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Mathematics is the art of giving the same name to different things.

-Henri Poincaré, in Science and Méthode, 1908.
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ABSTRACT

This thesis investigates the moments of random determinants, specifically focusing on the

second, fourth, and sixth moments of determinants of random matrices. The study of random

determinants and their moments has been an active area of research. Building on the existing

literature, we provide an in-depth analysis of these moments, offering new insights into their

properties and behavior.

Additionally, we introduce a novel approach to compute the determinant of the second

moment of determinants of symmetric random matrices. This new method has the potential

to contribute to the development of computing higher moments of determinants of random

matrices.

The main contributions of this thesis are: a comprehensive analysis of the second, fourth,

and sixth moments of random determinants by applying the existing techniques in an in-

tricate way and the proposal of a new and simple approach for computing the determinant

of the determinants of symmetric random matrices, with an application of computing the

second moment. This work not only advances our understanding of the moments of random

determinants but also presents potential avenues for further exploration in random matrix

theory.
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CHAPTER 1

INTRODUCTION

Random matrix theory, which studies the properties of matrices with random entries, has

found widespread applications across numerous fields, including physics, mathematics, engi-

neering, and computer science. The determinant, a fundamental invariant of a matrix, plays

a crucial role in understanding the properties of random matrices. In this thesis, we delve

into the moments of random determinants, specifically focusing on the second, fourth, and

sixth moments.

The study of random determinants has been an active area of research for many years,

with a particular interest in analyzing the k−th moment, i.e., the expected value of the

kth power of the determinant of a random matrix. Early works by Turán [1955] and Fortet

[1951] found that the second moment of the determinant of an n×n matrix with mean 0 and

variance 1 entries is n!. Subsequent research by Nyquist et al. [1954] determined the fourth

moment of the determinant. In the study of moments of random determinants, the main idea

employed by previous research is the reduction of the problem of computing these moments

to counting the number of permutation tables subject to certain constraints. Permutation

tables serve as a crucial tool in this context; the second moment of the random determinant

can be easily obtained using them, as we will demonstrate in Section 3.1. For the fourth

moment, Nyquist et al. [1954] employed recurrence and generating function techniques to

analyze the number of permutation tables, which we will present in Section 3.2.

In the case of the sixth moment, which constitutes the primary focus of this thesis,

we also utilize permutation tables. However, as we will mention in the following sections,

unlike the cases with k = 2 or k = 4, the sign of each permutation table is not always

positive. To address this challenge, we derive some structural results of permutation tables

that enable us to obtain a formula for computing the sixth moment, including a generalization

for m3 ̸= 0. Finally, we employ the generating function tool developed by Borinsky [2018]
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to find the asymptotic behavior for the sixth moment, thereby significantly advancing our

understanding of this problem.

For Gaussian random matrices, Forsythe and Tukey [1952], Nyquist et al. [1954] have

shown that the kth moment of the determinant can be expressed as a product involving

factorials, which is
∏k

2−1
j=0

(n+2j)!
(2j)!

, which we will discuss in the section 3.4.

In the case of symmetric random matrices, the second moment of the determinant was

investigated by Zhurbenko [1968]. And in this thesis, we provide a simpler approach to

compute the second moment of the determinant in Section 4.1.

In this thesis, we contribute to the line of work on moments of random determinants

by examining the sixth moment of the determinant of a random matrix based on the work

by Beck et al. [2023]. By extending the existing literature on this topic, we provide a

comprehensive analysis of the second, fourth, and sixth moments. Furthermore, we introduce

a novel method for computing the determinant of the second moment of determinants of

random matrices, which may pave the way for future research in the field.

As random matrix theory continues to grow in importance and find new applications,

understanding the moments of random determinants will remain a fundamental aspect of

this area. The results presented in this thesis not only build on existing knowledge but also

open new avenues for further exploration and discovery.

1.1 Related Work

1.1.1 Generalizations

There have been several variations and generalizations of these questions. The first line is

to have to replace the symmetric random variables to arbitrary variables. Zhurbenko [1968]

started the investigation in this direction where he analyzed the second moment of random

matrices whose entries is i.i.d from any distribution instead of symmetric distribution. In this

2



direction, Beck [2022] analyzed the fourth moment of the determinant of an n × n random

matrix with independent entries from an arbitrary distribution.

Another generalization is generalizing these results for p×n matrices (where we consider

E
[
det(MMT )

k
2

]
rather than E

[
det(M)k

]
). Dembo [1989] obtained the formula for the

case that k = 2 and subsequently, Beck [2022] obtained the formula for the fourth moment

of random determinants in this setting.

1.1.2 The Distribution of the Determinant

Apart from the moments, the distribution of the determinant of a random matrix has also

been of great interest. Girko [1980, 1998] demonstrated that, under certain assumptions,

the logarithm of the determinant obeys a central limit theorem. Nguyen and Vu [2014] later

provided a simpler proof for a stronger version of this theorem. Following this line of research,

Tao and Vu [2006a] obtained the nearly tight result on the magnitude of determinant, that

| detMn| ≥
√
ne−29

√
n log n. Where they reduce the problem of computing the magnitude of

determinant to computing the size of the volume of the parallelepiped spanned by n random

{−1, 1} vectors.

Another line of inquiry has focused on the probability of a random n × n matrix with

±1 entries being singular. In this line of work, Komlós [1967, 1968] was the first to prove

that this probability is o(1). Kahn et al. [1995] proved that this probability is at most .999n,

which was the first exponential upper bound. A series of works of Tao and Vu [2006b, 2007],

Bourgain et al. [2010] improved this upper bound culminating in the work of Tikhomirov

[2020] who proved an upper bound of (12 + o(1))n, which is tight. For the symmetric case,

Costello et al. [2006] showed that the probability that a random symmetric matrix with ±1

entries is singular is o(1). For a more comprehensive survey of the combinatorial properties

of random matrix, we refer the interested readers to the survey by Vu [2020].
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CHAPTER 2

BACKGROUND

In this section, we first give the background and definitions that will be used through this

thesis.

Definition 2.0.1. Given a distribution Ω, we define Mn×n(Ω) to be the distribution of

n× n matrices where each entry is drawn independently from Ω.

Definition 2.0.2. Given a distribution Ω, we define mk to be the kth moment of Ω, i.e.,

mk = Ex∼Ω[x
k].

Definition 2.0.3. We define fk(n) = EM∼Mn×n(Ω)

[
det(M)k

]
to be the expected value of

the k-th power of the determinant of a random n× n matrix. Similarly, we define pk(n) to

be the expected value of the k-th power of the permanent of a random n× n matrix.

Remark 2.0.4. Both fk(n) and pk(n) depend on the moments of Ω, but we write fk(n) and

pk(n) rather than fk,Ω(n) and pk,Ω(n) for brevity.

2.1 Results

The first work on expressing the determinant of random matrices dates back to Fortet [1951]

and Turán [1955], where Turán observed that the second moment of the determinant of an

n × n matrix (where the entries have mean 0 and variance 1) is n!, and he also obtained

the explicit formula for computing the second moment of random matrix where each entry

is {−1,+1}. Later, Nyquist et al. [1954] showed the following result on the fourth moment.

Theorem 2.1.1. f4(n) = n!yn where yn obeys the recurrence relation

yn = (n+m4 − 1)yn−1 + (3−m4)(n− 1)yn−2.
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where y0 = 1 and y1 = m4.

They further observed that if we take the generating function Y (t) =
∑∞

t=0
ynt

n

n! then

Y (t) = (1− t)−3e(m4−3)t. From this generating function, they found the equation

f4(n) = n!yn =
(n!)2

2

n∑
k=0

(n− k + 1)(n− k + 2)

k!
(m4 − 3)k.

To prove their results, Nyquist et al. [1954] counted 4× n tables with certain properties. As

we describe in Section 3.3, we use the same general approach for the sixth moment though our

analysis is considerably more intricate. Using the techniques mentioned above and combined

with generating functions, we obtained the following results for the sixth moment of random

determinants.

