ON THE MOMENTS OF RANDOM DETERMINANTS

A DISSERTATION SUBMITTED TO
 THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES DIVISION IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE

Copyright (C) 2023 by Zelin Lv
All Rights Reserved

Dedicated to those who are interested in this work.

Mathematics is the art of giving the same name to different things.
-Henri Poincaré, in Science and Méthode, 1908.

TABLE OF CONTENTS

LIST OF FIGURES vi
LIST OF TABLES vii
ACKNOWLEDGMENTS viii
ABSTRACT ix
1 INTRODUCTION 1
1.1 Related Work 2
1.1.1 Generalizations 2
1.1.2 The Distribution of the Determinant 3
2 BACKGROUND 4
2.1 Results 4
2.2 Preliminaries 8
3 RANDOM DETERMINANTS FOR ASYMMETRIC MATRICES 13
3.1 Second Moment 13
3.2 Fourth Moment 13
3.3 Sixth Moment 16
3.3.1 Generalization for arbitrary third moment 24
3.3.2 Asymptotics 27
3.3.3 Direct proof of Lemma 2.2.12 29
3.4 General Moments 35
4 RANDOM DETERMINANTS FOR SYMMETRIC MATRICES 36
4.1 Second Moment 36
REFERENCES 41

LIST OF FIGURES

2.1 The even graph corresponds to $\{2,1,5,3,4\},\{2,1,4,5,3\}$ 12
3.1 A 6×5 table $t \in D_{5, \emptyset,[5]}$ 19
3.2 The associated $G(t)$ 19
3.3 The ratio between the asymptotic expression and $f_{6}(n)$ for $\Omega=\{-1,1\}$ 29
4.1 All 6 different colorings and orientations of a given 4-cycle 37

LIST OF TABLES

2.1 Values of $f_{k}(n)$ and $p_{k}(n)$ for $\Omega=\{-1,1\}, k \leq 6$, and $n \leq 5 \ldots \ldots$
2.2 Values of $f_{2}^{\text {sym }}(n)$ for $\Omega=\{-1,1\}$ and $n \leq 8 \ldots \ldots$

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Aaron Potechin, for his unwavering guidance, support, and encouragement throughout my research journey. His expertise, knowledge, and enthusiasm for theoretical research have been invaluable, and his mentorship has played a pivotal role in my academic and personal growth.

I am also grateful to the faculty at the University of Chicago and TTIC for fostering a stimulating and nurturing research environment. In particular, I would like to thank Alexander Razborov, Madhur Tulsiani, Janos Simon, Andrew Drucker, Lorenzo Orecchia, and László Babai for their invaluable insights, expertise, and collaboration in the field of theoretical research. A special acknowledgment goes to Alexander Razborov and Janos Simon for graciously agreeing to be my committee members, providing critical feedback and guidance on my work.

Furthermore, I would like to acknowledge the financial support provided by the National Science Foundation (NSF) grant CCF-2008920. This funding has significantly contributed to the success of my research, and I am truly grateful for their support.

Lastly, I want to extend my heartfelt appreciation to my friends, colleagues, and family members who have supported me throughout this journey. Their unwavering belief in me and their encouragement have been a constant source of inspiration.

Abstract

This thesis investigates the moments of random determinants, specifically focusing on the second, fourth, and sixth moments of determinants of random matrices. The study of random determinants and their moments has been an active area of research. Building on the existing literature, we provide an in-depth analysis of these moments, offering new insights into their properties and behavior.

Additionally, we introduce a novel approach to compute the determinant of the second moment of determinants of symmetric random matrices. This new method has the potential to contribute to the development of computing higher moments of determinants of random matrices.

The main contributions of this thesis are: a comprehensive analysis of the second, fourth, and sixth moments of random determinants by applying the existing techniques in an intricate way and the proposal of a new and simple approach for computing the determinant of the determinants of symmetric random matrices, with an application of computing the second moment. This work not only advances our understanding of the moments of random determinants but also presents potential avenues for further exploration in random matrix theory.

CHAPTER 1

INTRODUCTION

Random matrix theory, which studies the properties of matrices with random entries, has found widespread applications across numerous fields, including physics, mathematics, engineering, and computer science. The determinant, a fundamental invariant of a matrix, plays a crucial role in understanding the properties of random matrices. In this thesis, we delve into the moments of random determinants, specifically focusing on the second, fourth, and sixth moments.

The study of random determinants has been an active area of research for many years, with a particular interest in analyzing the k-th moment, i.e., the expected value of the kth power of the determinant of a random matrix. Early works by Turán [1955] and Fortet [1951] found that the second moment of the determinant of an $n \times n$ matrix with mean 0 and variance 1 entries is $n!$. Subsequent research by Nyquist et al. [1954] determined the fourth moment of the determinant. In the study of moments of random determinants, the main idea employed by previous research is the reduction of the problem of computing these moments to counting the number of permutation tables subject to certain constraints. Permutation tables serve as a crucial tool in this context; the second moment of the random determinant can be easily obtained using them, as we will demonstrate in Section 3.1. For the fourth moment, Nyquist et al. [1954] employed recurrence and generating function techniques to analyze the number of permutation tables, which we will present in Section 3.2.

In the case of the sixth moment, which constitutes the primary focus of this thesis, we also utilize permutation tables. However, as we will mention in the following sections, unlike the cases with $k=2$ or $k=4$, the sign of each permutation table is not always positive. To address this challenge, we derive some structural results of permutation tables that enable us to obtain a formula for computing the sixth moment, including a generalization for $m 3 \neq 0$. Finally, we employ the generating function tool developed by Borinsky [2018]
to find the asymptotic behavior for the sixth moment, thereby significantly advancing our understanding of this problem.

For Gaussian random matrices, Forsythe and Tukey [1952], Nyquist et al. [1954] have shown that the kth moment of the determinant can be expressed as a product involving factorials, which is $\prod_{j=0}^{\frac{k}{2}-1} \frac{(n+2 j)!}{(2 j)!}$, which we will discuss in the section 3.4.

In the case of symmetric random matrices, the second moment of the determinant was investigated by Zhurbenko [1968]. And in this thesis, we provide a simpler approach to compute the second moment of the determinant in Section 4.1.

In this thesis, we contribute to the line of work on moments of random determinants by examining the sixth moment of the determinant of a random matrix based on the work by Beck et al. [2023]. By extending the existing literature on this topic, we provide a comprehensive analysis of the second, fourth, and sixth moments. Furthermore, we introduce a novel method for computing the determinant of the second moment of determinants of random matrices, which may pave the way for future research in the field.

As random matrix theory continues to grow in importance and find new applications, understanding the moments of random determinants will remain a fundamental aspect of this area. The results presented in this thesis not only build on existing knowledge but also open new avenues for further exploration and discovery.

1.1 Related Work

1.1.1 Generalizations

There have been several variations and generalizations of these questions. The first line is to have to replace the symmetric random variables to arbitrary variables. Zhurbenko [1968] started the investigation in this direction where he analyzed the second moment of random matrices whose entries is i.i.d from any distribution instead of symmetric distribution. In this
direction, Beck [2022] analyzed the fourth moment of the determinant of an $n \times n$ random matrix with independent entries from an arbitrary distribution.

Another generalization is generalizing these results for $p \times n$ matrices (where we consider $E\left[\operatorname{det}\left(M M^{T}\right)^{\frac{k}{2}}\right]$ rather than $\left.E\left[\operatorname{det}(M)^{k}\right]\right)$. Dembo [1989] obtained the formula for the case that $k=2$ and subsequently, Beck [2022] obtained the formula for the fourth moment of random determinants in this setting.

1.1.2 The Distribution of the Determinant

Apart from the moments, the distribution of the determinant of a random matrix has also been of great interest. Girko [1980, 1998] demonstrated that, under certain assumptions, the logarithm of the determinant obeys a central limit theorem. Nguyen and Vu [2014] later provided a simpler proof for a stronger version of this theorem. Following this line of research, Tao and Vu [2006a] obtained the nearly tight result on the magnitude of determinant, that $\left|\operatorname{det} M_{n}\right| \geq \sqrt{n} e^{-29 \sqrt{n \log n}}$. Where they reduce the problem of computing the magnitude of determinant to computing the size of the volume of the parallelepiped spanned by n random $\{-1,1\}$ vectors.

Another line of inquiry has focused on the probability of a random $n \times n$ matrix with ± 1 entries being singular. In this line of work, Komlós [1967, 1968] was the first to prove that this probability is $o(1)$. Kahn et al. [1995] proved that this probability is at most $.999^{n}$, which was the first exponential upper bound. A series of works of Tao and Vu [2006b, 2007], Bourgain et al. [2010] improved this upper bound culminating in the work of Tikhomirov [2020] who proved an upper bound of $\left(\frac{1}{2}+o(1)\right)^{n}$, which is tight. For the symmetric case, Costello et al. [2006] showed that the probability that a random symmetric matrix with ± 1 entries is singular is $o(1)$. For a more comprehensive survey of the combinatorial properties of random matrix, we refer the interested readers to the survey by Vu [2020].

CHAPTER 2

BACKGROUND

In this section, we first give the background and definitions that will be used through this thesis.

Definition 2.0.1. Given a distribution Ω, we define $\mathcal{M}_{n \times n}(\Omega)$ to be the distribution of $n \times n$ matrices where each entry is drawn independently from Ω.

Definition 2.0.2. Given a distribution Ω, we define m_{k} to be the kth moment of Ω, i.e.,

$$
m_{k}=E_{x \sim \Omega}\left[x^{k}\right] .
$$

Definition 2.0.3. We define $f_{k}(n)=E_{M \sim \mathcal{M}_{n \times n}(\Omega)}\left[\operatorname{det}(M)^{k}\right]$ to be the expected value of the k-th power of the determinant of a random $n \times n$ matrix. Similarly, we define $p_{k}(n)$ to be the expected value of the k-th power of the permanent of a random $n \times n$ matrix.

Remark 2.0.4. Both $f_{k}(n)$ and $p_{k}(n)$ depend on the moments of Ω, but we write $f_{k}(n)$ and $p_{k}(n)$ rather than $f_{k, \Omega}(n)$ and $p_{k, \Omega}(n)$ for brevity.

2.1 Results

The first work on expressing the determinant of random matrices dates back to Fortet [1951] and Turán [1955], where Turán observed that the second moment of the determinant of an $n \times n$ matrix (where the entries have mean 0 and variance 1) is $n!$, and he also obtained the explicit formula for computing the second moment of random matrix where each entry is $\{-1,+1\}$. Later, Nyquist et al. [1954] showed the following result on the fourth moment.

