation lemmas as ρ, and it can further be proved that θ preserves weak normalization.

Lemma 27. (θ commutes with substitution) For variable skx and derivable expressions M

and N where deg(M) = i− 1 and deg(N) ≥ i,

θ(M [N/skx]) = θ(M)[ρ(N)/skx]

The proof is nearly identical to that of Lemma 26 above.

Lemma 28. For derivable expression M and N of degree i− 1, the following hold.
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1. If M →β N , then θ(M) ↠β θ(N).

2. θ(NF(M)) ↠β NF(θ(M)).

Proof. The proof of item 1 is straightforward, modulo Lemma 27. For the proof of item 2 it

suffices to note that performing a reduction of the form θ′(N)• →β θ(N) in θ(M) does not

produce any new redexes if M ∈ NF.

The translations τ and θ are then connected via an erasure function.

Definition 28. Define the function | · | : Ti−1 → Ti−1 which erases padding expressions

shallowly, i.e.,

|⟨P,Q⟩A| ≜ •i

|si−2| ≜ si−2

|six| ≜ six

|ΠxA. B| ≜ Πx|A|. |B|

|λxA. B| ≜ λx|A|. |B|

|MN | ≜ |M ||N |

Fact 5. |τ(M)| = θ(M) for any expression M .

Naturally, this erasure function also commutes with substitution.

Fact 6. |M [N/x]| = |M |[|N |/x] for variable skx and expressions M and N where deg(M) =

i− 1 and deg(N) = k − 1.

The key idea of the following lemma is to build a reduction sequence starting at τ(M)

which follows a reduction sequence starting at M in lockstep, and then argue that the padded

information in the reductions of τ(M) is sufficiently simple so as not to induce any potentially
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infinite reduction sequences. The intermediate translation θ is used as a lens to view reduced

forms of τ(M) without the additional padding information.

A padded expression is sufficiently simple it’s only non-thunk expressions are of degree

at least i. Since λS, and hence λS¬, is i-secure, the padded expressions must be strongly

normalizing. Note that •, and ⟨M,N⟩A are both degree i− 1, so this is not immediate, but

it is not difficult to show in the case that λS is not i-negatable.

Definition 29. An expression M is i-padded if ⟨P,Q⟩A ⊂ M implies it is of the from

⟨P1, ⟨P2, . . . , ⟨Pk, •⟩Ak
. . . ⟩A2

⟩A1

where P1, . . . , Pk (and hence, A1, . . . , Ak) are degree at least i. I will call such an expression

an i-padding term.

The above idea is captured by the following commutative diagram. Note that there are

two different kinds of arrows in this diagram; horizontal arrows are for β-reductions and

vertical arrows are for translations. In essense, the lemma says that, although τ does not

preserve β-reduction in the same way that θ does, it can be made to preserve it up to

ρ-padding, which is sufficient since τ(M) is ρ-padded by design.

Lemma 29. Let M , M ′ and N be derivable expressions such that M →β M ′ and |N | = θ(M)

and N is i-padded. Then there is a derivable expression N ′ such that N ′ is i-padded and the

following diagram commutes.

M M ′

θ(M) θ(M ′)

N N ′

θ

β

θ

β

|·|
β

|·|

Proof. Let C be a single-holed expression such that M = C⟨(λxA. P )Q⟩) and M ′ =

C⟨P [Q/x]⟩, i.e., (λxA. P )Q is the redex along which M is reduced to M ′. By definition of
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θ, there is a single-holed expression C ′ such that

θ(M) = C ′⟨(λxρ
′(A). (λ •⊥ . θ(P )) • ρ(Q)⟩

By definition of | · |, there is some context C ′′ such that

N = C ′′⟨(λxρ
′(A). (λ •⊥ . P ′)Z)ρ(Q)⟩

where |P ′| = θ(P ) and |Z| = •. Note that, since | · | only removes padding information, we

know that this redex must appear in N (i.e., it is not erased by | · |) and that it does not

affect ρ-translated expressions. Since N is i-padded, it must be that

Z = ⟨T1, ⟨T2, . . . , ⟨Tk, •⟩Ak
. . . ⟩A2

⟩A1

and Z is an i-padding term. Then

C ′′⟨(λxρ
′(A). (λ •⊥ . P ′)Z)ρ(Q)⟩ →β C ′′⟨(λ •⊥ . P ′[ρ(Q)/x])Z[ρ(Q)/x]⟩

→β C ′′⟨P ′[ρ(Q)/x][Z[ρ(Q)/x]/•]⟩

Take N ′ to be this last expression, which is i-padded because degree is preserved by sub-

stitution (which handles the first reduction) and substitution • in an i-padding expression

with an i-padding expression clearly preserving i-padding. Finally,

|C ′′⟨P ′[ρ(Q)/x])[Z[ρ(Q)/x]/•]⟩| = C ′⟨θ(P [Q/x])[|Z[ρ(Q)/x]|/•]⟩

= C ′⟨θ(P [Q/x])[•/•]⟩

= C ′⟨θ(P [Q/x])⟩

= θ(C⟨P [Q/x]⟩)
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|C ′′⟨P ′[ρ(Q)/x]⟩| = C ′⟨|P ′[ρ(Q)/x]|⟩

= C ′⟨θ(P )[ρ(Q)/x]⟩

= C ′⟨θ(P [Q/x])⟩

= θ(C⟨P [Q/x]⟩)

Lemma 30. Let M and M ′ be derivable expressions such that M ↠β M ′. Then there is an

expression i-padded N such that the following diagram commutes.

M M ′

θ(M) θ(M ′)

τ(M) N

θ

β

θ

β

|·|
β

|·|

Proof. By a diagram chase with Lemma 29. Note that τ(M) is i-padded by construction.

All together, this gives us the next key lemma.

Lemma 31. For any derivable expression M such that deg(M) = i − 1, if M ∈ WN then

τ(M) ∈ WN.

Proof. Consider a reduction sequence from M to NF(M). By Lemma 30, there is an reduct

N of τ(M) such that |N | = θ(NF(M)). Following the reduction sequence θ(NF(M)) ↠NF

(θ(M)) given by Lemma 57 analogously in N yields and expression N ′ such that |N ′| =

NF(θ(M)). Thus, the only sub-expressions of N ′ which have redexes are i-padding expres-

sions, which are strongly normalizing by Lemma 25.

Infinite Reduction Sequence Preservation. Finally, we prove µ(M) ≤ µ(τ(M)). Note that

I’ve already stated the upper bound for ρ (Fact 2). We take advantage of a standard

structural lemma which is also proved by BHS (Lemma 5.7).
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Lemma 32. If M is derivable then M is a sort, a Π-expressions, or of the form

NM1 . . .Mk

where k ≥ 0 and N is a variable or a λ-expression.

Lemma 33. For any derivable expression M with deg(M) = i− 1,

µ(M) ≤ µ(τ(M)) = µ(τ ′(M))

Proof. By induction on µ(τ(M)) and the structure of M , lexicographically ordered. The

cases in which M is a sort, a variable, or a Π-expression are straightforward.

λ-Expression. Suppose M is of the form λxA. N . By Fact 2, µ(A) ≤ µ(ρ′(A)) and by the

inductive hypothesis, µ(N) ≤ µ(τ(N)) = µ(τ ′(N)), so

µ(λxA. N) = µ(A) + µ(N)

≤ µ(ρ′(A)) + µ(τ(N)) = µ(ρ′(A)) + µ(τ ′(N))

And since µ(τ ′(N)) ≤ µ(τ ′(N)⟨x, •⟩ρ′(A)) we also have that µ(λxA. N) ≤ µ(τ(λxA. N)).

Application. We consider two cases. First suppose that M is of the form xN1 . . . , Nk where

k ≥ 1. Then

µ(xN1 . . . Nk) =
k∑

j=1

µ(Nj)

≤
k∑

j=1

µ(ρ(Nj))

= µ(τ(xN1 . . . Nk)) = µ(τ ′(xN1 . . . Nk))

Otherwise, M is of the form (λxA. P )N1 . . . Nk with deg(P ) = i−1. Consider the reduction
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sequence

τ((λxA. P )N1 . . . Nk)

= (λxρ
′(A). τ ′(P )⟨x, •⟩ρ′(A))ρ(N1), . . . ρ(Nk)

↠β (λxNF(ρ
′(A)). τ ′(P )⟨x, •⟩ρ′(A))ρ(N1), . . . ρ(Nk)

→β τ ′(P )[ρ(N1)/x]⟨ρ(N1), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

= τ ′(P [N1/x])⟨ρ(N1), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

↠β τ ′(P [N1/x])⟨NF(ρ(N1)), •⟩ρ′(A)ρ(N2) . . . ρ(Nk)

→β τ(P [N1/x])[⟨NF(ρ(N1)), •⟩ρ′(A)/•]ρ(N2) . . . ρ(Nk)

where the above normal forms are guaranteed to exist by the assumption of i-security and

Lemma 25. Note that the fifth line follows from Lemma 26. This reduction has length at

least

2 + µ(ρ′(A))

+ µ(ρ(N1))

+ µ(τ(P [N1/x][⟨NF(N1), •⟩ρ′(A)/•])ρ(N2) . . . ρ(Nk))

and is upper bounded by µ(τ(M)). Furthermore,

µ(τ((P [N1/x])N2 . . . Nk))

= µ(τ(P [N1/x])ρ(N2) . . . ρ(Nk))

≤ µ(τ(P [N1/x][⟨NF(N1), •⟩ρ′(A)/•])ρ(N2) . . . ρ(Nk))

since • can be replaced with ⟨NF(N1), •⟩ρ′(A) in any reduction sequence starting at τ(P [N1/x])π(N2) . . . π(Nk).

59



So applying the inductive hypothesis, the above expression is lower bounded by

1 + µ(A) + µ(N1) + µ((P [N1/x])N2 . . . Nk)

Note that this is why we cannot simply induct over the structure of M , as we need to be

able to say that

µ((P [N1/x])N2 . . . Nk) ≤ µ(τ((P [N1/x])N2 . . . Nk))

Finally, by Lemma 13, this implies µ(M) ≤ µ(τ(M)).

I conclude with the main lemma of this section, which derives (i − 1)-security from

i-security.

Lemma 34. Let λS be an i-secure, weakly normalizing n-tiered pure type system which is

i-weakly clean and not i-negatable. Then every derivable expression M such that deg(M) =

i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.

The Negatable Case

At this point, we can prove that weak normalization implies strong normalization for all

non-dependent weakly clean n-tiered pure type systems. In the previous report I have been

alluding to Mull [2022], I use a very close variant of the translation from the previous section

to given the same result in the case that si is negatable. In addition, for negatable sorts

I give a different closure property using a novel padding technique based roughly on the

notion of Skolem functions. This translation preserves typability in λS, so will not require

the combinatorial-style proofs as in the previous section.

I begin with the technical lemma that makes possible the padding technique. It is based

on the observation that if it is possible to abstract over a variable, then it is also possi-
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ble to generalize over that variable in the types of padding variables. So a variable can

commute with the padding variables modulo generalization over that variable. The general-

ization allows padding variables to instantiate their dependencies at the level of terms, which

eliminates the dependence in the types.

This idea can almost eliminate the need for any notion of cleanliness, but unfortunately,

the situation is complicated by products types. On the one hand, product types are simpler

because they cannot be “reduced" at the level of terms except at their individual components;

substitution only occurs at the type level with application steps. The difficulty is that a type

of degree i− 1 may include generalization using the rule (sj , si−1), and it is not possible to

generalize over padding variables with this rule (the types of padding variables are degree

i), so we may not be able to use the Skolemization-style argument referenced above. So the

translation I present still requires a cleanliness-like restriction on the rules in the system,

but it is weaker.

Definition 30. A non-dependent n-tiered pure type system λS is i-upwards clean if it

satisfies the following closure property: For any j (where j ≥ i) in [n], if (sj , si−1) ∈ RλS,

then (sj , si) ∈ RλS or j ̸∈ DλS(i).

The first condition allows for the same technique for abstraction to be used for prod-

uct type formation, i.e., the Skolemization-style argument. The second condition is based

Lemma 12, and is essentially a stronger fall-back notion of full cleanliness which captures

when variables commute by virtue of the structure of the rules, as was done in the previ-

ous section. Also note that cleanliness implies i-very weak cleanliness in the case that si is

negatable, as the existence of both the rules (sj , si−1) and (si, si) imply the generalizability

of rules (sk, si) for i ≤ k ≤ i − 1. This not the case for weak-cleanliness, which also shows

the strength of the notion of weak harmlessness.