Theorem 2.1.2. For any distribution Ω such that m1 = m3 = 0 and m2 = 1, the formal

generating function F6(t) =
∑∞

n=0
tn

(n!)2
f6(n) for f6(n) is

F6(t) =
et(m6−15m4+30)

48 (1 + 3t−m4t)15

∞∑
i=0

(1 + i)(2 + i)(4 + i)!ti

(1 + 3t−m4t) 3i
.

Remark 2.1.3. Performing Taylor expansion of this generating function, we get the formula

for computing the sixth moment of random determinants, namely:

Corollary 2.1.4. For any distribution Ω such that m1 = m3 = 0 and m2 = 1,

f6(n) = (n!)2
n∑

j=0

j∑
i=0

(1+i)(2+i)(4+i)!

48(n− j)!

(
14+j+2i

j − i

)
(m6 − 15m4 + 30)n−j (m4 − 3)j−i .

Remark 2.1.5. If m2 ̸= 1 then we can scale the distribution Ω by 1√
m2

(which changes the

determinant of matrices in Mn×n(Ω) by a factor of
(

1√
m2

)n
) and then apply the result in

Corollary 2.1.4.
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Remark 2.1.6. If Ω = N(0, 1) then m4 = 3 and m6 = 15 so f6(n) = Pn =
n!(n+2)!(n+4)!

48 ,

which is a special case of the result that fk(n) =
∏k

2−1
j=0

(n+2j)!
(2j)!

when Ω = N(0, 1) and k is

even.

Another generalization is when m3 ̸= 0.

Theorem 2.1.7. For any distribution Ω such that m1 = 0 and m2 = 1, the formal generating

function F6(t) =
∑∞

n=0
tn

(n!)2
f6(n) for f6(n) is

F6(t) =
(
1 +m2

3t
)
10 e

t(m6−10m2
3−15m4+30)

48 (1 + 3t−m4t)
15

∞∑
i=0

(1 + i)(2 + i)(4 + i)!ti

(1 + 3t−m4t) 3i
.

Corollary 2.1.8. For any distribution Ω such that m1 = 0 and m2 = 1,

f6(n) = (n!)2
n∑

j=0

j∑
i=0

n−j∑
k=0

(1 + i)(2 + i)(4 + i)!

48(n− j − k)!

(
10

k

)(
14 + j + 2i

j − i

)
q
n−j−k
6 q

j−i
4 qk3 ,

where

q6 = m6 − 10m2
3 − 15m4 + 30, q4 = m4 − 3, q3 = m2

3.

Below, we show the values of fk(n) and pk(n) when Ω = {−1, 1} for small values of k and

n. We note that when Ω = {−1, 1}, f4(n) is the integer sequence A052127 in the On-Line

Encyclopedia of Integer Sequences Costello [2007]. In the entry for this integer sequence, it

is noted that f4(n) ∼ (n!)2
(n2+7n+10)

(2e2)
as n → ∞.

Remark 2.1.9. Note that for all n ∈ N, p2(n) = f2(n) and p4(n) = f4(n). However, for

n ≥ 3, p6(n) > f6(n).

We can describe the asymptotic behavior of f6 using the following asymptotic expansion.
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n f2(n) f4(n) f6(n) p2(n) p4(n) p6(n)
1 1 1 1 1 1 1
2 2 8 32 2 8 32
3 6 96 1536 6 96 2976
4 24 2112 282624 24 2112 513024
5 120 68160 66846720 120 68160 157854720

Table 2.1: Values of fk(n) and pk(n) for Ω = {−1, 1}, k ≤ 6, and n ≤ 5

Theorem 2.1.10. For all R ∈ N ∪ {0},

f6(n) =
e3q4(n!)2

48

 R∑
k=0

ck(n+ 6− k)!

±O
(
(n!)2(n+ 6−R− 1)!

)
,

where the coefficients ck are the Taylor expansion coefficients of the function C(t) =
∑

k≥0 ckt
k,

C(t) = e(q6−3q24)t+q34t
2
(1 + q3t)

10
(
1− 2 (3q4 + 4) t

+ 3
(
5q24 + 8q4 + 4

)
t2 − 4

(
q24 (5q4 + 6)

)
t3 + q34 (15q4 + 8) t4 − 6q54t

5 + q64t
6
)
.

Remark 2.1.11. For the first terms in the expansion, we have

f6(n) ∼
e3m4−9

48
(n!)3

(
n6 +

(
m6 − 3m2

4 − 3m4 + 34
)
n5 +

1

2

(
m2

6 − 10m4
3

+9m4
4 + 20m3

4 − 183m2
4 − 126m4 − 6m2

4m6 − 6m4m6 + 56m6 + 905
)
n4 + · · ·

)

Remark 2.1.12. Note that when Ω = {−1, 1}, as n → ∞,

f6(n) ∼
(n!)3

48e6

(
n6 + 29n5 + 335n4 +

5861n3

3
+

17944n2

3
+

44036n

5
+

167536

45
− 210176

63n

)
.

Besides our result above, in this thesis we also have the results regrading symmetric

matrix.

Definition 2.1.13. We define fsymk (n) = EM∼Mn×n(Ω)

[
det(M)k

]
to be the expected value

7



n f
sym
2 (n) p

sym
2 (n)

1 1 1
2 2 2
3 8 8
4 44 44
5 244 244
6 1744 1744
7 13768 13768
8 127952 127952

Table 2.2: Values of fsym2 (n) for Ω = {−1, 1} and n ≤ 8

of the k-th power of the determinant of a random n × n symmetric matrix, where Mij are

drawn independently from each other only when i ≤ j, for the rest the values are copied

across the main diagonal, i.e. Mij = Mji. Similarly, we define p
sym
k (n) to be the expected

value of the k-th power of the permanent of a random n× n symmetric matrix.

Theorem 2.1.14. For any distribution Ω such that m1 = 0 and m2 = 1 ,

f
sym
2 (n) = Cnn

3
2n!

where limn→∞Cn = 4
√
2πe−2

3 .

2.2 Preliminaries

To prove the results mentioned above, we need a few definitions and a key lemma.

Definition 2.2.1. Given natural numbers k and n where k is even, we define an even k× n

table to be a k × n table where each row is a permutation of [n] and each column contains

each number an even number of times. We define Tk,n to be the set of all even k× n tables.

Definition 2.2.2. Given an even table t of size k × n, we define its sign sgn(t) to be the

product of the signs of its rows, which are permutations of [n].

8



Definition 2.2.3. Given a column c where each element is in [n], we define its weight w(c)

to be

w(c) =
n∏

j=1

m# of times j appears in column c.

For even 6 × n tables, we say that a column is a 6-column if it contains some number 6

times, a 4-column if it contains one number four times and another number two times, and

a 2-column if it contains three different numbers two times. Observe that the weight of a

6-column is m6, the weight of a 4-column is m4, and the weight of a 2-column is m2.

Definition 2.2.4. Given an even k × n table t, we define its weight w(t) to be the product

of the weights of its columns.

We can use the following proposition to reduce the problem of finding the sixth moment

of a random determinant to a combinatorial problem.

Proposition 2.2.5. For all even k ∈ N, fk(n) =
∑

t∈Tk(n) sgn(t)w(t) and pk(n) =
∑

t∈Tk(n)w(t).

Proof. We observe that

fk(n) = EA∼Mn×n(Ω)

 ∑
π1,π2,...,πk∈Sn

 k∏
i=1

sgn(πi)

 n∏
p=1

 k∏
q=1

Ap,πq(p)


and

pk(n) = EA∼Mn×n(Ω)

 ∑
π1,π2,...,πk∈Sn

n∏
p=1

 k∏
q=1

Ap,πq(p)

 .