Theorem 2.1.1. $f_{4}(n)=n!y_{n}$ where y_{n} obeys the recurrence relation

$$
y_{n}=\left(n+m_{4}-1\right) y_{n-1}+\left(3-m_{4}\right)(n-1) y_{n-2} .
$$

where $y_{0}=1$ and $y_{1}=m_{4}$.
They further observed that if we take the generating function $Y(t)=\sum_{t=0}^{\infty} \frac{y_{n} t^{n}}{n!}$ then $Y(t)=(1-t)^{-3} e^{\left(m_{4}-3\right) t}$. From this generating function, they found the equation

$$
f_{4}(n)=n!y_{n}=\frac{(n!)^{2}}{2} \sum_{k=0}^{n} \frac{(n-k+1)(n-k+2)}{k!}\left(m_{4}-3\right)^{k}
$$

To prove their results, Nyquist et al. [1954] counted $4 \times n$ tables with certain properties. As we describe in Section 3.3, we use the same general approach for the sixth moment though our analysis is considerably more intricate. Using the techniques mentioned above and combined with generating functions, we obtained the following results for the sixth moment of random determinants.

Theorem 2.1.2. For any distribution Ω such that $m_{1}=m_{3}=0$ and $m_{2}=1$, the formal generating function $F_{6}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{(n!)^{2}} f_{6}(n)$ for $f_{6}(n)$ is

$$
F_{6}(t)=\frac{e^{t\left(m_{6}-15 m_{4}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \sum_{i=0}^{\infty} \frac{(1+i)(2+i)(4+i)!t^{i}}{\left(1+3 t-m_{4} t\right)^{3 i}}
$$

Remark 2.1.3. Performing Taylor expansion of this generating function, we get the formula for computing the sixth moment of random determinants, namely:

Corollary 2.1.4. For any distribution Ω such that $m_{1}=m_{3}=0$ and $m_{2}=1$,

$$
f_{6}(n)=(n!)^{2} \sum_{j=0}^{n} \sum_{i=0}^{j} \frac{(1+i)(2+i)(4+i)!}{48(n-j)!}\binom{14+j+2 i}{j-i}\left(m_{6}-15 m_{4}+30\right)^{n-j}\left(m_{4}-3\right)^{j-i}
$$

Remark 2.1.5. If $m_{2} \neq 1$ then we can scale the distribution Ω by $\frac{1}{\sqrt{m_{2}}}$ (which changes the determinant of matrices in $\mathcal{M}_{n \times n}(\Omega)$ by a factor of $\left.\left(\frac{1}{\sqrt{m_{2}}}\right)^{n}\right)$ and then apply the result in Corollary 2.1.4.

Remark 2.1.6. If $\Omega=N(0,1)$ then $m_{4}=3$ and $m_{6}=15$ so $f_{6}(n)=P_{n}=\frac{n!(n+2)!(n+4)!}{48}$, which is a special case of the result that $f_{k}(n)=\prod_{j=0}^{\frac{k}{2}-1} \frac{(n+2 j)!}{(2 j)!}$ when $\Omega=N(0,1)$ and k is even.

Another generalization is when $m_{3} \neq 0$.

Theorem 2.1.7. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$, the formal generating function $F_{6}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{(n!)^{2}} f_{6}(n)$ for $f_{6}(n)$ is

$$
F_{6}(t)=\left(1+m_{3}^{2} t\right)^{10} \frac{e^{t\left(m_{6}-10 m_{3}^{2}-15 m_{4}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \sum_{i=0}^{\infty} \frac{(1+i)(2+i)(4+i)!t^{i}}{\left(1+3 t-m_{4} t\right)^{3 i}}
$$

Corollary 2.1.8. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$,

$$
f_{6}(n)=(n!)^{2} \sum_{j=0}^{n} \sum_{i=0}^{j} \sum_{k=0}^{n-j} \frac{(1+i)(2+i)(4+i)!}{48(n-j-k)!}\binom{10}{k}\binom{14+j+2 i}{j-i} q_{6}^{n-j-k} q_{4}^{j-i} q_{3}^{k},
$$

where

$$
q_{6}=m_{6}-10 m_{3}^{2}-15 m_{4}+30, \quad \quad q_{4}=m_{4}-3, \quad \quad q_{3}=m_{3}^{2}
$$

Below, we show the values of $f_{k}(n)$ and $p_{k}(n)$ when $\Omega=\{-1,1\}$ for small values of k and n. We note that when $\Omega=\{-1,1\}, f_{4}(n)$ is the integer sequence A052127 in the On-Line Encyclopedia of Integer Sequences Costello [2007]. In the entry for this integer sequence, it is noted that $f_{4}(n) \sim(n!)^{2} \frac{\left(n^{2}+7 n+10\right)}{\left(2 e^{2}\right)}$ as $n \rightarrow \infty$.

Remark 2.1.9. Note that for all $n \in \mathbb{N}, p_{2}(n)=f_{2}(n)$ and $p_{4}(n)=f_{4}(n)$. However, for $n \geq 3, p_{6}(n)>f_{6}(n)$.

We can describe the asymptotic behavior of f_{6} using the following asymptotic expansion.

n	$f_{2}(n)$	$f_{4}(n)$	$f_{6}(n)$	$p_{2}(n)$	$p_{4}(n)$	$p_{6}(n)$
1	1	1	1	1	1	1
2	2	8	32	2	8	32
3	6	96	1536	6	96	2976
4	24	2112	282624	24	2112	513024
5	120	68160	66846720	120	68160	157854720

Table 2.1: Values of $f_{k}(n)$ and $p_{k}(n)$ for $\Omega=\{-1,1\}, k \leq 6$, and $n \leq 5$

Theorem 2.1.10. For all $R \in \mathbb{N} \cup\{0\}$,

$$
f_{6}(n)=\frac{e^{3 q_{4}}(n!)^{2}}{48}\left(\sum_{k=0}^{R} c_{k}(n+6-k)!\right) \pm O\left((n!)^{2}(n+6-R-1)!\right)
$$

where the coefficients c_{k} are the Taylor expansion coefficients of the function $C(t)=\sum_{k \geq 0} c_{k} t^{k}$,

$$
\begin{aligned}
C(t)= & e^{\left(q_{6}-3 q_{4}^{2}\right) t+q_{4}^{3} t^{2}}\left(1+q_{3} t\right)^{10}\left(1-2\left(3 q_{4}+4\right) t\right. \\
& \left.+3\left(5 q_{4}^{2}+8 q_{4}+4\right) t^{2}-4\left(q_{4}^{2}\left(5 q_{4}+6\right)\right) t^{3}+q_{4}^{3}\left(15 q_{4}+8\right) t^{4}-6 q_{4}^{5} t^{5}+q_{4}^{6} t^{6}\right)
\end{aligned}
$$

Remark 2.1.11. For the first terms in the expansion, we have

$$
\begin{aligned}
f_{6}(n) & \sim \frac{e^{3 m_{4}-9}}{48}(n!)^{3}\left(n^{6}+\left(m_{6}-3 m_{4}^{2}-3 m_{4}+34\right) n^{5}+\frac{1}{2}\left(m_{6}^{2}-10 m_{3}^{4}\right.\right. \\
& \left.\left.+9 m_{4}^{4}+20 m_{4}^{3}-183 m_{4}^{2}-126 m_{4}-6 m_{4}^{2} m_{6}-6 m_{4} m_{6}+56 m_{6}+905\right) n^{4}+\cdots\right)
\end{aligned}
$$

Remark 2.1.12. Note that when $\Omega=\{-1,1\}$, as $n \rightarrow \infty$,

$$
f_{6}(n) \sim \frac{(n!)^{3}}{48 e^{6}}\left(n^{6}+29 n^{5}+335 n^{4}+\frac{5861 n^{3}}{3}+\frac{17944 n^{2}}{3}+\frac{44036 n}{5}+\frac{167536}{45}-\frac{210176}{63 n}\right) .
$$

Besides our result above, in this thesis we also have the results regrading symmetric matrix.

Definition 2.1.13. We define $f_{k}^{s y m}(n)=E_{M \sim \mathcal{M}_{n \times n}(\Omega)}\left[\operatorname{det}(M)^{k}\right]$ to be the expected value

n	$f_{2}^{\text {sym }}(n)$	$p_{2}^{\text {sym }}(n)$
1	1	1
2	2	2
3	8	8
4	44	44
5	244	244
6	1744	1744
7	13768	13768
8	127952	127952

Table 2.2: Values of $f_{2}^{\text {sym }}(n)$ for $\Omega=\{-1,1\}$ and $n \leq 8$
of the k-th power of the determinant of a random $n \times n$ symmetric matrix, where $M_{i j}$ are drawn independently from each other only when $i \leq j$, for the rest the values are copied across the main diagonal, i.e. $M_{i j}=M_{j i}$. Similarly, we define $p_{k}^{s y m}(n)$ to be the expected value of the k-th power of the permanent of a random $n \times n$ symmetric matrix.

Theorem 2.1.14. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$,

$$
f_{2}^{s y m}(n)=C_{n} n^{\frac{3}{2}} n!
$$

where $\lim _{n \rightarrow \infty} C_{n}=\frac{4 \sqrt{2 \pi} e^{-2}}{3}$.

2.2 Preliminaries

To prove the results mentioned above, we need a few definitions and a key lemma.

Definition 2.2.1. Given natural numbers k and n where k is even, we define an even $k \times n$ table to be a $k \times n$ table where each row is a permutation of $[n]$ and each column contains each number an even number of times. We define $T_{k, n}$ to be the set of all even $k \times n$ tables.

Definition 2.2.2. Given an even table t of size $k \times n$, we define its $\operatorname{sign} \operatorname{sgn}(t)$ to be the product of the signs of its rows, which are permutations of $[n]$.

Definition 2.2.3. Given a column c where each element is in $[n]$, we define its weight $w(c)$ to be

$$
w(c)=\prod_{j=1}^{n} m_{\# \text { of times } j \text { appears in column } \mathrm{c} .}
$$

For even $6 \times n$ tables, we say that a column is a 6 -column if it contains some number 6 times, a 4-column if it contains one number four times and another number two times, and a 2-column if it contains three different numbers two times. Observe that the weight of a 6 -column is m_{6}, the weight of a 4 -column is m_{4}, and the weight of a 2 -column is m_{2}.

Definition 2.2.4. Given an even $k \times n$ table t, we define its weight $w(t)$ to be the product of the weights of its columns.

We can use the following proposition to reduce the problem of finding the sixth moment of a random determinant to a combinatorial problem.