I continue to the above mentioned technical lemma. The following is a useful definition

and notation for generalizing over many variables at a time.
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Definition 31.

• A context Γ is generalizable over a sort sj in λS if (sk, sj) ∈ RλS for each state-

ment (skx : A) appearing in Γ. In abuse of notation, for a context Γ of the form

(x1 : A1, . . . , xk : Ak), I write ΠΓ. B for

Πx2
A1 . . . .Πxk

Ak . B

and I write MΓ for Mx1 . . . xk.

• A context Γ is generalizable over a context Φ if Γ is generalizable over each sj such

that (sjx : A) appears in Φ. In further abuse of notation, for a context Φ of the form

(x1 : B1, . . . , xk : Bk), I write ΠΓ. Φ for

(x1 : ΠΓ. B1, . . . , xk : ΠΓ. Bk).

The basic idea is the following. Suppose

Γ, x : A, y : B ⊢ M(x, y) : C(x, y)2

and ΠxA. B is a derivable type. It is then possible to derive

Γ, y : ΠxA. B, x : A ⊢ M(x, yx) : C(x, yx).

The variable y is replaced with yx to recover its type in the first derivation. This is a fairly

simple syntactic trick, but it has some very nice consequences. The dependence on x in the

type of y is represented at the level of terms instead of types. So if it is possible to abstract

2. I am using this notion to emphasize the dependence on x and y.
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over x, then we can derive

Γ, y : ΠxA. B ⊢ λxA. M(x, yx) : ΠxA. C(x, yx).

And if this λ-expression is applied to another expression N and then β-reduced, the sub-

expression yx is replaced with yN , maintaining the coupling of y and x without needing it

to be expressed in the context.

What follows is the natural generalization of this idea. The translation below replaces

variables whose types may have changed with function applications to recover their original

type.

Definition 32. For contexts Γ and Ψ, define the function ξΓΨ : T → T as follows.

ξΓΨ(sj) ≜ sj

ξΓΨ(x) ≜


xΓ x ∈ Ψ

x otherwise

ξΓΨ(ΠxA. B) ≜ Πxξ
Γ
Ψ(A). ξΓΨ(B)

ξΓΨ(λx
A. M) ≜ Πxξ

Γ
Ψ(A). ξΓΨ(M)

ξΓΨ(MN) ≜ ξΓΨ(M)ξΓΨ(N)

Note that the in Ψ are irrelevant, but are included for convenience. I will write ΨΓ
y in the

case Ψ is of the form (y : A).

This translation is sufficiently simple so as to satisfy the standard substitution-commutation

and β-preservation lemmas fairly straightforwardly.

Fact 7. (ξΓy commutes with substitution) For expressions M and N , variables x and y, and

context Γ,

ξΓy (M [N/x]) = ξΓy (M)[ξΓy (N)/x].
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Fact 8. (ξΓy preserves β-reductions) For expressions M and N , if M →β N , then ξΓy (M) →β

ξΓy (N). Furthermore, if M =β N , then ξΓy (M) =β ξΓy (N).

And now for the lemma itself. First, the simple case in which the context on the right is

a single variable. The more general case is a corollary. The proof follows the usual pattern.

I also note that these results can be further generalized to the case of any pure type system,

but it is simpler to present it here in the setting of tiered systems. Note that the ξ-translation

is extended to contexts in the usual way.

Lemma 35. Let Γ, Ξ, and Φ be contexts, let sjx be variable a such that Ξ is generalizable

over sj, and let A, B and M be expressions. Then

Γ,Ξ, sjx : A,Φ ⊢ M : B

implies

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ) ⊢ ξΞx (M) : ξΞx (C).

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, product type formation, or an abstraction are straightforward.

Variable Introduction. First suppose Φ = ∅. Then the last inference is of the form

Γ,Ξ ⊢ A : sj

Γ,Ξ, sjx : A ⊢ sjx : A

Since Ξ is generalizable over sj , it is easy to get to the derivation

Γ ⊢ ΠΞ. A : sj

Γ, sjx : ΠΞ. A ⊢ sjx : ΠΞ. A

by a sequence of product type formations and a variable introduction. Then by thinning can

derive

Γ, sjx : ΠΞ. A,Ξ ⊢ sjx : ΠΞ. A
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It is then similarly easy to derive

Γ, sjx : ΠΞ. A,Ξ ⊢ sjxΞ : A

by a sequence of applications. Note that x does not appear in A.

Next suppose Φ is nonempty. Then the last inference is of the form

Γ,Ξ, sjx : A,Φ′ ⊢ B : sk
Γ,Ξ, sjx : A,Φ′, sky : B ⊢ sky : B

Then by induction on the length of Φ, we can derive

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ
′) ⊢ ξΞx (B) : sk

Γ, sjx : ΠΞ. A,Ξ, ξΞx (Φ
′), sky : ξΞx (B) ⊢ sky : ξΞx (B)

Weakening. Again, first suppose Φ = ∅. Then the last inference is of the form

Γ,Ξ ⊢ M : B Γ,Ξ ⊢ A : sj

Γ,Ξ, sjx : B ⊢ M : B

As in the previous case, we can derive

Γ ⊢ ΠΞ. A : sj

which, by thinning, implies

Γ, sjx : ΠΞ. A,Ξ ⊢ M : B

The case in which Φ is nonempty is similar to the analogous case for variable introduction.

Application. Suppose the last inference is of the form

Γ,Ξ, sjx : A,Φ ⊢ P : ΠyC . D Γ,Ξ, sjx : A,Φ ⊢ Q : C

Γ,Ξ, sjx : A,Φ ⊢ PQ : D[Q/y]

This case follows by applying the inductive hypothesis to each antecedant judgment and then

applying substitution preservation for ξΞx (Fact 7) to ensure that the type of the conclusion

is correct.
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Conversion. As with the previous case, we can apply in the inductive hypothesis to each

antecedent judgment and then apply β-preservation for ξΞx (Fact 8) to ensure that the type

of the conclusion is correct.

Corollary 1. Let Γ, Ξ, Ψ, and Φ be contexts, such that Ξ is generalizable over Ψ (and,

equivalently, over ξΞΨ(Ψ)), and let M and A be expressions. Then

Γ,Ξ,Ψ,Φ ⊢ M : A

implies

Γ,ΠΞ. ξΞΨ(Ψ),Ξ, ξΞΨ(Φ) ⊢ ξΞΨ(M) : ξΞΨ(A).

Proof. By repeated application of Lemma 35.

Next, we define the padding functions used in the main translation below. The types

that require padding functions are those which appear as the arguments of abstractions,

and these are inductively build up based on the term being translated; this accounts for the

dependence on the expression M in the definition below. The dependence on the context

Γ below keeps track of how the above lemma has been applied in previous steps of the

translation. Also note that there are no polymorphic padding variables. Though it would be

possible to include them, it is not terribly useful in combination with the Skolemization-style

argument.

Definition 33. Define the contexts ΥΓ
i,M as follows by simultaneous induction on the struc-
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ture of M and length of Γ, lexicographically ordered.

ΥΓ
i,si−2

≜ ∅

ΥΓ
i,six ≜ ∅

ΥΓ

i,Π
sjx

A
. B

≜


Υ
Γ,x:A
i,B (sj , si) ∈ RλS

ΥΓ
i,A,Υ

Γ
i,B otherwise

ΥΓ
i,λxA. M

≜ padΓx : Πρ′(Γ). ρ′i(A) → ⊥i → ⊥i,Υ
Γ,x:A
i,M

ΥΓ
i,MN ≜ ΥΓ

i,M ,ΥΓ
i,N

Similar to what is done in the previous section, I use the shorthand ⟨M,N⟩Γx for padΓxρ′(Γ)MN .

It is possible to characterize the dependence on Γ using the generalized Π-bindings from

Definition 31.

Lemma 36. For any expression M and contexts Γ and Φ,

Υ
Γ,Φ
M = ΠΓ. ΥΦ

M .

Proof. By induction on the structure of M . The cases in which M is a sort, variable or

application are straightforward

Π-expression. Suppose M is of the form ΠxA. B. If (sj , si) ∈ RλS then

Υ
Γ,Φ
ΠxA. B

= Υ
Γ,Φ,x:A
B

= ΠΓ. Υ
Φ,x:A
B

= ΠΓ. ΥΦ
ΠxA. B

The other cases are straightforward.
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λ-expression. Suppose M is of the form λxA. B. Then

Υ
Γ,Φ
λxA. B

= padx : Π(Γ,Φ). ρ′(A) → ⊥ → ⊥,Υ
Γ,Φ,x:A
B

= padx : Π(Γ,Φ). ρ′(A) → ⊥ → ⊥,ΠΓ. Υ
Φ,x:A
B

= ΠΓ. (padx : ΠΦ. ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
B )

= ΠΓ. ΥΦ
λxA. B

Finally, the main translation of the section. It is similar to the translation in the previous

section but with a dependence on contexts. The contexts play a similar role here as they do

in the definitions above; they explicitly keep track of what needs to be ξ-translated.

Definition 34. For each context Γ, define the functions

τΓi : Ti−1 → T and τ ′Γi : Ti−1 → T

as follows by induction on the structure of its argument and the length of Γ, lexicographically
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ordered.

τΓi (si−2) ≜ •i

τΓi (
six) ≜ six•i

τΓi (ΠxA. B) ≜


τΓi (A) → τΓi (B) deg(A) = i− 1

Πxρ
′
i(A). τ

Γ,x:A
i (B) (sj , si) ∈ RλS

Πxρ
′
i(A). τΓi (B) otherwise

τΓi (λx
A. M) ≜ λxρ

′
i(A). τ

′Γ,x:A
i (M)⟨x, •i⟩Γx

τΓi (MN) ≜


τΓi (M)τ ′Γi (N) deg(N) = i− 1

τΓi (M)ρi(N) otherwise

τ ′Γi (M) ≜ λ •⊥i
i . τΓi (M)

where j ≥ i− 1 and •i is a distinguished variable.

As above, it is useful to characterize the dependence on Γ, this time with relation to the

ξ-translation.

Lemma 37. For contexts Γ and Φ and expression M ,

τΓ,Φ(M) = ξΓ
ΥΦ
M
(τΦ(M))

Proof. By induction on the structure M . The only case of interest is the one in which M is

of the form λxA. B. In this case,

τΓ,Φ(λxA. B) = λxρ
′(A). τ ′Γ,Φ,x:A(M)(pad

Γ,Φ
x ρ′(Γ,Φ)x•)
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By the inductive hypothesis,

τΓ,Φ,x:A(M) = ξΓ
ΥΦ,x:A
M

(τΦ(M))

and since padx does not appear in τΦ(M), we have

ξΓ
ΥΦ,x:A
M

(τΦ(M)) = ξΓ
ΥΦ
λxA. M

(τΦ(M))

It is also straightforward to check that

pad
Γ,Φ
x ρ′(Γ,Φ)x• = ξΓ

ΥΦ
λxA. M

(padΦx ρ
′(Φ)x•)

and

ρ′(A) = ξΓ
ΥΦ
λxA. M

(ρ′(A))

So by definition of the ξ-translation, we have

τΓ,Φ(λxA. B)

= λxρ
′(A). τ ′Γ,Φ,x:A(M)⟨x, •⟩Γ,Φx

= ξΓ
ΥΦ
λxA. M

(λxρ
′(A). τ ′Φ,x:A(M)⟨x, •⟩Φx )

= ξΓ
ΥΦ
λxA. M

(τΦ(λxA. B))

As in the non-negatable case, the translation must preserve typability, but this time in

the same system. Note that this lemma allows for commutation with the padding variables.

Lemma 38. Let λS be a non-dependent tiered pure type system and suppose Γ ⊢λS M : A

and Γ ⊢λS A : si. Further suppose that Φ is a context which is generalizable over si. Then
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Γ,Φ ⊢λS M : A implies

∆, • : ⊥, ρ′(Γ),ΥΦ
M , ρ′(Φ) ⊢λS τΦ(M) : ρ(M)

Proof. By induction on the structure of derivations and the length of Φ, lexicographically

ordered. I focus on the cases of product type formation and abstraction, which are notably

different than the analogous cases in Lemma 20.