For each p ∈ [n], we have that EA∼Mn×n(Ω)[
∏k

q=1Ap,πq(p)] = w(p) (i.e., the weight of

column p), so fk(n) =
∑

t∈Tk(n) sgn(t)w(t) and pk(n) =
∑

t∈Tk(n)w(t), as needed.

Thus, computing the kth moment of a random determinant is equivalent to summing the

signed weights of all even tables of size k × n.

Corollary 2.2.6. If Ω is the uniform Bernoulli distribution (i.e., the uniform distribution

on {−1, 1}) then fk(n) =
∑

t∈Tk,n sgn(t) and pk(n) = |Tk,n|.
9



1 2 4 3
1 2 4 3
1 3 4 2
1 3 4 2
2 4 1 3
2 4 1 3

1 2 4 3
1 2 4 3
1 3 4 2
1 3 4 2
2 4 1 3
2 4 1 3

Corollary 2.2.7. If k = 2, k = 4, or n ≤ 2 then pk(n) = fk(n). If n ≥ 3, k ≥ 6, and k is

even then pk(n) > fk(n).

To analyze f6(n), it is useful to consider tables together with pairings of identical elements

in each column.

Definition 2.2.8. Given an even k × n table t, we define a pairing P on t to be a set of

matchings {Mi : i ∈ [n]}, one for each column, where each matching Mi pairs up identical

elements of column i. We define P(t) to be the set of all pairings on t.

Example 2.2.9. The table on the left below is an even 6× 4 table with 27 possible pairings.

The table on the right shows one of the 27 possible parings.

Proposition 2.2.10. For each even 6× n table t,

|P(t)| = 15# of 6−columns in t3# of 4−columns in t.

Definition 2.2.11. We define Pn =
∑

t∈Tk,n sgn(t)|P(t)|.

It turns out that Pn can be easily computed and this is crucial for our results.

Lemma 2.2.12. For all n ∈ N, Pn = n(n+ 2)(n+ 4)Pn−1 where P0 = 1.

This lemma follows from the fact that when Ω = N(0, 1) and k is even, the kth moment

of the determinant is
∏k

2−1
j=0

(n+2j)!
(2j)!

. We give a direct proof of this lemma in Appendix 3.3.3.

Note that Pn =
∑

t∈Tk,n sgn(t)15
# of 6-columns in t3# of 4-columns in t while

f6(n) =
∑

t∈Tk,n sgn(t)m6
# of 6-columns in tm4

# of 4-columns in t. If Ω = N(0, 1) (or we at

10



least have that m2 = 1, m4 = 3, and m6 = 15) then f6(n) = Pn. In the next section, we

show how to handle other distributions Ω using inclusion/exclusion.

Now we introduce some tools for dealing with the determinants of random symmetric

matrices. Instead of using tables, here we use graph to capture the symmetry between

vertices.

Definition 2.2.13. Given natural numbers k and n where k is even, we define a even graph

G to be a directed graph G = (V,E,C) where V = [n] and deg+(v) = deg−(v) = k for

all v ∈ V . C : E → [k] where the number of edges colored with i ∈ [k] is n, and each

connected components in the edge-induced subgraph of the same color class is a directed

cycle. Furthermore, we require that each edges must appear in pairs regardless of direction

and color. We define Gk,n to be the set of all even graphs with n vertices and kn edges.

Definition 2.2.14. Given an even graph G of n vertices and kn edges, we define its sign

sgn(G) to be the product of the signs of its cycles, where each color edge-induced subgraph

is a permutation of [n].

Definition 2.2.15. Given an ordered pair of vertices i, j of G, we define its weight w(i, j)

to be

w(c) = m#edges between i, j .

Definition 2.2.16. Given an even graph G of n vertices and kn edges, we define its weight

w(G) to be the product of the weights of its pairs of vertices.

We can use the following proposition to reduce the problem of finding the sixth moment

of a random determinant to a combinatorial problem.

Proposition 2.2.17. For all even k ∈ N, fsymk (n) =
∑

G∈Gk,n sgn(G)w(G) and p
sym
k (n) =∑

G∈Gk,n sgn(G)w(G).

11



Proof. The proof is same to that of asymmetric case but note that here xij = xji.

Remark 2.2.18. f
sym
2 = p

sym
2 .

Example 2.2.19. The following graph corresponds to {2, 1, 5, 3, 4}, {2, 1, 4, 5, 3}.

1 2 3

4

5

Figure 2.1: The even graph corresponds to {2, 1, 5, 3, 4}, {2, 1, 4, 5, 3}
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CHAPTER 3

RANDOM DETERMINANTS FOR ASYMMETRIC MATRICES

3.1 Second Moment

First we present the following result due to Turán [1955] as a warm-up for an application of

the techniques of counting tables.

Theorem 3.1.1. For any distribution Ω such that m1 = 0 and m2 = 1,

f2(n) = n!.

Proof. By 2.2.5, f2(n) =
∑

t∈T2(n) sgn(t)w(t). For each table t in T2(n), we know that

each column must have two identical numbers, so sgn(t) is always + and each of them has

w(t) = 1. Since there are n! different choices for the first row and once the first row is

selected the second row is determined automatically. We have |T2(n) = n!|.

3.2 Fourth Moment

The following result is based on the proof by Nyquist et al. [1954].

Theorem 3.2.1. For any distribution Ω such that m1 = 0 and m2 = 1, f4(n) = n!yn where

yn obeys the recurrence relation

yn = (n+m4 − 1)yn−1 + (3−m4)(n− 1)yn−2.

where y0 = 1 and y1 = m4.

Proof. By the same reasoning as 3.1.1, using 2.2.5, f4(n) is the number of 4 × n tables

which elements appear either two or four times in one column. For each of the table, the
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contribution of an element to the overall weight is m4 if this element appears in a 4-column

and is unit if it appears in two 2-columns. For the sign of each table, denote the rows r1, r2, r3

and r4. If we can group them into two pairs, such that, WLOG, r1 = r2 and r3 = r4, then we

know that sgn(r1)sgn(r2) = 1 and sgn(r3)sgn(r4) = 1. So the table must has positive sign.

Otherwise, assume that we can’t group them into pairs, let c1, c2 and c3 be columns that

they can’t match. Suppose the first row in these three columns is {a, b, c}, then the second

row must be a derangement of the first row, o.w. then remaining two rows are automatically

fixed and thus contradicted the assumption. So we assume that the second row is {b, c, a}.

In this case, a, b must appear in the column c1 of r3 and r4. Let (r3, c1) = a and (r4, c1) = b.

For the column c2, we must have b and c. Since there is a b in r4, we must have (r3, c2) = b,

which forces r1 = r3 and r2 = r4. Therefore, the table always have positive sign.

To compute f4(n), we first fix the first row in natural order so that

f4(n) = n! ∗ yn.

Here, yn is a function of the total weight of 4 × n tables which elements appear either two

or four times in one column but with the first row fixed to be the natural order.

For tables in T4(n) where the first row is fixed to be the natural order, we split them

into two groups based on whether the element n is in a 4-column or two 2-columns. For the

tables in the group of the first case, we can see the contribution is simply yn−1m4. For the

latter case, we know one of the 2-column with n is the last column because we have fixed

the first row, and we have n − 1 choices for the other 2-column. Besides, we also need to

choose which rows in the last column are not n, which gives us
(3
2

)
= 3 choices.
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Without loss of generality, we may assume the last two columns to be



n− 1 n

n− 1 n

n x

n x


.

We denote the contribution of this case as z(n). In this case, x is an element that cannot be

n. So among all the n− 1 choices for x, if x is selected to be n− 1, then the contribution of

the case is yn−2. If x is any of the other n−2 elements, the contribution is zn−1. Therefore,

y(n) = m4yn−1 + 3(n− 1)zn,

z(n) = yn−2 + (n− 2)zn−1.

By plugging in zn to yn,

yn = (m4 + n− 1)yn−1 + (n− 1)(3−m4)yn−2.

And it’s easy to see the following base case: y0 = 1 and y1 = m4.