Proposition 2.2.5. For all even $k \in \mathbb{N}, f_{k}(n)=\sum_{t \in T_{k}(n)} \operatorname{sgn}(t) w(t)$ and $p_{k}(n)=\sum_{t \in T_{k}(n)} w(t)$.
Proof. We observe that

$$
f_{k}(n)=E_{A \sim \mathcal{M}_{n \times n}(\Omega)}\left[\sum_{\pi_{1}, \pi_{2}, \ldots, \pi_{k} \in S_{n}}\left(\prod_{i=1}^{k} \operatorname{sgn}\left(\pi_{i}\right)\right) \prod_{p=1}^{n}\left(\prod_{q=1}^{k} A_{p, \pi_{q}(p)}\right)\right]
$$

and

$$
p_{k}(n)=E_{A \sim \mathcal{M}_{n \times n}(\Omega)}\left[\sum_{\pi_{1}, \pi_{2}, \ldots, \pi_{k} \in S_{n}} \prod_{p=1}^{n}\left(\prod_{q=1}^{k} A_{p, \pi_{q}(p)}\right)\right] .
$$

For each $p \in[n]$, we have that $E_{A \sim \mathcal{M}_{n \times n}(\Omega)}\left[\prod_{q=1}^{k} A_{p, \pi_{q}(p)}\right]=w(p)$ (i.e., the weight of column p), so $f_{k}(n)=\sum_{t \in T_{k}(n)} \operatorname{sgn}(t) w(t)$ and $p_{k}(n)=\sum_{t \in T_{k}(n)} w(t)$, as needed.

Thus, computing the kth moment of a random determinant is equivalent to summing the signed weights of all even tables of size $k \times n$.

Corollary 2.2.6. If Ω is the uniform Bernoulli distribution (i.e., the uniform distribution on $\{-1,1\}$) then $f_{k}(n)=\sum_{t \in T_{k, n}} \operatorname{sgn}(t)$ and $p_{k}(n)=\left|T_{k, n}\right|$.

1	2	4	3
1	2	4	3
1	3	4	2
1	3	4	2
2	4	1	3
2	4	1	3

1	2	4	3
1	2	4	3
1	3	4	2
1	3	4	2
2	4	1	3
2	4	1	3

Corollary 2.2.7. If $k=2, k=4$, or $n \leq 2$ then $p_{k}(n)=f_{k}(n)$. If $n \geq 3, k \geq 6$, and k is even then $p_{k}(n)>f_{k}(n)$.

To analyze $f_{6}(n)$, it is useful to consider tables together with pairings of identical elements in each column.

Definition 2.2.8. Given an even $k \times n$ table t, we define a pairing P on t to be a set of matchings $\left\{M_{i}: i \in[n]\right\}$, one for each column, where each matching M_{i} pairs up identical elements of column i. We define $\mathcal{P}(t)$ to be the set of all pairings on t.

Example 2.2.9. The table on the left below is an even 6×4 table with 27 possible pairings. The table on the right shows one of the 27 possible parings.

Proposition 2.2.10. For each even $6 \times n$ table t,

Definition 2.2.11. We define $P_{n}=\sum_{t \in T_{k, n}} \operatorname{sgn}(t)|\mathcal{P}(t)|$.
It turns out that P_{n} can be easily computed and this is crucial for our results.

Lemma 2.2.12. For all $n \in \mathbb{N}, P_{n}=n(n+2)(n+4) P_{n-1}$ where $P_{0}=1$.

This lemma follows from the fact that when $\Omega=N(0,1)$ and k is even, the kth moment of the determinant is $\prod_{j=0}^{\frac{k}{2}-1} \frac{(n+2 j)!}{(2 j)!}$. We give a direct proof of this lemma in Appendix 3.3.3.

Note that $P_{n}=\sum_{t \in T_{k, n}} \operatorname{sgn}(t) 15 \#$ of 6 -columns in $\mathrm{t}_{3} \#$ of 4 -columns in t while
$f_{6}(n)=\sum_{t \in T_{k, n}} \operatorname{sgn}(t) m_{6} \#$ of 6 -columns in ${ }^{\mathrm{t}} m_{4} \#$ of 4 -columns in t . If $\Omega=N(0,1)$ (or we at
least have that $m_{2}=1, m_{4}=3$, and $\left.m_{6}=15\right)$ then $f_{6}(n)=P_{n}$. In the next section, we show how to handle other distributions Ω using inclusion/exclusion.

Now we introduce some tools for dealing with the determinants of random symmetric matrices. Instead of using tables, here we use graph to capture the symmetry between vertices.

Definition 2.2.13. Given natural numbers k and n where k is even, we define a even graph G to be a directed graph $G=(V, E, C)$ where $V=[n]$ and $\operatorname{deg}^{+}(v)=\operatorname{deg}^{-}(v)=k$ for all $v \in V . C: E \rightarrow[k]$ where the number of edges colored with $i \in[k]$ is n, and each connected components in the edge-induced subgraph of the same color class is a directed cycle. Furthermore, we require that each edges must appear in pairs regardless of direction and color. We define $\mathcal{G}_{k, n}$ to be the set of all even graphs with n vertices and $k n$ edges.

Definition 2.2.14. Given an even graph G of n vertices and $k n$ edges, we define its sign $\operatorname{sgn}(G)$ to be the product of the signs of its cycles, where each color edge-induced subgraph is a permutation of $[n]$.

Definition 2.2.15. Given an ordered pair of vertices i, j of G, we define its weight $w(i, j)$ to be

$$
w(c)=m_{\# \text { edges between } i, j}
$$

Definition 2.2.16. Given an even graph G of n vertices and $k n$ edges, we define its weight $w(G)$ to be the product of the weights of its pairs of vertices.

We can use the following proposition to reduce the problem of finding the sixth moment of a random determinant to a combinatorial problem.

Proposition 2.2.17. For all even $k \in \mathbb{N}, f_{k}^{s y m}(n)=\sum_{G \in \mathcal{G}_{k, n}} \operatorname{sgn}(G) w(G)$ and $p_{k}^{s y m}(n)=$ $\sum_{G \in \mathcal{G}_{k, n}} \operatorname{sgn}(G) w(G)$.

Proof. The proof is same to that of asymmetric case but note that here $x_{i j}=x_{j i}$.
Remark 2.2.18. $f_{2}^{\text {sym }}=p_{2}^{\text {sym }}$.
Example 2.2.19. The following graph corresponds to $\{2,1,5,3,4\},\{2,1,4,5,3\}$.

Figure 2.1: The even graph corresponds to $\{2,1,5,3,4\},\{2,1,4,5,3\}$

CHAPTER 3

RANDOM DETERMINANTS FOR ASYMMETRIC MATRICES

3.1 Second Moment

First we present the following result due to Turán [1955] as a warm-up for an application of the techniques of counting tables.

Theorem 3.1.1. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$,

$$
f_{2}(n)=n!
$$

Proof. By 2.2.5, $f_{2}(n)=\sum_{t \in T_{2}(n)} \operatorname{sgn}(t) w(t)$. For each table t in $T_{2}(n)$, we know that each column must have two identical numbers, so $\operatorname{sgn}(t)$ is always + and each of them has $w(t)=1$. Since there are $n!$ different choices for the first row and once the first row is selected the second row is determined automatically. We have $\left|T_{2}(n)=n!\right|$.

3.2 Fourth Moment

The following result is based on the proof by Nyquist et al. [1954].

Theorem 3.2.1. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1, f_{4}(n)=n!y_{n}$ where y_{n} obeys the recurrence relation

$$
y_{n}=\left(n+m_{4}-1\right) y_{n-1}+\left(3-m_{4}\right)(n-1) y_{n-2} .
$$

where $y_{0}=1$ and $y_{1}=m_{4}$.

Proof. By the same reasoning as 3.1.1, using 2.2.5, $f_{4}(n)$ is the number of $4 \times n$ tables which elements appear either two or four times in one column. For each of the table, the
contribution of an element to the overall weight is m_{4} if this element appears in a 4 -column and is unit if it appears in two 2-columns. For the sign of each table, denote the rows r_{1}, r_{2}, r_{3} and r_{4}. If we can group them into two pairs, such that, WLOG, $r_{1}=r_{2}$ and $r_{3}=r_{4}$, then we know that $\operatorname{sgn}\left(r_{1}\right) \operatorname{sgn}\left(r_{2}\right)=1$ and $\operatorname{sgn}\left(r_{3}\right) \operatorname{sgn}\left(r_{4}\right)=1$. So the table must has positive sign. Otherwise, assume that we can't group them into pairs, let c_{1}, c_{2} and c_{3} be columns that they can't match. Suppose the first row in these three columns is $\{a, b, c\}$, then the second row must be a derangement of the first row, o.w. then remaining two rows are automatically fixed and thus contradicted the assumption. So we assume that the second row is $\{b, c, a\}$. In this case, a, b must appear in the column c_{1} of r_{3} and r_{4}. Let $\left(r_{3}, c_{1}\right)=a$ and $\left(r_{4}, c_{1}\right)=b$. For the column c_{2}, we must have b and c. Since there is a b in r_{4}, we must have $\left(r_{3}, c_{2}\right)=b$, which forces $r_{1}=r_{3}$ and $r_{2}=r_{4}$. Therefore, the table always have positive sign.

To compute $f_{4}(n)$, we first fix the first row in natural order so that

$$
f_{4}(n)=n!* y_{n}
$$

Here, y_{n} is a function of the total weight of $4 \times n$ tables which elements appear either two or four times in one column but with the first row fixed to be the natural order.

For tables in $T_{4}(n)$ where the first row is fixed to be the natural order, we split them into two groups based on whether the element n is in a 4 -column or two 2 -columns. For the tables in the group of the first case, we can see the contribution is simply $y_{n-1} m_{4}$. For the latter case, we know one of the 2 -column with n is the last column because we have fixed the first row, and we have $n-1$ choices for the other 2 -column. Besides, we also need to choose which rows in the last column are not n, which gives us $\binom{3}{2}=3$ choices.

Without loss of generality, we may assume the last two columns to be

$$
\left\{\begin{array}{cc}
n-1 & n \\
n-1 & n \\
n & x \\
n & x
\end{array}\right\}
$$

We denote the contribution of this case as $z(n)$. In this case, x is an element that cannot be n. So among all the $n-1$ choices for x, if x is selected to be $n-1$, then the contribution of the case is y_{n-2}. If x is any of the other $n-2$ elements, the contribution is z_{n-1}. Therefore,

$$
\begin{gathered}
y(n)=m_{4} y_{n-1}+3(n-1) z_{n} \\
z(n)=y_{n-2}+(n-2) z_{n-1}
\end{gathered}
$$

By plugging in z_{n} to y_{n},

$$
y_{n}=\left(m_{4}+n-1\right) y_{n-1}+(n-1)\left(3-m_{4}\right) y_{n-2} .
$$

And it's easy to see the following base case: $y_{0}=1$ and $y_{1}=m_{4}$.