Product Type Formation. Suppose the last inference is of the form

Γ,Φ ⊢ A : sj Γ,Φ, sjx : A ⊢ B : si−1

Γ,Φ ⊢ ΠxA. B : si−1

The case in which deg(A) = i− 1 is similar to the analogous case in Lemma 20, so suppose

deg(A) > i − 1. There are two remaining cases to consider. First, if (sj , si) ∈ RλS , then

Φ, x : A is generalizable over si, which means

∆, • : ⊥, ρ′(Γ),ΥΦ,x:A
B , ρ′(Φ), x : ρ′(A) ⊢ τ

Φ,x:A
i (B) : si−1

Otherwise, j ̸∈ DλS(i) which implies j ̸∈ DλS(k) for any rules (sk, si with i ≤ k ≤ j and by

an argument similar to the one for Lemma 19, the variable x does not appear free in Υ∅
B .

So by permutation and the inductive hypothesis,

∆, • : ⊥, ρ′(Γ), ρ′(Φ),Υ∅
B , x : ρ′(A) ⊢ τ(B) : si−1

and by product type formation, it is possible to derive

∆, • : ⊥, ρ′(Γ), ρ′(Φ),Υ∅
B ⊢ Πxρ

′(A). τ(B) : si−1
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Finally by Corollary 1, we can derive

∆, • : ⊥, ρ′(Γ),ΠΦ. Υ∅
ΠxA. B

, ρ′(Φ) ⊢ ξΦ
Υ∅
ΠxA. B

(Πxρ
′(A). τ(B)) : si−1

where

ΠΦ. Υ∅
ΠxA. B

= ΥΦ
ΠxA. B

by Lemma 36 and

ξΦ
Υ∅
ΠxA. B

(Πxρ
′(A). τ(B)) = τΦ(ΠxA. B)

by Lemma 37.

Abstraction. Suppose the last inference is of the form

Γ,Φ, sjx : A ⊢ M : B Γ,Φ ⊢ ΠxA. B : si

Γ,Φ ⊢ λxA. M : ΠxA. B

By the inductive hypothesis, we have

∆, ρ′(Γ), ρ′(Φ) ⊢ ρ′(A) : sj

and

∆, ρ′(Γ),ΥΦ,x:A
M , ρ′(Φ), x : ρ′(A) ⊢ τ ′Φ,x:A(M) : ⊥ → ρ(A)

From the first we can derive by thinning and product type formation

∆, • : ⊥, ρ′(Γ) ⊢ Πρ′(Φ). ρ′(A) → ⊥ → ⊥ : si

which by thinning can be added to the context of the second:

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ), x : ρ′(A)

⊢ τ ′Φ,x:A(M) : ⊥ → ρ(A)
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By thinning and repeated application, we can derive

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ), x : ρ′(A)

⊢ padxρ
′(Φ)x• : ⊥

and by application and abstraction we have

∆, • : ⊥, ρ′(Γ), padx : Πρ′(Φ). ρ′(A) → ⊥ → ⊥,Υ
Φ,x:A
M , ρ′(Φ)

⊢ λxρ
′(A). τ ′(M)⟨x, •⟩Φx : ρ(A)

The last two lemmas follow the same pattern of the previous section, but with updates in

the case of product types. See also my related research report Mull [2022] for further details.

Lemma 39. For variable skx and expressions M and N where deg(M) = i−1 and deg(N) =

k − 1, the following hold.

1. If k = i, then τΦ(M [N/skx]) ↞β τΦ(M)[τ ′Φ(N)/skx].

2. If k > i, then τΦ(M [N/skx]) = τΦ(M)[ρ(N)/skx].

Lemma 40. Let λS be a weakly normalizing non-dependent tiered pure type system. For

any derivable expression M with deg(M) = i− 1, we have

µ(M) ≤ µ(τ(M)) = µ(τ ′(M))

And, finally, the corresponding lemma for the negatable case.

Lemma 41. Let λS be an i-secure weakly normalizing n-tiered pure type system which is

i-negatable, and i-downward clean. Then every derivable expression M such that deg(M) =

i− 1 is strongly normalizing. That is, λS is (i− 1)-secure.
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2.3.3 The Main Result

I conclude this section with a statement of the main result of this paper, a special case of the

Barendregt-Geuvers-Klop conjecture, which is an extention of the result of the BHS result.

Theorem 2. Let λS be a non-dependent n-tiered pure type system which is i-weakly clean

or i-negatable and i-downward clean for each i ∈ [n − 1]. If λS is weakly normalizing then

λS is strongly normalizing.

Proof. By reverse induction on i (from n to 0) it follows that λS is i-secure, i.e., all ex-

pressions in T≥i are strongly normalizing. By the classification lemma (Lemma 9), the only

expressions of degree n are types and by the top-sort lemma (Lemma 7) and non-dependence,

they are generated at most by sn−1 and Π-types using the rule (sn, sn) if it appears in RλS .

It is straightforward to verify that this set of types is strongly normalizing. So suppose

that λS is k-secure. It then follows directly from Lemma 34 and Lemma 41 tha λS is

(k − 1)-secure.

2.4 Conclusions

I have presented an generalization of Xi’s thunkification to a class of non-dependent persisent

pure type systems which extends the BHS result. This class unfortunately does not contain

all non-dependent persistent pure type sytems, but it demonstrates that progress can be

made, that the state of the Barendregt-Geuvers-Klop conjecture does not need to be stagnate.

I’ve also presented the class of tiered pure type systems, which I believe to be an important

target for further work regarding the conjecture. I should note that the solving the conjecture

is not so important, but rather the general question: is it possible for a typed expression to

be weakly normalizing but not strongly normalizing? What would such an expression have

to look like? And, furthermore, can this normalizing behavior be reflected in another system

via translation? What is are the limitations of type preserving translations of this form?
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A final note on a feature which is not immediately obvious about the thunkification trans-

lation versus the CPS translation. One somewhat unfortunate feature of CPS translations

is that writing down the translation itself depends on λS being weakly normalizing, as the

types of continuations need the type of the expression being translated. This is not the case

for thunkification translations. One consequence of this fact is that the translation can be

applied to non-normalizing expressions to give non-normalizing I-expressions. It is natural

to wonder if this is always possible. If λS is not weakly normalizing, is it possible to show

that its I-fragment is not strongly normalizing? This may be of independent interested, as

it relates to relevance type systems.
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CHAPTER 3

A DEPENDENCY-ELIMINATING TRANSLATION FOR

TIERED PURE TYPE SYSTEMS

This is work I presented in part at the 28th International Conference on Types for Proofs

and Programs.

3.1 Introduction

The last few decades have seen quite a few techniques for proving normalization of systems

in the λ-cube and their extensions, but many of these techniques have not been generalized

to pure type systems. The purpose of the work presented in this chapter is to generalize

one such technique which might be call dependency eliminating translations. The idea is the

following: to show that a system is strongly normalizing, it suffices to define a typability-

preserving infinite-reduction-sequence-preserving translation from that system into another

system which is already known to be strongly normalizing. Harper et al. [1993] define such a

translation from λP to λ→ and Geuvers and Nederhof [1991] extend that translation to one

from λC to λω. Both of these translations can be viewed as removing the dependent rule in

the corresponding system, i.e., the rule (∗,□) which allows types to depend on terms. For

sufficiently well-structured pure type systems, this notion of dependence can be generalized,

as is done by Barthe et al. [2001] for their definition of generalized non-dependent pure

type systems (which is similar the definition of logical non-dependent pure type systems

given by Coquand and Herbelin [1994]). I extend the above mentioned translations to

pure type systems in a way that maintains this dependent rule elimination property. The

translation can be applied to some weak sub-systems of ECCn (defined by Luo [1990]) and

can be combined with the CPS translation of Barthe et al. [2001] to provide evidence for the

strong form of the Barendregt-Geuvers-Klop conjecture, which asks if the proof of strong
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normalization from weak normalization can be carried out in Peano arithmetic or even

Heyting arithmetic. It has the benefit of being applicable to non-normalizing systems like

λU , which implies non-normalization of λU can be reduced to non-normalization of λU

extended with dependent rules, a setting in which constructions like Σ-types can be encoded.

In what follows, I present a few preliminary notions, and then I define the translation,

which is given in two parts for reasons described in the corresponding section. After this is

a short section on the applications of this translation.

3.2 The Translation

Recall that a tiered pure type system λS is non-dependent if its rules are non-dependent,

i.e., if (s, s′) ∈ RλS implies s ≥AλS
s′. The translation defined in the subsequent sec-

tion eliminates the dependent part of a given tiered pure type system. This motivates the

following definition.

Definition 35. The non-dependent restriction of a tiered pure type system λS, denoted

here as λS∗, is the system specified by

SλS∗ ≜ SλS

AλS∗ ≜ AλS

RλS∗ ≜ {(s, s′, s′) ∈ RλS | (s ≥ s′)}

For all other technical notions, I refer because to the section on definitions in the intro-

ductory chapter (Section 1.1).

I present a translation from a pure type system λS with sufficiently rich non-dependent

structure to its non-dependent restriction λS∗ which preserves typability and infinite reduc-

tion sequences. The requirements on the non-dependent structure will be quite strong, but I

believe the translation to be a fairly faithful generalization of Geuvers-Nederhof translation.
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At a high level, the translation eliminates dependent uses of the product type formation

rule, but because it also has to preserve infinite reduction paths, it can’t delete too much

sub-expression information; dropping sub-expressions might eliminate redexes that account

for reduction paths in pre-translated term. The rough idea is to translate all sorts down to

the lowest sort s1, so that when there is a term M of type ΠxA. B, the translated form of

B, denoted for now as ρ(B), is of sort s1, which ensures that any product type formations

with ρ(B) as the target type are necessarily non-dependent (there are no sorts lower than

s1). The first issue is that translated terms must be typeable by these translated types,

which indicates that there need to be two separate translations, one for types and one for

terms. The second issue is that types may contain terms (e.g., (λxsi . x)A for some A where

Γ ⊢ A : si) which indicates the need for separate translation for these terms as well. This

process also needs to be iterated up to the top-sort, for which there are no subterms of this

form by the top-sort lemma (Lemma 7).

Thus, the translation is defined in two steps. First, we define a sequence of translations

that culminate in a translation ρ0 for a types. Each translation maps sorts to a lower sort

then the last, all the way down to a type 0 (a distinguished variable) of sort s1. Then we

define a translation γ for terms so that there is a context Γ∗ where Γ ⊢λS M : A implies

Γ∗ ⊢λS∗ γ(()M) : ρ0(A).

The strong requirement on the non-dependent part of λS comes from the fact that each

subsequent translation includes a new variable in the context, and as more variables are

included in the context, more variables need to be abstracted over so as not to lose sub-

expression information. This motivates the following definition.

Definition 36. A tiered pure type system is (i, j)-full if its rules contain {(sl, sk) | l ≤

i and l ≤ k ≤ j} and is full if it satisfies the following closure property: if (si, sj) ∈ RλS

then λS is (j, i)-full.

We can already see how restrictive this definition is. A system which is (i, j)-full for i ≥ 2
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and j ≥ 3 contains λU , and so is inconsistent. The strongest consistent full n-tiered system

is of the has the rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

which is a subsystem of ECCn.

For the remainder of this section, fix a full n-tiered pure type system λS.

3.2.1 The Type-Level Translation

The type-level translation is the last of n + 1 inductively defined translations. Each previ-

ously defined translation is used to prove that the subsequently defined translations preserve

typability. In standard abuse of notation, sequences of Πs, λs, or applications may be empty.

Definition 37. For each i satisfying 0 ≤ i ≤ n, define the function ρi : T≥i+1 → Ti+1

inductively as follows.

ρi(sj) ≜


0 i = 0

si otherwise

ρi(
sjx) ≜ si+2x (where j ≥ i+ 2)

ρi(ΠxA. B) ≜ ΠxρdegA−1(A). . . .Πxρi(A). ρi(B)

ρi(λx
A. M) ≜ λxρdegA−1(A). . . . λxρi+1(A). ρi(M)

ρi(MN) ≜ ρi(M)ρdegN−1(N) . . . ρi(N)

where 0 is a distinguished variable. The definition of each translation is restricted to those

cases for which there are terms in the intended domain. For example, the most basic trans-

lation ρn : T≥n+1 → Tn+1 is defined only on {sn} with ρn(sn) = sn. All other cases are

79



ignored. These translations are extended to contexts as follows.

ρi(∅) ≜ (0 : s1)

ρi(Γ,
sjx : A) ≜ ρi(Γ),

sjx : ρj−1(A), . . . ,
si+1x : ρi(A) j ≥ i+ 1

Note that ρj(Γ) ⊂ ρi(Γ) if i < j, a fact which is used frequently in tandem with the

thinning lemma (Lemma 4).

