Thesis Proposal

Hai Duc Nguyen

April 14, 2023

Abstract

Today’s Function-as-a-Service (FaaS) systems only provide statistical guarantees,
so bursty, real-time applications cannot rely on them to deliver quality guarantee
computation. We propose Rate-based Abstract Machine (RBAM) — an extension of
the FaaS computation service that associates a guaranteed invocation rate to the FaaS
function. This guarantee enables timely invocation allocation, enabling applications to
meet real-time requirements.

We develop analytical models to study RBAM, proving its capability in bounding
FaaS invocation allocation latency which is sufficient to guarantee applications’ real-
time deadlines. We also use the analytical model to prove the feasibility of RBAM
implementation and derive a naive RBAM allocation algorithm. We use this algorithm
to create an RBAM realization, named Real-time Serverless (RTS).

To demonstrate RBAM applicability, we implement a distributed real-time video
analytic application with Real-time Serverless. RTS ensures both statistical and absolute
application performance guarantees. These new capabilities are also robust against a
wide range of workload burstiness, opening new performance engineering space with
flexible deployments. Further, we use RTS as a building block to create Storm-RTS,
a stream processing engine that utilizes the rate guarantee to implement application
performance transparency and predictability. Such new features allow Storm-RTS to
gain robust performance stability, high deployment flexibility, and can even optimize
application deployment for different objectives with simple declarative policies.

Given this foundation, we will provide an efficient RBAM implementation. We
plan to propose several guaranteed invocation rate allocation algorithms that can deploy
any rate-guarantee with low overhead. We will also develop analytical studies and
simulations to show their efficiency and then implement them inside RTS. We expect to

make RTS implementation cost asymptotically small for a large number of RBAMs.

Contents

1

2

Thesis Statement

Introduction
2.1 The Rise of Bursty, Real-time Applications
2.2 Existing Solutions L.
2.2.1 Traditional Cloud Computation Models
2.2.2 Dynamic Resource Allocation
2.2.3 Function-as-a-Service
2.3 Problem Statement
2.4 Approach: Rate-based Abstract Machine
2.5 Goals and Scope of the Thesis
2.6 Proposal Organization.,

Research Questions

3.1 Real-time Guarantee Support
3.2 Efficient Implementation L.
3.3 Applicability

Research Plan

4.1 Approach and Strategies
4.1.1 Real-time Guarantee Support..
4.1.2 Efficient RBAM Implementation
4.1.3 RBAM Applicability o

42 ResearchPlan

4.3 Expected Research Contributions

44 Full Thesis Outline

Initial Results

5.1 Current Progress L e
5.1.1 Real-time Guarantee Support
5.1.2 Efficient RBAM Implementation
5.1.3 RBAM Applicability

5.2 Real-time Guarantee Support
5.2.1 Analytical Framework
5.2.2 Fixedrate Real-time Guarantee
5.2.3 Bursty Real-time Guarantee
5.2.4 Real-time Guarantee Resource Consumption

5.3 RBAM Implementation
5.3.1 Implementation Feasibility
5.3.2 Real-time Serverless

O 0 3 W W

10

12
13
14

14
14
14
14

15
15
15
16
16
17
18
19

54 RBAM Applicability 33

5.4.1 Distributed Real-time Video Analytic 34

54.2 Stream Processing o 43

5.5 Unanswered Questions and Remaining Tasks 59

6 Related Work 60
6.1 FaaS Efficiency Improvement 60
6.2 Supporting Bursty, Real-time Applications 60
6.2.1 Handling Workload Burstiness 60

6.2.2 Satisfying Real-time Requirements 61

6.3 Stream Processing 62
6.3.1 Stable Performance L. 62

6.3.2 Stream Processing and FaaS, 62

6.3.3 Stream Processing across Multiple Sites 63

7 Remaining Work of Thesis 63

1 Thesis Statement

Current FaaS systems provide only statistical performance SLOs, and thus cannot meet
real-time deadlines. We propose RBAM — a new FaaS execution model that pairs guaranteed
invocation rates with each FaaS function deployment. RBAM allows applications to meet
real-time deadlines. Furthermore, RBAM can be implemented with low overhead and can be

generalized to other classes of applications.

Terms in italic are defined as follows.

* Statistical Performance SLOs: performance SLOs are defined in statistical terms. For

example: “99-th of invocation latency is less than 1 second”.

* Real-time deadlines: the maximum allowable delay a task can tolerate. The delay is
measured from when the task emerges to when it completes. In the proposal, unless
specifically mentioned, we consider real-time deadline as hard deadline: missing a
deadline is prohibited.

* Guaranteed invocation rate: FaaS function is guaranteed to get new invocations up to

a certain rate.

* Overhead: the gap between resources allocated to a FaaS function and resources

consumed by its outstanding invocations.

2 Introduction

2.1 The Rise of Bursty, Real-time Applications

Technology advances such as infrastructure improvement, the increasing popularity of
mobile devices as well as the growth of cloud and edge computing enable more and more
IoT applications to emerge. New IoT applications are not only diverse but also experience
massive-scale deployment. Examples include Amazon’s 100 million intelligent assistants
[37], large-scale urban and rural monitoring systems [49, 93], and even expensive large
equipment [67, 103]. Many of these lead to more than 13.14 billion devices created by 2022
and the figure is projected to continue increasing in the years to come [68].

Widespread IoT offers tremendous value. One noticeable benefit is increasing productiv-
ity and efficiency. loT-enabled automation allows taking actions at high precision and speed
[1, 7] with longer operation hours and predictive maintenance [63, 9, 12]. IoT systems also
offer high adaptability [8, 11], mobility [3, 6], and compliance [10, 4] to create promising
solutions with improved insight at a low cost [5, 2]. Futher, these values are expected to con-
tinue flourishing along with increasing improvement of connectivity (e.g., 6G systems [121]),
computation capability (e.g., emerging Edge and Cloud-Edge computing), and great leaps

U E) a EJ EJ Block suspicious
B— o = traffic

Application

Demanding Computation
Pedestl ians
detected

External Events Real-time Responses

Report a “wanted” person

Load 1

Deadline

| Time

Figure 1: Real-time Bursty Application Examples: External events such as cyberattack,

pedestrian appearance trigger application to start demanding computation that have to finish
before a deadline. To respond in time (e.g., block suspicious traffic, detect identities, etc.) the
application consumes significantly more resources than normal, causing a burst in application
load.

in data science (e.g., Artificial Intelligence). This trend requires a right focus on software
solutions to make IoT-enabled computation go efficiently and seamlessly.

However, observations of 1oT workloads reveal many difficulties. IoT-enabled applica-
tions are driven by physical world events that are hard to predict yet require computation-
intensive and time-critical reactions. For example, in Figure 1, a network administration
application detects abnormal traffic so it triggers an in-depth analysis to decide whether it is
a sign of a cyber attack. If so, it will take cybersecurity actions such as closing vulnerable
ports and blocking suspicious traffic to protect internal systems. Another example is a crowd
control application that collects video streams to detect suspicious persons. Anytime a person
appears in the video, the application performs an in-depth analysis. If the analysis detects
a “wanted” person, the application will file a report to the authorities. In both examples,
responses must be taken in time to avoid negative impacts (e.g, letting a fugitive escape,
or putting internal systems under a Denial-of-Service attack). Making such timely actions
demand a lot of resources, leading to a burst in their workloads.

We use the term bursty real-time to refer to workloads characterized by both bursty load
and real-time requirements as mentioned above. Precisely, a bursty real-time application

possesses the following key characteristics:

* Bursty: The demand of the workload is not stable but often experiences bursts which
have the following attributes.

— Low duty factor: bursts are typically short and rarely happen, thus their duty

factor (i.e, ratio of burst periods over time) is very low, typically less than 10%.

— High computation demand: Bursts create significant higher computation demand
than normal, could be 10x to 100x or even more.

* Real-time: The computation demand of bursts must be served within a strict deadline.

Not only in 0T, bursty real-time workload also emerges from other classes of applications.
Noticeable examples include scientific data streaming, online gaming, stream processing, etc.
Some of them even experience extreme computation intensity and stricter real-time deadlines.
For example, in high energy physics (HEP), finding HEP events containing evidence of new
physical phenomena, such as new partial or dark matter, requires Large Hadron Collider
(LHC) systems to capture 40 million or even more video frames for every detected collision
where each frame has to be processed within 300ns [113]. Online gaming also witnesses
growing bursty traffic. Pokemon Go [115], for example, has approximately 600 million
active players worldwide that could generate up to 50,000 interactive requests per second
yet special events may create bursts with 50x expected load that could last for hours or even
several days [113].

The computation quality of bursty, real-time applications depends on both analysis
accuracy and processing speed. Failing to either make a proper decision or deliver decisions
after the deadlines result in low value/quality or even system failures. Unlike analysis
accuracy, the application cannot control processing speed all by itself but has to rely on
resource availability (i.e., CPU, memory, etc.). When a burst arrives, computation demand
increases dramatically requiring an equivalent growth in resource availability to maintain the
computation pace. Failing to grow resource availability forces the application to slow down
or delay some activities to fit in, thereby prolonging computation time and may miss the
deadline. Rapidly allocating a high quantity of resources within a short duration for real-time
deadlines is difficult. Worse, serving extreme workloads such as the LHC or Pokemon Go
presented above goes beyond the capability of current general-purpose systems (e.g., public
cloud). Instead, their developers have to build specialized systems [99, 100] or make an

exclusive contract with infrastructure providers [35] to make these applications possible.

2.2 Existing Solutions

Given the growing emergence of real-time bursty workload as well as its increasing impor-
tance and computation intensity, designing an appropriate computation model to efficiently
support their burstiness and real-time requirements is critical. This section presents existing

solutions to the workload and their limitations.

Resource
Efficiencyj
AWS Lambda (2014)
Google Cloud
Functions (2016)
EC2 Spot Instances Azure Functions
(2009) (2016)
Google Preemptible
Instances (2015)
EC2 Burstable Azure Spot VMs
Instances (2010) (2020)
Amazon EC2 VMs
(2006)
Google Compute
Engine (2012)
Resource Azure VMs (2012)
Control 1

Time

Figure 2: Timeline of existing Cloud computation models. Newer compute models offer

better resource efficiency yet reduce users’ control over cloud resources.

2.2.1 Traditional Cloud Computation Models

Most of today’s real-time bursty applications rely on cloud data centers for computation.
Cloud providers offer various types of computation models addressing different needs of
applications. However, the current growth of cloud service offerings does not focus on
improving application guarantee capability but reducing cost and improving cloud utilization
by sacrificing users’ control over cloud resources (Figure 2). Starting with VMs, cloud
providers allow users to control the whole stack of software development. However, due to
coarse-grained allocations and the lack of adaptation to workload dynamics, VMs incur high
resource waste that increases the cost and reduces resource utilization. Newer computation
models limit user control over cloud resources to offer new opportunities for waste reduction.
For example, burstable instances have users keep their CPU utilization low so that they can
use extra CPU at bursts at a lower cost while cloud providers can exploit the unused CPU
cycles for other users, increasing utilization. Volatile instances also help increase resource
utilization and cost by offering unused resources to users at high discounts with the risk of
getting preempted at any time.

This trend makes bursty real-time implementation difficult as highly usable computation
models offer insufficient real-time support while highly controllable services require too
much deployment effort and cost. For example, burstable instances allow applications to
absorb their bursts within a short duration yet capped both in terms of time and quantity by
credit accumulation. Such limitations make them unusable to workloads experience bursts
with long or hard to predict duration.

Due to the lack of real-time support, application developers have to use highly control-

lable services, such as pre-allocated VMs, in advance which gives them sufficient resource

Compute

Compute 4 Misallocation
r
wo | p——
Allocation Bursty |
Bursty Load
Foad Resource I |
Waste I Dynamic
I | Allocation
—— L—’—
Time Time
(a) VM Reservation (b) Dynamic Allocation
c t Compute
orr)f)u e N
Allocation FaaS .
Latency ~ Invocation RBAM
) \Allocation Bursty Allocati
Load ocation
\
\
\
- —— ——
Time Time

(c) Best-effort FaaS Allocation (d) RBAM Allocation

Figure 3: Resource allocation solutions for Bursty Real-time Applications. Due to the lack of
real-time support, current approaches (VM, dynamic allocation, and FaaS) either fail to meet
real-time deadlines or waste too many resources. RBAM, on the other hand, allows FaaS
invocations allocated at a similar rate with workload’s burst enabling real-time guarantee at

low resource waste.

quantity and privilege to guarantee hard real-time requirements. The pre-allocated quantity
must be large enough to absorb the burst demand which sometimes cannot be done auto-
matically but has to go through face-to-face negotiation. Further, due to the low duty factor
property, VMs are left under-utilized most of the time creating a huge resource waste (Figure
3a).

2.2.2 Dynamic Resource Allocation

Many of today’s solutions for bursty real-time workload workaround the resource waste
problem through dynamic allocation. Instead of running the application over a fixed set of
resources, application developers try to dynamically adjust allocations close to the needs.
They also exploit different computation models for different situation, using one as a compli-
ment of another for better outcomes. The dynamic allocation is an iterative control process

consisting of two steps:

* Burst Detection: the application detects bursts through various methods, including
workload monitoring [96, 95] and real-time violation detection (soft real-time) [81, 80].
Some application avoids violation by trying to predict potential burst arrivals and then

proactively allocate resources in advance [33].

* Allocation: the application allocates additional resources to absorb the burst. The tricky
part is to allocate just enough resources needed for real-time constraints. This typically
results in complicated prediction (e.g., inference from historical data) [80, 95]. There
are also approaches combining different cloud services, using highly flexible services,
such as FaaS, to absorb the burst [96, 81].

However, all dynamic allocation approaches are constructed upon heuristic methods.
Any application that has its burstiness properties or real-time constraints uncovered by the
heuristic solution may end up with misallocation that leads to either real-time violation or
resource waste (Figure 3b).

2.2.3 Function-as-a-Service

Function-as-a-service (FaaS), also known as Serverless, [17, 18, 32] offers promising features,
such as auto-scaling and pay-as-you-go, that can resolve limitations of dynamic allocation. In
FaaS, computations are carried out inside invocations triggered by the application. Each invo-
cation has a resource configuration specifying how many resources it can utilize. Invocations
do not share resources and hold them until termination. By this scheme, an application can
request more resource allocations by simply executing more invocations. These properties
allow FaaS resource allocation naturally to scale with computation demand. This gives a
huge advantage to bursty real-time applications: when bursts arrive, the application simply
invokes as many invocations as required to match the bursting demand and then releases them
once computation completes. Doing so not only delivers sufficient resources for real-time
guarantee but also significantly reduces the time, efforts, cost of application development
and deployment.

Unfortunately, current FaaS systems allocate invocations in a best-effort manner. There
is no restriction on allocation time or even on whether an allocation succeeded. This scheme
adds complexity and uncertainty to application performance because they cannot time the
resource allocation correctly. For the case of bursty, real-time application, the surge of load at
burst urges the FaaS systems to aggressively seek a large number of additional resources for
a timely response. This creates heavy pressure on the underlying resource manager systems,
and without any allocation restriction, that usually results in long allocation delays or even
cancellations. Consequently, as visualized in Figure 3c, the application fails to keep its
computation up with the load growth and misses the deadlines.

Recent years experience efforts on mitigating this problem. However, none of the ap-
proaches above address the best-effort allocation limitation on allocation time but rather

focus on improving its implementation using the following techniques

10

Approaches Real-time Guarantee | Efficiency | Applicability

Reservation Yes Low High
On-demand Instances | No High High
Burstable Instances Limited High Low
Volatile Instances No High Low
Regular FaaS No High High
Dynamic Allocation | No High Low
RBAM Yes High High

Table 1: Evaluate approaches to deploy Real-time Bursty Applications over the cloud against
solution requirements. A good solution must be able to guarantee real-time requirements

with high efficiency and applicability.

* Pre-allocation: FaaS systems pre-allocate invocations before applications need them,
effectively reducing allocation latency to zero. Pre-allocation can be manually config-
ured by the application developer [31], or issued by a load predictor typically signaled
by workload traces inference [127], upstream load [57, 131, 36], etc.

* Allocation Recycling: FaaS systems recycle resources allocated to terminated invo-
cations for new invocations, effectively mitigating dependency on the system state
[29, 32, 18, 123, 42, 120].

Both techniques are built atop heuristic mechanisms. This means, similar to dynamic alloca-
tion, they may fail in uncovered circumstances. For example, the burst load suddenly goes
too high, exceeding the pre-allocation quantity. Consequently, the best application can get
is some sort of performance improvement in some circumstances which is insufficient to

guarantee real-time requirements.

2.3 Problem Statement

Due to the limitations of FaaS solutions to bursty real-time workload discussed above. This
thesis presents a new approach to overcome these limitations, allowing bursty real-time
application to enjoy advantages of the FaaS computation with real-time guarantees. In

particular, we address the following problem:

Problem Statement. Regular FaaS allocations gives no guarantee on allocation time
preventing applications from meeting their real-time requirements.

In order to solve the problem above, we believe FaaS systems must replace their best-
effort allocation with a new allocation scheme that can allow the application to bound their

computation latency. Particularly, the new scheme must satisfy the following requirements:

* Real-time Guarantee: applications can guarantee to meet their real-time deadlines.

11

 Efficiency: the real-time guarantee capability can be implemented with low overhead.

* Applicability: the new FaaS allocation scheme should be usable by a wide spectrum
of applications with different burstiness properties and real-time requirements, and if

possible, can open new capabilities to use computation resources wisely.

While the real-time guarantee is a must-have, meeting the efficiency and applicability
requirements are also important as they ensure the realization cost is not prohibitively high
that prevents the new FaaS allocation from being implemented in production and be general
enough to be used by any application. Table 1 examines approaches of deploying real-time
bursty applications over the cloud using the requirement listed above. As we have explained,

none of existing approaches satisfy all requirements.

2.4 Approach: Rate-based Abstract Machine

We propose a new FaaS system called Rate-based Abstract Machine (RBAM) replacing
the best-effort allocation with a rate guarantee allocation. More precisely, the Rate-based
Abstract Machine associates to each FaaS function a guaranteed invocation rate A. RBAM
ensures that the application will have enough resources to create at least one invocation for
the function in any interval of length 1/A. For example, if a FaaS function has a guaranteed
invocation rate of A = 10 invocations per second then RBAM will ensure that there will be at
least one invocation available to the application in any interval of length 1/10 = 0.1 second
throughout the function lifetime.

The guaranteed invocation rate lets RBAM deliver new invocations with high predictabil-
ity. Particularly, any RBAM function with a guaranteed invocation rate A lets the application
know that the inter-arrival between two consecutive invocations is at most 1/A seconds. Thus,
if the request rate is equal to or less than A, it is guaranteed that resources will be available
at the same rate of demand, ensuring workload stability. The application can exploit this
property for real-time guarantee. As shown in Figure 3d, with a guaranteed invocation rate
equal to the demand increment rate at burst, RBAM invocations can grow at the same pace
as the load, ensuring sufficient resources for timely responses.

More importantly, if the application requests for new invocations with a rate smaller or
equal to A (i.e., less than one invocation request for every 1/A interval) then the longest time
the application has to wait for the invocation to start is 1/A. In other words, the guaranteed
invocation rate allows the application to bound allocation time by 1/A. In the example
above, guaranteed invocation rate A = 10 invocation/sec lets all workloads with 10 or fewer
invocation requests per second bound their invocation allocation latency by 0.1 second.
This guarantee is extremely useful to bursty, real-time applications as they can proactively
schedule the invocation requests for performance. Suppose the application has a computation
deadline d and maximum execution time m (configurable through conventional FaaS API).
With a guaranteed invocation rate A, invocation allocation time is bounded by 1/A. Thus,

by requesting a new invocation for this computation at any time before d —m — 1/A, the

12

application is guaranteed that the requested invocation will be available no later than m
second before the deadline and will complete before d, meeting its deadlines.