In order to solve the recurrence formula, we use the exponential generating function, where $Y(t)=\sum_{n \geq 0} \frac{y_{n} t^{n}}{n!}$. First by rearranging terms we get

$$
\left(3-m_{4}\right) y_{n-2}=\left(m_{4}-1\right) y_{n-1}+n y_{n-1}+n\left(3-m_{4}\right) y_{n-2}-y_{n} .
$$

This recurrence gives us the following differential equation:

$$
Y(t)=\frac{\left(m_{4}-1\right) Y^{\prime}(t)+t Y^{\prime \prime}(t)+\left(3-m_{4}\right) t Y^{\prime}(t)-Y^{\prime \prime}(t)}{3-m_{4}}
$$

By solving this differential equation, we get

$$
Y(t)=(1-t)^{-3} e^{t\left(m_{4}-3\right)}
$$

Which leads us the following explicit form for $f_{4}(n)$,

$$
f_{4}(n)=\frac{(n!)^{2}}{2} \sum_{k=0}^{n} \frac{(n-k+1)(n-k+2)}{k!}\left(m_{4}-3\right)^{k} .
$$

3.3 Sixth Moment

Before preceding to the proof of Theorem 2.1.2, we first prove the following result on the sixth moment of random determinants.

Lemma 3.3.1. For any distribution Ω such that $m_{1}=m_{3}=0$ and $m_{2}=1$,

$$
\begin{aligned}
f_{6}(n) & =\sum_{j=0}^{n} \sum_{a=0}^{j}\binom{n}{j}\binom{j}{a}\left(m_{6}-15\right)^{a}\left(m_{4}-3\right)^{(j-a)} D_{n, a, j-a} . \\
D_{n, a, b} & =\left(\prod_{j=0}^{a+b-1}(n-j)\right)\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, a, b}\right) P_{n-a-b} . \\
P_{n} & =n(n+2)(n+4) P_{n-1} \text { where } P_{0}=1 . \text { Equivalently, } P_{n}=\frac{n!(n+2)!(n+4)!}{2!4!} . \\
C_{n} & =(n-1)\left(C_{n-1}+15 C_{n-2}\right) \text { where } C_{0}=1 \text { and } C_{1}=0 . \\
H_{n, j, a, b} & =\sum_{x=1}^{j} \frac{\binom{j-1}{x-1}}{x!} j!\prod_{y=0}^{x-1}(3(n-a-b)-y) .
\end{aligned}
$$

Proof. The idea behind the proof is as follows. We consider the tables where we know that some set $A \subseteq[n]$ of elements appear six times in a 6 -column and another set $B \subseteq[n] \backslash A$ of elements appear four times in a 4 -column and two times in a different column. We do not know whether the elements in $[n] \backslash(A \cup B)$ appear six times in a 6 -column, appear four times in a 4-column and two times in a different column, or appear two times in three
different columns. We consider these tables together with pairings for the columns which are unaccounted for by A and B (i.e., the columns which don't contain six of the same element in A or four of the same element in $B)$.

To obtain $f_{6}(n)$, we compute the contribution from each A and B and then take an appropriate linear combination of these contributions so that the contribution from each individual table t is $\operatorname{sgn}(t) w(t)$.

Definition 3.3.2. Given $A \subseteq[n]$ and $B \subseteq[n] \backslash A$, we define $D_{n, A, B}$ to be the set of tables in $T_{6, n}$ such that the elements in A appear six times in a 6 -column and the elements in B appear four times in a 4 -column and two times in a different column.

For each $t \in D_{n, A, B}$, we define $\mathcal{P}_{A, B}(t)$ to be the set of pairings on t where we exclude the 6 -columns which contain six of the same element in A and the 4 -columns which include four of the same element in B.

By symmetry, the contribution from each $D_{n, A, B}$ only depends on $|A|$ and $|B|$.
Definition 3.3.3. Given $n, a, b \in \mathbb{N} \cup\{0\}$ such that $a+b \leq n$, we define $D_{n, a, b}$ to be

$$
D_{n, a, b}=\sum_{t \in D_{n, A, B}} \operatorname{sgn}(t)\left|\mathcal{P}_{A, B}(t)\right|
$$

where $A \subseteq[n], B \subseteq[n] \backslash A,|A|=a$, and $|B|=b$.
Lemma 3.3.4. For all $n \in \mathbb{N} \cup\{0\}, f_{6}(n)=\sum_{j=0}^{n} \sum_{a=0}^{j}\binom{n}{j}\binom{j}{a}\left(m_{6}-15\right)^{a}\left(m_{4}-3\right)^{(j-a)} D_{n, a, j-a}$.

Proof. Observe that

$$
\begin{aligned}
& \sum_{j=0}^{n} \sum_{a=0}^{j}\binom{n}{j}\binom{j}{a}\left(m_{6}-15\right)^{a}\left(m_{4}-3\right)^{(j-a)} D_{n, a, j-a} \\
& =\sum_{A \subseteq[n]} \sum_{B \subseteq[n] \backslash A} \sum_{t \in D_{n, A, B}}\left(m_{6}-15\right)^{|A|}\left(m_{4}-3\right)^{|B|} \operatorname{sgn}(t)\left|\mathcal{P}_{A, B}(t)\right| .
\end{aligned}
$$

Given a table $t \in T_{6, n}$, let A^{\prime} be the set of elements in $[n]$ which appear six times in a 6 -column of t and let B^{\prime} be the set of element which appear four times in a 4 -column of t. Now consider the contribution from t in

$$
\sum_{A \subseteq[n]} \sum_{B \subseteq[n] \backslash A} \sum_{t \in D_{n, A, B}}\left(m_{6}-15\right)^{|A|}\left(m_{4}-3\right)^{|B|} \operatorname{sgn}(t)\left|\mathcal{P}_{A, B}(t)\right| .
$$

We have that whenever $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}, t \in D_{n, A, B}$ and $\left|\mathcal{P}_{A, B}(t)\right|=15^{\left|A^{\prime} \backslash A\right|} 3^{\left|B^{\prime} \backslash B\right|}$. Thus, the contribution from t is
$\sum_{A \subseteq A^{\prime}} \sum_{B \subseteq B^{\prime}}\left(m_{6}-15\right)^{|A|}\left(m_{4}-3\right)^{|B|} 15^{\left|A^{\prime} \backslash A\right|} 3^{\left|B^{\prime} \backslash B\right|} \operatorname{sgn}(t)=m_{6}{ }^{\left|A^{\prime}\right|} m_{4}{ }^{\left|B^{\prime}\right|} \operatorname{sgn}(t)=\operatorname{sgn}(t) w(t)$.
This implies that

$$
\sum_{j=0}^{n} \sum_{a=0}^{j}\binom{n}{j}\binom{j}{a}\left(m_{6}-15\right)^{a}\left(m_{4}-3\right)^{(j-a)} D_{n, a, j-a}=\sum_{t \in T_{6, n}} \operatorname{sgn}(t) w(t)=f_{6}(n)
$$

as needed.

We now compute $D_{n, a, b}$.
Lemma 3.3.5. For all $n, a, b \in \mathbb{N} \cup\{0\}$ such that $a+b \leq n$,

$$
D_{n, a, b}=\left(\prod_{j=0}^{a+b-1}(n-j)\right)\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, a, b}\right) P_{n-a-b}
$$

where C_{n} is given by the recurrence relation $C_{n}=(n-1)\left(C_{n-1}+15 C_{n-2}\right), C_{0}=1, C_{1}=0$ and

$$
H_{n, j, a, b}=\sum_{x=1}^{j} \frac{\binom{j-1}{x-1}}{x!} j!\prod_{y=0}^{x-1}(3(n-a-b)-y)
$$

Proof. To prove this lemma, we group the tables in $D_{n, A, B}$ based on the structure of the

1	2	3	4	5
1	2	3	4	5
1	2	5	3	4
1	2	5	3	4
2	1	3	4	5
2	1	3	4	5

Figure 3.1: A 6×5 table $t \in D_{5, \emptyset,[5]}$

Figure 3.2: The associated $G(t)$

4-columns containing four of the same element of B.
Definition 3.3.6. Given a table $t \in D_{n, A, B}$, we define the directed graph $G(t)$ to be the graph with vertices $B \cup\{$ center $\}$ and the following edges. For each $b \in B$,

1. If there is a $b^{\prime} \in B \backslash\{b\}$ such that there are two b in the 4 -column containing four b^{\prime} then we add an edge from b to b^{\prime}.
2. If there is no such b^{\prime} then we add an edge from b to center.

Proposition 3.3.7. For all $t \in D_{n, A, B}, G(t)$ has the following properties.

1. For all $b \in B{\text {, } \operatorname{deg}^{+}}^{(b)}=1$ and $\operatorname{deg}^{-}(b) \leq 1$.
2. $\operatorname{deg}^{+}($center $)=0$.

Corollary 3.3.8. For all $t \in D_{n, A, B}, G(t)$ consists of directed cycles and paths which end at center, all of which are disjoint except for their common endpoint.

Example 3.3.9. This example shows the correspondence between a table t and $G(t)$.
We now consider how many ways there are to start with a table $t \in T_{6, n-a-b}$ together with a pairing $P \in \mathcal{P}$ and construct a table $t^{\prime} \in D_{n, A, B}$ (we will automatically have that the sign of t and the pairing P is preserved). Before giving the entire analysis, we describe the parts of the analysis corresponding to the cycles and paths of $G\left(t^{\prime}\right)$ as these are the trickiest parts of the analysis.

Definition 3.3.10. Define C_{n} to be the number of tables $t \in D_{n, \emptyset,[n]}$ such that $G(t)$ consists of directed cycles and for each $i \in[n]$, column i contains four i.