In order to solve the recurrence formula, we use the exponential generating function,

where Y (t) =
∑

n≥0
ynt

n

n! . First by rearranging terms we get

(3−m4)yn−2 = (m4 − 1)yn−1 + nyn−1 + n(3−m4)yn−2 − yn.

This recurrence gives us the following differential equation:

Y (t) =
(m4 − 1)Y ′(t) + tY ′′(t) + (3−m4)tY

′(t)− Y ′′(t)
3−m4

.

15



By solving this differential equation, we get

Y (t) = (1− t)−3et(m4−3).

Which leads us the following explicit form for f4(n),

f4(n) =
(n!)2

2

n∑
k=0

(n− k + 1)(n− k + 2)

k!
(m4 − 3)k.

3.3 Sixth Moment

Before preceding to the proof of Theorem 2.1.2, we first prove the following result on the

sixth moment of random determinants.

Lemma 3.3.1. For any distribution Ω such that m1 = m3 = 0 and m2 = 1,

f6(n) =
n∑

j=0

j∑
a=0

(
n

j

)(
j

a

)
(m6 − 15)a(m4 − 3)(j−a)Dn,a,j−a.

Dn,a,b =

a+b−1∏
j=0

(n− j)

 b∑
i=0

(
b

i

)
CiHn,b−i,a,b

Pn−a−b.

Pn = n(n+ 2)(n+ 4)Pn−1 where P0 = 1. Equivalently, Pn =
n!(n+ 2)!(n+ 4)!

2!4!
.

Cn = (n− 1)(Cn−1 + 15Cn−2) where C0 = 1 and C1 = 0.

Hn,j,a,b =

j∑
x=1

(j−1
x−1

)
x!

j!
x−1∏
y=0

(3(n− a− b)− y).

Proof. The idea behind the proof is as follows. We consider the tables where we know that

some set A ⊆ [n] of elements appear six times in a 6-column and another set B ⊆ [n] \ A

of elements appear four times in a 4-column and two times in a different column. We do

not know whether the elements in [n] \ (A ∪ B) appear six times in a 6-column, appear

four times in a 4-column and two times in a different column, or appear two times in three
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different columns. We consider these tables together with pairings for the columns which are

unaccounted for by A and B (i.e., the columns which don’t contain six of the same element

in A or four of the same element in B).

To obtain f6(n), we compute the contribution from each A and B and then take an

appropriate linear combination of these contributions so that the contribution from each

individual table t is sgn(t)w(t).

Definition 3.3.2. Given A ⊆ [n] and B ⊆ [n] \ A, we define Dn,A,B to be the set of tables

in T6,n such that the elements in A appear six times in a 6-column and the elements in B

appear four times in a 4-column and two times in a different column.

For each t ∈ Dn,A,B , we define PA,B(t) to be the set of pairings on t where we exclude

the 6-columns which contain six of the same element in A and the 4-columns which include

four of the same element in B.

By symmetry, the contribution from each Dn,A,B only depends on |A| and |B|.

Definition 3.3.3. Given n, a, b ∈ N ∪ {0} such that a+ b ≤ n, we define Dn,a,b to be

Dn,a,b =
∑

t∈Dn,A,B

sgn(t)|PA,B(t)|

where A ⊆ [n], B ⊆ [n] \ A, |A| = a, and |B| = b.

Lemma 3.3.4. For all n ∈ N∪{0}, f6(n) =
∑n

j=0

∑j
a=0

(n
j

)(j
a

)
(m6 − 15)a(m4 − 3)(j−a)Dn,a,j−a.

Proof. Observe that

n∑
j=0

j∑
a=0

(
n

j

)(
j

a

)
(m6 − 15)a(m4 − 3)(j−a)Dn,a,j−a

=
∑
A⊆[n]

∑
B⊆[n]\A

∑
t∈Dn,A,B

(m6 − 15)|A|(m4 − 3)|B| sgn(t)|PA,B(t)|.
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Given a table t ∈ T6,n, let A′ be the set of elements in [n] which appear six times in a

6-column of t and let B′ be the set of element which appear four times in a 4-column of t.

Now consider the contribution from t in

∑
A⊆[n]

∑
B⊆[n]\A

∑
t∈Dn,A,B

(m6 − 15)|A|(m4 − 3)|B| sgn(t)|PA,B(t)|.

We have that whenever A ⊆ A′ and B ⊆ B′, t ∈ Dn,A,B and |PA,B(t)| = 15|A
′\A|3|B

′\B|.

Thus, the contribution from t is

∑
A⊆A′

∑
B⊆B′

(m6 − 15)|A|(m4 − 3)|B|15|A
′\A|3|B

′\B| sgn(t) = m6
|A′|m4

|B′| sgn(t) = sgn(t)w(t).

This implies that

n∑
j=0

j∑
a=0

(
n

j

)(
j

a

)
(m6 − 15)a(m4 − 3)(j−a)Dn,a,j−a =

∑
t∈T6,n

sgn(t)w(t) = f6(n)

as needed.

We now compute Dn,a,b.

Lemma 3.3.5. For all n, a, b ∈ N ∪ {0} such that a+ b ≤ n,

Dn,a,b =

a+b−1∏
j=0

(n− j)

 b∑
i=0

(
b

i

)
CiHn,b−i,a,b

Pn−a−b

where Cn is given by the recurrence relation Cn = (n− 1)(Cn−1+15Cn−2), C0 = 1, C1 = 0

and

Hn,j,a,b =

j∑
x=1

(j−1
x−1

)
x!

j!
x−1∏
y=0

(3(n− a− b)− y).

Proof. To prove this lemma, we group the tables in Dn,A,B based on the structure of the
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1 2 3 4 5
1 2 3 4 5
1 2 5 3 4
1 2 5 3 4
2 1 3 4 5
2 1 3 4 5

Figure 3.1: A 6× 5 table t ∈ D5,∅,[5]

1 2
3 4

5

Figure 3.2: The associated G(t)

4-columns containing four of the same element of B.

Definition 3.3.6. Given a table t ∈ Dn,A,B , we define the directed graph G(t) to be the

graph with vertices B ∪ {center} and the following edges. For each b ∈ B,

1. If there is a b′ ∈ B \ {b} such that there are two b in the 4-column containing four b′

then we add an edge from b to b′.

2. If there is no such b′ then we add an edge from b to center.

Proposition 3.3.7. For all t ∈ Dn,A,B, G(t) has the following properties.

1. For all b ∈ B, deg+(b) = 1 and deg−(b) ≤ 1.

2. deg+(center) = 0.

Corollary 3.3.8. For all t ∈ Dn,A,B, G(t) consists of directed cycles and paths which end

at center, all of which are disjoint except for their common endpoint.

Example 3.3.9. This example shows the correspondence between a table t and G(t).

We now consider how many ways there are to start with a table t ∈ T6,n−a−b together

with a pairing P ∈ P and construct a table t′ ∈ Dn,A,B (we will automatically have that the

sign of t and the pairing P is preserved). Before giving the entire analysis, we describe the

parts of the analysis corresponding to the cycles and paths of G(t′) as these are the trickiest

parts of the analysis.
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Definition 3.3.10. Define Cn to be the number of tables t ∈ Dn,∅,[n] such that G(t) consists

of directed cycles and for each i ∈ [n], column i contains four i.

Lemma 3.3.11. For all n ≥ 2, Cn = (n− 1)(Cn−1 + 15Cn−2) where C0 = 1 and C1 = 0.

Proof. Consider a vertex i ∈ [n]. G(t) contains an edge from i to j for some j ∈ [n] \ {i}.

Note that there are n − 1 possibilities for j. We now have two cases. The first case is that

there is an edge from j to a vertex k ∈ [n] \ {i, j}. In this case, we can remove the vertex j

and the edges (i, j), (j, k) and add an edge from i to k. The number of possibilities for this

case (for a fixed j) is Cn−1. The second case is that there is an edge from j back to i, i.e., i

and j are in a directed cycle of length 2. The number of possibilities for this case (for a fixed

j) is 15Cn−2 as there are 15 possibilities for which rows of column i contain j and there are

Cn−2 possibilities for the remaining n− 2 columns.