The following three lemmas describe the key features of the translation. First, substitu-

tion in some sense commutes the translation.

Lemma 42. (ρi commutes with substitution) For all i satisfying 0 ≤ i ≤ n, all j satisfying

1 ≤ j ≤ n, and all terms A and B such that A ∈ T≥i+1 and degB = j − 1,

ρi(A[B/sjx]) = ρi(A)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]

Proof. By reverse induction on i. It holds trivially for ρn. For fixed i, we proceed by

induction on the structure of A.

Sort. Suppose A is of the form sk where k ≥ i. Then for any value of j,

ρi(sk[B/sjx]) = ρi(sk)

= ρi(sk)[ρj+2(B)/sjx] . . . [ρi(B)/si+2x]

since sk has no free variables and 0 is distinct from all other variables.

Variable. Suppose A is of the form sky where k ≥ i+ 2. If j < i+ 2, then

ρi(
sky[B/sjx]) = ρi(

sky)
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If j ≥ i+ 2 and sky = sjx then

ρi(
sjx[B/sjx]) = ρi(B)

= si+2x[ρi(B)/si+2x]

= ρi(
sjx)[ρj−2(B)/sjx] . . . [ρi(B)/si+2(x)]

If j ≥ i+ 2 and sky ̸= sjx then

ρi(
sky[B/sjx]) = ρi(

sky)

= ρi(
sky)[ρj−2(B)/sjx] . . . [ρi(B)/si+2(x)]

Π-Expression. Suppose A is of the form ΠyC . D. If degC < i+ 1, then

ρi((ΠyC . D)[B/sjx]) = ρi(ΠyC[B/
sjx]. D[B/sjx])

= ρi(D[B/sjx])

If j < i+ 2 then by the inductive hypothesis

ρi(D[B/sjx]) = ρi(D) = ρi(ΠxC . D)

and likewise if j ≥ i+ 2 then

ρi(D[B/sjx]) = ρi(D)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]

= ρi(ΠxC . D)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]
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If degC ≥ i+ 1 then

ρi((ΠyC . D)[B/sjx])

= ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

If j < i+ 2 then by the inductive hypothesis

ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

= ΠyρdegC−1(C). . . .Πyρi(C). ρi(D)

= ρi(ΠyC . D)

and likewise if j ≥ i+ 2

ρi(ΠyC[B/
sjx]. D[B/sjx])

= ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx])

= ΠyρdegC−1(C)[ρj−2(B)/
sjx]...[ρi(B)/si+2x]

. . .Πyρi(C)[ρj−2(B)/
sjx]...[ρi(B)/si+2x]

(ρi(D)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x])

= (ΠyρdegC−1(C[B/
sjx]). . . .Πyρi(C[B/

sjx]). ρi(D[B/sjx]))

[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]

= ρi(ΠyC . D)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]
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Note that here we are implicitly using the fact that if ρk(C[B/sjx]) = ρk(C) then

ρk(C) = ρk(C)[ρj−2(B)/sjx] . . . [ρi(B)/si+2x]

λ-Expression.. Suppose that A is of the form λxC . D. If degC < i+ 2 then

ρi((λx
C . D)[B/sjx]) = ρi(λx

C[B/
sjx]. D[B/sjx])

= ρi(D[B/sjx])

and if degC ≥ i+ 2 then

ρi(λx
C[B/

sjx]. D[B/sjx])

= λxρdegC−1(C[B/
sjx]). . . . λxρi+1(C[B/

sjx]). ρi(D[B/sjx])

The remainder of the proof of this case is similar to the one for Π-terms.

Application. Suppose A is of the form MN . If degN < i+ 1, then

ρi((MN)[B/sjx]) = ρi((M [B/sjx])(N [B/sjx]))

= ρi(M [B/sjx])

and if degN ≥ i+ 1, then

ρi((M [B/sjx])(N [B/sjx]))

= ρi(M [B/sjx])ρdegN−1(N [B/sjx]) . . . ρi(N [B/sjx])

The remainder of the proof of this case is similar to the one for Π-terms.

The next lemma says that the translation preserves β-reductions. This is necessary for
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translating conversion rules; we need to be able to replace β-equivalent types after transla-

tion. Note that the lemma does not imply the translation preserves infinite reduction paths.

This is because sub-expression information is lost in the translation,e.g., in the case of appli-

cation it may be that ρi(MN) = ρi(M) and there would be no hope in preserving an infinite

reduction sequence on the sub-expression N .

Lemma 43. For all i satisfying 0 ≤ i ≤ n, and all terms A and B such that A ∈ T≥i+1

and A ↠β B, it follows that ρi(A) ↠β ρi(B).

Proof. By reverse induction on i. This holds trivially for ρn. For fixed i, we proceed by

induction on the definition of the multi-step β-reduction relation. In the case of the reducts:

ρi

(
(λxA. M)N

)
→β ρi (M [N/sdegAx])

if degN < i+ 1 (and degA < i+ 2) then

ρi

(
(λxA. M)N

)
= ρi

(
λxA. M

)
= ρi(M)

= ρi(M [sdegAx/N ])

where the last equality follows from Lemma 42, and if degN ≥ i + 1 (and degA ≥ i + 2)

then

ρi

(
(λxA. M)N

)
= ρi(λx

A. M)ρdegN−1(N) . . . ρi(N)

=
(
λxρdegA−1(A). . . . λxρi+1(A). ρi(M)

)
ρdegN−1(N) . . . ρi(N)

↠β ρi(M)[ρdegN−1(N)/sdegAx] . . . [ρi(N)/si+2x]
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Note that here we implicitly use the fact that sdegAx does not appear in A, and so

ρk(A)[ρl(N)/sl+2x] = ρk(A)

where i + 1 ≤ k ≤ degA− 1 and i ≤ l ≤ degN − 1 so each of the subsequent β-reductions

above do not change the type annotations in the associated λ-terms.

It is straightforward to verify that the translation preserves β-reductions with respect to

compatibility. For example, suppose A is of the form ΠxC . D and B is of the form ΠxC
′
. D

where C ↠β C ′. If degC < i+ 1 then

ρi(ΠxC . D) = ρi(D) = ρi(ΠxC
′
. D)

If degC ≥ i+ 1 then

ρi(ΠxC . D) = ΠxρdegC−1(C). . . .Πxρi(C). ρi(D)

↠β ΠxρdegC−1(C
′). . . .Πxρi(C

′). ρi(D)

= ρi(ΠxC
′
. D)

where ρi(C) ↠β ρi(C
′) by the induction on the multi-step β-reduction relation and ρk(C) ↠β

ρk(C
′) for k > i by the induction on i. Note also that we implicitly use the fact that

degC = degC ′ (Lemma 10).

Finally, it must be that the translation preserves typability. This ensures the translation

gives well-defined types when used in combination with the term translation in the next

section. Recall that λS∗ is the non-dependent restriction of λS.

Lemma 44. For all i satisfying 0 ≤ i ≤ n the following holds. Let Γ be a context and let A
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and B be terms such that A ∈ T≥i+1 and Γ ⊢λS A : B. Then

ρi+1(Γ) ⊢λS∗ ρi(A) : ρi+1(B)

Proof. By reverse induction on i. This holds trivially for ρn. For fixed i, it follows by

induction on derivations.

Axiom. Suppose the derivation is of the form

⊢λS sj : sj+1

where j ≥ i. If i ≥ 1 then the translated derivation is

0 : s1 ⊢λS∗ si : si+1

and otherwise

0 : s1 ⊢λS∗ 0 : s1

This judgment is derivable because any every full system contains the rule (s1, s2).

Variable Introduction. Suppose the last inference is of the form

Γ′ ⊢λS B : sj

Γ′, sjx : B ⊢λS sjx : B

where j ≥ i+ 2 (so that deg(sjx) ≥ i+ 1). By the inductive hypothesis

ρk+1(Γ
′) ⊢λS∗ ρk(B) : sk+1

for each k satisfying i ≤ k ≤ j − 1, and since the context ρi+1(Γ
′) is valid, as it appears in

the case with k instantiated as i, we have

ρi+1(Γ
′) ⊢λS∗ ρk(B) : sk+1
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for each k by weakening. By further repeated weakening

ρi+1(Γ
′), sjx : ρj−1(B), . . . , si+3x : ρi+2(B) ⊢λS∗ ρi+1(B) : si+2

and can apply the variable introduction rule:

ρi+1(Γ
′), sjx : ρj−1(B), . . . , si+2x : ρi+1(B),⊢λS∗ si+2x : ρi+1(B)

Weakening. Suppose the last inference is of the form

Γ′ ⊢λS A : B Γ′ ⊢λS C : sj

Γ′, sjx : C ⊢λS A : B

If j < i+ 2, then the corresponding inference is

ρi+1(Γ
′) ⊢λS∗ ρi(A) : ρi+1(B)

which is obtained by applying the inductive hypothesis to the left antecedent judgment.

Note that the variable sjx is dropped by the translation ρi+1. If j ≥ i+ 2, we use a similar

procedure as the one for the Variable introduction step above, i.e.

ρi+1(Γ
′) ⊢λS∗ ρk(C) : sk+1

for each k satisfying i ≤ k ≤ j − 1, and then by repeated weakening

ρi+1(Γ
′), sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(A) : ρi+1(B)

Product Type Formation. Suppose the last inference is of the form

Γ ⊢λS C : sj Γ, sjx : C ⊢λS D : sk

Γ ⊢λS ΠxC . D : sk
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where k ≥ i+ 1. If j < i+ 1 then

ρi+1(Γ) ⊢λS∗ ρi(D) : si+1

which is obtained by applying the inductive hypothesis to the right antecedent judgment. If

j ≥ i+ 1, then we can derive

ρk+1(Γ) ⊢λS∗ ρk(C) : sk+1

for each k satisfying i ≤ k ≤ j − 1, and each of these judgments can be weakened as

ρi+1(Γ),
sjx : ρj−1(C), . . . , sk+2x : ρk+1(C) ⊢λS∗ ρk(C) : sk+1

Then with repeated uses of the product formation rule together with

ρi+1(Γ),
sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(D) : si+1

we can derive

ρi+1(Γ) ⊢λS∗ Πxρj−1(C). . . .Πxρi+1(C). (ρi(C) → ρi(D)) : si+1

Here we use the assumption that λS∗ has the rules (sk, si+1, si+1) for each k satisfying

k ≥ i+1. Also note the use of function notation since ρi(C) does not appear in the context

above.

Abstraction.. Suppose the last inference is of the form

Γ, sjx : C ⊢λS M : D Γ ⊢λS ΠxC . D : sk

Γ ⊢λS λxC . M : ΠxC . D
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where k ≥ i+ 2. If degC < i+ 2 (i.e., if j < i+ 2), then the corresponding inference is

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(B)

since the variable sjx is dropped by the translation ρi+1. If degC ≥ i+2 then we can derive

ρi+1(Γ),
sjx : ρj−1(C), . . . , si+2x : ρi+1(C) ⊢λS∗ ρi(M) : ρi+1(D)

and

ρi+1(Γ) ⊢λS∗ Πxρj−1(C). . . .Πxρi+1(C). ρi+1(D) : si+2

And so by repeated use of the generation lemma (Lemma 1), if degC ≥ i + 3, we can also

derive

Πxρk(C). . . .Πxρi+1(C). ρi+1(D) : si+2

in λS∗ under the context

ρi+1(Γ),
sjx : ρj−1(C), . . . , sk+2x : ρk+1(C)

for each k satisfying i + 1 ≤ k ≤ j − 2. And so by repeated use of the abstraction rule, we

can derive

λxρj−1(C). . . . λxρi+1(C). ρi(M) : Πxρj−1(C). . . .Πxρi+1(C). ρi+1(D)

in λS∗ under the context ρi+1(Γ).