Lemma 3.3.11. For all $n \geq 2, C_{n}=(n-1)\left(C_{n-1}+15 C_{n-2}\right)$ where $C_{0}=1$ and $C_{1}=0$.
Proof. Consider a vertex $i \in[n] . G(t)$ contains an edge from i to j for some $j \in[n] \backslash\{i\}$. Note that there are $n-1$ possibilities for j. We now have two cases. The first case is that there is an edge from j to a vertex $k \in[n] \backslash\{i, j\}$. In this case, we can remove the vertex j and the edges $(i, j),(j, k)$ and add an edge from i to k. The number of possibilities for this case (for a fixed j) is C_{n-1}. The second case is that there is an edge from j back to i, i.e., i and j are in a directed cycle of length 2 . The number of possibilities for this case (for a fixed $j)$ is $15 C_{n-2}$ as there are 15 possibilities for which rows of column i contain j and there are C_{n-2} possibilities for the remaining $n-2$ columns.

Adding these two cases together and summing over all possible $j \in[n] \backslash\{i\}$, we have that $C_{n}=(n-1)\left(C_{n-1}+15 C_{n-2}\right)$, as needed.

To handle paths, we first count the number of possible graphs $G(t)$ with a given number of paths to center and no cycles with the following lemma.
Lemma 3.3.12. Let $B^{\prime} \subseteq[n]$ and take $j=\left|B^{\prime}\right|$. For all $x \in[j]$, there are $\frac{\binom{j-1}{x-1}}{x!} j$! possible graphs $G(t)$ on the vertices $B^{\prime} \cup\{$ center $\}$ which consist of x disjoint paths to center and no cycles.

Proof. We can specify each such graph as follows:

1. Choose an ordering for the elements of B^{\prime}. There are j ! possibilities for this ordering.
2. Choose the x paths by putting $x-1$ dividing lines among the elements of B^{\prime}. Since each path must have at least one vertex in B^{\prime}, there are $\binom{j-1}{x-1}$ possibilities for this.

However, if we do this, each graph is counted x ! times, one for each possible ordering of the x paths. Thus, the number of such graphs is $\frac{\binom{j-1}{x-1}}{x!} j$!, as needed.

In order to have a path $\left(b_{1}, b_{2}\right),\left(b_{2}, b_{3}\right), \ldots,\left(b_{l}\right.$, center) in $G(t)$, a pair of elements from the columns corresponding to center must be placed into the column containing four b_{1}. The two displaced b_{1} must then be placed into the same rows of the column containing four b_{2}. Continuing in this way, we are left with two b_{l} which replace the original pair of elements from center. Thus, to specify the contents of the columns corresponding to the paths in $G(t)$, it is necessary and sufficient to choose a pair from the columns corresponding to center for each path. Note that these pairs must be different as otherwise we would not end up with disjoint paths.

We now give the entire analysis for $D_{n, a, b}$. Given $A \subseteq[n]$ and $B \subseteq[n] \backslash A$, we can compute $D_{n, a, b}=\sum_{t \in D_{n, A, B}} \operatorname{sgn}(t)\left|\mathcal{P}_{A, B}(t)\right|$ as follows. As before, we take $a=|A|$ and $b=|B|$.

1. For each $a \in A$, we choose which column contains six a. Similarly, for each $b \in B$, we choose which column contains four b. The number of choices for this is $\prod_{j=0}^{a+b-1}(n-j)$.
2. After choosing these columns, we choose a table $t \in T_{6, n-a-b}$ and a pairing $P \in \mathcal{P}(t)$ to fill in the remaining columns. This gives a factor of P_{n-a-b}.
3. We split into cases based on the number of vertices i in $G(t)$ which are contained in cycles. For each i, we choose which $\binom{b}{i}$ of the elements in B are contained in cycles. By Lemma 3.3.11, once these elements are chosen there are C_{i} possibilities for the columns containing these elements.
4. There are now $j=b-i$ elements of B which are contained in paths. We further split into cases based on the number x of paths in $G(t)$. By Lemma 3.3.12, there are $\frac{\binom{j-1}{x-1}}{x!} j$! possibilities for what these paths are in $G(t)$.

As discussed above, for each of the x paths we need to choose a different pair in P. The number of choices for these pairs is $\prod_{y=0}^{x-1}(3(n-a-b)-y)$. Summing all of these
possibilities up gives a factor of

$$
H_{n, j, a, b}=\sum_{x=1}^{j} \frac{\binom{j-1}{x-1}}{x!} j!\prod_{y=0}^{x-1}(3(n-a-b)-y)
$$

Putting everything together, we have that

$$
D_{n, a, b}=\left(\prod_{j=0}^{a+b-1}(n-j)\right)\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, a, b}\right) P_{n-a-b}
$$

as needed.

We now simplify the terms in Lemma 3.3.1.

Proposition 3.3.13.

$$
H_{n, j, a, b}=\frac{(3(n-a-b)+j-1)!}{(3(n-a-b)-1)!}
$$

Proof. Originally,

$$
H_{n, j, a, b}=\sum_{x=1}^{j} \frac{\binom{j-1}{x-1}}{x!} j!\prod_{y=0}^{x-1}(3(n-a-b)-y)
$$

Denote $z=3(n-a-b)$. For the inner product, we can write

$$
\prod_{y=0}^{x-1}(3(n-a-b)-y)=\frac{z!}{(z-x)!}
$$

so

$$
H_{n, j, a, b}=\sum_{x=1}^{j} \frac{\binom{j-1}{x-1}}{x!} \frac{j!z!}{(z-x)!}=j!\sum_{x=1}^{j}\binom{j-1}{x-1}\binom{z}{x}=j!\binom{z+j-1}{j}
$$

The last equality is a special case of the Chu-Vandermonde Identity.
Lemma 3.3.14. Let S_{n} be the set of all permutations of order n and D_{n} the set of all derangements of the same order. That means, D_{n} is a subset of those permutations in S_{n}
which have no fixed points. Denote $C(\pi)$ the number of cycles in a permutation π, then

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{\pi \in D_{n}} u^{C(\pi)}=\frac{e^{-u x}}{(1-x)^{u}}
$$

Proof. For a derivation, see the chapter on Bivariate generating functions in Flajolet and Sedgewick [2009].

Corollary 3.3.15.

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n!} C_{n}=\frac{e^{-15 x}}{(1-x)^{15}}
$$

Proof. An alternative way how to write C_{n} is via $C_{n}=\sum_{\pi \in D_{n}} 15^{C(\pi)}$.
With these simplifications, we can derive an expression for the generating function

$$
F_{6}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{(n!)^{2}} f_{6}(n)
$$

By Lemma 3.3.1,

$$
F_{6}(t)=\sum_{0 \leq a \leq j \leq n} \frac{t^{n}}{(n!)^{2}}\binom{n}{j}\binom{j}{a}\left(m_{6}-15\right)^{a}\left(m_{4}-3\right)^{(j-a)} D_{n, a, j-a}
$$

Summing with respect to $b=j-a$ instead of a and observing that

$$
\begin{aligned}
D_{n, a, b} & =\left(\prod_{k=0}^{a+b-1}(n-k)\right)\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, a, b}\right) P_{n-a-b} \\
& =\frac{n!}{(n-j)!}\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, j-b, b}\right) P_{n-j} \\
& =n!\left(\sum_{i=0}^{b}\binom{b}{i} C_{i} H_{n, b-i, j-b, b}\right) \frac{(n-j+2)!(n-j+4)!}{48}
\end{aligned}
$$

we have that
$F_{6}(t)=\sum_{0 \leq i \leq b \leq j \leq n} \frac{t^{n}}{n!}\binom{n}{j}\binom{j}{b}\binom{b}{i}\left(m_{6}-15\right)^{(j-b)}\left(m_{4}-3\right)^{b} \frac{(n-j+2)!(n-j+4)!}{48} H_{n, b-i, j-b, b} C_{i}$.
By Proposition 3.3.13, $H_{n, b-i, j-b, b}=(3 n-3 j+b-i-1)!/(3 n-3 j-1)!$. Using the reparametrization $b=i+s, j=b+r, n=j+q$, where s, r, q goes from 0 to ∞, we get

$$
F_{6}(t)=\sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{i=0}^{\infty} \frac{t^{i+s+r+q}}{q!r!s!i!}\left(m_{6}-15\right)^{r}\left(m_{4}-3\right)^{(i+s)} \frac{(q+2)!(q+4)!}{48} \frac{(3 q+s-1)!}{(3 q-1)!} C_{i} .
$$

Grouping the terms to separate the dependence on r, s, and i, we have that $F_{6}(t)$ equals
$\sum_{q=0}^{\infty} \frac{t^{q}}{q!} \frac{(q+2)!(q+4)!}{48}\left(\sum_{r=0}^{\infty} \frac{t^{r}\left(m_{6}-15\right)^{r}}{r!}\right)\left(\sum_{s=0}^{\infty} \frac{t^{s}}{s!} \frac{(3 q+s-1)!}{(3 q-1)!}\left(m_{4}-3\right)^{s}\right)\left(\sum_{i=0}^{\infty} \frac{t^{i}}{i!}\left(m_{4}-3\right)^{i} C_{i}\right)$.

Summing all the inner sums (the rightmost using Corollary 3.3.15),

$$
\begin{aligned}
F_{6}(t)= & \sum_{q=0}^{\infty} \frac{t^{q}}{q!} \frac{(q+2)!(q+4)!}{48} e^{t\left(m_{6}-15\right)} \frac{1}{\left(1-t\left(m_{4}-3\right)\right)^{3 q}} \frac{e^{-15 t\left(m_{4}-3\right)}}{\left(1-t\left(m_{4}-3\right)\right)^{15}} . \\
& \text { 3.3.1 Generalization for arbitrary third moment }
\end{aligned}
$$

Restating Proposition 2.2.5, we can write

$$
f_{6}(n)=\sum_{t \in T_{6, n}} w(t) \operatorname{sign}(t)
$$

where $T_{6, n}$ is the set of all permutation tables of length n with six rows (six-tables) whose columns fall in one of the following categories

- 6-columns: six copies of a single number (weight m_{6})
- 4-columns: four copies of one number and two copies of a distinct number (weight m_{4})
- 2-columns: three pairs of distinct numbers (weight 1)

The weight $w(t)$ of the table t is then simply a product of weights of its columns. To avoid ambiguity, we write $f_{6}^{*}(n)$ for $f_{6}(n)$ with m_{3} being generally nonzero. We then define $T_{6, n}^{*}$ as the set of all six-tables having the following extra columns

- 3-columns: three copies of one number and three copies of a distinct number (weight $\left.m_{3}^{2}\right)$

Similarly, it must hold that

$$
f_{6}^{*}(n)=\sum_{t \in T_{6, n}^{*}} w(t) \operatorname{sgn}(t)
$$

Proposition 3.3.16.