Cloud providers can implement RBAM efficiently. The guaranteed invocation rate lets an
RBAM system know the maximum load that an RBAM deployment must service, essentially
providing an upper bound on the number of resources needed to implement any RBAM.
Also, with low duty factor, real-time bursty workloads typically have very low resource
consumption versus the rate guarantee, RBAM systems can exploit this fact to further
reduce the overhead by applying different techniques such as sharing instances among
independent/anti-correlated bursty loads, buffering with dynamic load adaptation, etc.

RBAM is also highly applicable. A regular FaaS deployment is actually an RBAM
deployment with a zero rate guarantee. Thus, any applications deployable with FaaS can be
deployed with RBAM without any significant change. Further, the guaranteed invocation
rate is a basic real-time guarantee that can be translated into other forms of performance
guarantee. For example, soft real-time applications can use the rate guarantee to meet their
real-time requirements or treat it as a performance engineering parameter that can be tuned
to balance the real-time quality and cost (e.g., using a small rate guarantee causes more
real-time violates yet reduces cost). Stream processing applications can use the rate guarantee
to stabilize their throughput and gain performance transparency for flexible deployment.

2.5 Goals and Scope of the Thesis

The thesis focuses on proving RBAM is the right FaaS-based solution for the real-time
guarantee problem. The proof will show RBAM meets all three requirements for a FaaS
solution to the problem as mentioned in Section 2.3. This includes three parts.

First, we prove the capability of delivering real-time guarantees of RBAM’s guaranteed
invocation rate. This is done by systematically constructing an analytical framework that
captures key features of bursty, real-time applications and then relates them to the FaaS
and RBAM computation models. We use the framework to prove that RBAM’s guaranteed
invocation rate can bound FaaS invocation latency for the bursty workload, which is sufficient
to guarantee the workload’s real-time deadlines.

Second, we show that RBAM implementation is feasible, and if we properly exploit
workload burstiness structures and underlying allocation statistics, we can even implement
RBAM with a low overhead.

Finally, we demonstrate RBAM’s applicability by using the computation model to
implement different applications exhibiting different combinations of workload burstiness
and real-time requirements. These applications can easily use RBAM to implement their logic.
Furthermore, the guaranteed invocation rate not only guarantees their real-time requirements
but also expands the design space so that the applications can use it as a building block to
achieve other important properties to gain robust performance stability, high deployment
flexibility, and can even be optimized for performance, cost, and Carbon footprint with

simple declarative policies.

13

2.6 Proposal Organization

The rest of the proposal is organized as follows. Section 3 proposes research questions
related to the real-time guarantee problem and RBAM. Section 4 discusses our approaches,
strategies, and plan to answer these questions as well as expected contributions of the thesis.
Section 5 briefly reports the current progress of the project. We give a brief discussion of
related work in Section 6. Finally, we present plans for the remaining parts of the thesis in

Section 7

3 Research Questions

The thesis primarily focuses on revealing if RBAM is the right solution for real-time guaran-
tee on FaaS. The question is answered by evaluating RBAM against the FaaS requirements
mentioned in Section 2.3. In particular, we first consider if RBAM enables bursty, real-time
workloads to meet their computation deadlines. Then we will propose several RBAM imple-
mentation algorithms, prove their scalability in comparison with state-of-the-art regular FaaS
systems. Finally, we try implementing various applications with different burstiness proper-
ties and real-time requirements using an RBAM system to evaluate RBAM’s applicability.
The whole process leads to the following questions.

3.1 Real-time Guarantee Support

Can RBAM guarantee real-time deadlines for applications?

Q.1.1 Can RBAM’s guaranteed invocation rate meet fixed rate guarantee?

Q.1.2 Can RBAM’s guaranteed invocation rate support a bursty guarantee with bounded
resource demand slope.

Q.1.3 Can RBAM'’s guaranteed invocation rate supports a resource quantity guarantee.

3.2 Efficient Implementation
Can RBAM be implemented scalably for the Cloud?
Q.2.1 Can RBAM be implemented to support a full range of rates

Q.2.2 Can RBAM also be implemented with low overhead?

3.3 Applicability

Can an application’s real-time goals be effectively mapped onto RBAM’s guaranteed invoca-

tion rates?

Q.3.1 Can RBAM be used to implement a specific, diverse set of demanding real-time
applications?

14

Q.3.2 Can RBAM be used to construct a other real-time guarantees that capture a broad

class of applications with quality guarantee?

4 Research Plan

We propose a research plan to answer each research questions as follows. We construct
an analytical model that captures key features of applications and RBAM and use this
framework to deliver mathematical proofs for each real-time guarantee question (i.e., Q.1.1,
Q.1.2, and Q.1.3) and then combine them to prove RBAM’s real-time guarantee capability.
Next, we show that any guaranteed invocation rate is implementable by various algorithms
to prove RBAM’s feasibility (i.e., Question Q.2.1). We then prove RBAM’s efficiency (i.e.,
Question Q.2.2) by using these algorithms to implement an RBAM system to support millions
of RBAM functions concurrently at low overhead. Finally, we use the RBAM system to
implement 3 demanding real-time application classes as RBAM functions. We evaluate these
applications across different configurations to demonstrate how RBAM robustly delivers
real-time guarantees (Question Q.3.1) and enables other forms of performance guarantees
that can be exploited for different needs (Question Q.3.2).

We present the ideas in more detail in Section 4.1, we then propose a plan with a list
of specific tasks to accomplish the ideas in Section 4.2. Finally, we discuss the expected
contributions after completing the plan in Section 4.3 and the corresponding outline of the
thesis in Section 4.4.

4.1 Approach and Strategies
4.1.1 Real-time Guarantee Support

We construct an analytical model to connect key workload burstiness and real-time deadlines
with guaranteed invocation rate and use the model to answer the research questions about the

real-time guarantee capability of RBAM as follows.

* Can RBAM’s guaranteed invocation rate meet fixed rate guarantee? (Q.1.1) We
answer the question by proving that RBAM can bound FaaS invocation latency of
any fixed rate workload, and this bounded invocation latency gives enough scheduling

information for the applications to guarantee their real-time deadlines.

* Can RBAM'’s guaranteed invocation rate support a bursty guarantee with bounded
resource demand slope? (Q.1.2) We answer the question by generalizing the results
from fixed-rate workloads for bursty workloads with bounded demand, showing that
RBAM’s capability of bounding invocation latency still holds in this case, and so does

the real-time guarantee capability.

e Can RBAM’s guaranteed invocation rate supports a resource quantity guarantee?

(Q.1.3) We answer the question by proving that any finite RBAM’s guarantee invoca-

15

tion rate can be implemented with a bounded resource quantity, even in worst-case
scenarios, independent from the workload and the underlying infrastructure. This
bound guarantees application resource quantity and ensures the feasibility of any
RBAM-based solution.

By proving the statements listed above, we can show that RBAM can deliver real-time
guarantees at bounded resource cost for both periodic and non-periodic bursty applications
with bounded computation demand — broad enough classes of workload making RBAM a

workable FaaS model for practical real-time bursty applications.

4.1.2 Efficient RBAM Implementation

To know if RBAM can be implemented scalably for the Cloud, we propose several RBAM
implementation algorithms based on computation services supported by the Cloud. We
then evaluate them against four categories: rate-guaratee support (i.e., whether an algorithm
supports any rate guarantee), resource efficiency, additional knowledge (e.g., workload
patterns, underlying resources statistics, etc.), and scalability. We use the insights of the

evaluation to answer RBAM research questions as follows.

* Can RBAM be implemented to support a full range of rates? (Q.2.1) We show that there
exist RBAM algorithms that can support any rate-guarantee with bounded resource
quantity. Thus, the Cloud which has conceptually unlimited resources can host a full

range of rates.

* Can RBAM also be implemented with low overhead? (Q.2.2) We will show that the
exists algorithms that can implement RBAM with small resource waste and scale up
to millions of RBAM deployments. We also implement these algorithms in a practice
FaaS system and use the system to realize real-time bursty applications. Based on
the applications, we conduct empirical evaluations to demonstrate RBAM’s real-time
guarantee capability and scalability.

4.1.3 RBAM Applicability

To show the applicability of RBAM, we will use RBAM to implement three different classes
of applications that represent a diverse set of demanding applications with different real-time

requirements:

* Distributed Real-time Video Analytic: a popular application class with bursty demand
driven by highly unpredictable external events. The bursty demand is soft real-time.

* Demanding Scientific Sensor Instrument Data Processing: extremely highly demand-
ing applications (millions or more events per second). Although events arrive at a
fixed rate, their processing deadlines are hard. Examples include applications in High
Energy Physics, Advanced Photon Sources, etc.

16

* Distributed Stream Processing: a critical framework in many IoT and wide-area

applications. Data are created as streams and processed on-the-fly. Stream processing
applications typically manage their execution through a stream processing engine with

many built-in supports aiming for stable high throughput and low latency.

We conduct both analytical and experimental studies over RBAM implementations of these

applications to answer RBAM applicability research questions as follows.

4.2

* Can RBAM be used to implement a specific, diverse set of demanding real-time

applications? (Q.3.1) Through the distributed real-time video analytic and scientific
sensor instrument data processing applications, we will show that the RBAM can
guarantee a wide range of real-time requirements, starting from loose soft deadlines
of a few seconds down to extremely strict hard deadlines at a sub-microsecond scale.
Further, this capability is robust against different workload burstiness: from periodic

ones up to highly unexpected burst loads with extremely high burst rates.

Can RBAM be used to construct a other real-time guarantees that capture a broad class
of applications with quality guarantee? (Q.3.2) By implementing a stream processing
engine with RBAM, we demonstrate that the real-time guarantee delivered by RBAM
can be transformed into a real-time processing guarantee which ensures stable stream
processing throughput with low latency independent from the execution environment.
That new form of guarantee even opens new capabilities, such as flexible deployment
across multi datacenters, that broaden the scope of RBAM usage to deliver more

computation value.

Research Plan

Based on the strategy presented above, we propose the following plan with specific tasks,

each aiming to address one or a part of a research question. By combining these tasks

together, we will have a complete set of answers to the thesis research questions.

* T1. Prove RBAM can guarantee real-time deadlines of applications (Done).

T1.1 Develop an analytical framework for theoretical analysis and evaluation
(Address Q.1.1, Q.1.2, and Q.1.3, Done).

T1.2 Use the analytical framework to prove that guarantee invocation rate allows
application to meet real-time deadlines (Address Q.1.1, Q.1.2, and Q.1.3,
Done).

e 72. Show that we can implement RBAM functions with at most 15% more resources

compare to their regular FaaS counterparts. (Partly Done)

T2.1 Prove the feasibility of RBAM realization, and implement an RBAM system
that allow applications to deploy RBAM functions of any rate (Address
Q.2.1, Done).

17

T2.2 Propose several scalable allocation algorithms that can reduce the overhead
of deploying RBAM functions at any rate-guarantee over the cloud (Address
Q.2.2, In Progress).

T2.3 Evaluate proposed RBAM allocation algorithms to understand their effi-
ciency (Address Q.2.2, In Progress).

T2.4 Integrate proposed RBAM algorithms in a practical FaaS system (Address
Q.2.2, In Progress).

T2.5 Conduct empirical studies to demonstrate that RBAM implementation cost
is asymptotically small for a large number of RBAMs (Address Q.2.2, In

Progress).

* 73. Demonstrate RBAM applicability by implementing various applications with

different burtiness properties and real-time requirements (Partly Done).

T3.1 Design and implement an RBAM implementation of a distributed real-time
video analytic application (Address Q.3.1, Done).

T3.2 Design and conduct experiments to show that RBAM allows the application
to guarantee the value/quality of their real-time video processing, also prove
that the real-time guarantee delivered by RBAM is robust against application
burstiness variations (Address Q.3.1, Done).

T3.3 Design and implement an RBAM-based stream processing engine (Address
Q.3.2, Done).

T3.4 Design and conduct experiments to show that Storm-RTS deliver real-time
stream processing capability for stream processing applications, also demon-
strate new capabilities arisen from this guarantee (Address Q.3.2, Done).

T3.5 Implement an demanding Scientific Sensor Instrument Data Processing

application using RBAM functions (Address Q.3.1, In progress).

T3.6 Design and conduct experiments to show that the RBAM functions enable
the application to meet its real-time requirements with efficiency (Address
Q.3.1, In progress).

» T4. Write the Dissertation (In Progress)

T4.1 Summarize the research and write a full PhD Dissertation. (In Progress)

T4.2 Dissertation Defense (In Progress).

4.3 Expected Research Contributions
We expect the complete thesis would include the following research contributions:

* RBAM’s guarantee invocation rate ensures real-time deadlines for bursty, real-time

applications.

18

* We can exploit workload and cloud services statistics to implement finite guaranteed

invocation rates for FaaS functions with less than 15% overhead.

* RBAM can be used to implemented applications with a wide range of workload bursti-
ness and real-time requirements. RBAM helps these applications not only guarantee
their real-time deadlines but also create new capabilities including robust performance
stability, high deployment flexibility, and simple performance management across

distributed resources.

4.4 Full Thesis Outline

The draft outline of the full thesis is as follows

1. Introduction

(a) The Rise of Bursty, Real-time Applications
(b) Limitations of Current Solutions

(c) Approach: Rate-based Abstract Machine
(d) Goals and Scope of Dissertation

(e) Dissertation Contributions and Organization
2. Background

(a) Cloud computing and Its Applications
(b) Function-as-a-Service
3. Performance Guarantee Challenges of Bursty, Real-time Applications

(a) The Deadline Guarantee Problem

(b) Solution Requirements
4. Rate-based Abstract Machine

(a) Definition
(b) Real-time Guarantee Capability
(c) RBAM Implementation
i. Feasibility
ii. Rate-guarantee Allocation Algorithms
iii. Real-time Serverless: Scalable RBAM Implementation

5. Evaluation

(a) Methodology

19

(b) Real-time Guarantee Capability
(c) RBAM Implementation Efficiency

6. RBAM Applicability

(a) Distributed Real-time Video Analytic
(b) Demanding Scientific Sensor Instrument Data Processing

(c) Stream Processing Engine
7. Related Work

(a) Supporting Bursty, Real-time Applications
(b) FaaS Performance Guarantee

(c) Distributed Real-time Video Analytic

(d) Stream Processing

(e) Demanding Scientific Sensor Instrument Data Processing
8. Summary

(a) Conclusions

(b) Future Work

5 Initial Results

This section presents our initial results collected from executing the plan proposed in Section
4.2. At the time of this writing, we have completed answering RBAM real-time guarantee
research questions by showing that the computation can guarantee real-time deadlines
for broad classes of real-time bursty applications. We also partly addressed the RBAM
implementation questions by proving its feasibility with a naive RBAM system called
Real-time Serverless (RTS). We used RTS to implement 2/3 of the proposed real-time
application classes, namely distributed real-time video analytics and stream processing,
partly demonstrating RBAM applicability.

5.1 Current Progress

We first summarize the above accomplishments in this section including a lists of tasks we
have completed according to the research plan presented in Section 4.2, their results and how

they help us answer the thesis research questions.

20

5.1.1 Real-time Guarantee Support

We completed proving RBAM capability of guaranteeing real-time deadlines for applications.

According to the plan, we have done the following

* We constructed an analytical framework for theoretical analysis and evaluating RBAM’s
real-time guarantee capability. (Complete Task T1.1)

* We used the framework to deliver proofs that answers research questions regarding

RBAM’s real-time guarantee support (Complete Task T1.2):

— RBAM’s guaranteed invocation rate can meet fixed rate guarantee. (Answer
Question Q.1.1)

— RBAM’s guarantee invocation rate can support bursty guarantee with bounded

resource demand slope (Answer Question Q.1.2).

— RBAM’s guarantee invocation rate supports a resource quantity guarantee (An-
swer Question Q.1.3).

These results allow us to argue that RBAM can deliver real-time guarantees at bounded
resource cost for both periodic and non-periodic bursty applications — broad enough classes of
workload making RBAM a workable FaaS model for practical real-time bursty applications.
And by that, we delivered a complete set of answers to RBAM’s real-time guarantee research

questions.

5.1.2 Efficient RBAM Implementation

We applied the analytical framework to design a naive RBAM implementation algorithm.
We used this algorithm to prove RBAM feasibility and built an RBAM prototype named
Real-time Serverless. These complete the first of RBAM implementation task in the plan
(Task T2.1) that answers the first research question concerning RBAM implementation (i.e.,

RBAM can be implemented to support a full range of rate, Q.2.1, Section 3.2).

5.1.3 RBAM Applicability

We use Real-time Serverless to implement 2/3 demanding real-time applications in the plan,
namely distributed real-time video analytics and distributed stream processing. We also
carried out experiments on these RBAM-based implementations to demonstrate RBAM

applicability. According to the plan in Section 4.2, we have done the following:

* We used Real-time Serverless to implement an RBAM implementation of a distributed

real-time video analytic application (Complete Task T3.1).

* We designed Design and conducted experiments showing RBAM allows the applica-
tion to guarantee the value/quality of their real-time video processing, also prove that

21

the real-time guarantee delivered by RBAM is robust against application burstiness
variations (Complete Task T3.2).

* We designed and implemented an RBAM-based stream processing engine (Storm-RTS)
based on Real-time Serverless (Complete Task T3.3).

* We designed and conducted experiments showing that Storm-RTS ensures real-time
stream processing guarantee for stream processing applications. We also demonstrate
new capabilities arisen from this guarantee that the applications can take advantage of

for different deployment purposes (Complete Task T3.4).

The results help us partly answer research questions concerning RBAM applicability
(Q.3.1 and Q.3.2 — Section 3.3):

* By translating RBAM’s rate-guarantee into stream processing real-time guarantee, we
shown that RBAM can be used to constructed other real-time guarantees that capture a

broad class of application (i.e, stream processing). Thus Q.3.2 is completely answered.

* We also showed that RBAM can be used to soft real-time deadlines with diverse set of
demanding workloads. Hard real-time deadlines guarantee, however, have not been
addressed yet. Thus, only half of Q.3.1 is complete.

In the next subsequent sections, we will present the results in more detail. Section 5.2
present results related to real-time guarantee supports with a formal description of the
analytical framework and real-time guarantee proofs. Section 5.3 proves RBAM feasibility
with a naive RBAM implementation — Real-time Serverless. Section 5.4 provides RBAM
applicability evidences with RBAM-based implementations of the distributed real-time
video analytic and stream processing engine and evaluation results demonstrating RBAM

applicability.

5.2 Real-time Guarantee Support

This subsection presents the results addressing RBAM real-time guarantee supports including
an analytical framework to model workloads, real-time deadlines, and FaaS/RBAM rate
guarantee and proofs using the framework to show that RBAM can guarantee real-time

deadlines across broad workload classes.

5.2.1 Analytical Framework

We model the workload of an FaaS application as a sequence of events E1,E5,.... An even E;
is identified by

» Event emergence time s;: the time E; emerges and requires the application to take an

action in response (e.g., a file is uploaded, a sensor send data to a cloud server).

22

* Request arrival time (or simply arrival time) r;: the application issues an FaaS request
at r; asking the FaaS system for a new invocation that will be used to execute some

computation to generate a response to the event.

Note that the request arrival time r; does not necessarily happen after the event emergence
time s;. Some applications do proactive processing that asking for resources before the actual
demand arrives for efficiency. We call such cases pre-allocation that results in s; > r;. All
events has a deadline D that is maximum allowable latency for the application to get the
computation response to the event. For simplicity, we assume the time is continuous and
do not assign it to any specific unit of time (e.g., second, millisecond) yet measure it in a
general term time unit.

The FaaS system responds to a request at r; by allocating a FaaS invocation to handle
the computation. Once the computation completes, the result is returned to the application
and the invocation is terminated. For simplicity, we assume the application uses only one
FaaS function — f for all events. The whole process of allocating a new invocation for f is

modeled as follows.

* Allocation time a;: the time the FaaS invocation is allocated to the request issued at r;.

» Execution time &;: the time it takes to complete the computation after the request

obtains the invocation.