Application. Suppose the last inference is of the form Since deg(MN) = degM , we can

apply the inductive hypothesis to the left antecedent judgment:

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(ΠxC . D)
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If degN < i+ 1 (and degC < i+ 2) then

ρi+1(Γ) ⊢λS∗ ρi(M) : ρi+1(B)

If degN ≥ i+ 1 (and degC ≥ i+ 2) then we have

ρi+1(Γ) ⊢λS∗ ρi(M) : ΠxρdegC−1(C). . . .Πxρi+1(C). ρi+1(D)

and

ρi+1(Γ) ⊢λS∗ ρk(N) : ρk+1(C)

for each k satisfying i ≤ k ≤ degN − 1. The first application ρi(M)ρdegN−1(N) has the

type

ΠxρdegC−2(C)[ρdegC−2(N)/
sdegCx]

. . .Πxρi+1(C)[ρdegC−2(N)/
sdegCx](ρi+1(D)[ρdegN−1(N)/sdegCx])

The term ρdegC−2(C) does not have the variable sdegCx, so this type simplifies to

ΠxρdegC−2(C). . . .Πxρi+1(C). (ρi+1(D)[ρdegN−1(N)/sdegCx])

repeating this process, we have

ρi+1(Γ) ⊢λS∗ ρi(M)ρj−1(N) . . . ρi(N)

: ρi+1(D)[ρdegN−1(N)/sdegCx] . . . [ρi(N)/si+2x]

Since si+2x does not appear in ρi+1(D), the type is

ρi+1(D)[ρdegN−1(N)/sdegCx] . . . [ρi+1(N)/si+3x]
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which is the same as ρi+1(B[N/x]) by Lemma 42.

Conversion. Suppose the last inference is of the form

Γ ⊢λS A : C Γ ⊢λS B : sk
Γ ⊢λS A : B

where k ≥ i+ 2. Then the corresponding derivation is

ρi+1(Γ) ⊢λS∗ ρi(A) : ρi+1(C)

ρi+2(Γ) ⊢λS∗ ρi+1(B) : si+2

ρi+1(Γ) ⊢λS∗ ρi+1(B) : si+2

ρi+1Γ ⊢λS∗ ρi(A) : ρi+1(B)

where ρi+1(B) =β ρi+1(C) by Lemma 43.

3.2.2 The Term-Level Translation

I next define the translation γ : T → T0 on all expressions. This requires one of the

greater departures from the Geuvers-Nederhof translation. In their translation, variables are

occasionally substituted with dummy expression via ⊥-terms that are added to the context.

This is possible since (s2, s1) ∈ Rλω. Using this technique directly would require the rules

(si+1, si) for i ∈ [n − 1]. However, by fullness, (sj , sk) ∈ RλS implies (sl, s1) ∈ RλS for

l ∈ [k], which will allow us a product encoding variable prod : ΠAs1 . 0 → A → 0, which only

requires the rule (s2, s1), which we assume appear in λS.

91



Definition 38. Define the function γ : T → T inductively as follows.

γ(si) ≜ •

γ(six) ≜ s1x

γ(ΠxA. B) ≜ prod(ΠxρdegA−1(A). . . .Πxρ0(A). 0)γ(A)

(λxρdegA−1(A). . . . λxρ0(A). γ(B))

γ(λxA. M) ≜ (λz0. λxρdegA−1(A). . . . λxρ0(A). γ(M))γ(A)

γ(MN) ≜ γ(M)ρdegN−1(N) . . . ρ0(N)γ(N)

where prod, • and z are distinguished variables.

We prove the same three lemmas as the previous section: typability preservation, substi-

tution commutation, and β-preservation.

Lemma 45. For terms A and B, if Γ ⊢λS A : B, then

0 : s1, • : 0, prod : ΠAs1 . 0 → A → 0, ρ0(Γ) ⊢λS∗ γ(A) : ρ0(B)

Proof. By induction on derivations. The cases in which the last derivation is a variable

introduction or weakening are similar to the analogous cases for Lemma 44. In what follows,

let ∆ denote the context (0 : s1, • : 0, prod : ΠAs1 . 0 → A → 0).

Axioms. If the derivation is of the form

⊢ si : si+1

then translated derivation is

∆ ⊢ • : 0
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In particular, the context is well-formed.

Product type formation. Suppose the last inference is of the form

Γ ⊢ C : si Γ, six : C ⊢ D : sj

Γ ⊢ ΠxC . D : sj

By the inductive hypothesis

∆, ρ0(Γ) ⊢ γ(C) : 0

and

∆, ρ0(Γ),
six : ρi−1(C), . . . , s1x : ρ0(C) ⊢ γ(D) : 0

By weakening, we can derive

∆, ρ0(Γ),
six : ρi−1(C), . . . , s1x : ρ0(C) ⊢ 0 : s1

Note that, by fullness, since (si, sj) ∈ RλS , it must be that (sk, s1) ∈ RλS for k ∈ [i], and

so by repeated product type formation all with the previously defined translations

ρk+1(Γ) ⊢ ρk(C) : sk+1

we can derive

∆, ρ0(Γ),
six : ρi−1(C), . . . , sk+1x : ρk(C) ⊢ Πskxρk−1(C). . . .Πs1xρ0(C). 0 : s1

where 1 ≤ k ≤ i. These may be used for each abstraction step to define

∆, ρ0(Γ) ⊢ λsixρi−1(C). . . . λs1xρ0(C). γ(D) : 0
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Finally by two applications using the previously defined derivations, we have

∆, ρ0(Γ)

⊢ prod(Πsixρi−1(C). . . .Πs1xρ0(C). 0)γ(A)(λsixρi−1(C). . . . λs1xρ0(C). γ(D))0

Abstraction. Suppose the last inference is of the form

Γ, six : C ⊢ M : D Γ ⊢ ΠxC . D : sj

Γ ⊢ λxC . M : ΠxC . D

Similar to the same case in the proof of Lemma 44, we can derive

ρ0(Γ) ⊢ λxρi−1(C). . . . λxρ0(C). γ(D) : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

and by weakening,

ρ0(Γ), z : 0 ⊢ λxρi−1(C). . . . λxρ0(C). γ(D) : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

for a fresh variable z. Furthermore, we have

ρ0(Γ) ⊢ Πxρi−1(C). . . .Πxρ0(C). ρ0(D) : s1 ρ0(Γ) ⊢ 0 : s1

ρ0(Γ) ⊢λS∗ 0 → Πxρi−1(C). . . .Πxρ0(C). ρ0(D) : s1

so by abstraction and application,

ρ0(Γ) ⊢ (λz0. λxρi−1(C). . . . λxρ0(C). γ(D))γ(C) : Πxρi−1(C). . . .Πxρ0(C). ρ0(D)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxC . D Γ ⊢ N : C

Γ ⊢ MN : D[N/sdegCx]

If degN = 0, then we have

ρ0(Γ) ⊢ γ(M) : ρ0(C) → ρ0(D) ρ0(Γ) ⊢ γ(N) : τ(C)

ρ0(Γ) ⊢ γ(M)γ(N) : ρ0(D)
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Note that ρ0(D[N/s1x]) = ρ0(D) by Lemma 42. The case in which degN ≥ 1 is similar to

the same case in the proof of Lemma 44.

Conversion. Suppose the last inference is of the form

Γ ⊢ A : C Γ ⊢ B : si
Γ ⊢ A : B

It follows from Lemma 43 that ρ0(C) =β ρ0(B) so we have

ρ0(Γ) ⊢ γ(A) : ρ0(C)

ρ1(Γ) ⊢ ρ0(B) : s1

ρ0(Γ) ⊢ ρ0(B) : s1
ρ0(Γ) ⊢ γ(A) : ρ0(B)

Next, we again show that substitution commutes with the translation. In this case,

the role of this result is more auxiliary; it is necessary for the next lemma on β-reduction

preservation.

Lemma 46. For all j satisfying 1 ≤ j ≤ n, and all terms A and B such that degB = j− 1,

γ(A[B/sjx]) = γ(A)[ρj−2(B)/sjx] . . . [ρ0(B)/s2x][γ(B)/s1x]

Proof. By induction on the structure of A. The cases in which A is a sort or a variable are

straightforward.

Π-Expressions. Suppose A is of the form ΠyC . D. Borrowing notation from Barendregt, in

what follows, let M+ denote M [B/sjx] for any term M . Then

γ((ΠyC . D)+)

= γ(ΠyC
+
. D+)

= prod(Π
sdeg(C+)x

ρdeg(C+)−1(C
+)
. . . .Πs1xρ0(C

+). 0)γ(A)

(λsix
ρdeg(C+)−1(C

+)
. . . . λs1xρ0(C

+). γ(D+))
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Since all substitutions commute, either by the inductive hypothesis, or by Lemma 42, the

desired equality follows.

The case of λ-expressions and applications are similar.

Lemma 47. For all terms A and B, if A →β B, then γ(A) ↠+
β γ(B).

Proof. By induction on the definition of the multi-step β-reduction relation. For the case of

reducts of the form

(λxA. M)N →β M [N/sdegAx]

If degN = 0 (and degA = 1), then

γ((λxA. M)N) = γ(λxA. M)γ(N)

= (λz0. λxρ0(A). γ(M))γ(A)γ(N)

→β (λxρ0(A). γ(M))γ(N)

→β γ(M)[γ(N)/s1x]

= γ(M [N/s1x])

If degN ≥ 1, then

γ((λxA. M)N) = γ(λxA. M) ρdegN−1(N) . . . ρ0(N)γ(N)

= (λz0. λxρdegA−1(A). . . . λxρ0(A). γ(M))γ(A) ρdegN−1(N) . . . ρ0(N)γ(N)

→β (λxρdegA−1(A). . . . λxρ0(A). γ(M)) ρdegN−1(N) . . . ρ0(N)γ(N)

↠β γ(M)[ρdegN−1(N)/sdegAx] . . . [ρ0(N)/s2x][γ(N)/s1x]

= γ(M [N/sdegAx])

As in the proof of Lemma 43, verifying that the translation preserves β-reductions with

respect to compatibility is straightforward. The key observation is that γ appears applied
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to every sub-expression of the pre-translated expression, so compatibility preserves non-zero

β-reductions.

3.2.3 The Main Result

Theorem 3. Let λS be an n-tiered pure type system that is full up to some i (where i < n).

Then λS is strongly normalizing if and only if λS∗ is strongly normalizing.

Proof. Since all derivable terms of λS∗ are also derivable in λS, if λS is strongly normalizing

then so is λS∗. So suppose that λS is not strongly normalizing. Then there is an infinite

reduction sequence

M1 →β M2 →β . . .

containing terms derivable in λS. By Lemma 45 and Lemma 47,

γ(M1) ↠
+
β γ(M2) ↠

+
β . . .

is an infinite sequence of terms derivable in λS∗, so λS∗ is not strongly normalizing either.

The only really interesting system to which this theorem can be applied are the n-tiered

system with the rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

as well as any subsystem of this one with the same non-dependent rules. Theorem 6 says

that the strong normalization of this system is equivalent to the one with the rules.

{(sk, s1) | k ∈ [n]} ∪ {(s2, s2)}

And though it would be possible to verify formally, a cursory inspection of the technique
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indicates that it is meta-theoretically weakly, and can be carried out in Peano arithmetic.

So when bootstrapped with the result of Barthe et al. [2001], we get a special case of the

strong Barendregt-Geuvers-Klop conjecture.

Corollary 2. Weak normalization implies strong normalization for the n-tiered pure type

system with rules

{(sk, s1) | k ∈ [n]} ∪ {(s1, sk) | k ∈ [n]} ∪ {(s2, sk) | k ∈ [n]}

and, furthermore, this proof can be carried out in Peano Arithmetic.

3.3 Conclusions

In some sense, this result is a failed experiment in generalization. It is unfortunate, though

somewhat interesting, that what I believe to be the most natural generalization of the Geuver-

Nederhof translation breaks down very early when generalized to higher impredicative sys-

tems. All of my attempts to weaken the requirements on the non-dependent part of the

underlying system were met by some issue, usually in the form of non-closure under sub-

stitution or β-equivalence. It does seem as though it should be possible to make a minor

adjustment to the proof to get the same result for the n-tiered systems with rules

{(s1, sk) | k ∈ [n]} ∪ {(si, sj) | 1 ≤ i ≤ j ≤ n}

as this would seem to better capture the role of the Geuver-Nederhof result.
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CHAPTER 4

AN IRRELEVANCY-ELIMINATING TRANSLATION FOR

TIERED PURE TYPE SYSTEMS

This work appears in the Post-Proceedings of the 28th International Conference on Types

for Proofs and Programs.

4.1 Introduction

Very little progress has been made on the Barendregt-Geuvers Klop conjecture in part be-

cause pure type systems in general are too unstructured to be amenable to standard tech-

niques. Though natural, the generalization to pure type systems from the lambda cube is

in some sense the most obvious one, a basic syntactic ambiguation of the inference rules to

allow for maximal freedom where the lambda cube imposes its sort-structural restrictions.