$$
f_{6}^{*}(n)=\sum_{j=0}^{n}\binom{n}{j}^{2} f_{6}(n-j) j!m_{3}^{2 j}(-1)^{j} \sum_{\pi \in D_{j}}(-10)^{C(\pi)}
$$

Proof. The key is to group the summands according to the 3 -columns in t. Those columns form a subtable s and the rest of the columns form another, complementary subtable t^{\prime}. The signs of those tables are related as

$$
\operatorname{sgn}(t)=\operatorname{sgn}(s) \operatorname{sgn}\left(t^{\prime}\right)
$$

Denote $[n]=\{1,2,3, \ldots, n\}$. For a given $J \subset[n]$, we define $T_{6, J}$ a set of all six-tables of length $j=|J|$ composed with numbers in J. The set $T_{6, n}$ coincides with $T_{6,[n]}$. Denote $Q_{6, J}$ as the set of all six-tables composed only from 3-columns of numbers in J. We can write our sum, since the selection J does not depend on position in table t, as

$$
f_{6}^{*}(n)=\sum_{J \subset[n]}\binom{n}{j} \sum_{t^{\prime} \in T_{6,[n] / J}} w(t) \operatorname{sgn}(t) \sum_{s \in Q_{6, J}} w(s) \operatorname{sgn}(s) .
$$

No matter which numbers J are selected, as long as we select the same amount of them, the contribution is the same. Hence,

$$
f_{6}^{*}(n)=\sum_{j=0}^{n}\binom{n}{j}^{2} \sum_{t^{\prime} \in T_{6, n-j}} w(t) \operatorname{sgn}(t) \sum_{s \in Q_{6, j}} w(s) \operatorname{sgn}(s)
$$

where $Q_{6, j}=Q_{6,[j]}$. The first inner sum is simply $f_{6}(n-j)$. For the second inner sum, by symmetry, we can fix the first permutation in s to be identity. Upon noticing also that $w(s)=m_{3}^{2 j}$, we get

$$
\sum_{s \in Q_{6, j}} w(s) \operatorname{sgn}(s)=j!m_{3}^{2 j} \sum_{\substack{s \in Q_{6, j} \\ s_{1}=\mathrm{id}}} \operatorname{sgn}(s) .
$$

We group the summands according to the following permutation structure: Let b be a number in the first row of a given column of table s. Since it is a 3 -column, we denote the other number in the column as b^{\prime}. We construct a permutation $\pi(s)$ to a given table s as composed from all those pairs $b \rightarrow b^{\prime}$. Then

$$
\operatorname{sgn}(s)=\operatorname{sign}(\pi(s))=(-1)^{j-C(\pi(s))} .
$$

Note that since b and b^{\prime} are always different, the set off all $\pi(s)$ corresponds to the set D_{j} of all derangements. Since there are 10 possibilities how to arrange the leftover 5 numbers in the 3-columns corresponding to a given cycle of $\pi(s)$, we get

$$
\sum_{s \in Q_{6, j}} w(s) \operatorname{sgn}(s)=j!m_{3}^{2 j}(-1)^{j} \sum_{\pi \in D_{j}}(-1)^{C(\pi)} 10^{C(\pi)}
$$

and thus, all together

$$
f_{6}^{*}(n)=\sum_{j=0}^{n}\binom{n}{j}^{2} f_{6}(n-j) j!m_{3}^{2 j}(-1)^{j} \sum_{\pi \in D_{j}}(-10)^{C(\pi)} .
$$

Corollary 3.3.17.

$$
F_{6}^{*}(t)=\left(1+m_{3}^{2} t\right)^{10} e^{-10 m_{3}^{2} t} F_{6}(t)
$$

Proof. In terms of generating functions,

$$
\begin{aligned}
F_{6}^{*}(t) & =\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} f_{6}^{*}(n)=\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{t^{n-j}}{(n-j)!^{2}} f_{6}(n-j) \frac{\left(-m_{3}^{2} t\right)^{j}}{j!} \sum_{\pi \in D_{j}}(-10)^{C(\pi)} \\
& =F_{6}(t) \sum_{j=0}^{\infty} \frac{\left(-m_{3}^{2} t\right)^{j}}{j!} \sum_{\pi \in D_{j}}(-10)^{C(\pi)}=F_{6}(t) \frac{e^{-10 m_{3}^{2} t}}{\left(1+m_{3}^{2} t\right)^{-10}}
\end{aligned}
$$

The final equality is a special case of Lemma 3.3.14. Theorem 2.1.7 follows.

3.3.2 Asymptotics

The proof relies directly on the calculus developed by Borinsky [2018], enabling us to extract the asymptotic behaviour of coefficients from their factorially divergent generating function. We use the following result from Borinsky [2018]:

Definition 3.3.18. We say a formal power series $f(t)=\sum_{n \geq 0} f_{n} t^{n}$ is factorially divergent of type (α, β), if $f_{n} \sim \sum_{k=0}^{R} c_{k} \alpha^{n+\beta-k} \Gamma(n+\beta-k)$ as $n \rightarrow \infty$ for any fixed R integer. We also define an operator $\mathcal{A}_{\beta}^{\alpha}$ acting of $f(t)$ such that $\left(\mathcal{A}_{\beta}^{\alpha} f\right)(t)=\sum_{k \geq 0} c_{k} t^{k}$. If moreover $f(t)$ is analytic at 0 , then $\left(\mathcal{A}_{\beta}^{\alpha} f\right)(t)=0$.

Lemma 3.3.19. Let $f(t)$ and $g(t)$ be two factorially divergent power series of type (α, β), then

$$
\begin{aligned}
\left(\mathcal{A}_{\beta}^{\alpha}(f g)\right)(t) & =\left(\mathcal{A}_{\beta}^{\alpha} f\right)(t) g(t)+f(t)\left(\mathcal{A}_{\beta}^{\alpha} g\right)(t), \\
\left(\mathcal{A}_{\beta}^{\alpha}(f \circ g)\right)(t) & =f^{\prime}(g(t))\left(\mathcal{A}_{\beta}^{\alpha} g\right)(t)+\left(\frac{t}{g(t)}\right)^{\beta} e^{\frac{1}{t}-\frac{1}{g(t)}}\left(\mathcal{A}_{\beta}^{\alpha} f\right)(g(t)),
\end{aligned}
$$

where the second equality holds when $g(t)=1+t+O\left(t^{2}\right)$.

Recall Theorem 2.1.7, which states

$$
F_{6}(t)=\left(1+m_{3}^{2} t\right)^{10} \frac{e^{t\left(m_{6}-10 m_{3}^{2}-15 m_{4}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \sum_{i=0}^{\infty} \frac{(1+i)(2+i)(4+i)!t^{i}}{\left(1+3 t-m_{4} t\right)^{3 i}}
$$

Hence, we can write $F_{6}(t)=h(t) f(g(t))$, where

$$
\begin{aligned}
& f(t)=\sum_{i=0}^{\infty}(1+i)(2+i)(4+i)!t^{i}, \\
& g(t)=\frac{t}{\left(1+3 t-m_{4} t\right)^{3}}, \quad h(t)=\left(1+m_{3}^{2} t\right) 10 \frac{e^{t\left(m_{6}-10 m_{3}^{2}-15 m_{4}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}}
\end{aligned}
$$

are factorially divergent of type $(1,7)$ since

$$
(1+i)(2+i)(4+i)!=\Gamma(i+7)-8 \Gamma(i+6)+12 \Gamma(i+5)
$$

and $g(t)$ and $h(t)$ are analytic. Thus, by Lemma 3.3.19,

$$
\left(\mathcal{A}_{7}^{1} F_{6}\right)(t)=h(t)\left(\frac{t}{g(t)}\right)^{7} e^{\frac{1}{t}-\frac{1}{g(t)}}\left(\mathcal{A}_{7}^{1} f\right)(g(t))=h(t)\left(\frac{t}{g(t)}\right)^{7} e^{\frac{1}{t}-\frac{1}{g(t)}}\left(1-8 g(t)+12 g^{2}(t)\right) .
$$

Apart from a factor $(n!)^{2} e^{3\left(m_{4}-3\right)} / 48$, this is our function $C(t)$ from the original statement of Theorem 2.1.10.

For $\Omega=\{-1,1\}$, the asymptotic expression

$$
f_{6}(n) \sim \frac{(n!)^{3}}{48 e^{6}}\left(n^{6}+29 n^{5}+335 n^{4}+\frac{5861 n^{3}}{3}+\frac{17944 n^{2}}{3}+\frac{44036 n}{5}+\frac{167536}{45}-\frac{210176}{63 n}\right)
$$

gives an excellent approximation to $f_{6}(n)$ for $n \geq 10$. The following figure shows the ratio of this asymptotic expression to the actual value of $f_{6}(n)$ for n up to 20 .

Figure 3.3: The ratio between the asymptotic expression and $f_{6}(n)$ for $\Omega=\{-1,1\}$

3.3.3 Direct proof of Lemma 2.2.12

Lemma. (Restatement of Lemma 2.2.12). For all $n \in \mathbb{N}$, $P_{n}=n(n+2)(n+4) P_{n-1}$ where $P_{0}=1$.

Proof. We recursively compute $P_{n}=\sum_{t \in T_{k, n}} \operatorname{sgn}(t)|\mathcal{P}(t)|$ based on where the six n are located in t.

We can count the cases where all of the n are in a 6 -column as follows. Given a table $t \in T_{k, n-1}$ and a pairing $P \in \mathcal{P}(t)$, we can obtain a table $t^{\prime} \in T_{k, n}$ and a pairing $P^{\prime} \in \mathcal{P}(t)$ by choosing a location for the 6 -column, choosing a pairing for this column, and using t and P to fill in the remainder of t^{\prime} and P^{\prime}. There are n possible places for the 6 -column, it has 15 possible pairings, and $\operatorname{sgn}\left(t^{\prime}\right)=\operatorname{sgn}(t)$, so this gives a contribution of $15 n P_{n-1}$.

We can count the cases where four of the n are in a 4-column and two of the n appear in a different column as follows. Given a table $t \in T_{k, n-1}$ and a pairing $P \in \mathcal{P}(t)$, we can obtain a table $t^{\prime} \in T_{k, n}$ and a pairing $P^{\prime} \in \mathcal{P}(t)$ with the following steps:

1. Choose which column will be the 4 -column containing four of the n. We initially put all six n in this column.
2. Fill in the remaining columns using t and P.
3. Choose one of the $3(n-1)$ pairs in P and swap two of the n with this pair.
4. Choose a pairing for the remaining four n.