Adding these two cases together and summing over all possible j ∈ [n]\{i}, we have that

Cn = (n− 1)(Cn−1 + 15Cn−2), as needed.

To handle paths, we first count the number of possible graphs G(t) with a given number

of paths to center and no cycles with the following lemma.

Lemma 3.3.12. Let B′ ⊆ [n] and take j = |B′|. For all x ∈ [j], there are (j−1
x−1)
x! j! possible

graphs G(t) on the vertices B′ ∪ {center} which consist of x disjoint paths to center and no

cycles.

Proof. We can specify each such graph as follows:

1. Choose an ordering for the elements of B′. There are j! possibilities for this ordering.

2. Choose the x paths by putting x − 1 dividing lines among the elements of B′. Since

each path must have at least one vertex in B′, there are
(j−1
x−1

)
possibilities for this.

However, if we do this, each graph is counted x! times, one for each possible ordering of the

x paths. Thus, the number of such graphs is (j−1
x−1)
x! j!, as needed.
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In order to have a path (b1, b2), (b2, b3), . . . , (bl, center) in G(t), a pair of elements from

the columns corresponding to center must be placed into the column containing four b1. The

two displaced b1 must then be placed into the same rows of the column containing four b2.

Continuing in this way, we are left with two bl which replace the original pair of elements

from center. Thus, to specify the contents of the columns corresponding to the paths in G(t),

it is necessary and sufficient to choose a pair from the columns corresponding to center for

each path. Note that these pairs must be different as otherwise we would not end up with

disjoint paths.

We now give the entire analysis for Dn,a,b. Given A ⊆ [n] and B ⊆ [n] \ A, we can

compute Dn,a,b =
∑

t∈Dn,A,B
sgn(t)|PA,B(t)| as follows. As before, we take a = |A| and

b = |B|.

1. For each a ∈ A, we choose which column contains six a. Similarly, for each b ∈ B, we

choose which column contains four b. The number of choices for this is
∏a+b−1

j=0 (n− j).

2. After choosing these columns, we choose a table t ∈ T6,n−a−b and a pairing P ∈ P(t)

to fill in the remaining columns. This gives a factor of Pn−a−b.

3. We split into cases based on the number of vertices i in G(t) which are contained in

cycles. For each i, we choose which
(b
i

)
of the elements in B are contained in cycles. By

Lemma 3.3.11, once these elements are chosen there are Ci possibilities for the columns

containing these elements.

4. There are now j = b− i elements of B which are contained in paths. We further split

into cases based on the number x of paths in G(t). By Lemma 3.3.12, there are (j−1
x−1)
x! j!

possibilities for what these paths are in G(t).

As discussed above, for each of the x paths we need to choose a different pair in P .

The number of choices for these pairs is
∏x−1

y=0 (3(n− a− b)− y). Summing all of these
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possibilities up gives a factor of

Hn,j,a,b =

j∑
x=1

(j−1
x−1

)
x!

j!
x−1∏
y=0

(3(n− a− b)− y).

Putting everything together, we have that

Dn,a,b =

a+b−1∏
j=0

(n− j)

 b∑
i=0

(
b

i

)
CiHn,b−i,a,b

Pn−a−b,

as needed.

We now simplify the terms in Lemma 3.3.1.

Proposition 3.3.13.

Hn,j,a,b =
(3(n− a− b) + j − 1)!

(3(n− a− b)− 1)!
.

Proof. Originally,

Hn,j,a,b =

j∑
x=1

(j−1
x−1

)
x!

j!
x−1∏
y=0

(3(n− a− b)− y).

Denote z = 3(n− a− b). For the inner product, we can write

x−1∏
y=0

(3(n− a− b)− y) =
z!

(z − x)!
,

so

Hn,j,a,b =

j∑
x=1

(j−1
x−1

)
x!

j!z!

(z − x)!
= j!

j∑
x=1

(
j − 1

x− 1

)(
z

x

)
= j!

(
z + j − 1

j

)
.

The last equality is a special case of the Chu-Vandermonde Identity.

Lemma 3.3.14. Let Sn be the set of all permutations of order n and Dn the set of all

derangements of the same order. That means, Dn is a subset of those permutations in Sn
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which have no fixed points. Denote C(π) the number of cycles in a permutation π, then

∞∑
n=0

xn

n!

∑
π∈Dn

uC(π) =
e−ux

(1− x)u
.

Proof. For a derivation, see the chapter on Bivariate generating functions in Flajolet and

Sedgewick [2009].

Corollary 3.3.15.
∞∑
n=0

tn

n!
Cn =

e−15x

(1− x)15
.

Proof. An alternative way how to write Cn is via Cn =
∑

π∈Dn
15C(π).

With these simplifications, we can derive an expression for the generating function

F6(t) =
∞∑
n=0

tn

(n!)2
f6(n).

By Lemma 3.3.1,

F6(t) =
∑

0≤a≤j≤n

tn

(n!)2

(
n

j

)(
j

a

)
(m6 − 15)a(m4 − 3)(j−a)Dn,a,j−a.

Summing with respect to b = j − a instead of a and observing that

Dn,a,b =

a+b−1∏
k=0

(n− k)

 b∑
i=0

(
b

i

)
CiHn,b−i,a,b

Pn−a−b

=
n!

(n− j)!

 b∑
i=0

(
b

i

)
CiHn,b−i,j−b,b

Pn−j

= n!

 b∑
i=0

(
b

i

)
CiHn,b−i,j−b,b

 (n−j+2)!(n−j+4)!

48
,
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we have that

F6(t) =
∑

0≤i≤b≤j≤n

tn

n!

(
n

j

)(
j

b

)(
b

i

)
(m6−15)(j−b)(m4−3)b

(n−j+2)!(n−j+4)!

48
Hn,b−i,j−b,bCi.

By Proposition 3.3.13, Hn,b−i,j−b,b = (3n − 3j + b − i − 1)!/(3n − 3j − 1)!. Using the

reparametrization b = i+ s, j = b+ r, n = j + q, where s, r, q goes from 0 to ∞, we get

F6(t) =
∞∑
q=0

∞∑
r=0

∞∑
s=0

∞∑
i=0

ti+s+r+q

q!r!s!i!
(m6 − 15)r(m4 − 3)(i+s) (q + 2)!(q + 4)!

48

(3q + s− 1)!

(3q − 1)!
Ci.

Grouping the terms to separate the dependence on r, s, and i, we have that F6(t) equals

∞∑
q=0

tq

q!

(q+2)!(q+4)!

48

( ∞∑
r=0

tr(m6−15)r

r!

)( ∞∑
s=0

ts

s!

(3q+s−1)!

(3q − 1)!
(m4−3)s

)( ∞∑
i=0

ti

i!
(m4−3)iCi

)
.

Summing all the inner sums (the rightmost using Corollary 3.3.15),

F6(t) =
∞∑
q=0

tq

q!

(q + 2)!(q + 4)!

48
et(m6−15) 1

(1− t(m4 − 3))3q
e−15t(m4−3)

(1− t(m4 − 3))15
.

3.3.1 Generalization for arbitrary third moment

Restating Proposition 2.2.5, we can write

f6(n) =
∑

t∈T6,n

w(t) sign(t),

where T6,n is the set of all permutation tables of length n with six rows (six-tables) whose

columns fall in one of the following categories

• 6-columns: six copies of a single number (weight m6)

• 4-columns: four copies of one number and two copies of a distinct number (weight m4)
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• 2-columns: three pairs of distinct numbers (weight 1)

The weight w(t) of the table t is then simply a product of weights of its columns. To avoid

ambiguity, we write f∗6 (n) for f6(n) with m3 being generally nonzero. We then define T ∗
6,n

as the set of all six-tables having the following extra columns

• 3-columns: three copies of one number and three copies of a distinct number (weight

m2
3)

Similarly, it must hold that

f∗6 (n) =
∑

t∈T ∗
6,n

w(t) sgn(t).