The resulting systems may fail to have the meta-theoretic properties one might expect (e.g.,

type unicity). It is, therefore, common to consider classes of pure type systems that maintain

these meta-theoretic properties. The state of the art of the conjecture is the result of Barthe

et al. Barthe et al. [2001], which states that weak normalization implies strong normaliza-

tion for generalized non-dependent, clean, negatable1 pure type systems. The proof of this

result depends on a very nice—though somewhat complicated—generalization of Sørensen’s

CPS translation Sørensen [1997] for λω (among other systems). I have recently given a

slightly simpler presentation of the same result Mull [2022] but based on Xi’s Thunkification

translation Xi [1997].

I propose revisiting the Barendregt-Geuvers-Klop conjecture in a slightly simpler frame-

work. I start by presenting a class of basic, concrete pure type systems I call tiered pure type

systems. Despite their simplicity they are sufficient to consider with regards to questions

1. These are technical restrictions, discussed further in the later exposition.
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about normalization. Stratified persistent systems (and generalized non-dependent systems)

are disjoint unions of tiered systems, so tiered systems are in some sense the atoms of these

systems. For concreteness, the conjecture restricted to this setting is that weak normaliza-

tion implies strong normalization in all tiered pure type systems. The result of Barthe et al.

implies the conjecture for non-dependent, clean, negatable tiered systems, and so it remains

to remove any and all of these restrictions.

This simple reframing of the problem (a moving of the goalposts, so to speak) is a minor

though I believe important step towards making further progress on the full version of the

conjecture. But even in this setting, there is a huge number of systems to consider, many

of which contain what amounts to "junk" structure. The primary contribution of this paper

is a translation of pure type systems which preserves typability and infinite reduction paths

(I will simply write "path-preserving" from this point forward) and removes this irrelevant

structure. By removing structure here, I mean that the target system of the translation is

the same as the source system but with some sorts and rules removed.

Consider, for example, the system λHOL, which may be thought of as the system λω with

an additional superkind sort △ that allows for the introduction of kind variables that can

appear in expressions but cannot be abstracted over. The introduction of △ is meaningful

with respect to what expressions can be derived, but unsurprisingly both λHOL and λω

are strongly normalizing. One basic observation here is that there is a single expression

inhabiting △, namely the kind sort □. This sparsity of inhabitation can be leveraged to

define a path-preserving translation from λHOL to λω and, in fact, from any pure type

system with an isolated top-sort to the same system but without the top-sort.

I generalize this basic idea in two ways. First, I define a path-preserving translation

that eliminates not just top-sorts but also any sort which is top-sort-like. Second, I extend

this translation to eliminate not just isolated sorts, but also sorts which may appear as

sources of Π-types. In particular, this allows for the elimination of some dependent rules in
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the system. This translation can be iteratively applied to a system λS until a fixed point

λS↓ is reached, which is equivalent to λS with respect to strong normalization. Thus, this

translation can be used to prove the strong normalization of systems λS for which λS↓ is

known to be strongly normalizing. But perhaps more importantly, it can be bootstrapped

with existing results for the Barendregt-Geuvers-Klop conjecture. The argument is simple:

if λS is weakly normalizing, then so is λS↓ since it can be embedded in λS. Then λS↓

is strongly normalizing by assumption, and so λS is strongly normalizing by the path-

preserving translation. Bootstrapping with the result of Barthe et al. yields a proof of the

Barendregt-Geuvers-Klop conjecture for a larger class of systems.

This technique bears a resemblance to the one used by Roux and van Doorn Roux and

Doorn [2014] in their structural theory of pure type systems, which in turn resembles the

techniques of Geuvers and Nederhof Geuvers and Nederhof [1991] and Harper et al. Harper

et al. [1993]. In all these works, a translation is defined from one pure type system into

another which has fewer rules. And though it is not explicitly stated, the translation of

Roux and van Doorn can be bootstrapped in the same way as described above to push the

state of the conjecture. In fact, their translation can be used to eliminate rules between

disjoint systems in order to, say, make it stratified and persistent (i.e., a disjoint unions of

tiered systems) whereas the translation presented here eliminates rules within the individual

summands in a disjoint union of tiered systems.

It is important to emphasize that this results depends on the fact that the additional

structure that can be handled is in some sense irrelevant. But if we do want to prove the

full conjecture, we also have to prove it for a class of "junk" systems, ones which may not

be interesting in their own right and may have rules which don’t add much to the system.

In a way, this result is perhaps more meaningfully interpreted in the reverse direction: the

systems λS↓ for which the conjecture is not known to hold are targets for the developments

of better techniques. Ideally, some technique could handle all these systems uniformly, but

101



for now it may be useful to further develop the theory regarding what barriers exist, what

systems beyond the lambda cube, natural or not, may be most important to study.

In what follows I present some preliminary material, which includes some exposition on

tiered systems. I then define the irrelevancy-eliminating translation in two parts: one part

for eliminating rules and one for eliminating sorts. The final translation will be taken as the

composition of these two translations. Finally, I present its application to the Barendregt-

Geuvers-Klop conjecture and conclude with a short section on what it implies about the

systems which remain to be studied.

4.2 The Translation

All relevant preliminary material can be found in the section on definitions in the Intro-

ductory Chapter (Section 1.1). Fix an n-tiered pure type system λS. We first describe the

sorts which are sufficiently top-sort-like, as well as the properties of these sorts that induce

irrelevant structure. In what follows, it will be convenient to consider sets of top-sort-like

sorts. We call a subset I of [n] an index set for λS, and denote by SI the set {si | i ∈ I}.

Definition 39.

• A sort si is rule-isolated if it does not appear in any rules, i.e., for all j, neither

(sj , si) nor (si, sj) appear in RλS.

• A sort si is top-sort-like if i < n implies si+1 is rule-isolated (i.e., si is a top sort or

its succeeding sort is rule-isolated).

• For any index set J , a sort si is J -irrelevant if there is no sort sj such that j ∈ J

and (sj , si) ∈ RλS. We say si is irrelevant if it is [n]-irrelevant.

• An index set I is completely irrelevant in λS, if for each i in I,

– si is top-sort-like and irrelevant;
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– si−1 is ([n] \ I)-irrelevant.

• A sort si is completely isolated if si is top-sort-like and rule-isolated.

In the case of complete irrelevance, if I is a singleton set {i}, then the only rule with si−1

appearing second is (si, si−1). By considering sets of indices simultaneously, we can make

weaker assumptions on these preceding sorts. The condition of ([n] \ I)-irrelevance ensures

that si−1 becomes isolated after removing the rules associated with sorts in SI . Note also

that if (si, si) ∈ RλS , then any completely irrelevant index set cannot contain i−1, i or i+1.

In particular, for based systems, 1 and 2 cannot appear in any completely irrelevant index

set. Finally, it is important that there is a unique maximum completely irrelevant index set.

In particular, the union of any two completely irrelevant index sets is completely irrelevant.

4.2.1 Eliminating Completely Irrelevant Rules

This section contains the translation which removes the rules associated with sorts whose

indices appear in a completely irrelevant index set. For the remainder of the section, fix such

a set I. We begin by showing that sorts in SI are sparsely inhabited.

Lemma 48. Let si be an irrelevant sort such that si is a top-sort or si+1 is irrelevant. For

context Γ and expression A, if Γ ⊢ A : si, then A = si−1 or A ∈ Vsi+1.

Proof. If i = n, then this follows directly from the top-sort lemma (Lemma 7) and the

fact that sn is irrelevant. In fact, in this case sn is inhabited solely by sn−1. If i ̸= n,

this follows in a similar way, i.e., by induction on the structure of A. By the generation

lemma (lemma 1), A cannot be a Π-expression as si is irrelevant. Likewise, A cannot be

a λ-expression since si ̸=β ΠxB . C for any expressions B and C. Finally, A cannot be

an application MN since the generation lemma would imply that there is a context Γ and

expressions B and C such that Γ ⊢ M : ΠxB . C and Γ ⊢ ΠxB . C : si+1. But this is not

possible since i+ 1 is irrelevant.
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This does not hold if si+1 is not irrelevant. If (si+1, si+1) ∈ RλS , for example, then ∅ ⊢

si → si : si+1 and ∅ ⊢ λxsi . x : si → si so ∅ ⊢ (λxsi . x)si−1 : si. This is why we require

both si and si+1 to be irrelevant. Similarly, this does not hold for all expressions of degree

i. If (si+2, si+2) ∈ RλS then ∅ ⊢ si+1 → si+1 : si+2 and ∅ ⊢ λxsi+1 . x : si+1 → si+1.

The primary challenge moving forward is dealing with the fact that variables may appear

as types of sort si. These variables are what will necessitate si+1 being not just irrelevant,

but also isolated. Regardless, the sparsity of types of sort si induces sparsity of expressions

of degree i− 1.

Lemma 49. For index i in I, context Γ and expression M , if Γ ⊢ M : si−1, then M is of

the form Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and either B = si−2 or B ∈ Vsi.

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, variable introduction, or weakening are straightforward. The last inference clearly

cannot be an abstraction, and it cannot be an application since si is irrelevant. What follows

are the remaining two cases.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

Since si−1 is (SλS \ I)-irrelevant, it must be that j ∈ I. The desired result holds after

applying the inductive hypothesis to the right antecedent judgment.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ si−1 : si
Γ ⊢ M : si−1

where A =β si−1. Note that deg(A) = i so Γ ⊢ A : si by type correctness. Thus, A = si−1

by Lemma 48, which means the inductive hypothesis can be applied directly to the left

antecedent judgment.
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Lemma 50. For index i in I, context Γ, expression A and variable si+1x, if Γ ⊢ A : si+1x,

then A ∈ Vsi.

Proof. By induction on the structure of derivations. The cases in which the last inference is

an axiom, variable introduction, or weakening are straightforward. The last inference clearly

cannot be a product type formation or an abstraction. The last inference cannot be an

application because si is irrelevant. Finally, all conversions are trivial by the same argument

as in the previous lemma.

Corollary 3. For index i in I, every derivable expression M of degree i− 1 is of the form

Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and B = si−2 or B ∈ Vsi (and k may be

0).

The Translation

The following translation is defined such that it essentially pre-reduces all redexes whose

source types have degree in I. Naturally, this means it does not strictly preserve β-reductions,

but because these sources types are so sparsely inhabited, we can define a complexity measure

on expressions which is monotonically decreasing in the β-reductions that are pre-performed

by the translation. This is similar to the technique used by Sørensen for simulating π-

reductions Sørensen [1997].

The other wrinkle in defining this translation is that it is difficult to pre-reduce expressions

of variable type because even though such types are sparse-inhabitance, it is unclear a priori

what the value of the expression will be after a series of reductions. By Lemma 50, we

know it reduces to a variable, but we don’t know which variable, and it may be one that is

generalized or abstracted over. We ensure this doesn’t happen by requiring si+1 is isolated,

not just irrelevant. We also introduce a distinguished variable •z of type z for each variable

z of sort si+1 in the context. This gives us a canonical term that the translation can assign

to expressions of this type.
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Definition 40. The context-indexed family of functions (τΓ : T → T)Γ∈C as given as follows.

τΓ(si) ≜ si

τΓ(
six) ≜


si−2 i ∈ I and (six : si−1) ∈ Γ

•z i ∈ I and (six : si+1z) ∈ Γ

six otherwise

τΓ(ΠxA. B) ≜


τΓ,x:A(B) deg(A) ∈ I

ΠxτΓ(A). τΓ,x:A(B) otherwise

τΓ(λx
A. M) ≜


τΓ,x:A(M) deg(A) ∈ I

λxτΓ(A). τΓ,x:A(M) otherwise

τΓ(MN) ≜


τΓ(M) deg(N) + 1 ∈ I

τΓ(M)τΓ(N) otherwise

where •z is a distinguished variable. This family of function is extended to a single function

on contexts as

τ(∅) ≜ ∅

τ(Γ, sjx : A) ≜


τ(Γ) j ∈ I

τ(Γ), sjx : sj−1, •x : sjx j − 1 ∈ I and A = sj−1

τ(Γ), sjx : τΓ(A) otherwise.

Note that this class of functions is well-defined with respect to the dependence on con-

texts; each function can be defined simultaneously, inductively on the structure of the input.

As for proving the desired features of this translation, first note if i ∈ I, then the translation
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maps terms of degree i− 1 (where i ∈ I) to canonical atomic terms.