There are n possible places for the 4 -column containing four of the n, there are $3(n-1)$ pairs in P which can be swapped with two of the n, there are 3 different pairings for the remaining four n, and $\operatorname{sgn}\left(t^{\prime}\right)=\operatorname{sgn}(t)$, so this gives a contribution of $3 * 3 * n(n-1) * P_{n-1}=9 n(n-1) P_{n-1}$.

The trickiest case to analyze is the case when the six n are split into three different columns. The idea for this case is that there is a correspondence between sets of 2 columns containing pairs of the elements a, b, c, d, e, f and sets of 3 columns containing pairs of the elements a, b, c, d, e, f where each column also contains a pair of n. This correspondence is highly non-trivial and relies on the signs of the permutations.

Definition 3.3.20. Let $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ be six sets such that each set S_{i} contains two of the elements $\{a, b, c, d, e, f\}$ and each element in $\{a, b, c, d, e, f\}$ is contained in two of the sets $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$.

We define $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ to be the set of 6×2 tables t such that the ith row contains the elements in S_{i} and each element appears an even number of times in each column. Similarly, we define $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ to be the set of 6×3 tables t such that the ith row contains the elements in $S_{i} \cup\{n\}$ and each element appears an even number of times in each column.

For each $t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, we define $\operatorname{sgn}(t)$ to be the product of the signs of the rows of t where row i of t has sign 1 if the elements of S_{i} appear in order and sign -1 if the elements of S_{i} appear out of order. Similarly, for each $t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, we define $\operatorname{sgn}(t)$ to be the product of the signs of the rows of t where row i of t has $\operatorname{sign} 1$ if it takes an even number of swaps to transform it into $S_{i} \cup\{n\}$ and -1 if it takes an odd number of swaps to transform it into $S_{i} \cup\{n\}$.

Lemma 3.3.21. For all possible $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$,

$$
\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=6 \sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)
$$

Corollary 3.3.22. For all $n \in \mathbb{N}$,

$$
\sum_{t \in T_{6, n}: n \text { appears in } 3 \text { different columns }} \operatorname{sgn}(t)|\mathcal{P}(t)|=n(n-1)(n-2) P_{n-1} .
$$

Proof. Recall that

$$
\sum_{t \in T_{6, n-1}} \operatorname{sgn}(t)|\mathcal{P}(t)|=P_{n-1} .
$$

We now apply Lemma 3.3 .21 to the first two columns of the pairs (t, P) where $t \in T_{6, n-1}$ and $P \in \mathcal{P}(t)$. To do this, we use P to relabel the elements in the first two columns as a, b, c, d, e, f. One way to do this is as follows. We go through the rows one by one and assign the next unused label(s) to the element(s) which whose pair has not yet appeared. If there are two such elements, we assign the first unused label to the lower element and the next unused label to the higher element. If both elements are the same, we assign the first unused label to the column where the pair of this element appears first. If there is still a tie, we assign the same label to both elements and skip the next label. Lemma 3.3.21 still holds in this case as having $S_{i}=S_{j}=\{a, a\}$ instead of $S_{i}=S_{j}=\{a, b\}$ divides both sides by 2 .

After doing this relabeling, for each $i \in[6]$, we take S_{i} to be the first two elements in row i. Applying Lemma 3.3.21, we obtain tables t^{\prime} and pairings P^{\prime} by taking P^{\prime} to be the unique pairing for each column and inverting the labeling of the elements in the first two columns of t by $\{a, b, c, d, e, f\}$. This implies that whenever $n \geq 3$,

$$
\sum_{t \in T_{6, n}: n \text { appears in the first three columns }} \operatorname{sgn}(t)|\mathcal{P}(t)|=6 \sum_{t \in T_{6, n-1}} \operatorname{sgn}(t)|\mathcal{P}(t)|=6 P_{n-1} .
$$

There are $\binom{n}{3}=\frac{n(n-1) n-2)}{6}$ possibilities for which 3 columns contain n so we have that

$$
\sum_{s \text { in } 3 \text { different columns }} \operatorname{sgn}(t)|\mathcal{P}(t)|=n(n-1)(n-2) P_{n-1} \text {, }
$$

as needed.

Summing these three cases up, we have

$$
\begin{aligned}
P_{n} & =15 n P_{n-1}+9 n(n-1) P_{n-1}+n(n-1)(n-2) P_{n-1} \\
& =\left(n^{3}+6 n^{2}+8 n\right) P_{n-1}=n(n+2)(n+4) P_{n-1} .
\end{aligned}
$$

We now prove Lemma 3.3.21.

Proof of Lemma 3.3.21. Up to permutations of the rows and $\{a, b, c, d, e, f\}$, we have the following four cases for $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$:

1. $S_{1}=S_{2}=\{a, b\}, S_{3}=S_{4}=\{c, d\}$, and $S_{5}=S_{6}=\{e, f\}$.
2. $S_{1}=S_{2}=\{a, b\}, S_{3}=\{c, d\}, S_{4}=\{c, e\}, S_{5}=\{d, f\}$, and $S_{6}=\{e, f\}$.
3. $S_{1}=\{a, b\}, S_{2}=\{a, c\}, S_{3}=\{b, d\}, S_{4}=\{d, e\}, S_{5}=\{c, f\}$, and $S_{6}=\{e, f\}$.
4. $S_{1}=\{a, b\}, S_{2}=\{a, c\}, S_{3}=\{b, c\}, S_{4}=\{d, e\}, S_{5}=\{d, f\}$, and $S_{6}=\{e, f\}$.

We can see that these are the only possibilities as follows. If we construct a multi-graph where the vertices are $\{a, b, c, d, e, f\}$ and the edges are $\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$ then in this multi-graph, every vertex will have degree 2 .

1. If there is a cycle of length 2 then for the remaining 4 vertices, we will either have two more cycles of length 2 or a cycle of length 4 . This gives cases 1 and 2 .
2. If there is a cycle of length 3 then there must be another cycle of length 3 on the remaining vertices. This gives case 4 .
3. If there are no cycles of length 2 or 3 then we must have a cycle of length 6 . This gives case 3.

For the first three cases, $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ is nonempty as shown by the examples below. For the fourth case, $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ is empty.

$$
\left\{\begin{array}{ll}
a & b \\
a & b \\
c & d \\
c & d \\
e & f \\
e & f
\end{array}\right\},\left\{\begin{array}{ll}
a & b \\
a & b \\
c & d \\
c & e \\
f & d \\
f & e
\end{array}\right\},\left\{\begin{array}{ll}
a & b \\
a & c \\
d & b \\
d & e \\
f & c \\
f & e
\end{array}\right\}
$$

For all four cases, $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ is nonempty as shown by the examples below.

$$
\left\{\begin{array}{lll}
a & b & n \\
a & b & n \\
c & n & d \\
c & n & d \\
n & e & f \\
n & e & f
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & b & n \\
c & n & d \\
c & n & e \\
n & f & d \\
n & f & e
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & c & n \\
n & b & d \\
e & n & d \\
n & c & f \\
e & n & f
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & n & c \\
n & b & c \\
d & e & n \\
d & n & f \\
n & e & f
\end{array}\right\}
$$

We now show that for each of the four cases,

$$
\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=6 \sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)
$$

1. For the first case, $\left|T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)\right|=8$ as we can choose the order of $\{a, b\}$
in row 1 , the order of $\{c, d\}$ in row 3 , and the order of $\{e, f\}$ in row 5. All $t \in$ $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ have positive sign as rows 2,4 , and 6 must be the same as rows 1,3 , and 5 . Thus, $\sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=8$.

To analyze $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, observe that there are 6 choices for the positions of the n in rows 1,3 , and 5 and we can again choose the order of $\{a, b\}$ in row 1 , the order of $\{c, d\}$ in row 3 , and the order of $\{e, f\}$ in row 5 . Thus, $\left|T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)\right|=48$. All $t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ have positive sign as rows 2 , 4 , and 6 must be the same as rows 1,3 , and 5 so we have that $\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=48$.
2. For the second case, $\left|T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)\right|=4$ as we can choose the order of $\{a, b\}$ in row 1 and the order of $\{c, d\}$ in row 3 and this uniquely determines the rest of the table. It can be checked that all $t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ have positive sign so we have that $\sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=4$.

To analyze $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, observe that there are 6 choices for the order of $\{a, b, n\}$ in row 1 . Once this order is chosen, there are two choices for the position of the n in row 3 and two choices for the order of $\{c, d\}$ in row 3 . It can be checked that this uniquely determines the rest of the table and all $t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ have positive sign so we have that $\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=24$.
3. For the third case, $\left|T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)\right|=2$ as we can choose the order of $\{a, b\}$ in row 1 and this uniquely determines the rest of the table. Here both $t \in$ $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ have negative sign so we have that $\sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=$ -2 .

For $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, there are 6 choices for the order of $\{a, b, n\}$ in row 1 .

When row 1 is a, b, n, we have the following four tables:

$$
\left\{\begin{array}{lll}
a & b & n \\
a & c & n \\
n & b & d \\
e & n & d \\
n & c & f \\
e & n & f
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & n & c \\
d & b & n \\
d & n & e \\
n & f & c \\
n & f & e
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & n & c \\
n & b & d \\
e & n & d \\
n & f & c \\
e & f & n
\end{array}\right\},\left\{\begin{array}{lll}
a & b & n \\
a & n & c \\
n & b & d \\
n & e & d \\
f & n & c \\
f & e & n
\end{array}\right\}
$$

Of these tables, the first, second, and fourth table have negative sign while the third table has positive sign so the net contribution is -2 . Multiplying this by 6 , we have that

$$
\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=-12
$$

4. For the fourth case, $T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$ is empty because each column can only contain one of $\{a, b, c\}$ and one of $\{b, c, d\}$.

To analyze $T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)$, observe that we can choose the order of $\{a, b, n\}$ in row 1 and the order of $\{d, e, n\}$ in row 4 and this uniquely determines the rest of the table. The sign of each table will be the product of the sign for row 1 and the sign for row 4, so we have the same number of tables with positive and negative sign and thus $\sum_{t \in T_{2}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=\sum_{t \in T_{3}\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right)} \operatorname{sgn}(t)=0$.

3.4 General Moments

In this section, we discuss the results of arbitrary k

CHAPTER 4

RANDOM DETERMINANTS FOR SYMMETRIC MATRICES

4.1 Second Moment

Theorem 4.1.1. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$,

$$
f_{2}^{s y m}(n)=q(n) *(n-1)!,
$$

where

$$
\begin{gathered}
p(n)= \begin{cases}1 & n \leq 2 \\
2 & n \geq 3, n \text { odd } \\
3 & n \geq 4, n \text { even }\end{cases} \\
q(n)=p(n)+\sum_{i=1}^{n-1} \frac{p(i) q(n-i)}{n-i} .
\end{gathered}
$$

Proof. By 2.2.17, we know the value of $f_{2}^{\text {sym }}(n)$ is the number of elements in $\mathcal{G}_{2, n}$. To count number of directed graphs which satisfy the constraints, we classify them based on how many vertices are in the connected component that includes vertex 1 .