Proposition 3.3.16.

f∗6 (n) =
n∑

j=0

(
n

j

)2

f6(n− j) j!m
2j
3 (−1)j

∑
π∈Dj

(−10)C(π).

Proof. The key is to group the summands according to the 3-columns in t. Those columns

form a subtable s and the rest of the columns form another, complementary subtable t′. The

signs of those tables are related as

sgn(t) = sgn(s) sgn(t′).

Denote [n] = {1, 2, 3, . . . , n}. For a given J ⊂ [n], we define T6,J a set of all six-tables of

length j = |J | composed with numbers in J . The set T6,n coincides with T6,[n]. Denote Q6,J

as the set of all six-tables composed only from 3-columns of numbers in J . We can write our

sum, since the selection J does not depend on position in table t, as

f∗6 (n) =
∑
J⊂[n]

(
n

j

) ∑
t′∈T6,[n]/J

w(t) sgn(t)
∑

s∈Q6,J

w(s) sgn(s).
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No matter which numbers J are selected, as long as we select the same amount of them, the

contribution is the same. Hence,

f∗6 (n) =
n∑

j=0

(
n

j

)2 ∑
t′∈T6,n−j

w(t) sgn(t)
∑

s∈Q6,j

w(s) sgn(s),

where Q6,j = Q6,[j]. The first inner sum is simply f6(n − j). For the second inner sum,

by symmetry, we can fix the first permutation in s to be identity. Upon noticing also that

w(s) = m
2j
3 , we get ∑

s∈Q6,j

w(s) sgn(s) = j!m
2j
3

∑
s∈Q6,j
s1=id

sgn(s).

We group the summands according to the following permutation structure: Let b be a number

in the first row of a given column of table s. Since it is a 3-column, we denote the other

number in the column as b′. We construct a permutation π(s) to a given table s as composed

from all those pairs b → b′. Then

sgn(s) = sign(π(s)) = (−1)j−C(π(s)).

Note that since b and b′ are always different, the set off all π(s) corresponds to the set Dj

of all derangements. Since there are 10 possibilities how to arrange the leftover 5 numbers

in the 3-columns corresponding to a given cycle of π(s), we get

∑
s∈Q6,j

w(s) sgn(s) = j!m
2j
3 (−1)j

∑
π∈Dj

(−1)C(π)10C(π).

and thus, all together

f∗6 (n) =
n∑

j=0

(
n

j

)2

f6(n− j) j!m
2j
3 (−1)j

∑
π∈Dj

(−10)C(π).
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Corollary 3.3.17.

F ∗
6 (t) = (1 +m2

3t)
10e−10m2

3t F6(t).

Proof. In terms of generating functions,

F ∗
6 (t) =

∞∑
n=0

tn

n!2
f∗6 (n) =

∞∑
n=0

n∑
j=0

tn−j

(n− j)!2
f6(n− j)

(−m2
3t)

j

j!

∑
π∈Dj

(−10)C(π)

= F6(t)
∞∑
j=0

(−m2
3t)

j

j!

∑
π∈Dj

(−10)C(π) = F6(t)
e−10m2

3t

(1 +m2
3t)

−10
.

The final equality is a special case of Lemma 3.3.14. Theorem 2.1.7 follows.

3.3.2 Asymptotics

The proof relies directly on the calculus developed by Borinsky [2018], enabling us to extract

the asymptotic behaviour of coefficients from their factorially divergent generating function.

We use the following result from Borinsky [2018]:

Definition 3.3.18. We say a formal power series f(t) =
∑

n≥0 fnt
n is factorially divergent

of type (α, β), if fn ∼
∑R

k=0 ckα
n+β−kΓ(n+ β − k) as n → ∞ for any fixed R integer. We

also define an operator Aα
β acting of f(t) such that (Aα

βf)(t) =
∑

k≥0 ckt
k. If moreover f(t)

is analytic at 0, then (Aα
βf)(t) = 0.

Lemma 3.3.19. Let f(t) and g(t) be two factorially divergent power series of type (α, β),

then

(Aα
β(fg))(t) = (Aα

βf)(t)g(t) + f(t)(Aα
βg)(t),

(Aα
β(f ◦ g))(t) = f ′(g(t))(Aα

βg)(t) +

(
t

g(t)

)β

e

1
t−

1
g(t)
α (Aα

βf)(g(t)),
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where the second equality holds when g(t) = 1 + t+O(t2).

Recall Theorem 2.1.7, which states

F6(t) =
(
1 +m2

3t
)
10 e

t(m6−10m2
3−15m4+30)

48 (1 + 3t−m4t)
15

∞∑
i=0

(1 + i)(2 + i)(4 + i)!ti

(1 + 3t−m4t) 3i
.

Hence, we can write F6(t) = h(t)f(g(t)), where

f(t) =
∞∑
i=0

(1 + i)(2 + i)(4 + i)!ti,

g(t) =
t

(1 + 3t−m4t)3
, h(t) =

(
1 +m2

3t
)
10 e

t(m6−10m2
3−15m4+30)

48 (1 + 3t−m4t)
15

are factorially divergent of type (1, 7) since

(1 + i)(2 + i)(4 + i)! = Γ(i+ 7)− 8Γ(i+ 6) + 12Γ(i+ 5)

and g(t) and h(t) are analytic. Thus, by Lemma 3.3.19,

(A1
7F6)(t) = h(t)

(
t

g(t)

)7

e
1
t−

1
g(t) (A1

7f)(g(t)) = h(t)

(
t

g(t)

)7

e
1
t−

1
g(t) (1− 8g(t) + 12g2(t)).

Apart from a factor (n!)2e3(m4−3)/48, this is our function C(t) from the original statement

of Theorem 2.1.10.

For Ω = {−1, 1}, the asymptotic expression

f6(n) ∼
(n!)3

48e6

(
n6 + 29n5 + 335n4 +

5861n3

3
+

17944n2

3
+

44036n

5
+

167536

45
− 210176

63n

)

gives an excellent approximation to f6(n) for n ≥ 10. The following figure shows the ratio

of this asymptotic expression to the actual value of f6(n) for n up to 20.
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Figure 3.3: The ratio between the asymptotic expression and f6(n) for Ω = {−1, 1}

3.3.3 Direct proof of Lemma 2.2.12

Lemma. (Restatement of Lemma 2.2.12). For all n ∈ N, Pn = n(n+ 2)(n+ 4)Pn−1 where

P0 = 1.

Proof. We recursively compute Pn =
∑

t∈Tk,n sgn(t)|P(t)| based on where the six n are

located in t.

We can count the cases where all of the n are in a 6-column as follows. Given a table

t ∈ Tk,n−1 and a pairing P ∈ P(t), we can obtain a table t′ ∈ Tk,n and a pairing P ′ ∈ P(t)

by choosing a location for the 6-column, choosing a pairing for this column, and using t and

P to fill in the remainder of t′ and P ′. There are n possible places for the 6-column, it has

15 possible pairings, and sgn(t′) = sgn(t), so this gives a contribution of 15nPn−1.

We can count the cases where four of the n are in a 4-column and two of the n appear

in a different column as follows. Given a table t ∈ Tk,n−1 and a pairing P ∈ P(t), we can

obtain a table t′ ∈ Tk,n and a pairing P ′ ∈ P(t) with the following steps:

1. Choose which column will be the 4-column containing four of the n. We initially put

all six n in this column.

2. Fill in the remaining columns using t and P .
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3. Choose one of the 3(n− 1) pairs in P and swap two of the n with this pair.