In practice, execution time may vary, mainly depending on the computation intensity of the
request and resources allocated to the invocation handling the request. Since both factors are
configurable by the application, we assume execution time is deterministic and short enough

to make meeting computation deadline possible, i.e.,
Vi:g <D (1)

Also in practice, A FaaS invocation is not delivered immediately after a request is issued but
it usually takes the FaaS system a while to find available resources and initialize the new
invocation before giving it to the request. We call this gap allocation latency 0; calculated as
follows

0 =ri—a 2

We also call FaaS requests waiting for an invocation pending requests, and define Pend(t) as
the number of pending request at the time #:

Pend(t) = |{i:s; <t <a;}| 3)

Next, we characterize a single FaaS function f by its guaranteed invocation rate, defined as

follows.

Definition 5.1 (Guarantee Invocation Rate). A guarantee invocation rate Ay associates to
a single Faa$S function f. For any point in time #, if Pend(t) > 0 then A ensures that there
will be at least one invocation allocation available to these requests within the time interval
[t,t+1/Ay).

23

(® Return results

O ‘ Faa$ System
a Allocate Compete execution
1 Uplos D ") O rs and terminate

Event @Request i invocation @) Execution the invocation
: 1

@) arrives Application Faa$S

1
|
: , Allocation :
: :) latency (l;) o Execution time (e;) ‘:
1 1 T o i
| | | 1 Deadline
. . a : d; Time
y/ >
Pend(t < s;) =0 \ Allocation guarantee !
(1/45)
Pend(r;)) =1

Figure 4: Visualization example of an event processing using RBAM/FaaS model with
notations defined in Table 2: a file is uploaded to the cloud resulting in an event which
triggers an application to send a FaaS request to an RBAM/FaaS System. The RBAM/FaaS
system allocates a new invocation to handle the request computation. If the invocation has
guaranteed invocation rate A s > 0 then the request will to get a new invocation within 1 /A
since it is the only request issued until ;. Upon invocation allocation, execution starts and

finishes just before the event’s real-time deadline.

By this definition, a regular FaaS function f would have guaranteed invocationrate Ay =0
while an RBAM function would have A > 0. Also note that the guaranteed invocation rate
only ensures invocation availability. An invocation allocation, once available, is free to go
to any request. For example, assume at r = 0, Pend(t) = 10, then Ay ensures at least one
invocation to be allocated at some time between 0 and Aif

att’ < Aif, then this invocation can be assigned to any one out of the ten pending requests at

. Suppose the invocation is allocated

t = 0 or even assigned to a new request arrived at t” € (,#'), if any.

We summarize terms and notations in Table 2 and visualize them in Figure 4. In the
following subsection, we will use them to prove that guaranteed invocation enables meeting
real-time deadline guarantee. The proof analytically answer the research questions Q.1.1,
Q.1.2, and Q.1.3 that we listed early in Section 3.1:

* Subsection 5.2.2: Fixed Rate Real-time Guarantee (Answering Question Q.1.1)
We start with a simple case, proving RBAM can bound the allocation latency for fixed
rate (i.e., periodic) workload, thereby guarantee their real-time deadlines.

* Subsection 5.2.3. Bursty Real-time Guanratee (Answering Question Q.1.2) We
will generalized the results on Step 2 for any bursty workload with bounded resource

demand.

24

’ Symbol ‘ Name/Definition Units

Workload Characteristics

E; Events that trigger FaaS requests None

S Event emergence time time unit
T Request arrival time time unit
D Real-time deadline time unit

FaaS Systems

Ay Guaranteed Invocation Rate invocation per time unit
a; The time the request issued at s; get an invocation | time unit
& Invocation execution time time unit
o Allocation latency time unit
Pend(t) | Number of pending invocation request at ¢ time unit

Table 2: Terms and Notations

* Subsection 5.2.4. Real-time Guarantee Resource Consumption (Answering Ques-
tion Q.1.3) We will prove the guaranteed invocation rate needed to support real-time
guarantee consume a bounded resource quantity, thereby making RBAM feasible in

practice.

5.2.2 Fixed rate Real-time Guarantee

A workload is fixed rate if its event emergence times sy, 53, ... meet the following condition.

Definition 5.2 (Fixed Rate/Periodic Time Series). A time series f1,1;, ... is period at a fixed

rate A if for any half-open time interval of length ﬁ, there exists exactly one i such that ¢;

belongs to this interval, i.e.,

1
Ve:Jlict €ft,t+-—) 4
Afix

Now we will prove guaranteed invocation rate bounds the allocation latency for all FaaS
requests issued at a fixed rate. We then use this result to show RBAM’s real-time guarantee

of a fixed rate workload.

Theorem 1 (Fixed rate Allocation Latency Guarantee). If a FaaS function f requested at
a fixed rate 7Lf,~x is associated with a guaranteed invocation rate Ay = lﬁx, then all of its

requests get a new invocation with allocation latency bounded by 1/A s time units:

Vz.5,<Af)

Proof. We will prove the theorem by induction.

25

* Base case. i = 1. Consider the interval [ry,r + Aif). The guaranteed invocation rate A
ensures there is a new invocation allocated some time within this interval. Meanwhile,
the function is requests at fixed rate Ay, = A ;. Thus, there is no other requests issued
until r| + A%- so the new invocation will be given to the first request. Therefore,

1 _ 1
aj <r1+Aff — 51 =a1—n <1Tf'

* Inductive Hypothesis. Vi < n: §; < A%«-

* Inductive step. We will prove 6§, < A%- as follows. By the inductive hypothesis, for all
i<n

a; <ri+-— (6)

Thus, by r,, all previous invocation requests 7y, ..., r,—1 have already got their invoca-
tions. Further, the guaranteed invocation rate ensures an invocation allocation available
within [r,,,r, + Aif). Due to the fixed rate condition, this allocation must be assigned to
ry. This implies a,, < r, + Aif = &, < Aif

O]

Theorem 2 (Fixed rate Real-time Guarantee). If a workload whose event emergence times
81, ..-,8q follow a fixed rate Ayiy is processed by a Faa$ function with a guaranteed invocation
rate Ay = Ayix, then there exists a schedule algorithm for the application to meet all real-time

deadlines.

Proof. We will prove the theorem by proposing a simple scheduling algorithm for each event
and showing that this algorithm guarantee the event’s read-time deadline. The algorithm is
as simple as follows: For each event E;, the application request a FaaS invocation to handle

the event computation at
1

ri=S5;i+D— Euax — — @)
Ay
where €,,,, = max; & is the maximum execution of the FaaS function.
The algorithm actually constructs a request arrival series ry, s, ... by shifting the event
emergence time series s1,52,... by T = D — €4 — Ai/_ time unit(s) to the right. Since T is a

constant, 1,72, ... is also has a fixed rate A ;.. Thus, by applying Theorem 1, the allocation

26

latency 6; < Aif for all i. This means the computation is guaranteed to complete by

teomp =ti+ai+E&
1
<ri+-—+Enax (8)
Ay
=s5i+D

Thus, the real-time is guaranteed. 0

5.2.3 Bursty Real-time Guarantee

We generalize the results from the previous subsection by consider a broader class of
workload — bursty workload. Bursty workload does not follow any request arrival pattern so
their arrival rate may change over time. We characterize the bursty workload by their peak

rate defined as follows.

Definition 5.3 (Invocation peak rate). A FaaS function has a peak rate A,,,,, if there exists
a 1-time-unit interval in which the number of invocation requests for that function is A,y
and for any other 1-time-unit intervals, the number of invocation requests for that function is

smaller than or equal to Ay.

Note that by this definition, A,,,; > 1, Otherwise, the function has no request at all. We

only consider bursty workload with bounded peak rate (i.e., A, = constant).

Theorem 3 (Bursty Real-time Allocation Latency Guarantee). If a FaaS function f is
requested at a peak rate Ayqy is associated with a guaranteed invocation rate Ay = gy,

then all of its requests get a new invocation with invocation latency bounded by 1 time units:

Vi:6i<1 (9)

Proof. Let Ti, T, ... be disjoint consecutive one-time unit intervals started from [ry,r; + 1)
G.e,Tv=[r1,r1+1),Ta=[r1+1,r1+2),...). We will prove the theorem with three steps:

* Step 1: We will prove that every T; has an instance of time with zero pending invoca-
tion requests, i.e.,
Vj:3teT;: Pend(t) =0 (10)

* Step 2: we use the result from Step 1 to prove that once a FaaS request is issued at 7;,

A ensures the function f to witness zero invocation pending in less than 1 time unit:

Vi:3t € [si,si+1): Pend(t) =0 (11)

27

* Step 3: The moment ¢ when Pend(t) = 0 indicates that the number of Faa$S requests
(r;’s) and invocation allocations (a;’s) are equal. This means all request issued before ¢
had already obtained an invocation (otherwise, there must be an invocation allocated
before its request which is impossible). By proving there exists such ¢ € [r;,r;+ 1) in

step 2, we show that @; <t < r;— 1 or a; — r; < 1 for all i and thus prove the theorem.

We now prove the statements in Step 1 and 2 as follows.
* Step 1. We will prove Vj : 3¢ € T; : Pend(t) = 0 by induction.

— Base case. We will prove Jr € T : Pend(t) = 0 by contradiction. Suppose V¢ €
Ty : Pend(t) > 0. This means there always a pending request waiting for an
invocation throughout the interval. By definition, the guaranteed invocation
rate Ay ensures at least one invocation allocated within the following pairwise-
disjoint intervals [r,r; + Aif), [r1+ fi’ ri+ f%), [r1+ A%, ri+ %), There are
Ay of such intervals in 77. Thus, by the time r; + 1, at least A, invocations are
allocated. Also, by the peak rate assumption, 7; must witness at most A s requests.
This means at ¢’ — the time when the last invocation is allocated in 7; — all
requests get their invocations, and there is no new request arrival after ¢'. Thus,
Vt€[t',ri+1): Pend(t) = 0, a contradiction.

- Inductive Hypothesis. Vj < n:3t € T; : Pend(t) = 0.

— Inductive Step. We will prove 3¢ € T,, : Pend(t) = 0 as follows. Recall T, = [r] +
n—1,r;+n). If Pend(r; +n— 1) = 0 then the statement is proven. Otherwise,
when Pend(r; +n—1) > 0, let 7 be the last time, starting from r; +n— 1 and
going backward r = 0, we experience non-zero pending requests (V¢ € [t,r] +
n—1],Pend(t) > 0). By inductive hypothesis, ¢ € T,_;. Consider the interval
T'=][t,7+41). Suppose Vi € T' : Pend(t) > 0 then, similar to the argument we
made for the base case, at least Ay invocations are allocated. Due 7 definition,
we experience zero pending requests just before 7 so all of the new invocations
allocated within 7’ are given to requests also arrived within this interval, whose
quantity are at most A 7. Thus, any time after the last invocation is allocated would
witness zero request pending, a contradiction. Therefore, 3t € T’ : Pend(t) = 0.
Because 1€ 7,1 =— 7+1 € T, so t € T,, the statement is proven. This
complete the first step.

* Step 2. We prove Vi : 3 € [r;,r;+ 1) : Pend(t) = 0 as follows. Consider an individual
request arrives at ;. Let 7; = [r; + j — 1,71 + j) be the interval that contains r;. Consider

the interval T = [r;,r; + j), there are two possibilities:

— JdteT:Pend(t) =0: Because r; € T} = ri+j <ri+1thent € [r;,r;+1)
(Figure 5a).

28

All possibilities of a;
/

1
1
H va :
i 7 T H
n+j-1 Ti t n+j ri+1 Time
() 3Fr €T : Pend(t) =0
All possibilities of a;
i — 7 i /
1 1 /
i — ’ - .
Time

=
+
Z
I
R
3
=
-+
Z
3
T
A

Y
Pend(t) >0

(b)Vr €T : Pend(t) >0

Figure 5: Visualization for the Step 2 in the proof of Theorem 3

— Vt €T : Pend(t) > 0: Let 7 be the last time, starting from r; and going backward
t = 0, we experience Pend(t) > 0. By Step 1, T > r;+ j— 1. Consider the interval
T'=|[t,t+1), Suppose Vt € T’ : Pend(t) > 0 then, similar to the argument we
made in Step 1, at least Ay invocations are allocated. Due 7T definition, we
experience zero pending requests just before 7 so all of the new invocations
allocated within 7" are given to requests also arrived within this interval, whose
quantity are at most A 7. Thus, any time after the last invocation is allocated would
witness zero request pending, a contradiction. Therefore, 3t € T’ : Pend(t) = 0.
Because 1 € 7,1 = 7+ 1 € T, sot € T, (Figure 5b).

Since we can find an ¢ € [r;,r;+ 1) : Pend(t) = 0 in both case, the statement is proven.

This together with arguments in Step 3 prove the theorem.
O

Theorem 4 (Bursty Real-time Guarantee). If a workload whose event emergence times
1, ..., Suls bursty with maximum rate Apqy is processed by a FaasS function with a guaranteed
invocation rate Ay = Apax, then there exists a schedule algorithm for the application to meet

all real-time deadlines.

Proof. Similar to the proof of Theorem 2, We will propose a scheduling algorithm for each
event and showing that this algorithm guarantee the event’s read-time deadline. The algorithm
is as simple as follows: For each event E;, the application request a FaaS invocation to handle
the event computation at

ri=Si+D—&pax— 1 (12)

where €,,,, = max; & is the maximum execution of the FaaS function.
The algorithm actually constructs a request arrival series r, s, ... by shifting the event
emergence time series §1,52,... by T = D — &, — 1 time unit(s) to the right. Since T is

29

a constant, rq,7rs,... is also bursty with max rate A,,,,. Thus, by applying Theorem 3, the
allocation latency 6; < 1 for all i. This means the computation is guaranteed to complete by

teomp =Ti+ai+ &
< ri+1+8max (13)
=s;+D

Thus, the real-time is guaranteed. O

Note that the real-time guarantee capability is independent of application. There is no
application assumption except the peak rate is required to deliver the bound on allocation
latency. This means regardless of how application would schedule or prioritize invocations
across their pending requests, allocation latency is always bounded. This adds a lot of
freedom to application design in using RBAM. For example, they can let very urgent request

to get new invocation before the other without sacrifice their real-time guarantee.

5.2.4 Real-time Guarantee Resource Consumption

Finally, we will prove that by using RBAM function with A ¢ > 0, the resource consumption of
guaranteed invocations is bounded, allowing the application to implement real-time guarantee
at bounded cost. Not that by guaranteed invocations, we mean that additional invocation
are not counted as their allocation grant is unexpected, thereby adding no contribution to
real-time guarantee. For example, assume the application issues two invocation requests
att = 0, then the guaranteed invocation rate A ensure at least on invocation with [0, Aif)
This means in some circumstances, we may have two invocations allocated by i for both
requests but only one is counted as guaranteed invocation, the other is situational and will be

excluded.

Theorem 5 (Real-time Guarantee Resource Consumption). Consider an application using

an RBAM function f with guaranteed invocation rate Ay. Let
Enax = max(g;) (14)
4

be the maximum execution time of Faa$ invocation in response to the application requests,
and
Consume(t) = |{i:a; <t < a;+&}| (15)

be the number of guaranteed invocation consumed by the application at time t, then

Vt : Consume(t) < Af - Epay (16)

Proof. Consider a time ¢, then by definition of E,,,,, all invocation consumed by the appli-
cation must be allocated after t — E,,,. Within this interval, [t — E,y, 1], there is at most

Ay - Epqy invocations are guaranteed to allocated, therefore Consume(t) <A £ Emax. O

30

Note that the Theorem does not requires any assumption from the application, so it also
provide an upper bound on the invocation resources that an RBAM implementation needed to
prepare to realize any rate guarantee A . Also, since we already assume invcation execution
time is deterministic, E,,,, 1s finite, so is the bound. This result show that the resource
consume by RBAM application is finite, and only depends on configurable parameters A s
and E,,,,. This allows the application to actually configure RBAM deployment to bound the
execution cost, and RBAM implementation to bound their RBAM realization cost.

This result in combination with the real-time guarantee capability in stated in Theorem
2 and 4 show that RBAM, with guaranteed invocation rate, provides a sufficient capability
to let any bursty applications with bounded rate to meet their real-time deadline at finite
resource consumption. We argue this class of bursty, real-time application is general enough
to represent real-time bursty application in practice as unbounded bursty applications are
generally incurs unbounded resource consumption, which is impractical in current cloud

systems.

5.3 RBAM Implementation

Based on the analytical results above, we addressed the first RBAM implementation question,
proving that RBAM can be implemented to support a full range of rates (Q.2.1 — Section 3.2).
The proof consists of two parts: we first propose a naive RBAM implementation algorithm
that can realize any RBAM deployment of any guaranteed invocation rate (subsection 5.3.1)
then we integrate the algorithm into OpenFaaS to develop an RBAM system called RTS
(subsection 5.3.2).

5.3.1 Implementation Feasibility

As covered in Section 5.2.4, an RBAM function is characterized by its guaranteed invocation
rate Ay and maximum execution time E,,,, requires at most Ay - £y, invocation to deliver
the rate-guarantee allocation. Based on this bound, we develop a naive implementation of an
RBAM function with finite Ay and E,,,, as follows

Theorem 6. Given a FaaS function f with finite guaranteed invocation rate Ay and finite
maximum execution time E,, .. Ay is guaranteed if the Algorithm 1 is used to allocate new

invocations to the application.

Proof. We will prove by contradiction. Suppose there exists an interval of length 1/A,
[t,t+ %) in which Pend(t) > 0 yet the application fails to get any new invocation by its end
t+1/A.

In Algorithm 1, the 4-th line ensures the gap between two consecutive invocation allo-
cations is at least Aif time unit(s). Thus, the interval [t,7 + Aif only experience at most one
allocation attempt (Line 6), and for our assumption remains true, this attempt must fail. Since

the algorithm does not add or remove invocations from the RBAM pool, the only reason for

31

Algorithm 1 Naive RBAM Implementation
1: Pre-allocate an RBAM pool of A - E ;4 Wwarm invocations

2! HustAlloe <— current time

3: while Pend(current time) > 0 do

4: Tvair < max|0, A% — (current time — #;454170¢)]

5: Wait for T,,,;; seconds

6: Allocate 1 invocation

7: HastAlloe <— current time

8: end while

9: for each invocation returned from application do
10 Add the invocation back to the RBAM pool

: end for

Ju—
Ju—

the allocation failure is all of Ay - E,,, preallocated invocations are already allocated to the
application. Again, as the time gap between two consecutive allocations is at least 1/A, It
requires at least E,,,;, seconds to give the application that many invocations. And by the time
the last invocation is allocated to the application, the first allocation reaches its execution
time limit E,,,, and returns to the pool. This means the number of invocations allocated to the
application will never reach Ay - E,,, thereby allocation must success, a contradiction. [

This implementation proves that the implementation of an RBAM with a finite guaranteed

invocation rate and maximum execution time is feasible.

5.3.2 Real-time Serverless

We have built an RBAM implementation named Real-time Serverless (RTS) to demonstrate
RBAM capability with practical workloads. The system architecture is depicted in Figure 6
with many components inherited from OpenFaaS [117]. We developed an admission control

and a predictive container management to support rate guarantee.

Scrape
OpenFaas API Gateway. Metrics | 't eus
State
Admission | checking | Container Scale
Function Control Manager 1l?ast;_efforl
Invocation/CRUD unctions
Forward Reserve AlertManager
Request Resources|

Function Function Function
Container Container **| Container

Kubernetes/Dockers

Figure 6: Real-time Serverless Implementation derived from OpenFaaS. Orange modules are

added for rate-guarantee support.

32

Similar to OpenFaaS, RTS executes invocation inside containers (i.e., function contain-
ers). These containers are managed by a predictive container manager whose responsibility
is to collect information about function execution statistics (e.g., execution time, arrival time,
etc. from Prometheus) and underlying resource manager to adjust invocation allocated to
each function to a right quantity that just enough to meet their rate guarantee (minimize cost).
In the current implementation, the function container just follows the naive implementation
algorithm and simply allocates A - E invocation per function.