For a single connected component with l vertices, we first consider the number of cycles that can be made with these vertices then we copy the edges into pairs, orient and color them. The number of undirected cycles in l vertices is $\frac{l!}{2 l}=\frac{(l-1)!}{2}$. For orientation and coloring given an undirected cycle, we first discuss the case that $l \geq 4$ and l is even. We first color them accordingly, we can obtain two kinds of colorings, where in one coloring each of the colored edges forms a cycle and in the other each of them forms a perfect matching. For the first, we can orient each of them clock-wisely or anti-clock-wisely, therefore we have 4 different orientations. For the second case, since we have two colorings and two different matching, we have two ways to assign the colors to each of the matching and once we have
them in the matching form, the orientation is fixed. So for $l \geq 4$ and l is even, we have $3(l-1)$! different connected components with l vertices. We can use a similar proof to get $2(l-1)!$ in the case that l is odd. Let $K(l)$ be the function to denote the number of different connected components with l vertices, so we have

$$
K(n)= \begin{cases}1 & l \leq 2 \\ 2(l-1)! & l \geq 3, l \text { odd } \\ 3(l-1)! & l \geq 4, l \text { even }\end{cases}
$$

Example 4.1.2. Let G be an undirected cycle graph with four vertices. We show all the 6 different colorings and orientations given G.

Figure 4.1: All 6 different colorings and orientations of a given 4-cycle.

For the total number of such graphs, we can iterate on how many vertices are in the connected component that include vertex 1 . If there l vertices in this component, the number of different such directed and colored graphs of the remaining $n-l$ vertices is just $f_{2}^{\text {sym }}(n-l)$.

Therefore, by summing over all possible value of l, we have w

$$
f_{2}^{s y m}(n)=\sum_{i=1}^{n}\binom{n-1}{i-1} K(i) f_{2}^{s y m}(n-i)
$$

where $f_{2}^{\text {sym }}(1)=1, f_{2}^{\text {sym }}(0)=1$.
By rearranging the terms, we get

$$
f_{2}^{s y m}(n)=q(n) *(n-1)!,
$$

where

$$
\begin{gathered}
p(n)= \begin{cases}1 & n \leq 2 \\
2 & n \geq 3, n \text { odd } \\
3 & n \geq 4, n \text { even }\end{cases} \\
q(n)=p(n)+\sum_{i=1}^{n-1} \frac{p(i) q(n-i)}{n-i} .
\end{gathered}
$$

In order to analyze the asymptotic behavior of $f_{2}^{\text {sym }}(n)$, we note the following results of ordinary generating function.

First we denote $r(n):=\frac{q(n)}{n}$. Therefore, $f_{2}^{s y m}(n)=n!r(n)$, then by arranging the terms
in $r(n)$, we obtain the following recurrence:

$$
n r(n)=(n-2) r(n-2)+r(n-3)+2 r(n-4)
$$

Initial conditions:

$$
r(1)=1, ; r(2)=1, ; r(3)=\frac{8}{6}, ; r(4)=\frac{44}{24}
$$

Multiply both sides by x^{n} and sum over all n :

$$
\sum_{n=1}^{\infty} n r(n) x^{n}=\sum_{n=1}^{\infty}(n-2) r(n-2) x^{n}+\sum_{n=1}^{\infty} r(n-3) x^{n}+\sum_{n=1}^{\infty} 2 r(n-4) x^{n}
$$

Define the generating function $R(x)$:

$$
R(x)=\sum_{n=1}^{\infty} r(n) x^{n}
$$

Rewrite the sums in terms of $R(x)$:

$$
x \frac{d R(x)}{d x}=x^{3} \frac{d R(x)}{d x}+x^{3} R(x)+2 x^{4} R(x)
$$

Solving this differential equation, we have:

$$
\left\{\left\{R(x) \rightarrow \frac{e^{-x^{2}-x}}{(1-x)^{3 / 2} \sqrt{x+1}}\right\}\right\}
$$

First we rearrange the terms

$$
\frac{e^{-x^{2}-x}}{(1-x)^{3 / 2} \sqrt{x+1}}=\frac{e^{-x^{2}-x}}{(1-x) \sqrt{x^{2}-1}}
$$

Now let's consider the series expansion of each term:

- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.
- $\frac{1}{\sqrt{x^{2}-1}}$. First we notice that $\frac{1}{\sqrt{x^{2}-1}}=1+\frac{x^{2}}{2}+\frac{1 * 3 x^{2}}{2 * 4}+\frac{1 * 3 * 5 x^{3}}{2 * 4 * 6}+\frac{1 * 3 * 5 * 7 x^{3}}{2 * 4 * 6 * 8} \ldots$, which
can be written as

$$
\sum_{n=0}^{\infty}\left(\prod_{i=1}^{n} \frac{2 i-1}{2 i}\right) x^{2 n}
$$

-

$$
\begin{aligned}
e^{-x^{2}-x} & =\sum_{k=0}^{\infty} \frac{\left(-x^{2}-x\right)^{k}}{k!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n} \frac{(-1)^{k}\binom{k}{m-k}}{k!}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n} \frac{(-1)^{k} x^{n}}{(n-k)!(2 k-n)!}\right)
\end{aligned}
$$

Now in order to merge them together, we perform the generating function convolution on these three terms and obtain the following generating function:

$$
R(x)=\sum_{n \geq 0}\left(\sum_{0 \leq q \leq\left\lceil\frac{n}{2}\right\rceil}\left(\prod_{i=1}^{2 q} \frac{2 i-1}{2 i}\right) \sum_{0 \leq p \leq n-2 q} \sum_{k=\left\lceil\frac{p}{2}\right\rceil}^{p} \frac{(-1)^{k}}{(p-k)!(2 k-p)!}\right) x^{n} .
$$

Therefore, we have

$$
f_{2}^{s y m}(n)=n!\left(\sum_{0 \leq q \leq\left\lceil\frac{n}{2}\right\rceil}\left(\prod_{i=1}^{2 q} \frac{2 i-1}{2 i}\right) \sum_{0 \leq p \leq n-2 q} \sum_{k=\left\lceil\frac{p}{2}\right\rceil}^{p} \frac{(-1)^{k}}{(p-k)!(2 k-p)!}\right)
$$

Note that Zhurbenko [1968] used a different approach to obtain the following result:

Theorem 4.1.3. For any distribution Ω such that $m_{1}=0$ and $m_{2}=1$,

$$
f_{2}^{s y m}(n)=C_{n} n^{\frac{3}{2}} n!
$$

where $\lim _{n \rightarrow \infty} C_{n}=\frac{4 \sqrt{2 \pi} e^{-2}}{3}$.

REFERENCES

Dominik Beck. On the fourth moment of a random determinant. Arxiv preprint arXiv:2207.09311, 2022.

Dominik Beck, Zelin Lv, and Aaron Potechin. The sixth moment of random determinants, 2023.

Michael Borinsky. Generating asymptotics for factorially divergent sequences. Electronic Journal of Combinatorics, 25(4), 2018.

Jean Bourgain, Van H. Vu, and Philip Matchett Wood. Singularity of random bernoulli matrices. Journal of Functional Analysis, 258(2):559-603, 2010.

Kevin P. Costello. The on-line encyclopedia of integer sequences. Electronic resource, available at https://oeis.org, 2007.

Kevin P. Costello, Terence Tao, and Van Vu. Random symmetric matrices are almost surely nonsingular. Duke Mathematical Journal, 135(2):395-413, 2006.

Amir Dembo. On random determinants. Quarterly of Applied Mathematics, 47(2):185-195, 1989.

Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, 2009.

George E. Forsythe and John W. Tukey. The extent of n-random unit vectors. Bulletin of the American Mathematical Society, 58:502-502, 1952.
R. Fortet. Random determinants. Journal of Research of the National Bureau of Standards, (47):465-470, 1951.

Vyacheslav L. Girko. The central limit theorem for random determinants. Theory of Probability \mathfrak{G} Its Applications, 24(4):729-740, 1980.

Vyacheslav L. Girko. A refinement of the central limit theorem for random determinants. Theory of Probability \mathcal{G} Its Applications, 42(1):121-129, 1998.

Jeff Kahn, János Komlós, and Endre Szemerédi. On the probability that a random ± 1-matrix is singular. Journal of the American Mathematical Society, 8(1):223-240, 1995.

János Komlós. On the determinant of (0-1) matrices. Studia Scientiarium Mathematicarum Hungarica, 2:7-21, 1967.

János Komlós. On the determinant of random matrices. Studia Scientiarium Mathematicarum Hungarica, 3:387-399, 1968.

Hoi H. Nguyen and Van Vu. Random matrices: Law of the determinant. The Annals of Probability, 42(1):146-167, 2014.
H. Nyquist, S. O. Rice, and J. Riordan. The distribution of random determinants. Quarterly of Applied Mathematics, 12(2):97-104, 1954.

Terence Tao and Van Vu. On random ± 1 matrices: Singularity and determinant. Random Structures \& Algorithms, 28(1):1-23, 2006a. doi:https://doi.org/10.1002/rsa.20109. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa. 20109.

Terence Tao and Van Vu. On random ± 1 matrices: Singularity and determinant. Random Structures \& Algorithms, 28(1):1-23, 2006b. doi:https://doi.org/10.1002/rsa.20109.

Terence Tao and Van Vu. On the singularity probability of random bernoulli matrices. Journal of the American Mathematical Society, 20(3):603-628, 2007. doi:https://doi.org/10.1090/s0894-0347-06-00550-4.

Konstantin Tikhomirov. Singularity of random bernoulli matrices. Annals of Mathematics, 191(2):593-634, 2020. doi:https://doi.org/10.4007/annals.2020.191.2.6.

Pál Turán. On a problem in the theory of determinants. Acta Math. Sinica, 5(41):417-423, 1955.

Van Vu. Recent progress in combinatorial random matrix theory. Arxiv preprint arXiv:2005.02797 [math.CO], 2020. URL http://arxiv.org/abs/2005.02797.
I. G. Zhurbenko. Moments of random determinants. Theory of Probability \& Its Applications, 13(4):682-686, 1968.