4. Choose a pairing for the remaining four n.

There are n possible places for the 4-column containing four of the n, there are 3(n−1) pairs in

P which can be swapped with two of the n, there are 3 different pairings for the remaining four

n, and sgn(t′) = sgn(t), so this gives a contribution of 3∗3∗n(n−1)∗Pn−1 = 9n(n−1)Pn−1.

The trickiest case to analyze is the case when the six n are split into three different

columns. The idea for this case is that there is a correspondence between sets of 2 columns

containing pairs of the elements a, b, c, d, e, f and sets of 3 columns containing pairs of the

elements a, b, c, d, e, f where each column also contains a pair of n. This correspondence is

highly non-trivial and relies on the signs of the permutations.

Definition 3.3.20. Let S1, S2, S3, S4, S5, S6 be six sets such that each set Si contains two

of the elements {a, b, c, d, e, f} and each element in {a, b, c, d, e, f} is contained in two of the

sets S1, S2, S3, S4, S5, S6.

We define T2(S1, S2, S3, S4, S5, S6) to be the set of 6 × 2 tables t such that the ith row

contains the elements in Si and each element appears an even number of times in each

column. Similarly, we define T3(S1, S2, S3, S4, S5, S6) to be the set of 6×3 tables t such that

the ith row contains the elements in Si ∪ {n} and each element appears an even number of

times in each column.

For each t ∈ T2(S1, S2, S3, S4, S5, S6), we define sgn(t) to be the product of the signs of

the rows of t where row i of t has sign 1 if the elements of Si appear in order and sign −1

if the elements of Si appear out of order. Similarly, for each t ∈ T3(S1, S2, S3, S4, S5, S6),

we define sgn(t) to be the product of the signs of the rows of t where row i of t has sign 1

if it takes an even number of swaps to transform it into Si ∪ {n} and −1 if it takes an odd

number of swaps to transform it into Si ∪ {n}.
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Lemma 3.3.21. For all possible S1, S2, S3, S4, S5, S6,

∑
t∈T3(S1,S2,S3,S4,S5,S6)

sgn(t) = 6
∑

t∈T2(S1,S2,S3,S4,S5,S6)
sgn(t).

Corollary 3.3.22. For all n ∈ N,

∑
t∈T6,n:n appears in 3 different columns

sgn(t)|P(t)| = n(n− 1)(n− 2)Pn−1.

Proof. Recall that ∑
t∈T6,n−1

sgn(t)|P(t)| = Pn−1.

We now apply Lemma 3.3.21 to the first two columns of the pairs (t, P ) where t ∈ T6,n−1

and P ∈ P(t). To do this, we use P to relabel the elements in the first two columns as

a, b, c, d, e, f . One way to do this is as follows. We go through the rows one by one and

assign the next unused label(s) to the element(s) which whose pair has not yet appeared. If

there are two such elements, we assign the first unused label to the lower element and the

next unused label to the higher element. If both elements are the same, we assign the first

unused label to the column where the pair of this element appears first. If there is still a tie,

we assign the same label to both elements and skip the next label. Lemma 3.3.21 still holds

in this case as having Si = Sj = {a, a} instead of Si = Sj = {a, b} divides both sides by 2.

After doing this relabeling, for each i ∈ [6], we take Si to be the first two elements in

row i. Applying Lemma 3.3.21, we obtain tables t′ and pairings P ′ by taking P ′ to be the

unique pairing for each column and inverting the labeling of the elements in the first two

columns of t by {a, b, c, d, e, f}. This implies that whenever n ≥ 3,

∑
t∈T6,n:n appears in the first three columns

sgn(t)|P(t)| = 6
∑

t∈T6,n−1

sgn(t)|P(t)| = 6Pn−1.
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There are
(n
3

)
=

n(n−1)n−2)
6 possibilities for which 3 columns contain n so we have that

∑
t∈T6,n:n appears in 3 different columns

sgn(t)|P(t)| = n(n− 1)(n− 2)Pn−1,

as needed.

Summing these three cases up, we have

Pn = 15nPn−1 + 9n(n− 1)Pn−1 + n(n− 1)(n− 2)Pn−1

= (n3 + 6n2 + 8n)Pn−1 = n(n+ 2)(n+ 4)Pn−1.

We now prove Lemma 3.3.21.

Proof of Lemma 3.3.21. Up to permutations of the rows and {a, b, c, d, e, f}, we have the

following four cases for S1, S2, S3, S4, S5, S6:

1. S1 = S2 = {a, b}, S3 = S4 = {c, d}, and S5 = S6 = {e, f}.

2. S1 = S2 = {a, b}, S3 = {c, d}, S4 = {c, e}, S5 = {d, f}, and S6 = {e, f}.

3. S1 = {a, b}, S2 = {a, c}, S3 = {b, d}, S4 = {d, e}, S5 = {c, f}, and S6 = {e, f}.

4. S1 = {a, b}, S2 = {a, c}, S3 = {b, c}, S4 = {d, e}, S5 = {d, f}, and S6 = {e, f}.

We can see that these are the only possibilities as follows. If we construct a multi-graph

where the vertices are {a, b, c, d, e, f} and the edges are {S1, S2, S3, S4, S5, S6} then in this

multi-graph, every vertex will have degree 2.

1. If there is a cycle of length 2 then for the remaining 4 vertices, we will either have two

more cycles of length 2 or a cycle of length 4. This gives cases 1 and 2.

32



2. If there is a cycle of length 3 then there must be another cycle of length 3 on the

remaining vertices. This gives case 4.

3. If there are no cycles of length 2 or 3 then we must have a cycle of length 6. This gives

case 3.

For the first three cases, T2(S1, S2, S3, S4, S5, S6) is nonempty as shown by the examples

below. For the fourth case, T2(S1, S2, S3, S4, S5, S6) is empty.



a b

a b

c d

c d

e f

e f



,



a b

a b

c d

c e

f d

f e



,



a b

a c

d b

d e

f c

f e


For all four cases, T3(S1, S2, S3, S4, S5, S6) is nonempty as shown by the examples below.



a b n

a b n

c n d

c n d

n e f

n e f



,



a b n

a b n

c n d

c n e

n f d

n f e



,



a b n

a c n

n b d

e n d

n c f

e n f



,



a b n

a n c

n b c

d e n

d n f

n e f


We now show that for each of the four cases,

∑
t∈T3(S1,S2,S3,S4,S5,S6)

sgn(t) = 6
∑

t∈T2(S1,S2,S3,S4,S5,S6)
sgn(t).

1. For the first case, |T2(S1, S2, S3, S4, S5, S6)| = 8 as we can choose the order of {a, b}
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in row 1, the order of {c, d} in row 3, and the order of {e, f} in row 5. All t ∈

T2(S1, S2, S3, S4, S5, S6) have positive sign as rows 2, 4, and 6 must be the same as

rows 1, 3, and 5. Thus,
∑

t∈T2(S1,S2,S3,S4,S5,S6) sgn(t) = 8.

To analyze T3(S1, S2, S3, S4, S5, S6), observe that there are 6 choices for the positions of

the n in rows 1, 3, and 5 and we can again choose the order of {a, b} in row 1, the order of

{c, d} in row 3, and the order of {e, f} in row 5. Thus, |T3(S1, S2, S3, S4, S5, S6)| = 48.

All t ∈ T3(S1, S2, S3, S4, S5, S6) have positive sign as rows 2, 4, and 6 must be the

same as rows 1, 3, and 5 so we have that
∑

t∈T3(S1,S2,S3,S4,S5,S6) sgn(t) = 48.

2. For the second case, |T2(S1, S2, S3, S4, S5, S6)| = 4 as we can choose the order of {a, b}

in row 1 and the order of {c, d} in row 3 and this uniquely determines the rest of the

table. It can be checked that all t ∈ T2(S1, S2, S3, S4, S5, S6) have positive sign so we

have that
∑

t∈T2(S1,S2,S3,S4,S5,S6) sgn(t) = 4.