We add admission control into the FaaS deployment and execution path to ensure rate
requirements are guaranteed in an efficient manner. All FaaS deployment submission and
invocation requests have to go through Admission control before getting deployed and
executed. Admission control can reject deployment requests if there are insufficient resources
to meet the rate guarantee. It can also reject invocation requests if the request rate exceeds
the guaranteed rate, ensuring resources are shared efficiently among applications.

When the user submits an RBAM function, RTS first extracts its guaranteed invocation
rate A and maximum runtime E then triggers admission control to check if there are sufficient
resources for deployment. The admission control has the container manager try allocating a
quantity of resources that is high enough to meet the rate guarantee. If the allocation succeeds,
the container manager will hold the resources for invocation execution and admission control
return deployment success. If the allocation fails, then the current resource availability is
insufficient, admission control lets the resource manager roll back the allocation and rejects
the deployment request.

The current implementation of RTS uses the naive RBAM allocation algorithm in the
previous section to support rate guarantee in the FaaS execution path. In particular, RTS
creates one waiting queue for each RBAM function and puts every invocation request
received from the application into this queue. Inside the admission control, we create a timer
per RBAM function, each tick for every 1/A second. Once a timer ticks, the admission
control restarts this timer, then checks the waiting queue, if there is a waiting invocation,
admission control wrap this request inside an HTTP POST request, then randomly forwards
it to a free function container hosting the function invocation. Once receiving the HTTP
request, the function containers unpack the request to get the invocation request and start
execution. When the execution completes or reaches the execution time limit £, the function
container stops the invocation, cleans up temporary data, if needed, then returns the results,
if any, back to admission control. Admission control returns results back to the user and then

marks the container as ready for another new invocation.

54 RBAM Applicability

We implement two real-time applications with Real-time Serverless to demonstrate RBAM
applicability. First, we partly answer the research question Q.3.1 (i.e., Can RBAM be used
to implement a specific, diverse set of demanding real-time applications?) by presenting

how distributed real-time video analytic applications use RTS to guarantee their real-time

33

requirements. Further, the applications can also use the guaranteed invocation rate to man-
age their computation quality across different cost and workload configurations with high
robustness. Next, we demonstrate how RBAM can be generalized for a different form of
performance guarantee (Question Q.3.2) by translating stream processing models into RBAM
deployments to construct real-time processing guarantee. This guarantee not only enables
stable stream processing with high latency independent of resource configurations but also

enables flexible application reconfiguration for different deployment purposes.

5.4.1 Distributed Real-time Video Analytic

Figure 7: Traffic Monitoring: An example of distributed real-time video analytic applications

Distributed Real-time Video Analytics are popular representatives of bursty real-time
application. The application collects video recorded by multiple cameras installed over a
specific region to extract useful information or to take an action when an event happens,
both usually lead to a bursty demand that needs a real-time response. One example of
such application is traffic monitoring which continuously analyzes video streams of traffic
recorded by cameras installed at intersection (Figure 7). The application is interested in
unusual events such as car crashes or a pedestrian falls down. etc. Once such event happens,
it triggers an in-depth analysis to understand the situation for making proper decisions (e.g.,
call police, broadcast warning signal, etc.). The in-depth analysis uses a sophisticated model
on video streams of high resolution, and eventually creates significant high resource demand.
Further, base the event is crucial, the analysis needs to be processed as fast as possible.
Prolonged computation latency decrease application value/quality (e.g. delay to call an
emergency medical service after an accident may lead to severe consequences).

We use FaaS to implement video processing functionalities. Every time an in-depth
analysis is triggered, distributed cameras will send high resolution video frames to the
cloud, each request an FaaS invocation to process the video frame content. Since in-depth
analyses only required by some unexpected event, their emergence generates a burst to the

FaaS system with a fixed invocation rate equal to the video frame-per-second. Consider an

34

in-depth processing burst with n video frame E, ..., E, ordered by arrival time. Since the
frame processing does not have a hard deadline, we evaluate the video frame processing of a

frame E; with a new metric: Value V.4, defined as

S

i

Vreq(i) = Vinaxe © (17)
where
* Vuax 1S maximum value the frame processing can achieve. For simplicity, V., = 1.
* §; is FaaS allocation latency.

7 presents the application’s need for fast video frame processing. An application with
high 7 has a stricter deadline and requires a higher speed of invocation allocation for
request processing.

Clearly, the value decays as allocation latency increase. The speed of the decay depends on
7. The higher 7, the bigger V,., (i) drops per time unit. Figure 8 shows how value decreases

as latency increases. Here, 7 is chosen to make the value drop by half per minute.

Per-Request Value (V/eq)

0 100 200 300 400 500 600
Invocation Allocation Latency (sec)

Figure 8: Value decay as invocation allocation latency increases.

Vieq(i) are aggregated to compute burst value:

BurstValue = Z Vieg(1) = Vinax Z e_@ (18)
i<D i<D
We use BurstValue to evaluate the efficiency of FaaS implementations of video analytic
applications.
We first compare RBAM versus regular FaaS implementations of the distributed real-
time video analytic application via simulation with synthetic workloads. The workloads
are sequences of in-depth analysis (i.e., bursts) generated with with following burstiness

configuration:

* Burst arrival rate follows a Poisson process with average rate A = 0.3 /hour.

35

* Burst duration D (e.g., number of video frame per burst) varies according to Gaussian

distribution with mean D = 2 min.
* Invocation rate H: fixed 30 invocation per second (equivalent to a 30 fps video stream).
 Invocation execution time: every frame processing takes e = 5 seconds.
e 7=2,607 — value decays 1/2 per minute

We vary FaaS invocation rate A from O (regular FaaS) to H (rate-guaranteed equal invocation
rate) and use Algorithm 1 to simulate rate-guarantee allocation. Thus, assuming video frames
get new invocations in FIFO fashion, the allocation latency of a video frame E; is

§i=i; 1) (19)

In the case of regular FaaS, A = 0 (i.e., best effort) which gives the application no guarantee
to obtain additional invocations rather than the ones allocated at the normal state (i.e., no
in-depth analysis). Since the burst load is significantly higher than the normal load, we
assume 1 invocation is sufficient for the normal load, but during a burst, this quantity is
not enough. A request arriving at i has to wait for all of its preceding ones (i - H in total) to

complete, this causes processing latency:

S=i(H e—1) (20)

Real-time Processing Efficiency. Figure 9a shows the distribution of per-frame guaranteed
value using FaaS at different guaranteed invocation rate A. For the baseline, at A = 0, the
lack of rate guarantee forces the application to rely on invocation allocated at normal state
for value guarantee so only a tiny fraction of the maximum value is delivered (the request
values mostly at left). With A > 0, as the guaranteed allocation rate, A, is increased, the
application can service a burst by allocating invocations more and more rapidly. Even a
small A significantly increases the number of frames achieving close to the maximum value
(orange), and further increases in A (green, red) improve the situation dramatically. For
example, with A = 0.6H, the application can ensure that all frames exceed 40% of the
maximum value. And as A increases towards H, a growing frame value guarantee can be
achieved, reaching 100%. This illustrates that using the guaranteed invocation rate helps
applications improve computation value/quality.

Another way to think about application quality is to ask what fraction of requests achieve
a particular fraction of maximum value. We plot this metric versus the guaranteed invocation
rate in Figure 9b. To achieve 50% of the maximum value for even half of the frames, the
application needs to use the FaaS function with A equal to half of the burst request rate
H. To achieve 50% of the maximum value for 100% of the frames, an A of 0.67 - H is
needed. At the high end, to achieve 90% of the maximum value, 0.85 - H is required for
50% of the frames, and 0.9 for 100% of the requests. At A = H, the application can deliver

36

100%1 —— > 50% Max. value
> 60% Max. value
80%{ > 70% Max. value
- %- > 80% Max. value
—A— > 90% Max. value
A=0 (BF)

60%

40%

% of Burst Requests

20%

Fraction of Burst Requests

0%

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Max. Value Guaranteed Invocation Rate to Burst Height Ratio (A/H)
(a) Distribution of per-frame value (b) Fraction of frames achieving a specific

fraction of maximum value

Figure 9: Achievable per-frame guaranteed value with various guaranteed allocation rate

100% of the maximum value. This illustrates that RBAM enables bursty applications to
provide a guarantee of high quality. The results are essential because they suggest that with a
proper choice of A, applications are able to meet any quality target. Such capability unlocks
rational designs that open more space for applications to operate and exploit resources more
efficiently.

In summary, our analytical model shows that adding RBAM enables bursty, real-time
applications to guarantee high computation value. In fact, the results show that the guaranteed
invocation rate is the critical enabler of high value. By configuring FaaS guaranteed invocation
rate A to match burst demand H, the application is guaranteed to meet its computation
deadline with zero value degradation. Furthermore, even at A < H, RBAM can still guarantee
a fraction of application proportional to A/H ratio. This enables rational design for quality
where the application can utilize the guaranteed invocation rate as a quality control parameter

to balance quality with other factors such as cost.

Robustness against Burst Duration Variability we vary burst duration variability by
generating workloads at different duration standard deviations (o). Figure 10 shows the
achievable guaranteed burst value at different guaranteed invocation rates normalized by the
maximum burst value in three duty factor scenarios: high (DF = 0.25), medium (DF = 0.1),
and low (DF = 0.01) where DF is burst duty factor, defined as

DF=H-D 21)

At low duty factor, changing ¢ does not cause many effects on guaranteed burst value
(Figure 10a). However, as the duty factor increases, value deterioration becomes more severe
and high variability bursts will experience a worse impact. At duty factor DF = 0.1, burst
with 0 = 1x mean duration suffers 15% burst value loss at A = H (Figure 10b), and if duty
factor jumps to DF = (.25, the loss increases to 19%. If ¢ is doubled to 2x duration then the
loss is 2.2x to around 42% (Figure 10c). However, value reduction can be solved by simply

37

Normalized Burst Value

°
N

-
o

o
Y

o
o

o
>

°
o

—eo— 0=0 (Uniform)
o = 0.3x duration

++ 0= 1.0x duration
—»— 0 = 2.0x duration

—e— 0=0 (Uniform)
o = 0.3x duration

++ 0= 1.0x duration
—*— 0 = 2.0x duration

—e— 0=0 (Uniform)
o = 0.3x duration

++ 0= 1.0x duration
—*— 0 = 2.0x duration

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.0 0.5 1.0 15 2.0 25 3.0
Guaranteed Invocation Rate Guaranteed Invocation Rate
to Burst Height Ratio (A/H) to Burst Height Ratio (A/H)

35 00 05 1.0 15 20 25 3.0 35
Guaranteed Invocation Rate
to Burst Height Ratio (A/H)

(a) DF = 0.01 (b) DF =0.1 (c) DF =0.25

Figure 10: Burst value vs. Guaranteed Allocation Rate (A) with varied burst duration standard

deviation (o)

increasing the guaranteed invocation rate. For example, A = 2 - H will let the application
achieve 100% burst value from bursts with ¢ = 1x duration. Even for highly variable bursts
of o = 2x duration, a guaranteed invocation rate of 3 - H is sufficient. Also note that burst
variability only takes effect at high duty factor, but in response, only a small allocation rate
increase is needed to saturate the impact. Even at ¢ = 2x duration, rising duty factor from
0.01 to 0.25 (25x demand increase) only requires 3x guarantee invocation rate increment
(i.e., 3x resource commitment increase). This confirms the robustness of RBAM against burst

variability.

Robustness against Burst Interference In practice, the application may need to process
data from multiple sources (e.g., video analytics receive video frames from multiple cameras).
This creates a chance for burst interference — multiple bursts happen concurrently that
dramatically increase demand for new FaaS invocations. We simulate this phenomenon by
varying the burst duty factor. At high duty factor, bursts arrive more frequently and last
longer, increasing the probability of two or more bursts occur concurrently.

Figure 11a shows the probability of having one, two, and more bursts at a time under
different duty factors. There are two important observations from the figure. First, the high
duty factor increases the chance of burst interference as we explained above. For example,
at duty factor DF = 1%, the chance to have a two-burst interference is only 0.005% while
DF =25% makes the chance go up to 2.5%. Second, varying the duty factor is also equivalent
to varying burst demand. Thus, we can consider increasing the duty factor from 0.1 to 0.25
as an increase in the workload demand by 25x. However, due to the burstiness structure, this
does not increase the bursty load by the same amount: at DF = 0.1, The occurrence chance
of more than three bursts at a time is extremely low, less than 0.00001%. Increase demand by
25x, at DF = 0.25, more than six bursts at a time has the same chance of occurrence. From
the resource allocation point of view, this means at the same risk level, we need only 3x more
resources to handle 25x more loads. RBAM users can exploit this property to configure the

rate efficiently.

38

1
1.0 Bk bbb b e B -
0.9 : e
0 m Duty factor = 1% St -
0'7 = Duty factor = 10% 308 ! et
o m Duty factor = 25% s o
£06 Bos |
Zos 3 Fa
2 K o
Lo04 % 0.41 i "
0.3 E i i
o i
0.2 Z0.29 i ‘ —e— DF =0.25
0.1 o J DF = 0.1
0 - 0.0_' *-"”'7’.‘ v v v PN I?F = O'O:YL
0 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Overlapping Bursts Guarantee Invocation Rate to Burst Height Ratio (A/H)
(a) Probability of number of burst overlap- (b) Burst value vs. guaranteed invocation rate.
ping

Figure 11: Burst interference probability and achievable guaranteed burst value at different

duty factor (varying 1)

Figure 11b show guaranteed burst value at various duty factors. Note that at burst
interference, demand is doubled, tripled, or more depending on the number of bursts involves.
This means to saturate double burst interference, the application needs to allocate resources
2x faster, for triple burst interference, 3x allocation rate is required, and so on. Thus, in the
figure, the breaks of curves at A = H and A = 2H indicate the value reduction effect of burst
interference. However, due to low interference probability, the impact is manageable: 14% of
the burst value for DF = 0.1, and 30% of the burst value for DF' = 0.25. Further, achieving
100% of burst value in the face of a 25x duty factor increase only requires a 3-fold increase

in guarantee invocation rate. Therefore, RBAM is robust against burst interference.

Concurrent Bursty Real-time Applications One can think of high duty factors as a
single application with many events or as a combination of multiple independent applications
with much lower duty factors sharing a single RBAM function. Thinking of the latter, we
explore how higher guaranteed allocation rates can increase burst value toward the potential
maximum.

We examine the potential for multiple applications to share a single RBAM function
efficiently. Consider 10 applications, each accounting for DF = 0.01 summing to DF = 0.1
and 25 applications, each accounting for DF = 0.01 summing to DF = 0.25, and so on as
shown in Figure 12. For low burst value (< 0.5) there is little difference in the required A.
For moderate values, the difference grows but at a deeply sublinear rate. For example, for the
value of 80% potential maximum value, an increase from 1 to 25 applications require a 2x
increase in A, resulting in only 2x more cloud resource commitment.

The curves cover the guaranteed invocation rate needed for a wide range of duty factors
from 0.01 to 0.25 but they are very close to each other indicating that only a small increment
of allocation rate is sufficient to deal with a significant increment of burst demand. At 90%

max guaranteed value, the multiple is even smaller. requiring a 1.6x guaranteed invocation

39

f

DF = 0.25
DF =0.17
DF = 0.1

—— DF = 0.05
DF = 0.01

N
o
Norm. Value = 0.8

g g N
=} 5 =}
Norm. Value = 0.9

to Burst Height Ratio (A/H)

<
n

Guaranteed Invocation Rate

o
<)

00 02 0.4 06 0.8 1.0
Normalized Burst Value

Figure 12: Allocation rate needed to achieve burst value fraction (at varied duty factors).
Glimpse Server

e R
Object
Detection M r-eatufe Object
Extraction

Recognition
(software) ani

Object labels, bounding bexes

Frame or

bounding boxes G|Impse Cl|ent Feature paints

Trigger Active
Frame Cache
T X
e
Object
Detoriion Frame Object ‘
(hardware) Differencing Tracking

\ / s
Object labels,

Frames bounding boxes

e

l Camera 4'{ Display

A

)

Figure 13: Glimpse System Architecture (from [51]).

rate increase for a 25x increase in the number of applications. These results suggest that
RBAM scales well — supporting a growing number of bursty, real-time applications at high
quality with a slowly growing number of resources. Our results show this growth is deeply
sublinear, suggesting that RBAM may be best implemented as a shared cloud service (not
privately by a single application) and that doing so may be quite cost-attractive for cloud
providers.

Case Study: Traffic Intersection Monitoring We model a Glimpse-like pipeline with a
client and server (the cloud) that processes video frames considered interesting by the shallow
processing at the client [51] (see Figure 13). Glimpse uploads frames to the server for object
detection. Our empirical measurements characterized the server-side frame processing cost
at 20x for object detection, but for richer analytics, this ratio could be much higher. We use a
rush-hour traffic video captured from a traffic camera in Southampton, NY at the intersection
of County Rd. 39A and North Sea Rd. and available from [136]. The video is 30 frames per

second at a resolution of 1920 x 1080 color pixels per frame.

40

Burst Duration (frames) Burst Height

Mean | StdDev | Min | Max | Mean | StdDev | Min | Max
Night 116 186 | 30 |2445| 21 3] 20| 80
Day 120 216 | 30|2323] 20 3] 20| 80
Rushhours | 917 | 1293 | 30| 7464 | 48 23| 20| 200
Overall | 197 | 503 | 30|7464| 24| 11| 20| 200]

Table 3: Burst Statistics for Traffic Video

10°

100%{ ——
[$A = 0.0 instance/frame-time : > 50% max. value
o
” $A = 0.1 instance/frame-time > 60°A> max. value
a $A = 0.3 instance/frame-time 8 80% > 70% max. value
_ 9
310 ! U7 $A = 0.6 instance/frame-time g > 80% max. value
b [0,
2 1771 $A = 1.0 instance/frame-time L eou > 90% max. value
P # b
Q p=3
3 o
<107 s
5 ° 0%
c s
o =
prer) 1%
g @
8 £ 20%
£ 1073
i
i
L R i 0%
0 20 40 60 80 100 0.0 02 04 06 08 1.0
Fraction of Max. Value Guaranteed Invocation Rate / Burst Height
(a) Value Distribution vs. Agrs (b) Value Distribution vs. Guaranteed Invoca-
tion Rate

Figure 14: Per-Frame Value achieved by Application varying Guaranteed Invocation Rate

Because we are interested in analyzing complex behavior such as erratic driving, reckless
walking, or traffic incidents, we use an efficient model [84] with ResNet trained on KITTI
dataset[76]) to process the video and annotate it with object appearance and departure
intervals. These object intervals are combined and collectively create the bursts (see Table
3). To scale up to a full 24-hour from our short, rush-hour clip, we replicate it to create
two 60-minute segments (morning and afternoon rush hour). We scale the time base by 20x
while holding object interval duration constant, creating an 8-hour segment of lower traffic
(daytime). Finally, we scale the time base by 40x while holding object interval duration
constant, creating a 14-hour segment of the lowest traffic (nighttime). The total number of
bursts is 2,311 and the duty factor is 0.175 for the 24-hour period. The number of objects
present in each frame multiplying the server-side frame computation cost ratio (20x) defines
the burst height.

Quality Guarantee We first explore the basic characteristics of the traces, as shown in
Table 3. The burst durations are much shorter than those explored in Section 5.2 with an
average burst duration of 7 seconds (210 frame-times), as shown in Table 3. Moreover, both

the burst duration and height are highly variable within each part of the day.

41

—— RTS(2x cost) —e— Worst-case
—— RTS (4x cost) 8000 Actual max.
) RTS (6x cost)

—— RTS (8x cost)

w
L

IS
"

6000

w
L

40004

N
N

Normalized Resource cost

2000

Cloud provider resources cost

=
L

v w ") 01
T 0 5 >0 0.0 0.2 0.4 0.6 08 1.0

o
!