Proposition 1. For any index i in I, context Γ, and term A, if Γ ⊢ A : si−1, then τΓ(A) =

si−2, and if Γ ⊢ A : si+1x for some variable si+1x, then τΓ(A) = •x.

It suffices to consider the expressions of the form specified by Corollary 3, for which the

above fact clearly holds. This turns out to be a key feature of the translation. Because the

translation is able to drop so much information about these expressions, we can pre-reduce

redexes in which they appear on the right.

We also use the fact that the context associated with a translation can be weakened when

the variable does not appear in its argument.

Proposition 2. For any index i, context Γ, expressions M , A, and B, and variable six, if

Γ ⊢ M : A and Γ ⊢ B : si then τΓ,six:B(M) = τΓ(M).

We now prove the standard substitution-commutation and β-preservation lemmas for

this translation.

Lemma 51. For any index i, context Γ, expressions M , N , A and B, and variable six, if

Γ, six : A ⊢ M : B and Γ ⊢ N : A then

τΓ(M [N/six]) =


τΓ,six:A(M) i ∈ I

τΓ,six:A(M)[τΓ(N)/six] otherwise.

Proof. By induction on the structure of M . First suppose that i ∈ I.

Sort. If M is of the form sj , then τΓ(sj [N/six]) = τΓ(sj).

Variable. First suppose M is of the form six. In particular, A =β B, and since deg(A) =

deg(B) = i, we have A = B by Lemma 48. If A = si−1, then by Proposition 1 we have

τΓ(N) = si−2 and

τΓ(
six[N/six]) = τΓ(N) = si−2 = τΓ,x:si−1

(six).
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Similarly, if A is of the form si+1y, then τΓ(N) = •y and

τΓ(
six[N/six]) = τΓ(N) = •y = τΓ,x:y(

six).

If M is of the form sjy where sjy ̸= six, then τ(sjy[N/six]) = τ(sjy).

Π-Expression. If M is of the form ΠyA. B, then

τΓ((ΠyA. B)[N/x]) = τΓ(ΠyA[N/x]. B[N/x])

=


τΓ,y:A(B) deg(A) ∈ I

ΠyτΓ(A). τΓ,y:A(B) otherwise

where the last equality follows from the definition of τ and the inductive hypothesis. This

also depends on Proposition 2 to show that τΓ,y:A(A) = τΓ(A). The cases in which M is a

λ-expression or application are similar. Furthermore, when i ̸∈ I, all cases are analogous.

Before proving the β-preservation lemma, it is convenient to partition the β-reduction

relation into two parts, one part which is directly preserved by the translation (β1) and one

part which is pre-reduced by the translation (β2).

Definition 41. Let β2 denote the notion of reduction given by

(λxA. M)N →β2 M [N/x]

where deg(A) ∈ I, extended to a congruence relation in the usual way. Let β1 denote the

same notion of reduction but with deg(A) ̸∈ I, so that β1 ∩ β2 = ∅ and β1 ∪ β2 = β.

Lemma 52. For expressions M and N derivable in the context Γ, the following hold.

• If M →β1 N , then τΓ(M) →β τΓ(N);

• if M →β2 N , then τΓ(M) = τΓ(N);
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• in particular, if M =β N , then τΓ(M) =β τΓ(N).

Proof. The last item follows directly from the first two. We prove the first two items by in-

duction on the structure of the one-step β-reduction relation. In the case a redex (λxA. M)N ,

if deg(A) ̸∈ I, then we have

τΓ((λx
A. M)N) = τΓ(λx

A. M)τΓ(N)

= (λxτΓ(A). τΓ,x:A(M))τΓ(N)

→β τΓ,x:A(M)[τΓ(N)/x]

= τΓ(M [N/x])

and otherwise,

τΓ((λx
A. M)N) = τΓ(λx

A. M)

= τΓ,x:A(M)

= τΓ(M [N/x])

where the last equality in each sequence of equalities follows from the substitution-commut-

ation lemma (Lemma 51). To show the desired result holds up to congruences, it must follow

that expressions dropped by the translation are already in normal form.

Π-Expression. Suppose M is of the form ΠxA. B and N is of the form ΠxA
′
. B′ where

ΠxA. B →β ΠxA
′
. B′

If deg(A) ̸∈ I, then either A →β A′ and B = B′ or B →β B′ and A = A′ and the inductive

hypothesis can be safely applied. If deg(A) ∈ I, then Lemma 48 implies that A is in normal

form, so A = A′ and B →β B′, and the inductive hypothesis can be safely applied. The case

in which M is a λ-expression is similar.
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Application. Suppose M is of the form PQ and N is of the form P ′Q′ where

PQ →β1 P ′Q′

If deg(Q) + 1 ̸∈ I, then either P →β P ′ and Q = Q′ or Q →β Q′ and P = P ′ and the

inductive hypothesis can be safely applied. If deg(Q) + 1 ∈ I, Corollary 3 implies that Q

is in normal form, so Q = Q′ and P →β P ′ and the inductive hypothesis can be safely

applied.

With these two lemmas, we can now prove that the translation preserves typability. The

system we translate to is defined simply as the one in which the rules associated with sorts

in SI are dropped.

Definition 42. The irrelevance reduction of an n-tiered pure type system λS, denoted

here by λS−, is the n-tiered system specified by the rules

RλS \ {(si, sj) | i ∈ I and j ∈ [n]}.

Lemma 53. For context Γ and expressions M and A, if

Γ ⊢λS M : A then τ(Γ) ⊢λS− τΓ(M) : τΓ(A).

Proof. By induction on the structure of derivations.

Axiom. If the derivation is a single axiom ⊢ si : si+1 then the translated derivation is the

same axiom.

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : si
Γ, six : A ⊢ six : A
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First suppose i ∈ I. If A = si−1, then τΓ,x:si−1
(x) = si−2 and τ(Γ) ⊢ si−2 : si−1 where τ(Γ)

is well-formed by the inductive hypothesis; that is, τ(Γ) ⊢ τΓ(A) : si implies τ(Γ) is well-

formed. If A is of the form si+1y, then (si+1y : si−1) ∈ Γ, which implies (•y : si+1y) ∈ τ(Γ)

and τ(Γ) ⊢ •y : si+1y where τ(Γ) is again well-formed by the inductive hypothesis.

Next suppose i− 1 ∈ I and A = si−1. By the inductive hypothesis, we can derive

τ(Γ) ⊢ si−1 : si
τ(Γ), six : si−1 ⊢ six : si−1

and so by weakening,

τ(Γ), six : si−1 ⊢ six : si−1 τ(Γ), six : si−1 ⊢ six : si−1

τ(Γ), six : si−1, •x : six ⊢ six : si−1

The remaining cases are straightforward.

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si
Γ, six : B ⊢ M : A

By Proposition 1, we have τΓ,x:B(M) = τΓ(M). By type correctness, Γ ⊢ A : sj for some

index j, so τΓ,x:B(A) = τΓ(A). So the inductive hypothesis implies

τ(Γ) ⊢ τΓ,x:B(M) : τΓ,x:B(A)

We can then use an argument similar to the one in the previous case to extend the context

to τ(Γ, x : B).

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : si Γ, x : A ⊢ B : sj

Γ ⊢ ΠxA. B : sj

if i ∈ I, then τ(Γ) = τ(Γ, x : A) and τΓ(ΠxA. B) = τΓ,x:A(B) and so τ(Γ) ⊢ τΓ,x:A(B) : sj

by the inductive hypothesis applied to the right antecedent judgment. It cannot be the case

that i − 1 ∈ I and A = si−1 since si is rule-isolated in this case. The remaining case is

straightforward.
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Abstraction. Suppose the last inference is of the form

Γ, six : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

If i ∈ I, then

τ(Γ) = τ(Γ, six : A)

τΓ(λx
A. M) = τΓ,x:A(M)

τΓ(ΠxA. B) = τΓ,x:A(B)

so the desired judgment follows directly from the inductive hypothesis applied to the left

antecedent judgment. Again, it cannot be the case that i − 1 ∈ I and A = si−1 since si is

rule-isolated in this case. The remaining case is straightforward.

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/six]

By type correctness, Γ ⊢ ΠxA. B : sj for some sort sj , and by generation, we have

Γ, six : A ⊢ B : sj

so by Lemma 51, if i ∈ I (i.e., deg(N) + 1 ∈ I), then τΓ(MN) = τΓ(M) and

τΓ(B[N/six]) = τΓ,x:A(B) = τΓ(ΠxA. B).

The desired result then follows directly from the inductive hypothesis applied to the left

antecedent judgment. And if i ̸∈ I, then τΓ(B[N/x]) = τΓ,x:A(B)[τΓ(N)/x] and we have

τ(Γ) ⊢ τΓ(M) : ΠxτΓ(A). τΓ,x:A(B) τ(Γ) ⊢ τΓ(N) : τΓ(A)

τ(Γ) ⊢ τΓ(M)τΓ(N) : τΓ,x:A(B)[τΓ(N)/x]

Conversion. Suppose the last inference is of the form
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Γ ⊢ M : A Γ ⊢ B : si
Γ ⊢ M : B

where A =β B. Then we have

τ(Γ) ⊢ τΓ(M) : τΓ(A) τ(Γ) ⊢ τΓ(B) : si
τ(Γ) ⊢ τΓ(M) : τΓ(B)

where τΓ(A) =β τΓ(B) by Lemma 52.

It remains to show that this translation is path-preserving. The guiding observation is

that β2-reductions cannot make more redexes, and what redexes may persist must be simpler

in some sense. We define a complexity measure which captures this observation by its being

monotonically decreasing in β2-reductions.

Definition 43. The shallow λ-depth of a term M is the number of top-level λ’s appearing

in it, i.e., the function δ : T → N is given by δ(λxA. N) ≜ 1 + δ(N) and δ(M) ≜ 0

otherwise. The shallow λ-depth of a redex (λxA. M)N is the shallow λ-depth of its left

term λxA. M .

I will simply write "depth" from this point forward.

Definition 44. Define µ : T → N to be the function which maps an expression to the sum

of the depths of its β2-redexes, i.e.,

µ(si) = µ(x) ≜ 0

µ(ΠxA. B) = µ(λxA. B) ≜ µ(A) + µ(B)

µ(MN) ≜


µ(M) + µ(N) + δ(MN) MN is a β2-redex

µ(M) + µ(N) otherwise.

Finally, we prove the monotonicity lemma. It depends on the typed-version of a result by

Lévy for the untyped lambda calculus about the creation of new redexes Lévy [1978]. I give
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the statement of the result here without proof. I also include a definition of the standard

notion of a residual redex, adapted from Xi [2006] as well as Huet [1994].

Definition 45. Let M and N be expressions such that M →β N by reducing the redex

(λxA. P )Q, and let R be a redex in M . The residuals of R in N are the copies of R which

appear in N after reducing (λxA. P )Q. That is,

• if R is (λxA. P )Q, then R has no residuals.

• if R ⊂ Q, then the residuals are R in N are the copies of R in P [Q/x];

• if R ⊂ P , then the copy of R in P after substitution of the form R[Q/x] is the residual

of R in N ;

• if the redex (λxA. P )Q is contained in R, then R after substitution (i.e., R with

(λxA. P )Q replaced by P [Q/x]) is the residual of R in N

• if R is disjoint from (λxA. P )Q then R itself is the residual of R in N .

Lemma 54. (Lévy, 1978) For expressions M and N such that M →β N , if (λxA. P )Q is a

redex of N which is not a residual of a redex in M , then it is creates in one of the following

ways.

1. (λyB . y)(λxA. P )Q →β (λxA. P )Q;

2. (λyC . λxD. R)SQ →β (λxD[S/y]. R[S/y])Q where A = D[S/y] and P = R[S/y];

3. (λyB . R)(λxA. P ) →β R[λxA. P/y] where yQ is a sub-expression of R.

Lemma 55. For derivable expressions M and N , if M →β2 N , then µ(M) > µ(N).

Proof. Suppose M reduces to N by reducing the β2-redex (λxC . P )Q. By Corollary 3, the

expression Q is of the form Πx1
A1 . . . .Πxk

Ak . B where deg(Aj) ∈ I for all j and either

B = si−2 or B ∈ Vsi . This means reducing a β2-redex cannot duplicate existing redexes in
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M , so every redex has at most one residual in N . Furthermore, if N has a new β2-redex, it

is by item 2 of Lemma 54, i.e., there are expressions C, D, R, and S, and variable z such

that P = λzD. R and

(λxC . λzD. R)QS →β (λzD[Q/x]. R[Q/x])S.