To analyze T3(S1, S2, S3, S4, S5, S6), observe that there are 6 choices for the order of

{a, b, n} in row 1. Once this order is chosen, there are two choices for the position of

the n in row 3 and two choices for the order of {c, d} in row 3. It can be checked that

this uniquely determines the rest of the table and all t ∈ T3(S1, S2, S3, S4, S5, S6) have

positive sign so we have that
∑

t∈T3(S1,S2,S3,S4,S5,S6) sgn(t) = 24.

3. For the third case, |T2(S1, S2, S3, S4, S5, S6)| = 2 as we can choose the order of

{a, b} in row 1 and this uniquely determines the rest of the table. Here both t ∈

T2(S1, S2, S3, S4, S5, S6) have negative sign so we have that
∑

t∈T2(S1,S2,S3,S4,S5,S6) sgn(t) =

−2.

For T3(S1, S2, S3, S4, S5, S6), there are 6 choices for the order of {a, b, n} in row 1.
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When row 1 is a, b, n, we have the following four tables:



a b n

a c n

n b d

e n d

n c f

e n f



,



a b n

a n c

d b n

d n e

n f c

n f e



,



a b n

a n c

n b d

e n d

n f c

e f n



,



a b n

a n c

n b d

n e d

f n c

f e n


Of these tables, the first, second, and fourth table have negative sign while the third

table has positive sign so the net contribution is −2. Multiplying this by 6, we have

that ∑
t∈T3(S1,S2,S3,S4,S5,S6)

sgn(t) = −12.

4. For the fourth case, T2(S1, S2, S3, S4, S5, S6) is empty because each column can only

contain one of {a, b, c} and one of {b, c, d}.

To analyze T3(S1, S2, S3, S4, S5, S6), observe that we can choose the order of {a, b, n}

in row 1 and the order of {d, e, n} in row 4 and this uniquely determines the rest of

the table. The sign of each table will be the product of the sign for row 1 and the sign

for row 4, so we have the same number of tables with positive and negative sign and

thus
∑

t∈T2(S1,S2,S3,S4,S5,S6) sgn(t) =
∑

t∈T3(S1,S2,S3,S4,S5,S6) sgn(t) = 0.

3.4 General Moments

In this section, we discuss the results of arbitrary k
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CHAPTER 4

RANDOM DETERMINANTS FOR SYMMETRIC MATRICES

4.1 Second Moment

Theorem 4.1.1. For any distribution Ω such that m1 = 0 and m2 = 1,

f
sym
2 (n) = q(n) ∗ (n− 1)!,

where

p(n) =


1 n ≤ 2

2 n ≥ 3, n odd

3 n ≥ 4, n even

q(n) = p(n) +
n−1∑
i=1

p(i)q(n− i)

n− i
.

Proof. By 2.2.17, we know the value of fsym2 (n) is the number of elements in G2,n. To count

number of directed graphs which satisfy the constraints, we classify them based on how many

vertices are in the connected component that includes vertex 1.

For a single connected component with l vertices, we first consider the number of cycles

that can be made with these vertices then we copy the edges into pairs, orient and color

them. The number of undirected cycles in l vertices is l!
2l =

(l−1)!
2 . For orientation and

coloring given an undirected cycle, we first discuss the case that l ≥ 4 and l is even. We

first color them accordingly, we can obtain two kinds of colorings, where in one coloring each

of the colored edges forms a cycle and in the other each of them forms a perfect matching.

For the first, we can orient each of them clock-wisely or anti-clock-wisely, therefore we have

4 different orientations. For the second case, since we have two colorings and two different

matching, we have two ways to assign the colors to each of the matching and once we have
36



them in the matching form, the orientation is fixed. So for l ≥ 4 and l is even, we have

3(l − 1)! different connected components with l vertices. We can use a similar proof to get

2(l−1)! in the case that l is odd. Let K(l) be the function to denote the number of different

connected components with l vertices, so we have

K(n) =


1 l ≤ 2

2(l − 1)! l ≥ 3, l odd

3(l − 1)! l ≥ 4, l even

Example 4.1.2. Let G be an undirected cycle graph with four vertices. We show all the 6

different colorings and orientations given G.

Figure 4.1: All 6 different colorings and orientations of a given 4−cycle.

For the total number of such graphs, we can iterate on how many vertices are in the

connected component that include vertex 1. If there l vertices in this component, the number

of different such directed and colored graphs of the remaining n−l vertices is just fsym2 (n−l).
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Therefore, by summing over all possible value of l, we have w

f
sym
2 (n) =

n∑
i=1

(
n− 1

i− 1

)
K(i)f

sym
2 (n− i),

where f
sym
2 (1) = 1, f

sym
2 (0) = 1.

By rearranging the terms, we get

f
sym
2 (n) = q(n) ∗ (n− 1)!,

where

p(n) =


1 n ≤ 2

2 n ≥ 3, n odd

3 n ≥ 4, n even

q(n) = p(n) +
n−1∑
i=1

p(i)q(n− i)

n− i
.

In order to analyze the asymptotic behavior of fsym2 (n), we note the following results of

ordinary generating function.

First we denote r(n) :=
q(n)
n . Therefore, fsym2 (n) = n!r(n), then by arranging the terms
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in r(n), we obtain the following recurrence:

nr(n) = (n− 2)r(n− 2) + r(n− 3) + 2r(n− 4)

Initial conditions:

r(1) = 1, ; r(2) = 1, ; r(3) =
8

6
, ; r(4) =

44

24

Multiply both sides by xn and sum over all n :

∞∑
n=1

nr(n)xn =
∞∑
n=1

(n− 2)r(n− 2)xn +
∞∑
n=1

r(n− 3)xn +
∞∑
n=1

2r(n− 4)xn

Define the generating function R(x) :

R(x) =
∞∑
n=1

r(n)xn

Rewrite the sums in terms of R(x) :

x
dR(x)

dx
= x3

dR(x)

dx
+ x3R(x) + 2x4R(x)

Solving this differential equation, we have:{{
R(x) → e−x2−x

(1− x)3/2
√
x+ 1

}}

First we rearrange the terms

e−x2−x

(1− x)3/2
√
x+ 1

=
e−x2−x

(1− x)
√
x2 − 1

Now let’s consider the series expansion of each term:

• 1
1−x =

∑∞
n=0 x

n.

• 1√
x2−1

. First we notice that 1√
x2−1

= 1 + x2

2 + 1∗3x2
2∗4 + 1∗3∗5x3

2∗4∗6 + 1∗3∗5∗7x3
2∗4∗6∗8 ..., which
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can be written as
∞∑
n=0

(
n∏

i=1

2i− 1

2i
)x2n.

•

e−x2−x =
∞∑
k=0

(−x2 − x)k

k!

=
∞∑
n=0

(
n∑

k=⌈n2 ⌉

(−1)k
( k
m−k

)
k!

)xn

=
∞∑
n=0

(
n∑

k=⌈n2 ⌉

(−1)kxn

(n− k)!(2k − n)!
)

Now in order to merge them together, we perform the generating function convolution on

these three terms and obtain the following generating function:

R(x) =
∑
n≥0

(
∑

0≤q≤⌈n2 ⌉
(

2q∏
i=1

2i− 1

2i
)

∑
0≤p≤n−2q

p∑
k=⌈p2⌉

(−1)k

(p− k)!(2k − p)!
)xn.

Therefore, we have

f
sym
2 (n) = n!(

∑
0≤q≤⌈n2 ⌉

(

2q∏
i=1

2i− 1

2i
)

∑
0≤p≤n−2q

p∑
k=⌈p2⌉

(−1)k

(p− k)!(2k − p)!
)

Note that Zhurbenko [1968] used a different approach to obtain the following result:

Theorem 4.1.3. For any distribution Ω such that m1 = 0 and m2 = 1 ,

f
sym
2 (n) = Cnn

3
2n!

where limn→∞Cn = 4
√
2πe−2

3 .
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