Hour of Day Guaranteed Invocation Rate to Burst Height Ratio (A/H)
(a) Traffic Monitoring application cost for var- (b) Cloud provider resource cost for guaran-
ied RTS cost scenarios (5-minute sliding aver- teed allocation rate

age)

Figure 15: RTS can be efficient in terms of both application cost and cloud provider resource

cost

Figure 14a shows the value distribution of the video trace; while similar qualitatively
to Figures 9a the real burst trace is much noisier. The traffic analysis quality benefits from
increasing A, are shown in Figure 14b. Three curved sections are visible and correspond
to the three different operating points — rush hour, daytime, and nighttime. At A as little as
0.25- H, all of the nighttime value is captured. At A of 0.9, the daytime value is captured. In
Figure 14b, we see flat curves and very little separation by a fraction of the per-request value.
This reflects a difficult workload for increases in A to improve application quality. To achieve
full quality on the intense activity during rush hour (10 objects in frame) requires A = H.

Results from Figure 14 confirm that using real-time serverless guarantees the traffic mon-
itoring application value. And by increasing A, the application can improve the guaranteed
quality, although compared to the synthetic data, quality increase much slower due to the
extremely high duty factor during rush hours. Furthermore, at A = H, real-time serverless
enables the application to achieve the maximum target value. This confirms the robustness of
RTS against realistic workloads.

Rate Guarantee Realization Cost Figure 15a shows how the burst load varies over the
24-hour period. To illuminate how the RTS system responds with time, we overlay the
application cost of both an RTS implementation at various cost ratios (k). The baseline is
Reservation FaaS (RF) which pre-allocates just enough invocations in advance to get 100%
value. The benefits of dynamic management are clear. Considering the full 24-hour day,
the RTS approach is 8.3x less expensive for k = 2; 4x less expensive fork = 4, and 2x less
expensive for k = 8x. In short, the RTS resources are 16x more valuable than traditional Ul

resources.

42

- Workflow
i Description

Operators with Rate

Serverless Operator and Rate . Configurations
Requirements

Rate-based Abstract
| Machines (RBAMs)

RBAM#1|| RBAM#2| | RBAM#3| | RBAM#4] ' |

Figure 16: The Rate-based Abstract Machine (RBAM) approach to stream-processing:
Operators are wrapped by FaaS functions, providing invocation-level dynamic resource
management. One RBAM for each operator ensures its required invocation rate.

As discussed in Section 5.3.1, the guaranteed allocation rate can be achieved at cloud
provider resource cost linear in A - E. However, we find that for this application, the effective
cloud provider resource requirement is much lower as shown in Figure 15b. This is because
the typical invocation execution is much smaller than E, so many invocations return much
sooner than the worst case. Consequently, resource cost is reduced 70-fold to only 123
invocations. We expect savings such as this to occur in many cases but will vary in magnitude.

In summary, real-time serverless allows applications to allocate resources on burst
occurrence and thus, autoscale the cost to computation demand. Furthermore, short actual
instance runtime per invocation allows the cloud to quickly reuse RTS instances for multiple
burst frames to scale actual allocation to resource commitment, thereby improving cloud
resource management flexibility. These capabilities make real-time serverless cost attractive

to not only applications but also cloud providers.

5.4.2 Stream Processing

Since any FaaS function is an RBAM function with a guaranteed invocation rate A = 0, all
FaaS-based applications can be converted to RBAM-based without nontrivial modification.
Also, the guaranteed invocation rate can be reconfigured by the applications without the need
of exposing any of their internal information and structure. Thus, at the very least, RBAM can
be used to support any application FaaS does. Furthermore, the rate guarantee it offers can

open more capabilities for the application. We demonstrate this by using RBAM to support

43

stream processing applications — an application class that is typically used for handling an
endless amount of data that is continuously generated from multiple sources. The data are
organized as separate tuples, each gets processed by going through a DAG of processing
units called operator. Each operator is responsible for a small part of the processing. Once
an operator finishes processing a tuple, it will pass the output to its downstream in the DAG
for further processing and so on until reaching final results at a sink operator.

Current stream processing applications rely on the worker execution model which dis-
patches application computation components, i.e., operators, onto worker abstraction. De-
pending on design choice and infrastructure support, worker abstraction is typically realized
as threads, processes, or containers. Worker performance is tied to the resource configuration
of worker realization, which highly varied under changes in underlying systems (e.g., hard-
ware, OS scheduler, etc.) and execution environment factors (e.g., collocated applications,
hardware failures, etc.). This makes application performance transparency and predictability
extremely difficult, if not possible, to achieve.

We can use RBAM to resolve these problems. Figure 16 shows a stream processing
application running over RBAM instead of the worker execution model. Each operator is
mapped into an RBAM function and their connections are encoded as RBAM call chains
with tuples passed as invocation arguments. For example, in Figure 16, each operator
01,0,,03,04 becomes a separate FaaS function f1, f>, f3, and fa, respectively. When a tuple
arrives, f] is triggered and processes the tuple. After completion, it requests new invocations
of f, and f3, passing its output along with these requests. f> and f3’s new invocations unpack
the request, treat the output as their input then continue the tuple processing, and so on.

By this approach, the guaranteed invocation rate associated with an RBAM function
specifies the processing rate of the operator mapped to the function. This makes performance
predictability possible to stream processing applications as they can tell whether the load can
be supported given a specific deployment by comparing its guaranteed rate configurations
and operator input rates. Further, if the load exceeds the rate guarantee configurations, the
application can easily recover performance stability by reconfiguring the rate guarantee
configuration to match the new load. As rate guarantee configurations are RBAM-specific
configurations, independent of the underlying resource configuration, the application can
reuse the configuration for any deployment environment yet still get the same result. That

resolves the performance transparency challenge.

Storm-RTS. To demonstrate such new capability, we implement a new stream process-
ing engine called Storm-RTS. Storm-RTS use RBAM as a core execution model to host
applications’ operators and leverage Apache Storm API to deliver state-of-the-art stream
processing development and management supports. Storm-RTS is designed to offer the

following functionalities:

» Workflow performance stability: achieve desired throughput and latency across dis-

tributed configurations, reconfiguration (migration) and varied competitive loads

44

1
: Workflow Executor Storm-RTS

1

1

1

State Manager Faa$ invocations !

Tuple I | :
Collector FaaS Rate-based Abstract 1
(spout) | queuc M Invoker Machine (RTS) :
1

1

1

1

1

1

.|
1

1

1

1] Gatewa Admission

: Execution FaaS Deployment y Control

1

1

1

1

Configurations

Container FaaS
Deployment Invocation 3

i I Workflow
=.<: ‘@ | CRUD
: —H

Workflow !

Workflow Coordinator

Workflow FaaS
Compiler Configurator

I

I

| Faa$S Deployment
| Configurations
I

I

I

I

Function Container

State Logic

Operator Profiler

Figure 17: Storm-RTS Architecture: Operator Profiler, Workflow Coordinator, Executor, and
Rate-based Abstract Machine

* Modular (local) resource management: can partition workflow across multiple sites or
datacenters. Individual site resource managers can independently decide if a workflow

can placed and meet its performance requirements

* Compatibility: support Storm workflows and features with similar efficiency and

modest change.

The key elements of Storm-RTS are shown in Figure 17. At the high level, Storm-RTS
has four main components, each is responsible for one of the functionalities listed above.

* Workflow Coordinator responsible for enforcing performance stability. This compo-
nent translates workflow operators received from developers into FaaS functions and
associated them with appropriate configurations allowing the workflow to sustain the
desired load. Workflow coordinator also automatically reconfigures FaaS configu-
rations to protect workflow performance from disruptions such as competitive loads,

workflow reconfiguration, migration, etc.

* Operator Profiler responsible for resource requirement predictability. The component
run workflow operators offline to profile their computing and memory requirements.
This information is used to configure FaaS functions’ resource requirements, ensuring

their invocations always have sufficient resources to execute their associate operators.

* Rate-based Abstract Machine (RBAM) responsible for enabling modular resource
management. FaaS functions created by workflow coordinator are deployed sepa-
rately inside RBAM allocations. Each RBAM allocation is a resource contract between

Storm-RTS and the underlying resource manager (e.g., Kubernetes). Once established,

45

the resource manager guarantees sufficient resources given to RBAM allocations to

enable them to execute at configured rate regardless of other competitive loads.

* Workflow Executor responsible for executing workflows and compatibility supports.
Workflow Executor collects tuples from data sources and then triggers correspond-
ing FaaS invocations to start workflow execution. Workflow Executor also monitors
and orchestrates workflow executing through reading Operator State deployed on
every function container. Workflow Executor reuses Storm’s modules to format and
process monitoring data ensuring Storm-RTS offers similar data processing supports

as Storm.
Storm-RTS Implementation

Workflow Coordinator Workflow developers submit workflow descriptions directly to
the workflow coordinator’s compiler. The description includes workflow topology and
rate configuration. Rate configuration consists of a desired rate A that developers expect the
workflow to handle and per-operator parallelism ; representing the ratio of each operator’s
expected input rate and A.

The workflow compiler extracts operators’ logic from workflow topology and then
encapsulates each of them inside a FaaS function. The operator starts processing tuples by
invoking the corresponding FaaS function with the tuples provided as invocation arguments.
The whole processing happens inside the invocation of its wrapper function and finishes once
the invocation terminates.

Each FaaS function is configured by FaaS Configurator to determine its (i) rate
guarantee, (ii) per-invocation resource requirement (mainly CPU and memory), and (iii) max-
imum invocation runtime (i.e., timeout). In particular, FaaS configuration lets Workflow
Profiler execute operator logic offline to determine invocation resource requirement and
maximum execution time. Meanwhile, the function rate guarantee A; is configured to the
number of invocations expected to invoke per second if tuples are generated at the desired

rate A:

- A
b

where b is the number of tuples to be processed in one invocation (e.g., batch size) also

A; (22)
provided by the workflow profiler. This A; guarantees at least one invocation available
for the operator wrapped by the FaaS function to process all incoming tuples sent at any rate
less than or equal to A, thereby satisfying the performance stability requirement.

For deployment, the FaaS Configurator sends FaaS functions and their configurations
to RBAM to check if the underlying resource manager can support their guarantee. If it can
then the workflow coordinator triggers the workflow executor to begin execution. Throughout
the execution, FaaS Configuration keeps it informed by RBAM and underlying resource
management changes. If any of the changes would affect workflow performance, it will

reconfigure FaaS deployment to ensure performance stability.

46

Operator Profiler The profiler characterizes operator execution properties by running
operators offline with tuples sampled from historical input stream data. The running environ-
ment is configured to be identical to the environment targeted to execute workflow operators.
Profiling is triggered by the FaaS coordinator, when a new workflow is submitted or when

workflow reconfiguration is required, to collect the following information

* Per-invocation resource (CPU and memory) requirement and maximum runtime: the
profiler executes operators on a variety of CPU and memory capacities starting with
excess resources, and gradually reduces the allocation until observing a 20% execution
time increase. The function wraps this operator will have its resource and runtime

configuration equal to the point where the execution time starts to increase.

* Batch size: the profiler estimates a minimum batch size, designed to ensure reasonable
efficiency by comparing the tuple processing for the operator natively, and then with
the FaaS wrapper. An efficiency of 70% was deemed acceptable and used to determine

the batch size for this operator.

Workflow Executor For each successful deployment, the workflow executor creates
a set of tuple collectors realizing the workflow source operators (“spout” in Storm
terminologies) to continuously collect new tuples from data sources. The tuple collector
batches tuples to amortize the FaaS invocation cost. Thus, new tuples are put into queues
based on their destination. When enough tuples are available, a FaaS invoker retrieves
a batch from the queue and requests a new FaaS invocation for the appropriate workflow
operator, passing the batched tuples as an argument. Each invocation processes one batch.
After completion, to pass on output tuples, the invocation calls the wrapper functions for
the operators downstream, passing output tuples in batch as an argument. This allows the
downstream function, in response, to extract the tuples, perform the operator computation,
and call its downstream operator wrappers as needed, and so on. This mechanism forms tuple
processing as serverless function chains which are self-synchronized that do not require the
dedicated messaging systems as in worker-based SPEs (e.g., Storm [16] relies on Netty [22]
for inter-node messaging).

Also at completion, invocations update operator state maintained inside their con-
tainers. These states are periodically synchronized with the state manager providing
information for consistency, progress tracking, monitoring and recovery. Storm-RTS reuse
Storm’s modules to implement such functionalities. Thus, workflows executing over Storm-

RTS receive supports equivalent to Storm.

Extending Storm-RTS to Cloud-Cloud and Cloud-Edge Distributing workflow execu-
tion across multiple cloud data centers or cloud and edge can produce important benefits in
performance (latency, throughput, and cost) and flexibility. Opportunities include exploiting

available edge resources to reduce cost, latency, upload bandwidth, or even carbon foot-

47

(2 Resource Configuration
&

’((l Information (e.g., AWS
: Pricing, RiPiT, etc.)
Data sources -
l______-______________:'.a.. ________ —
-
rm-RT i — ;
Sto S "~* Application Coordinator

Input Workflow Operator
Resource availability Information mpiler Profiler

Operator placement
H information = | placement
(7 ¥ < O
(r L 2N - : ~N)
Workflow | |Real-time Workflow | | Real-time
Executor | | Serverless

1

|

1

1

1

1

1

1

ok \
Resource availability 2 | Operator |
1

1

1

1

1

1

Executor | [Serverless
Data stream § Allocation/ Data stream | Allocation/
Tuples (tuples)

(tuples) Deallocation ’ Deallocation

E @ — @ Function Function
container | Tuples, container | ***| container
ey \

Edge Resources Manager Cloud-Edge Cloud Resource Manager

Function
container

\Interconnection /
_ Edge Data Center) _ Cloud Data Center))

Edge @_—@ Cloud

Figure 18: Storm-RTS for Edge: the application coordinator manages multi-site deployment.

As before, each site has admission control and performance monitoring that implements the

local RBAM guarantees.

print (selecting the lowest carbon resources). However, such opportunities come with many
challenges because edge resources are both heterogeneous and can vary in availability.

Storm-RTS supports workflow flexibility across multiple clouds and the edge. First,
Storm-RTS utilizes underlying resources via serverless abstraction so as long as the cloud or
edge data center supports FaaS, the resource can be accessed through Storm-RTS. Resource
heterogeneity can be masked via FaaS, and performance assured via operator profiling and
admission control. Second, edge resources with varying availability may require workflow
reconfiguration. By leveraging the rate-based abstract machine, Storm-RTS ensures that such
reconfiguration will not affect workflow performance, enabling applications to optimize their
deployments for cost, carbon, or other criteria.

Using Storm-RTS, as shown in Figure 18, stream-processing applications can be de-
ployed over multiple clouds and even cloud-edge configurations — with minimal application
change or retuning. Each cloud or edge data center runs Storm-RTS as in Figure 17, but now
the workflow coordinator is promoted to application coordinator and now orches-
trates FaaS deployments across the datacenters (via the Storm-RTS runtimes in each loca-
tion). Apart from original components, the application coordinator adds an operator
distributor that places the FaaS encapsulated operators across data centers, implementing
the desired application policy.

Common policies include keeping operators close to data sources (often at the edge).

If multiple data centers can host an operator, the coordinator implements the application’s

48

deployment policy, which picks application configurations from amongst the candidates.
The performance stability ensured by the Storm-RTS model across configurations is the key
to enabling simple declarative specifications of policy.

For example, if edge resources are zero-cost, when available, a policy that simply
minimizes total deployment cost would push operators to the edge when it is idle, and pull
them back to the cloud when it is not. If there is variable pricing at the edge — time of use
rates - then the edge might be favored at some times and not others. If sustainability is
the objective, then minimizing carbon emissions (due to brown power use), the application
coordinator might push operators to the edge when solar panels create plentiful green power,
but back to the cloud datacenter, when the solar panels stop generating sufficient green power.

Storm-RTS implements policies by collecting and assessing two sources of information:

* Resource configuration: (e.g., resource cost from cloud provider pricing pages, Carbon
intensity information from RiPiT [23], etc.) to give insights of cloud/edge resource

properties for efficiency exploitation.

* Resource availability: collected from resource managers of data centers. The appli-
cation coordinator also communicates with admission controllers (RTS systems) to

determine if an operator placement (and desired rate) is feasible at any particular site.

The tuple movement between Storm-RTS operators is implemented at FaaS invocations,
so no other middleware beyond HTTP and TCP/IP is required for communication between

systems.

Evaluation To validate if Storm-RTS design and implementation meet these requirements
as well as demonstrate new capabilities enabled by RBAM, we design and carry out sets of
experimental evaluations, comparing Storm-RTS with three state-of-the-art worker-based
stream processing engines: Apache Storm, EdgeWise, and Dhalion. Stream processing
engines are fed by workloads collected from RIoTBench under different load shapes, resource
configurations, competitive loads, deployment policies, and migration scenarios to answer

the following questions:

* Efficiency: Does Storm-RTS achieve comparable performance versus worker-based

processing engines?

* Performance Stability: Does Storm-RTS provide stable performance corresponding to

application rate guarantee configurations regardless of execution environment changes?

* Flexible Reconfiguration: Does Storm-RTS let applications flexibly reconfigure them-
selves in response to the dynamic changes of the running environment to achieve

high-level objectives (e.g., minimize cost, minimize Carbon footprint)?

We use RloTBench benchmark suite [126], designed specifically for evaluating SPE
implementations. The benchmark performs analysis over a real-world smart cities dataset

49

Interpolation

Filter Filter

Publish _
Annotation

(a) ETL

Decision
X2
BlockWindow MQTT
‘ Average ' Publish
Linear

b3l Regression

(b) PRED

8] SecondOrder
Moment

43 SenML BS] Bloom Kalman LR MQTT

Filter Predictor Publish

Disctinct
b8l ApproxCount

(c) STAT

Figure 19: RIoTBench workflows.

[43]. We select 3 workflows, that capture the behavior of common stream processing set-
tings, namely PRED (make predictions on streamed data), ETL (perform data extraction,
transformation, and load), and STATS (apply statistical summarization) and are illustrated in
Figure 19. The green boxes represent their operators while the number associated with each
box represents operator parallelism configurations.

We compare Storm-RTS with four different stream processing engines

* Storm [16] a popular worker-based SPE. Workers are implemented as threads in a
Java Virtual Machine. The workflow developer configures worker allocation through
parallelism configuration. Worker allocation and mapping are fixed throughout the

workflow lifetime.

» EdgeWise [74] similar to Storm, except workers are shared among operators so the
SPE can assign operators to workers prioritizing those with more tuples queued to

improve efficiency.

* Dhalion [73] a worker-based SPE supporting supports dynamic scaling. The SPE will
allocate additional resources whenever workflow throughput does not match the input

rate. It also frees unused resources if the workflow is over-provisioned.

» Storm-Serverless implements the Storm API on FaaS. Storm-Serverless’ architecture
is similar Storm-RTS with RBAM is replaced with OpenFaaS [117], thereby operators

have no rate-guarantee.

All SPEs handle data streams using Storm 1.1.1 interface requiring essentially no modifi-
cations to the workflow source code. The one exception is that for Storm-RTS, the workflow

50

\

g .8 o=
()

e Cloud e
Data \. Vi

sources @ @ Sud

Figure 20: A Cloud-edge resource configuration

must declare the desired tuple rate-guarantee (single number) which is used to determine the

underlying RBAM resource provisioning.

Experiments are conducted over three configurations

Cloud VM: SPEs are installed over virtual machines provided by the public cloud ven-
dors, including Amazon EC2 (m5zn instances), Microsoft Azure (Das_v4 instances),
and Google Cloud (e2-standard instances) to evaluate SPE performance over realistic
settings where they typically run over virtual, oversubscribed environment inside data

centers.

Bare Metal: SPEs are installed on a dedicated physical machine with no resource
sharing. The machine is an Intel Xeon Gold 6138 (80 cores) with 512 GB of memory.
SPEs are deployed with cgroups for resource control. We also used bare metal options
from Azure (Dasv4-Typel) and Amazon (m5zn.metal).