It is easy to verify that, because of the form of Q, only one new β-redex is created and,

furthermore, δ(R[Q/x]) ≤ δ(R). This implies the new redex has smaller depth than the

redex that was reduced, so even if it is a β2-redex, the complexity of M decreases.

The proof of the main theorem of this sub-section is standard.

Theorem 4. If λS− is strongly normalizing, then λS is strongly normalizing.

Proof. Suppose there is an infinite reduction sequence in λS

M1 →β M2 →β . . .

where M1 is derivable from the context Γ. Since µ is monotonically decreasing in β2-

reductions (Lemma 55), there cannot be an infinite sequence of solely β2-reductions con-

tained in this sequence. This means there are infinitely many β1 reductions in this sequence,

which by Lemma 52 implies there infinitely many β-reductions in the reduction path

τΓ(M1) →β τΓ(M2) →β . . .

which is in λS− by Lemma 53.
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4.2.2 Eliminating Completely Isolated Sorts

We now handle completely isolated sorts. Recall that a sort si is completely isolated if si

is top-sort-like and rule-isolated. This translation is slightly simpler than the first. It is

a generalization of the observation made in the introduction that one can define a path-

preserving translation from λHOL to λω, i.e., one that eliminates the rule-isolated top-sort.

The two translations can, in fact, be collapsed into a single translation, but it is convenient

to separate it into two parts, especially since the result can be made slightly stronger; the

conditions on si−1 are weaker for completely isolation than for complete irrelevancy.

Fix an n-tiered pure type system λS with n > 2, and a completely isolated sort si.2 In

essence, the following translation removes the completely isolated sort and shifts down all

the sorts that might be above it. Because isolated sorts can only really be used to introduce

variables into the context, the translation pre-substitutes those variables with dummy values

that won’t affect the normalization behavior of the expression after translation.

One notable feature of this translation is that it does not preserve the number of sorts

in the system and, furthermore, does not preserve degree. Thus, it will be useful to be more

careful about variable annotations in the following definitions and lemmas.

2. The restriction on n is a technicality that ensures the target system is nontrivial. See, for example,
the variable case of Definition 46.
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Definition 46. The context-indexed family of function {θΓ : T → T}Γ∈C is given as follows.

θΓ(sj) ≜


sj j < i

sj−1 otherwise

θΓ(
sjx) ≜


si−2 j = i and (six : si−1) ∈ Γ

sjx j < i

sj−1x otherwise

θΓ(Π
sjxA. B) ≜ ΠθΓ(sj)x

θΓ(A)
. θΓ,x:A(B)

θΓ(λ
sjxA. M) ≜ λθΓ(sj)xθΓ(A). θΓ,x:A(M)

θΓ(MN) ≜ θΓ(M)θΓ(N)

This family of functions is extended to a single function on contexts as

θ(∅) ≜ ∅

θ(Γ, sjx : A) ≜


θ(Γ) j = i and A = si−1

θ(Γ), θΓ(sj)x : θΓ(A) otherwise.

As with the previous translation, this one is well-defined with respect to its dependence

on context, and the contexts can be weakened without changing the value of the function

(in analogy with Proposition 2 for τΓ). We go on to prove substitution-commutation, β-

reduction preservation, and typability preservation. The proofs are similar to those in the

previous sub-section and, consequently, are slightly abbreviated.

Lemma 56. For context Γ, expressions M , N , A and B, and variable sjx, if j ̸= i and

Γ, sjx : A ⊢ M : B and Γ ⊢ N : A then θΓ(M [N/sjx]) = θΓ,sjx:A(M)[θΓ(N)/θΓ(sj)x].

Proof. By induction on the structure of M . All cases are straightforward except the case
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in which M is a variable, but then the assumption that j ̸= i ensures the desired equality

holds.

Lemma 57. For expressions M and N derivable from Γ, if M →β N , then θΓ(M) →β

θΓ(N). Furthermore, if M =β N , then θΓ(M) =β θΓ(N).

Proof. The second part follows directly from the first, which follows by induction on the

structure of the one-step β-reduction relation. In the case of a redex (λxA. M)N , we have

θΓ((λx
A. M)N) = (λxθΓ(A). θΓ,x:A(M))θΓ(N)

→β θΓ,x:A(M)[θΓ(N)/θΓ(sj)x]

= θΓ(M [N/θΓ(sj)x])

where the last equality follows from Lemma 56, keeping in mind that j ̸= i since i is isolated,

so the lemma can be safely applied.

Finally, typability preservation. The target system is as expected, the isolated sort is

removed and potential sorts above it are shifted down.

Definition 47. The i-collapse of an n-tiered pure type system λS, denote here by λS∗, is

the (n− 1)-tiered systems specified by the rules

RλS∗ ≜ {(θ∅(sj), θ∅(sk)) | (sj , sk) ∈ RλS and j ̸= i and k ̸= i}.

Lemma 58. For context Γ and expressions M and A where M ̸= si−1, if

Γ ⊢ M : A then θ(Γ) ⊢ θΓ(M) : θΓ(A).

Proof. By induction on the structure of derivations. The proof differs slightly depending on

whether or not si is a top-sort. I make clear below which cases differ.
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Axiom. Since M ̸= si−1, the judgment ∅ ⊢ θ∅(sj) : θ∅(sj+1) is still an axiom.

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj

Γ, sjx : A ⊢ sjx : A

If j = i and A = si−1, then θ(Γ) ⊢ si−2 : si−1 is still derivable. Note that θ(Γ) can be

proved to be well-formed by the inductive hypothesis. If j < i, then we have

θ(Γ) ⊢ θΓ(A) : sj

θ(Γ), sjx : θΓ(A) ⊢ sjx : θΓ(A)

If j > i, then in particular si is not a top-sort. This case is then similar to the previous one,

keeping in mind that this might use the rule (si−1, si) for the translated derivation in the

system λS∗, but not in the case that si is a top-sort.

Weakening. This case follows directly from the fact that θΓ,x:B(M) = θΓ(M) whenever

M and B are derivable from Γ. It is also similar to the analogous case in the previous

sub-section.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sjx : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

Note that j ̸= i and k ̸= i since si is rule-isolated. In particular, neither A nor B are si−1.

Therefore, we can apply the inductive hypothesis directly to each antecedent judgment and

derive the desired consequent judgment.

Abstraction. Suppose the last inference is of the form

Γ, sjx : A ⊢ M : B Γ ⊢ ΠxA. B : sk

Γ ⊢ λxA. M : ΠxA. B

Note that j ̸= i since si is rule-isolated, and so ΠxA. B would not be derivable. Furthermore,

B ̸= si (so M ̸= si−1) since si is irrelevant. Therefore, we can apply the inductive hypothesis

directly to each antecedent judgment and derive the desired consequent judgment.

Application. Suppose the last inference is of the form

119



Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

Note that deg(A) ̸= i+ 1 (and in particular N ̸= si−1), since si+1 is rule-isolated. Further-

more, deg(A) ̸= i (and deg(N) ̸= i− 1) since si is rule-isolated. Therefore, we can apply the

inductive hypothesis directly to each antecedent judgment.

θ(Γ) ⊢ θΓ(M)θΓ(N) : θΓ,x:A(B)[θΓ(N)/x]

and θΓ,x:A(B)[θΓ(N)/x] = θΓ(B[N/x]) by Lemma 56.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj
Γ ⊢ M : B

If M = si−1, then A =β si =β B. Then by Lemma 48, in fact A = B. If B = si−1, then by

Corollary 3 we again have A = B. Otherwise, by Lemma 57, θΓ(A) =β θΓ(B) and we can

derive θ(Γ) ⊢ θΓ(M) : θΓ(B) by the inductive hypothesis and conversion.

Since β-reductions are simulated directly, the argument for the final theorem is simple.

Theorem 5. If λS∗ is strongly normalizing then λS is strongly normalizing.

Proof. Suppose there is an infinite reduction path in λS starting at M , which is derivable

from the context Γ. Note that this sequence cannot contain the term si−1 since this is

a normal form. Therefore, applying θΓ to each term yields an infinite reduction path in

λS∗.

It is also important to note that weak normalization is preserved in the opposite direction.

Proposition 3. If λS is weakly normalizing then so is λS∗ is weakly normalizing.

This is trivial in the case that the sorts are maintained—as for the irrelevance reduc-

tion—and also in the case that the eliminated sort is a top-sort, but requires, in the case
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s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 4.1: The iteration of irrelevance reductions can be fairly complex; it may be that a
sort cannot appear in a completely irrelevant index set until after several iterations. In the
system above, the maximum completely irrelevant index set of this system is {9}, but after
eliminating the rules associated with s9, both s9 and s5 become rule-isolated, and so the
next maximum completely irrelevant index set is {4, 8}. It is not difficult to imagine how
this effect can be scaled up to larger systems.

of a top-sort-like sort, noting that any term in λS∗ can be embedded into λS up to sort

renaming.

4.2.3 The Main Result

With these two translations, we can now define one final translation, which is the composition

of the fixed-points of these to translations.

Definition 48. For any tiered pure type system λS, let IλS denote its unique maximum

completely irrelevant index set and let iλS denote the maximum index of a completely isolated

sort in λS, if one exists. Let τ(λS) denote the fixed-point of taking the irrelevance reduction

of λS with respect to its maximum completely irrelevant set IλS (i.e., until IλS = ∅) and let

θ(λS) denote the fixed-point of taking the iλS-collapse of λS (i.e., until λS has no completely

isolated sort or is 2-tiered). The irrelevance elimination of λS, denoted as λS↓ is the

system θ(τ(λS)).

See Figure 4.1 for an example of this transformation. The main theorem of this paper is

as follows. It is simply the observation that the translations from the previous sub-sections
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can be composed.

Theorem 6. For any tiered pure type system λS, if λS↓ is strongly normalizing, then λS is

strongly normalizing.

And, as prefaced above, this result can be bootstrapped with existing results for the

Barendregt-Geuvers-Klop conjecture in the expected way.

Corollary 4. For any tiered pure type system λS, if weak normalization implies strong

normalization for λS↓, then weak normalization implies strong normalization for λS.

Proof. If λS is weakly normalizing, then λS↓ is weakly normalizing, since any term in λS↓

can be embedded in λS. But then λS↓ is strongly normalizing by assumption, which implies

λS is strongly normalizing by Theorem 6.

By the result of Barthe et al., if λS↓ is non-dependent, clean, and negatable, then weak

normalization implies strong normalization in λS. Since λS↓ can be non-dependent even if

λS has dependent rules, this extension allows us to prove the conjecture of some systems

with dependencies. Cleanliness is a technical restriction that I won’t go into here, but a pure

type system is negatable if it has the rule (si, si) whenever si is relevant. So this extension

also allows us to consider systems with non-negatable sorts.

4.3 Conclusions

I have presented a path-preserving translation from a tiered pure type system λS to a weaker

system λS↓ which is, in essence, λS without its irrelevant structure. When combined with

results for the Barendregt-Geuvers-Klop conjecture, it widens the class of systems for which

the conjecture applies, most notably to systems with dependent rules, but also to systems

with non-negatable sorts. This is a step towards proving the conjecture for all tiered systems,

in particular because it highlights those systems which require further analysis. For example,
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besides dealing with systems that have more dependences, it appears that dealing with

circular rules is one of the clear barriers in strengthening these results. For 3-tiered systems,

we extend existing results to include the system specified by

s1 s2 s3

but not to the same system with the additional rule (s3, s3). Circular rules break irrelevancy

and, consequently, induce much more complicated structure in the system. There is also

likely other forms of irrelevant structure that are not covered by the translation in this

paper.

Additionally, it is worth noting that the conditions on completely irrelevant index sets

cannot be trivially weakened. If, for example the irrelevance condition on preceding sorts

was removed, this technique would apply to λU (i.e., the same system presented above but

with the additional rule (s2, s2)), leading to a contradiction since λU is non-normalizing.

Circular rules again seem to be at the core of this issue. More carefully considering λU

and related non-normalizing systems through the lens of these results—particularly why

the techniques don’t apply to these systems—may yield a more structural understanding of

the non-normalization of λU , independent of Girard’s paradox. Regardless, I hope to have

demonstrated with this translation that, despite the full Barendregt-Geuvers-Klop conjecture

seeming quite far from being solved, there are still a number of approachable questions and

avenues for further development.
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