Cloud-Edge SPEs are installed across Cloud and Edge data centers as in Figure 20;
the data centers are emulated using Chameleon Cloud [14]. We use 4 clusters of
machines. One is cloud: an unlimited number of machines, each with 92 cores and
192GB memory. The other three: edgel, edge2, edge3 represent edge clusters, each
has 4 virtual machines equipped with 12 cores and 48GB memory. To emulate the
realistic cloud-edge interconnection, we refer to Amazon Cloud Infrastructure’s net-
work performance [30] to configure the connection bandwidth and latency. Intercloud
latency modeled constant 5.5 milliseconds and 100Gbps. Cloud-edge networking is
also assumed to be 100Gbps with latency randomized with Gaussian distribution with

5.5ms mean and 2ms variance.

SPEs are evaluated through the following metrics:

Throughput: (tuples/second) The number of tuples received per second at the work-

flow’s sink operators.

Latency end-to-end latency of a given tuple starting when the tuple arrived at source

tasks and finishing when the tuple totally consumed by the sink tasks.

51

* Resource utilization: CPU-Ultilization (100% per core).

e Cost = CPU utilization * cost-factor (location). The cost-factor is a dimensionless
relative measure of resource cost, and depends on the resource location. For the cloud-
edge configurations shown in Figure 20, we set the cost of edgel, edge2, and edge3
equal to 25%, 50%, and 75% respectively relative to the cloud’s 100%.

=
o
w

- Storm - Storm
32 10%{ [X] EdgeWise 2 [X] EdgeWise
'§1 F=°] Dhalion — §»102‘ F=°1 Dhalion]
° [EH Storm-Serverless E ° [EEH Storm-Serverless %
£ 10! zJ Storm-RTS = [z Storm-RTS
2 g 10
N | N
E ‘ ; E co
£ \ ! IS o
—] —_ o
K K IRl 0 i}
0 ‘ OI] O ‘ L]
04 08 16 04 16
Number of cores Number of cores
(a) AWS Nitro (Amazon EC2) (b) Hyper-V (Azure)
1034
L 103 Storm - Storm
2 [X] EdgeWise 2 (X1 EdgeWise
Jc;n R F®®] Dhalion V] %1024 F®=] Dhalion]
o 10°1 == storm-Serverless o [E=H Storm-Serverless yg"%
= [ZJ Storm-RTS — = [z Storm-RTS N
hel 1 ‘o - 1011 - -
g 10 ° qu) o o
= & = o 2
g o g ° o
o O°] A co co
Z 100 4@% o% Z 1004 Eﬁ : o%
0 Fd o 0 | X o
04 16 04 08 16
Number of cores Number of cores
(c) KVM (Google Cloud) (d) Bare Metal

Figure 21: Maximum throughput of RIoTBench workflows on a single machine (varying
from 4 to 16 cores). Geometric mean of workflows’ throughput, each is normalized by Storm

throughput on a 4-core machine.

Resource Efficiency We evaluate the resource efficiency of the four SPE systems, using a
single workflow, and varying the tuple input rate. Each of the three RloTBench workflows
is deployed over a single machine with fixed CPU (4, 8, and 16 cores) managed by the
all five SPE systems — Storm, EdgeWise, Dhalion, Storm-Serverless, and Storm-RTS. The
workflows are fed tuples at a constant rate, and we gradually increase the rate until the system
saturates. When tuple processing latency increases sharply and the throughput (tuple output
rate) fails to match the tuple input rate, the system is considered saturated. We report the
throughput just before this point, calling it the maximum throughput. All four SPEs have

workflows’ parallelism configurations shown in Figure 19.

52

103 -
- Storm 1201 o Storm
a CXJ EdgeWise _ o =~ Edge.Wise
$102{ F°] Dhalion 7] | 2100 " "3 Dhalion
3 [E=H Storm-Serverless 0 - ° B Storm-Serverless
£ I Z 801 % 24 Storm-RTS
[7 Storm-RTS o = A
g 10 % £ 60 I
N o] o o °
= oo o | oo oc eo
g °° <>: 40 oo oo Oo
o 3 o o o o
= 100 o% 20'] o% o o

0 : ! : 0 X o °)
01 02 08 ETL PRED STAT
Number of nodes Topologies
(a) Throughput (b) Average Latency

Figure 22: Resource efficiency results on Azure. Storm-RTS achieves comparable throughput

and latency versus worker-based SPE across different workflows and the number of nodes.

We report the geometric mean of the normalized throughputs of three RIoTbench work-
flows performance for each of the four SPEs on 4 different machine configurations in Figure
21. Note the log scales. The performance of Storm, Edgewise and Dhalion scale poorly,
falling slightly behind at 8 cores and badly behind at 16 cores. Because of their dynamic
allocation, both Storm-RTS and Storm-Serverless scale well with system capacity, with
workflow maximum throughput increases almost linearly with the number of cores. These
results are consistent across all of the cloud VMs and also the bare metal configuration. These
results show that the FaaS-based SPEs can achieve equal or superior resource efficiency.

Next we consider a more realistic configuration: the distributed environment of the
public cloud. SPEs are deployed over multiple 4-core virtual machines, the most popular
machine type in today’s cloud. For various numbers of machines, Figure 22a reports the
geometric mean normalized throughput for each SPE, running on Azure. The other resource
configurations (two clouds, one bare metal) are both omitted, because their results are
the same as we have presented for Azure. In this case, all four SPEs have comparable
performance, scaling well to 8 nodes. Also as before, both Storm-Serverless and Storm-RTS
scale well, increasing throughput with the number of machines. This result confirms their
resource efficiency, compared to worker-based SPEs, in a distributed computing setting.

Figure 22b shows the average per-tuple end-to-end latency of RIoTBench workflows at
the steady state when the load is at around 70% of available capacity for all SPEs in Azure (we
also omit other configurations due to similarity). Storm-RTS and Storm-Serverless keep the
latency staying below 20ms, just slightly higher than Storm and EdgeWise while significantly
better than Dhalion. The results demonstrate that besides throughput, Storm-RTS is also

efficiently equivalent to other worker-based SPEs in terms of processing speed.

Performance Stability Serverless-based SPEs allocate resources on-demand, enabling

workflow performance to scale dynamically without configuration tuning. To illustrate this,

53

1.0 % - 1.0 % Sl i
é. * a ! ‘s
c0.8 X <0.8{ \ ‘ome O %55
28 : g \ el
o : g \
|E 2 0.6 'lE 0.6 \\ Storm
S0 ° \ - x= EdgeWise
ﬁ g 0.4 storm . * ﬁ 0.4 \ == Dhalion
C * v EdgeWise % © \ —= Storm-Serverless
EO =e= Dhalion *e € \ —a— Storm-RTS
2 0.2] — = storm-Serverless x‘x. S 0.2 I~
=—8— Storm-RTS X% % Nt T N
0'%.0 0.5 1.0 1.5 2.0 00 02 04 06 08 1.0
Load Background Load
(a) Dynamic Scaling (b) Performance Isolation

Figure 23: Storm-RTS can flexibly reconfigure for various workloads and protect workflow
performance from collocated applications while other SPEs fail to do so. (Results from Azure

VMs only, other configurations are omitted due to similarity).

we run each RIoTBench workflow, one at a time, at varying tuple input rates. The system has
ample resources, but we keep the workflow parallelism and rate configurations fixed as the
tuple rate is increased.

The results are presented in Figure 23a. The x-axis values are the tuple input rate
normalized by the saturation rate (maximum throughput) of the Storm system. The y-axis
values are the geometric mean of workflow throughputs normalized by input rate. A perfect
system would produce a flat line across the top — full performance with no saturation.

Our results show that all five SPE systems scale well up to Storm’s saturation rate
(normalized to 1.0). Beyond the tuple rate, among worker-based SPEs, only Dhalion with
dynamic scaling support can handle the load. Storm and EdgeWise static worker allocations
are both overwhelmed, causing their throughput to drop. At a saturation ratio of 1.5, both
of their throughputs are below 20% of the input rate, and at 2.0, their throughput drops
further approaching 0%. In contrast, Storm-Serverless and Storm-RTS perform dynamic
allocation, using the underlying serverless dynamic allocation to acquire more resources
and support higher tuple processing rates. As a result, their performance is not limited by
workflow configuration, and continues to match the growing tuple for all workflows well
beyond 1.0x and even 2.0x the Storm saturation rate.

The results above reveal the configuration inflexibility of the worker-based model. Any
changes in workflow and input tuple rate require worker configuration adjustment, either
manual or automatic, to achieve desired performance. On the other hand, serverless-based
SPEs do not require any parameter tuning to meet performance goals. This eases deployment
effort.

We consider the case of multiple workflows competing for shared resources. This is a
common occurrence in production settings and can lead to performance interference. To

evaluate performance isolation in this situation, we run each of the RloTBench workflows

54

o

N B O
o ©

o

Input rate
(x1000 tuple/sec)

N)

Normalized
Throughput
—
-~
~
B
’
e’
3

IS

Latency (s)
~N

o

10 20 30 40 50
Time (s)
Storm ++++ Dhalion = Storm-RTS
—— EdgeWise == Storm-Serverless

o

Figure 24: Storm-RTS guarantees the performance of bursty workloads while other SPEs fail

to do so.

with one that competes for resources — SCAN. The SCAN workflow is a single-bolt workflow
that performs expensive arithmetic operators on input tuples, so it competes for CPU cycles
with the foreground RlotBench workflows.

In Figure 23b, we report the geometric mean of the throughputs for the RIoTBench
workflows normalized by their saturation input rate. The x-axis values are normalized
background load (SCAN), with 1.0 indicating the ability to consume 100% of the CPU
capacity.

All worker-based SPEs — EdgeWise, Storm and Dhalion — fail to provide performance
isolation, showing a performance decrease after the background load exceeds 50%. Storm-
Serverless is even worse, dropping from the introduction of very small levels of resource
competition. This is because Storm-Serverless depends on a traditional best-effort serverless
system. The decrease is severed, and nearly 100% loss of throughput with about 30%
competitive load. In contrast, Storm-RTS provides good performance isolation all the way
up to 100% competitive load. The RBAM allocations used by Storm-RTS enforces rate-
guarantees with strong resource isolation. As a result, workflows deployed by Storm-RTS
always maintain the desired throughput regardless of background load. This demonstrates
the capability of delivering performance predictability of RBAM SPEs as we discussed in
Section ??.

We consider bursty workflows whose input rate varies over time. Workflow developers
can configure Storm-RTS to handle such workflows by setting the desired input rate equal to
the peak input rate when the load bursts. For demonstration, we deploy a PRED workflow
that operates at around 35 thousand tuples/sec on Azure VMs. However, after the 10-th
second, the input rate is doubled and lasts for around 30 seconds (see the first graph of Figure
24. We execute this load with different SPEs. The workflow’s throughput and latency are

shown in the second and third graphs of Figure 24, respectively.

55

=
o
o

©
o

Usaae (hercertage)
N

\\\
nak
N\
\\\\

N
o

o

=
o

5w 08 R Storm
3 ‘e = x= Storm-Dynamic
N2 6l %
TO ¢, == Storm-RTS
Eé .
g £04 ‘e Pe S
= Sn w wxe w e X%
0.2
0.0
0.0 0.1 0.2 0.3 0.4 0.5

Edge Resource Availability

Figure 25: Storm-RTS, Storm-Dynamic, and Storm across cloud and edge. Storm-RTS has
well-defined performance guarantees, enabling it to respond to resource availability changes
and maintain desired throughput.

Storm and EdgeWise have their resource allocated statically, only sufficient to handle
the normal load. When the burst arrives, they are unable to process the additional tuples and
have to let them wait until the burst end. Subsequently, both see significant high processing
latency with a noticeable drop in throughput. Dhalion and Storm-Serverless support dynamic
allocation so they can scale up during the burst. However, it takes time for both to detect the
burst, wait for the underlying resource to deliver new resources, and initialize them. Thus,
from the beginning of the burst, their performance significantly degrades for 10-20s, around
35 to 65% of the burst period. Storm-RTS, on the other hand, has desired rate set to the burst
peak (70 thousand tuples/sec) and it maintains the desired throughput and latency throughout
the burst period.

Flexible Reconfiguration across Cloud and Edge Most SPEs are designed for cloud
deployment, but increasingly there are opportunities for stream-processing at the edge
in combination with the cloud. However, edge resources are limited, and when there is
competition for resources, they may be unavailable. To maintain stable performance for
stream processing workflows, ideally an SPE would be able to manage response across the
cloud and edge when resource availability changes.

We evaluate Storm-RTS running a single workflow (either ETL, PRED, and STAT)
across cloud and edge. We vary edge resource availability from 50% (half of the workflow
can deploy at the edge) to 0% (i.e., no edge resources available), see Figure 25. In the first
graph, when the availability of edge resources decreases, Storm-RTS shifts operators from
edge to the cloud. This confirms Storm-RTS’ ability to reconfigure workflow deployment in
response to resource availability change.

56

1.00 1.00

© e}
=} =}
o o
(8) (9
0.75 0.75
C — C —
S v O 3
=] D o (®2]
@© © © ©
X v N 9]
;D: 0.50 o g 0.50 V o
) o D s o
[a 18 © o e}
O @ O 9]
0.25 - 0.25 -
() (0]
[®2] (®2]
e) ©
(0] (0]
0.00 T T f 0.00
30 30
5 VP 5
£3 20 J T £3 201
o3 L o8
3% v \ =
£X101 £X101
[[
0 0
1.0 PRED 8 PRED
bt . ETL et - ETL
Q B STAT Q B STAT
< 0.5 771 Background = 771 Background
£ £ N/A
o [e]
Z 0.0+ ; ; ; Z 0.0+ . . .
0 200 400 600 0 200 400 600
Time (s) Time (s)
(a) Storm-RTS (b) Storm-Serverless

Figure 26: Storm-RTS shifts workflows across edge datacenters, while maintaining stable

performance. The flexibility enabled by Storm-RTS allows simple optimization of cost.

Next, we evaluate Storm-RTS’s ability to maintain workflow performance under reconfig-
uration. We use Storm as a baseline. However, Storm does not respond to resource availability,
statically spreading workers across available nodes in a round-robin manner. This produces a
deployment with half of the workflow in the edge, and another half in the cloud. To highlight
the other capabilities that Storm lacks, we enhance it by modifying the scheduler to be able
to shift workers, calling it Storm-Dynamic. With Storm-Dynamic, when operators on the
edge see performance degradation of 25%, Storm-Dynamic will rebalances workers across
cloud and edge as shown in the second graph in Figure 25. The geometric mean of the three
workflows’ throughput normalized by their desired throughputs shows that Storm is unable to
detect performance degradation or reconfigure workflow deployment to restore performance
(the roles of application coordinator and real-time serverless in Figure 18). Consequently, its
normalized throughput remains under 0.3, far below the desired throughput.

Storm-Dynamic addresses Storm’s limitations with its dynamic worker shifting and
achieves higher throughput. However, the throughput gets worse, as more edge resources

available. Workers in the cloud perform differently from those in the edge. Thus, shifting a

57

worker cause performance changes in operators, which then cascade through the workflow. In
contrast, Storm-RTS sustains the normalized throughput close to 1 through all cases, stably
maintaining the desired throughput of the three workflows. Storm-RTS has workflow recon-
figuration driven by a specific understanding of performance needs — RBAM rate guarantee.
When the rate guarantee is violated due to edge resource availability change, the Real-time
Serverless will notify the application coordinator which precisely reconfigures the
workflow to restore the guarantee.

Performance guarantee and isolation are a powerful combination that can dramatically
simplify application management for other goals, such as resource cost. Consider a simple
declarative goal — to minimize cost of resources used by a stream processing workflows at
any point in time. We will call this policy MinCost. With our Storm-RTS SPE, shown in
Figure 18, the policy can be reduced placing operators in the data center with the lowest cost.
If the data center is full while there are still operators to schedule, then those operators will
be placed in the data center with the next lowest cost factor and so on.

Consider a resource environment with four datacenters (cloud, edgel, edge2, edge3),
where cost(edgel) < cost(edge2) < cost (edge3) < cost(cloud) as shown in Figure 20. On this
testbed, we conduct an experiment showing how Storm-RTS allows workflows to operate
stably at optimal cost. We deploy 3 workflows, STAT, ETL, and PRED.

The first graph of Figure 26a shows events that happen during the experiment and
decisions made by Storm-RTS in response to minimize the cost. At¢ = 0, the three workflows
are deployed in the cloud because no edge data centers are available. At t = 150, three edge
data centers become available. The MinCost policy dictates a move to the cheapest data
center, edgel, so the operator distributor shifts the operators for all three workflows
to edgel. Then, at ¢t = 300, the SCAN workflow starts at data center edgel, consuming
CPU resources. The edgel becomes oversubscribed, so the local Real-time Serverless (RTS)
notifies the application coordinator that edgel do not have sufficient resources to host
all four workflows. This causes the application coordinator to have the operator
distributor move PRED, the smallest workflow, to maintain adequate performance. To
minimize resource cost, it picks data center edge2. Att = 450, the SCAN load increases again,
causing the edgel RTS system to again notify the application coordinator, leading to
a move of the ETL workflow to edge2. And when SCAN expands to edge2 at t = 600, its
resource consumption there causes the RTS system on edge?2 to notify the application
coordinator that it cannot maintain its guarantees. So, in response, SPE moves PRED to
edge3 ensuring resource sufficiency for all workflows.

Through these many workflow reconfigurations, Storm-RTS maintains their performance,
ensuring all three workflows stably achieve the desired throughput as shown in the second
graph of Figure 26a. And, as the application coordinator always moves workflows to the data
centers with the lowest cost available, the total cost is minimized (the last graph in Figure
26a). To understand the importance of Storm-RTS in implementing such declarative policy,

consider the same scenario with Storm-Serverless (Figure 26b). Since Storm-Serverless

58

allocates resources in best-effort manner, can neither detect a shortfall nor choose a suitable
destination for a migration (has enough resources available). This results in poor workflow

performance in these changing resource environments.

5.5 Unanswered Questions and Remaining Tasks

While RBAM’s real-time guarantee is fully proven, its implementation efficiency and appli-

cability still need more results to be fully addressed. In particular

* RBAM Efficient Implementation: we still have not known if RBAM can be imple-
mented within 15% overhead compared to their regular FaaS. Answering the question
requires a proposal of algorithms to deploy RBAM at a reduced cost, an RBAM
implementation that can realize these algorithms at scale, and evidence to show they

can work well with different system configurations and workloads.

* RBAM Applicability: We still have no evidence if RBAM can support hard real-time
requirements and extreme workloads of hundreds of thousands of requests per second
and more. To answer the question, we need to demonstrate RBAM versus demanding
applications such as scientific sensor instrument data processing.

According to the plan, answering these remaining parts of the research questions is

corresponding to completing the following tasks

* Efficient RBAM Implementation
— T2.2. Propose several scalable allocation algorithms that can reduce the overhead
of deploying RBAM functions at any rate-guarantee over the cloud.

— T2.3. Evaluate proposed RBAM allocation algorithms to understand their effi-

ciency.
— T2.4. Integrate proposed RBAM algorithms in a practical FaaS system.
— T2.5. Conduct empirical studies to demonstrate that RBAM implementation cost
is asymptotically small for a large number of RBAMs.
* RBAM Applicability
— T3.5. Implement an demanding Scientific Sensor Instrument Data Processing
application using RBAM functions.

— T3.6. Design and conduct experiments to show that the RBAM functions enable

the application to meet its real-time requirements with efficiency.

We propose the schedule of completing these tasks later in Section 7.

59

6 Related Work

6.1 FaaS Efficiency Improvement

FaaS or Serverless Computing is flourishing with tons of implementations that have been
developed and contributed by both industry and the open-source community [17, 18, 19, 92,
117, 15]. However, Serverless is still at its early stage. Recent studies [140, 147, 57] reveals
critical performance limitations in virtually every serverless implementation preventing them
from supporting many potential applications [113].

High invocation overhead is arguably the most noticeable Serverless performance lim-
itation. The problem is gradually handled through many overhead minimization efforts
across the whole invocation stack. These include heavily optimizing sandboxing mechanism
[24, 20, 101, 130, 26] and enabling invocation resource sharing [116] to host more invoca-
tions. Some also take sandbox snapshots to minimize cold start overhead [64]. Apart from
sandboxing optimization, there are efforts on workload prediction to help avoid cold start
[123], optimizing invocation routing [87] to reduce network latency, etc. However, there is
still much effort needed to reduce the overhead to the sub-millisecond scale. Batching is one
common workaround used by Storm-RTS, and other solutions [27, 79, 128].

High performance variability is a critical issue for serverless performance. Unfortunately,
there is a lack of improvement over this space. Open source serverless implementations still
rely on reactive autoscaling for invocation resource allocation [117, 15, 92]. This mechanism
is also employed inside commercial serverless, according to black-box inspections [147, 140],
although they do provide other supports such as provisioned concurrency [17] to help
stabilize performance when load surge or workflow description [19, 17, 18] to help schedule
function chains. All of the mentioned approaches, however, are best-effort and unable to
protect serverless invocations from performance instability when the load or Cloud’s internal
resource structure suddenly changes. Consequently, much of QoS improvement emerge from
application side [57, 27, 79, 139]. Storm-RTS utilizing Real-time Serverless [114], the first
effort on guarantee serverless performance through rate-guarantee interface to achieve both

performance transparency and modularity.

6.2 Supporting Bursty, Real-time Applications
6.2.1 Handling Workload Burstiness

Scalable internet services deal with bursty loads managing yield and latency by dropping
requests [40]. For example, the WeChat microservice system has an elaborate system for
load shedding that orders drops to minimize wasted work. However, all of these approaches
drop requests in order to maintain service quality for accepted requests. In contrast, because
we assume the cloud has sufficient resources to service our bursty, real-time applications, we
take the approach of guaranteeing allocation rate to maintain quality for all of the received

requests.

60

Most of today solutions for bursty real-time workload workaround the cost problem
through dynamic allocation. Instead of running the application over a fixed set of resources,
application developers try to dynamically adjust resources allocated to the application to re-
source needs. The dynamic allocation is an iterative control loop consisting of two steps: burst
detection and allocation adjustment. To detect bursts, some approaches monitor workload
changes [96, 95], while other rely on real-time violations [81, 80]. For some applications,
violation is prohibited so they take a more proactive approach: predict potential burst arrival
and allocate resources in advance [33]. Determine quantity of each dynamic allocation is a
tricky part as applications only want to just enough resources for cost optimization. Some
approaches deploy complicated analysis (e.g., using historical data) to make just-enough
allocations [80, 95]. There also approach combine different cloud resources, using high
flexibility service, such as FaaS, to absorb the burst [96, 81]. However, all of dynamic
allocation approaches are constructed upon heuristic methods limiting their applicability.
Any application that have its burstiness properties or real-time constraint uncovered by the
heuristic solution may end up with mis-allocation that leads to either real-time violation or

resource waste.

6.2.2 Satisfying Real-time Requirements

Many research efforts have been spent on task runtime prediction for efficient scheduling
and resource allocation. Some techniques are developed for repeating jobs [54, 61, 86] while
others use the job structure and characterize input to construct predicting models [72, 119].
JamaisVu [134] and 3Sigma [118] extracts tasks’ features from execution history, uses them
for constructing runtime distributions and applies a tournament prediction to estimate task
runtime. From runtime prediction, many scheduling such as backfilling [132, 148] or packing
[138, 135] can be applied to minimize real-time constraint violation while still maximizing
resource utilization.

There are also other approaches in the literature. For example, [48] uses the earliest-
deadline-first scheduling policy and explicitly handling the transient of dynamic real-time
workload to reduce deadline misses. [38] combines three techniques: reservation, semi-
partition scheduling, and period transformation with task-placement heuristics to achieve near-
optimal hard real-time scheduling. Satisfying real-time constraints under power limitation is
also a very active research area [50, 151].

All of the work mentioned above, however, deal with real-time constraints in a best-effort
manner. They do not explicitly guarantee the deadline misses but try to minimize the misses as
much as possible. In contrast, through guaranteed allocation rate, real-time serverless enables
applications to plan to achieve real-time guarantee and guarantee computation quality.

In summary, to the best of our knowledge, none of the recent studies tackles the problem
of cost-effectively handling bursty demands in a timely fashion. They either consider real-
time constraints or bursty demand but not both as real-time serverless did.

61

6.3 Stream Processing

Our Storm-RTS work focuses on providing stable SPE performance across heterogeneous
resources with varying availability. The key to our approach is the higher-level resource
abstraction, the rate-based abstract machine. This section will discuss how our approach
is distinguished from other studies in terms of ensuring workflow performance stability,

exploiting FaaS abstraction, and multi-site deployments.

6.3.1 Stable Performance

For worker-based SPEs, stable performance is strongly tied to resolving their limitations in
performance transparency and isolation. In terms of performance transparency, worker-based
SPE:s try to decouple workflow performance from the underlying system implementation by
carefully considering workflow topology and the underlying system details for every operator
scheduling decision. Many SPEs dynamically map operators to workers via employing
heuristic scheduling strategies based on performance profiling [98, 41, 52, 104, 47] and/or
workflow characterization, including operator dependencies [52, 105], queue size [74] and
query context [145, 137]. In distribution settings, SPEs place workers among computing
nodes in traffic-aware [108, 144, 69] or topology-aware [108, 142, 107] fashion ensuring
tuple transmission is supported by the underlying network. On low-end systems, e.g., Edge,
resource heterogeneity and scarcity is quite common, great efforts on workload partitioning
[97, 111,91, 141, 70] and task placement [45, 88, 91, 58, 110, 46, 55, 28] are needed.

To resolve performance isolation challenges, worker-based SPEs ensure workflow per-
formance by leveraging control mechanisms, which are typically full loops of two steps:
interference detection and interference resolution. In interference detection, the SPEs iden-
tify interference through monitoring stream traffic [94, 41] and workflow throughput [71].
Some approaches even use the monitor data for predicting potential resource contention
[71, 82, 83], proactively prevent interference beforehand. Detected interferences are resolved
with heuristic algorithms, which either dynamically readjust resource sharing among com-
petitive workflows [106, 71, 82, 83] or migrate them to another set of computing nodes
[41].

All of the proposed approaches, however, are heuristic. They configure SPEs to behave
properly with popular workflow and resource configurations. Thus, any significant changes
in workflow dynamics or underlying resource configurations will lead to misbehavior and
SPE:s fail to maintain stable performance. These issues are well addressed by Storm-RTS:
by leveraging FaaS, Storm-RTS can scale well to workflow dynamics, and through rate-

guarantee enforcement, Storm-RTS provide strong isolation from resource configurations.

6.3.2 Stream Processing and FaaS

Leveraging FaaS for dynamic scalability has been proposed in many SPEs [53, 122, 112, 13,
34, 21]. However, these SPEs only outsource the processing logics to FaaS. Other parts of

62

operators, such as transmission and synchronization, are implemented through the worker
abstraction inheriting worker-based performance limitations. Storm-RTS uses FaaS as a
higher-level abstraction wrapping whole operators inside FaaS deployments. This removes
worker abstraction from SPE implementation, eliminating its performance limitation legacies.

Storm-RTS relies on RBAM for performance stability and isolation. The key idea of
RBAM is to ensure serverless performance with rate-guarantee. This is different from regular
serverless systems, which are best-effort [117, 15, 92, 19, 17, 18]. When these systems fail
to acquire needed resources, the performance of SPE relies on them degrades. Recent years
witnessed many attempts on minimizing the chance of these failures, including optimizing
invocation resource consumption [66, 109], proactive pre-allocation, and reusing terminated
invocations [124, 75, 77]. There are also active studies on intelligent resource sharing and
function placement to improve resource efficiency and avoid interference [129, 65, 62, 102,
149]. All of the mentioned approaches, however, do not provide performance stability. When
some factors, such as invocation request interarrival or resource availability, change, they
may become ineffective leading to performance degradation. In contrast, by enforcing rate-
guarantee with resource reservation and admission control, Storm-RTS ensure sufficient
resources for serverless invocations to meet their rate guarantee, which not only achieves
workflows’ desired throughput but also provides strong protection from the surrounding

environment.

6.3.3 Stream Processing across Multiple Sites

With distributed data sources and growing numbers of edge-based applications, stream
processing across multiple sites is of growing interest. Several approaches have been proposed
(e.g., [39, 133, 44, 25]). Most of them adopt the worker abstraction or use worker-based
SPEs as a building block. Worker abstraction limitations combine with new challenges that
arise from distribution posing many problems that require many efforts to address. These
include reliability [150, 78, 85, 143, 152], communication latency and overhead [89, 146],
and managing limited, heterogeneous resource pools [59, 90], balancing task placement
and parallelism [60, 56, 125]. Storm-RTS simplifies SPE design and well addresses many
problems above. For example, by leveraging RBAM, Storm-RTS can stabilize workflow
performance across limited, variable, and heterogeneous resousrce pools. Storm-RTS’s ability
to implement declarative goals enables its users to optimize their deployment for latency
(i.e., prioritize data centers with fast connections), reliability (i.e., automatic migration at

power shortage), and more.

7 Remaining Work of Thesis

By the time this thesis proposal is written, we have completely prove the capabiilty of
guaranteeing real-time deadline of applications. Further, we prove that RBAM realization

is feasible by proposing an naive RBAM implement and proved its correctness. We also

63

Tasks Expected Time
Scalable RBAM implementation

Propose several allocation algorithms that can minimize the over- | 2 months
head of deploying RBAM functions at any rate-guarantee.

Evaluate proposed RBAM allocation algorithms to understand their | 1 months
efficiency.

Integrate proposed RBAM algorithms in a practical FaaS system. | 1 month
Conduct empirical studies to demonstrate that RBAM implementa- | 1 month
tion cost is asymptotically small for a large number of RBAMs.

RBAM applicability

Implement an demanding Scientific Sensor Instrument Data Pro- | 1 month
cessing application using RBAM functions.

Design and conduct experiments to show that the RBAM func- | 1 month
tions enable the application to meet its real-time requirements with

efficiency.

Complete the Dissertation

Summarize the research and write a full PhD Dissertation. 2 months

Table 4: Future Tasks and Timeline

presented with expected time scheduled.

References

demonstrate the applicability of RBAM is supprting two poplar classes of bursty, real-time
applications, namely Distributed Real-time Video Analytic and Real-time Stream Processing.

To complete the thesis, we are expected to complete studies shown in Table 4, each are

[1] Binsentry. https://www.binsentry.com/ Visited January 27, 2023.

[2] Biofeeder Helps Shrimp Farmers to Automate Feeding

Schedules. https://www.digi.com/customer-stories/

biofeeder-helps-shrimp-farmers-to-automate-feeding Visited January

27, 2023.

[3] Citymesh. https://citymesh.com/ Visited January 27, 2023.

[4] Digi Helps SEPTA Comply With Federal Mandate For "Positive
Train Control" (PTC). https://www.digi.com/customer-stories/

digi-helps-septa-comply-with-federal-mandate Visited January 27,

2023.

64

https://www.binsentry.com/
https://www.digi.com/customer-stories/biofeeder-helps-shrimp-farmers-to-automate-feeding
https://www.digi.com/customer-stories/biofeeder-helps-shrimp-farmers-to-automate-feeding
https://citymesh.com/
https://www.digi.com/customer-stories/digi-helps-septa-comply-with-federal-mandate
https://www.digi.com/customer-stories/digi-helps-septa-comply-with-federal-mandate

[5]

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[138]

[19]

[20]

[21]

[22]

Digi WDS Helps Evoqua Deliver an Internet-Connected Water-Monitoring Solu-
tion for Commercial Applications. https://www.digi.com/customer-stories/

evoqua-creates-digital-water-management-solution Visited January 27,
2023.

FirstNet. https://www.firstnet.com/ Visited January 27, 2023.

How G2ControlsNW Built an Automated System for Turning on Frost Fans for Agri-
cultural Applications . https://www.digi.com/resources/project-gallery/
use-digi-connect-sensor-and-drm-for-agriculture Visited January 27,
2023.

Infinitum Delivers Innovative HVAC Monitoring Solution Featuring Smaller Foot-
print, Predictive Maintenance. https://www.digi.com/customer-stories/

infinitum-delivers-reduced-footprint-motor Visited January 27, 2023.
Otis. https://www.otis.com/ Visited January 27, 2023.
SmartSense. https://www.smartsense.co/ Visited January 27, 2023.

Valmont Brings Green Strategies to Agriculture and Infras-
tructure Sectors. https://www.digi.com/customer-stories/
valmont-green-tech-agriculture-infrastructure Visited January 27,
2023.

Wake. https://www.wakeinc.com/ Visited January 27, 2023.

Apache Flink. https://flink.apache.org, 2014.

Chameleon Cloud. https://www.chameleoncloud.org/, Jul 2015.
Openwhisk. https://openwhisk.apache.org/, 2016.

Apache Storm. https://storm.apache.org, May 2017.

AWS Lambda. https://aws.amazon.com/lambda/, 2017.

Google Cloud Function. https://cloud.google.com/functions, 2017.

Microsoft Azure Function. https://azure.microsoft.com/en-us/services/
functions/, 2017.

gvisor. https://gvisor.dev/, 2018.

Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/
data-streams/, 2019.

netty. https://netty.io/, 2022.

65

https://www.digi.com/customer-stories/evoqua-creates-digital-water-management-solution
https://www.digi.com/customer-stories/evoqua-creates-digital-water-management-solution
https://www.firstnet.com/
https://www.digi.com/resources/project-gallery/use-digi-connect-sensor-and-drm-for-agriculture
https://www.digi.com/resources/project-gallery/use-digi-connect-sensor-and-drm-for-agriculture
https://www.digi.com/customer-stories/infinitum-delivers-reduced-footprint-motor
https://www.digi.com/customer-stories/infinitum-delivers-reduced-footprint-motor
https://www.otis.com/
https://www.smartsense.co/
https://www.digi.com/customer-stories/valmont-green-tech-agriculture-infrastructure
https://www.digi.com/customer-stories/valmont-green-tech-agriculture-infrastructure
https://www.wakeinc.com/
https://flink.apache.org
https://www.chameleoncloud.org/
https://openwhisk.apache.org/
https://storm.apache.org
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://gvisor.dev/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://netty.io/

[23] Right Place, Right Time (RiPiT) Carbon Emissions Service. https://http://
ripit.uchicago.edu//, May 2022.

[24] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and
D.-M. Popa. Firecracker: Lightweight virtualization for serverless applications. In
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20), pages 419-434, Santa Clara, CA, Feb. 2020. USENIX Association.

[25] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,
D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant stream processing at
internet scale. Proceedings of the VLDB Endowment, 6(11):1033-1044, 2013.

[26] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt.
{SAND}: Towards high-performance serverless computing. In 2018 Usenix Annual
Technical Conference USENIX ATC 18), pages 923-935, 2018.

[27] A. Ali, R. Pinciroli, F. Yan, and E. Smirni. Batch: machine learning inference serving
on serverless platforms with adaptive batching. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1-15. IEEE,
2020.

[28] G. Amarasinghe, M. D. De Assuncao, A. Harwood, and S. Karunasekera. A data
stream processing optimisation framework for edge computing applications. In 2018
IEEE 2 st International Symposium on Real-Time Distributed Computing (ISORC),
pages 91-98. IEEE, 2018.

[29] Amazon Web Services Elastic Compute Cloud. https://aws.amazon.com/ec2/,
2007.

[30] Amazon. Amazon Cloud Infrastructure. https://aws.amazon.com/about-aws/
global-infrastructure/, Feb 2021.

[31] AWS Lambda Reserved Concurrency. https://docs.aws.amazon.com/lambda/

latest/operatorguide/reserved-concurrency.html.

[32] Azure Function. https://azure.microsoft.com/en-us/services/

functions/.

[33] A. F. Baarzi, T. Zhu, and B. Urgaonkar. Burscale: Using burstable instances for
cost-effective autoscaling in the public cloud. In Proceedings of the ACM Symposium
on Cloud Computing, pages 126-138, 2019.

[34] P. A. Bernstein, T. Porter, R. Potharaju, A. Z. Tomsic, S. Venkataraman, and W. Wu.
Serverless event-stream processing over virtual actors. In CIDR, 2019.

66

https://http://ripit.uchicago.edu//
https://http://ripit.uchicago.edu//
https://aws.amazon.com/ec2/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/lambda/latest/operatorguide/reserved-concurrency.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/reserved-concurrency.html
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara, and S. Thorne. The site reliability
workbook: practical ways to implement SRE. " O’Reilly Media, Inc.", 2018.

V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T. Kandemir, and
C. Das. Kraken: Adaptive container provisioning for deploying dynamic dags in
serverless platforms. In Proceedings of the ACM Symposium on Cloud Computing,
pages 153-167, 2021.

D. Bohn. Amazon Says 100 Million Alaxa Devices Have Been Sold — What’s Next?,
January 2019. https://www.theverge.com/.

B. B. Brandenburg and M. Giil. Global Scheduling not Required: Simple, Near-
optimal Multiprocessor Real-time Scheduling With Semi-partitioned Reservations. In
2016 IEEE Real-Time Systems Symposium (RTSS), pages 99-110. IEEE, 2016.

M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and F. Ye. Clasp: Collabo-
rating, autonomous stream processing systems. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing, pages
348-367. Springer, 2007.

E. A. Brewer. Towards Robust Distributed Systems. In PODC, volume 7, 2000.

T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara. Online schedul-
ing and interference alleviation for low-latency, high-throughput processing of data
streams. IEEE Transactions on Parallel and Distributed Systems, 28(12):3553-3569,
2017.

J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo. Seuss: skip
redundant paths to make serverless fast. In Proceedings of the Fifteenth European

Conference on Computer Systems, pages 1-15, 2020.

D. Canvas. Sense your city: Data art challenge. http://datacanvas.org/
sense-your-city/, Jun 2022.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli. Distributed qos-aware schedul-
ing in storm. In Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems, pages 344-347, 2015.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli. Optimal operator placement
for distributed stream processing applications. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, pages 69-80,
2016.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli. Optimal operator replication and
placement for distributed stream processing systems. ACM SIGMETRICS Performance
Evaluation Review, 44(4):11-22, 2017.

67

https://www.theverge.com/
http://datacanvas.org/sense-your-city/
http://datacanvas.org/sense-your-city/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli. On qos-aware scheduling of data
stream applications over fog computing infrastructures. In 2015 IEEE Symposium on
Computers and Communication (ISCC), pages 271-276. IEEE, 2015.

D. Casini, A. Biondi, and G. C. Buttazzo. Handling Transients of Dynamic Real-Time
Workload Under EDF Scheduling. IEEE Transactions on Computers, 2018.

C. E. Catlett, P. H. Beckman, R. Sankaran, and K. K. Galvin. Array of Things: a
Scientific Research Instrument in the Public Way: Platform Design and Early Lessons
Learned. In Proceedings of the 2nd International Workshop on Science of Smart City
Operations and Platforms Engineering, pages 26-33. ACM, 2017.

H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu. Towards Energy-efficient
Scheduling for Real-time Tasks under Uncertain Cloud Computing Environment.
Journal of Systems and Software, 99:20-35, 2015.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems, pages 155-168.
ACM, 2015.

D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic. Adaptive scheduling
of parallel jobs in spark streaming. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1-9. IEEE, 2017.

Y. Cheng and Z. Zhou. Autonomous resource scheduling for real-time and stream
processing. In 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1181-1184. IEEE, 2018.

C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao.
Reservation-based Scheduling: If You’re Late don’t Blame us! In Proceedings of the
ACM Symposium on Cloud Computing, pages 1-14. ACM, 2014.

A. da Silva Veith, M. D. de Assuncao, and L. Lefevre. Latency-aware placement of
data stream analytics on edge computing. In International conference on service-

oriented computing, pages 215-229. Springer, 2018.

A. Dasilvaveith, M. D. de Assuncao, and L. Lefevre. Latency-aware strategies for
deploying data stream processing applications on large cloud-edge infrastructure.
IEEFE Transactions on Cloud Computing, 2021.

N. Daw, U. Bellur, and P. Kulkarni. Xanadu: Mitigating cascading cold starts in
serverless function chain deployments. In Proceedings of the 21st International
Middleware Conference, pages 356370, 2020.

68

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. D. de Assuncao, A. da Silva Veith, and R. Buyya. Distributed data stream
processing and edge computing: A survey on resource elasticity and future directions.
Journal of Network and Computer Applications, 103:1-17, 2018.

F. R. de Souza, M. D. de Assungao, E. Caron, and A. da Silva Veith. An optimal model
for optimizing the placement and parallelism of data stream processing applications
on cloud-edge computing. In 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pages 59-66. IEEE,
2020.

F. R. de Souza, A. D. S. Veith, M. D. de Assungao, and E. Caron. Scalable joint
optimization of placement and parallelism of data stream processing applications on
cloud-edge infrastructure. In International Conference on Service-Oriented Comput-

ing, pages 149-164. Springer, 2020.

P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In 2015 USENIX Annual Technical Conference (USENIX ATC 15), pages
499-510, 2015.

C. Denninnart and M. A. Salehi. Harnessing the potential of function-reuse in
multimedia cloud systems. IEEE Transactions on Parallel and Distributed Systems,
33(3):617-629, 2021.

Digi. Digi Remote Manager. https://www.digi.com/products/

iot-software-services/digi-remote-manager Visited January 27, 2023.

D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen. Catalyzer:
Sub-millisecond startup for serverless computing with initialization-less booting. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 467-481, 2020.

V. Dukic, R. Bruno, A. Singla, and G. Alonso. Photons: Lambdas on a diet. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages 45-59, 2020.

S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev. Sizeless:
Predicting the optimal size of serverless functions. In Proceedings of the 22nd
International Middleware Conference, pages 248-259, 2021.

G. Electric. Everything You Need to Know about the Indus-
trial Internet of Things. https://www.ge.com/digital/blog/
everything-you-need-know-about-industrial-internet-things. Down-
loaded January 2019.

Ericsson. Internet of Things Forecast - Ericsson Mobility Report. https://www.
ericsson.com/en/reports-and-papers/mobility-report/reports Visited
January 26, 2023.

69

https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.ge.com/digital/blog/everything-you-need-know-about-industrial-internet-things
https://www.ge.com/digital/blog/everything-you-need-know-about-industrial-internet-things
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

L. Eskandari, J. Mair, Z. Huang, and D. Eyers. T3-scheduler: A topology and traffic
aware two-level scheduler for stream processing systems in a heterogeneous cluster.
Future Generation Computer Systems, 89:617-632, 2018.

J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and J. Zhu. Parallel stream processing
against workload skewness and variance. In Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing, pages 15-26,
2017.

M. R. H. Farahabady, A. Y. Zomaya, and Z. Tari. Qos-and contention-aware resource
provisioning in a stream processing engine. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pages 137-146. IEEE, 2017.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: Guaranteed
Job Latency in Data Parallel Clusters. In Proceedings of the 7th ACM european
conference on Computer Systems, pages 99-112. ACM, 2012.

A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion: Self-
regulating stream processing in heron. Proc. VLDB Endow., 10(12):1825-1836, aug
2017.

X. Fu, T. Ghaffar, J. C. Davis, and D. Lee. Edgewise: A better stream processing
engine for the edge. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 929-946, Renton, WA, July 2019. USENIX Association.

A. Fuerst and P. Sharma. Faascache: keeping serverless computing alive with greedy-
dual caching. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 386—400,
2021.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets Robotics: The KITTI
Dataset. International Journal of Robotics Research (IJRR), 2013.

A. U. Gias and G. Casale. Cocoa: Cold start aware capacity planning for function-as-
a-service platforms. In 2020 28th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), pages 1-8.
IEEE, 2020.

M. Gorawski and P. Marks. Towards reliability and fault-tolerance of distributed
stream processing system. In 2nd International Conference on Dependability of
Computer Systems (DepCoS-RELCOMEX’07), pages 246-253. IEEE, 2007.

J. R. Gunasekaran, P. Thinakaran, N. Chidambaram, M. T. Kandemir, and C. R. Das.
Fifer: Tackling underutilization in the serverless era. arXiv preprint arXiv:2008.12819,
2020.

70

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G. Kesidis, and
C. Das. Spock: Exploiting serverless functions for slo and cost aware resource
procurement in public cloud. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pages 199-208. IEEE, 2019.

A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons. Tributary: Spot-
dancing for Elastic Services with Latency SLOs. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 1-14, 2018.

M. R. HoseinyFarahabady, A. Jannesari, J. Taheri, W. Bao, A. Y. Zomaya, and Z. Tari.
Q-flink: A qos-aware controller for apache flink. In 2020 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages
629-638. IEEE, 2020.

M. R. HoseinyFarahabady, J. Taheri, A. Y. Zomaya, and Z. Tari. Qspark: Distributed
execution of batch & streaming analytics in spark platform. In 2021 IEEE 20th

International Symposium on Network Computing and Applications (NCA), pages 1-8.
IEEE, 2021.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, 1. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, et al. Speed/Accuracy Trade-offs for Modern Convolutional
Object Detectors. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 7310-7311, 2017.

J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and reliable stream processing
over wide area networks. In 2007 IEEE 23rd International Conference on Data
Engineering Workshop, pages 604-613. IEEE, 2007.

V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar. Network-
aware Scheduling for Data-parallel Jobs: Plan When You Can. In ACM SIGCOMM
Computer Communication Review, volume 45, pages 407-420. ACM, 2015.

Z. Jia and E. Witchel. Nightcore: efficient and scalable serverless computing for
latency-sensitive, interactive microservices. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 152-166, 2021.

J. Jiang, Z. Zhang, B. Cui, Y. Tong, and N. Xu. Stromax: Partitioning-based scheduler
for real-time stream processing system. In International Conference on Database

Systems for Advanced Applications, pages 269-288. Springer, 2017.

A. Jonathan, A. Chandra, and J. Weissman. Wasp: wide-area adaptive stream process-
ing. In Proceedings of the 21st International Middleware Conference, pages 221-235,
2020.

71

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch. Themis: Fairness in fed-
erated stream processing under overload. In Proceedings of the 2016 International
Conference on Management of Data, pages 541-553, 2016.

N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. A holistic view of stream
partitioning costs. Proceedings of the VLDB Endowment, 10(11):1286-1297, 2017.

Knative. https://cloud.google.com/knative/.

C. Krintz and R. Wolski. Smart Farm Overview. https://www.cs.ucsb.edu/
~ckrintz/SmartFarm17.pdf, 2018. NSF Funded Smart Farm Project using Smart

Sensors.

J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic. Enabling elastic stream processing
in shared clusters. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pages 108-115. IEEE, 2016.

W. Lin, J. Z. Wang, C. Liang, and D. Qi. A threshold-based dynamic resource
allocation scheme for cloud computing. Procedia Engineering, 23:695-703, 2011.

F. Liu, K. Keahey, P. Riteau, and J. Weissman. Dynamically Negotiating Capacity
between On-demand and Batch Clusters. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis, page 38.
IEEE Press, 2018.

P. Liu, D. Da Silva, and L. Hu. Dart: A scalable and adaptive edge stream processing
engine. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
239-252, 2021.

X. Liu and R. Buyya. D-storm: Dynamic resource-efficient scheduling of stream
processing applications. In 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), pages 485-492. IEEE, 2017.

Z. Liu, A. Ali, P. Kenesei, A. Miceli, H. Sharma, N. Schwarz, D. Trujillo, H. Yoo,
R. Coffee, N. Layad, et al. Bridging data center ai systems with edge computing for
actionable information retrieval. In 2021 3rd Annual Workshop on Extreme-scale
Experiment-in-the-Loop Computing (XLOOP), pages 15-23. IEEE, 2021.

Z. Liu, H. Sharma, J.-S. Park, P. Kenesei, A. Miceli, J. Almer, R. Kettimuthu, and
I. Foster. Braggnn: fast x-ray bragg peak analysis using deep learning. IUCrJ,
9(1):104-113, 2022.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud. ACM
SIGARCH Computer Architecture News, 41(1):461-472, 2013.

72

https://cloud.google.com/knative/
https://www.cs.ucsb.edu/~ckrintz/SmartFarm17.pdf
https://www.cs.ucsb.edu/~ckrintz/SmartFarm17.pdf

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

A. Mampage, S. Karunasekera, and R. Buyya. Deadline-aware dynamic resource
management in serverless computing environments. In 2027 IEEE/ACM 21st In-
ternational Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages
483-492. IEEE, 2021.

B. Marr. IoT And Big Data At Caterpillar: How Predictive Maintenance Saves
Millions Of Dollars. Forbes, February 2017. https://www.forbes.com/.

Y. Mei, L. Cheng, V. Talwar, M. Y. Levin, G. Jacques-Silva, N. Simha, A. Banerjee,
B. Smith, T. Williamson, S. Yilmaz, W. Chen, and C. Jerry. Turbine: Facebook’s
service management platform for stream processing. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1591-1602. IEEE, 2020.

H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin. Streambox:
Modern stream processing on a multicore machine. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 617-629, 2017.

Y. Morisawa, M. Suzuki, and T. Kitahara. Resource efficient stream processing
platform with {Latency-Aware} scheduling algorithms. In 12th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 20), 2020.

H. Moussa, I.-L. Yen, and F. Bastani. Service management in the edge cloud for
stream processing of iot data. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), pages 91-98. IEEE, 2020.

A. Muhammad, M. Aleem, and M. A. Islam. Top-storm: A topology-based resource-
aware scheduler for stream processing engine. Cluster Computing, 24(1):417-431,
2021.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam, R. Lachaize,
J. Hwang, T. Wood, D. Hagimont, et al. Ofc: an opportunistic caching system for
faas platforms. In Proceedings of the Sixteenth European Conference on Computer
Systems, pages 228-244, 2021.

M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti. Efficient operator placement for
distributed data stream processing applications. IEEE Transactions on Parallel and
Distributed Systems, 30(8):1753-1767, 2019.

M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini. When two choices
are not enough: Balancing at scale in distributed stream processing. In 2016 IEEE
32nd International Conference on Data Engineering (ICDE), pages 589-600. IEEE,
2016.

S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska,
B. Jakimovski, S. Ristov, and R. Prodan. A serverless real-time data analytics platform
for edge computing. IEEE Internet Computing, 21(4):64-71, 2017.

73

https://www.forbes.com/

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

H. D. Nguyen, Z. Yang, and A. A. Chien. Motivating high performance serverless
workloads. In Proceedings of the Ist Workshop on High Performance Serverless
Computing, pages 25-32, 2020.

H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien. Real-time serverless: Enabling
application performance guarantees. In Proceedings of the 5th International Work-
shop on Serverless Computing, WOSC ’19, page 1-6, New York, NY, USA, 2019.
Association for Computing Machinery.

Niantic. Pokemon GO. https://pokemongolive.com Visited January 27, 2023.

E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. {SOCK}: Rapid task provisioning with serverless-optimized containers. In
2018 USENIX Annual Technical Conference USENIX ATC 18), pages 57-70, 2018.

OpenFaaS. https://docs.openfaas.com.

J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger. 3Sigma:
Distribution-based Cluster Scheduling for Runtime Uncertainty. In Proceedings of
the Thirteenth EuroSys Conference, page 2. ACM, 2018.

PerfOrator. https://www.microsoft.com/en-us/research/project/

perforator-2/.

R. B. Roy, T. Patel, and D. Tiwari. Icebreaker: Warming serverless functions better
with heterogeneity. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
753-767, 2022.

W. Saad, M. Bennis, and M. Chen. A vision of 6g wireless systems: Applications,
trends, technologies, and open research problems. IEEE Network, 34(3):134-142,
2020.

A. W. Service. Serverless Streaming Architectures and Best Practices.
https://dl.awsstatic.com/whitepapers/Serverless_Streaming_

Architecture_Best_Practices.pdf, June 2018.

M. Shahrad, R. Fonseca, . Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud provider. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 205-218, 2020.

M. Shahrad, R. Fonseca, 1. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the wild: Characterizing

74

https://pokemongolive.com
https://docs.openfaas.com
https://www.microsoft.com/en-us/research/project/perforator-2/
https://www.microsoft.com/en-us/research/project/perforator-2/
https://d1.awsstatic.com/whitepapers/Serverless_Streaming_Architecture_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/Serverless_Streaming_Architecture_Best_Practices.pdf

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

and optimizing the serverless workload at a large cloud provider. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pages 205-218. USENIX Association,
July 2020.

S. K. Sharma and X. Wang. Live data analytics with collaborative edge and cloud
processing in wireless iot networks. IEEE Access, 5:4621-4635, 2017.

A. Shukla, S. Chaturvedi, and Y. Simmhan. Riotbench: An real-time iot benchmark
for distributed stream processing systems. Concurrency and Computation: Practice
and Experience, 29(21):e4257, 2017.

A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh, S. Venkataraman, and
A. Akella. Atoll: A scalable low-latency serverless platform. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC *21, page 138—152, New York, NY,
USA, 2021. Association for Computing Machinery.

T. J. Skluzacek, R. Chard, R. Wong, Z. Li, Y. N. Babuji, L. Ward, B. Blaiszik, K. Chard,
and I. Foster. Serverless workflows for indexing large scientific data. In Proceedings

of the 5th International Workshop on Serverless Computing, pages 4348, 2019.

A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and A. Gandhi.
Ensure: Efficient scheduling and autonomous resource management in serverless

environments. In 2020 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS), pages 1-10. IEEE, 2020.

B. Tan, H. Liu, J. Rao, X. Liao, H. Jin, and Y. Zhang. Towards lightweight server-
less computing via unikernel as a function. In 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS), pages 1-10. IEEE, 2020.

A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka. Sequoia: Enabling quality-
of-service in serverless computing. In Proceedings of the 11th ACM Symposium on
Cloud Computing, pages 311-327, 2020.

D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using System-generated Pre-
dictions rather than User Runtime Estimates. IEEE Transactions on Parallel and
Distributed Systems, 18(6):789-803, 2007.

R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, and G. Antoniu. Jetstream:
Enabling high throughput live event streaming on multi-site clouds. Future Generation
Computer Systems, 54:274-291, 2016.

A. Tumanov, A. Jiang, J. W. Park, M. A. Kozuch, and G. R. Ganger. JamaisVu: Robust
Scheduling with Auto- Estimated Job Runtimes., 2016.

75

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger.
TetriSched: Global Rescheduling with Adaptive Plan-ahead in Dynamic Heteroge-
neous Clusters. In Proceedings of the Eleventh European Conference on Computer
Systems, page 35. ACM, 2016.

Twin Forks Pest Control. Southampton Traffic Cam. hhttps://www.youtube.com/
watch?v=rpbkCUbWVio, 2019.

S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. J. Franklin,
B. Recht, and I. Stoica. Drizzle: Fast and adaptable stream processing at scale. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 374-389,
2017.

A. Verma, M. Korupolu, and J. Wilkes. Evaluating Job Packing in Warehouse-
scale Computing. In 2014 IEEE International Conference on Cluster Computing
(CLUSTER), pages 48-56. IEEE, 2014.

B. Wang, A. Ali-Eldin, and P. Shenoy. Lass: Running latency sensitive serverless
computations at the edge. In Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing, pages 239-251, 2020.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking behind the Curtains
of Serverless Platforms. In 2018 {USENIX} Annual Technical Conference (USENIX
ATC 18), pages 133-146, 2018.

X. Wang, Z. Zhou, P. Han, T. Meng, G. Sun, and J. Zhai. Edge-stream: a stream
processing approach for distributed applications on a hierarchical edge-computing
system. In 2020 IEEE/ACM Symposium on Edge Computing (SEC), pages 14-27.
IEEE, 2020.

X. Wei, X. Wei, and H. Li. Topology-aware task allocation for online distributed stream
processing applications with latency constraints. Physica A: Statistical Mechanics
and its Applications, 534:122024, 2019.

X. Wei, Y. Zhuang, H. Li, and Z. Liu. Reliable stream data processing for elastic
distributed stream processing systems. Cluster Computing, 23(2):555-574, 2020.

J. Xu, Z. Chen, J. Tang, and S. Su. T-storm: Traffic-aware online scheduling in storm.
In 2014 IEEE 34th International Conference on Distributed Computing Systems,
pages 535-544. IEEE, 2014.

L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju. Move fast and meet
deadlines: Fine-grained real-time stream processing with cameo. In /8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21), pages
389-405, 2021.

76

hhttps://www.youtube.com/watch?v=rpbkCUbWVio
hhttps://www.youtube.com/watch?v=rpbkCUbWVio

[146]

[147]

[148]

[149]

[150]

[151]

[152]

F. Yin, X. Li, X. Li, and Y. Li. Task scheduling for streaming applications in a
cloud-edge system. In G. Wang, J. Feng, M. Z. A. Bhuiyan, and R. Lu, editors,
Security, Privacy, and Anonymity in Computation, Communication, and Storage,

pages 105-114, Cham, 2019. Springer International Publishing.

T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen. Charac-
terizing serverless platforms with serverlessbench. In Proceedings of the 11th ACM

Symposium on Cloud Computing, pages 30—44, 2020.

Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An Integrated Approach
to Parallel Scheduling using Gang-scheduling, Backfilling, and Migration. /EEE
Transactions on Parallel and Distributed Systems, 14(3):236-247, 2003.

Y. Zhang, L. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and
R. Bianchini. Faster and cheaper serverless computing on harvested resources. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
pages 724-739, 2021.

Z.Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu. A hybrid approach
to high availability in stream processing systems. In 2010 IEEE 30th International
Conference on Distributed Computing Systems, pages 138—148. IEEE, 2010.

Z.Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A. Alelaiwi, and
F. Li. Minimizing SLA Violation and Power Consumption in Cloud Data Centers

using Adaptive Energy-aware Algorithms. Future Generation Computer Systems,
86:836-850, 2018.

Y. Zhuang, X. Wei, H. Li, M. Hou, and Y. Wang. Reducing fault-tolerant overhead for
distributed stream processing with approximate backup. In 2020 29th International

Conference on Computer Communications and Networks (ICCCN), pages 1-9. IEEE,
2020.

7

	Thesis Statement
	Introduction
	The Rise of Bursty, Real-time Applications
	Existing Solutions
	Traditional Cloud Computation Models
	Dynamic Resource Allocation
	Function-as-a-Service

	Problem Statement
	Approach: Rate-based Abstract Machine
	Goals and Scope of the Thesis
	Proposal Organization

	Research Questions
	Real-time Guarantee Support
	Efficient Implementation
	Applicability

	Research Plan
	Approach and Strategies
	Real-time Guarantee Support
	Efficient RBAM Implementation
	RBAM Applicability

	Research Plan
	Expected Research Contributions
	Full Thesis Outline

	Initial Results
	Current Progress
	Real-time Guarantee Support
	Efficient RBAM Implementation
	RBAM Applicability

	Real-time Guarantee Support
	Analytical Framework
	Fixed rate Real-time Guarantee
	Bursty Real-time Guarantee
	Real-time Guarantee Resource Consumption

	RBAM Implementation
	Implementation Feasibility
	Real-time Serverless

	RBAM Applicability
	Distributed Real-time Video Analytic
	Stream Processing

	Unanswered Questions and Remaining Tasks

	Related Work
	FaaS Efficiency Improvement
	Supporting Bursty, Real-time Applications
	Handling Workload Burstiness
	Satisfying Real-time Requirements

	Stream Processing
	Stable Performance
	Stream Processing and FaaS
	Stream Processing across Multiple Sites

	Remaining Work of Thesis

