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Abstract

Rotational spectroscopy is an incredibly powerful technique for measuring the
quantized rotational states of molecules in the range of microwave radiation.
While the technique can present a tremendous amount of molecular information
that few spectroscopies can emulate, rotational spectroscopy is not commonly
utilized by analytical chemists. But the greatest barriers to wider utilization
are not experimental; rather, they are computational. We present our ongoing
efforts towards the development of RotoCalc Monte Carlo, a method for the
inverse mapping of rotational spectra by stochastically sampling from a robust
forward model. RotoCalc Monte Carlo seeks to derive important spectroscopic
quantities from a rotational spectrum without molecule foreknowledge or spectral
annotation, thereby building up rotational spectroscopy as a more viable tool for
general-purpose analytical chemistry.

Keywords: Rotational spectroscopy, chirped-pulse Fourier transform microwave
spectroscopy, Monte Carlo methods

1 Introduction

Rotational spectroscopy uses microwave radiation to induce quantized rotational tran-
sitions on a polar molecule in the gas phase. The technique began in the 1930s to
determine the electronic and conformational structures of such molecules. Innovations
in instrumentation, especially with the recent advent of the chirped-pulse Fourier
transform microwave (CP-FTMW) spectrometer by the Pate group [1], have permitted
the structure of many molecules (as well as complexes) to be closely analyzed. Improve-
ments in electronic components are constantly enhancing signal-to-noise (SNR) ratios
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of spectra, while simultaneously making rotational instruments more price-competitive
with more common spectroscopic techniques. Enhanced SNR enables the identifica-
tion of conformational species of a molecule, and even allows for the identification of
isotopomeric species (molecules with one or more isotopic substitutions of an atom)
in natural abundance. Even more exciting is the ability to carry out gas-phase reac-
tions within a CP-FTMW instrument and observe or infer transitional states, thereby
experimentally enhancing our understanding of chemical reaction mechanisms.

Despite these experimental advantages and recent instrumentation innovations,
rotational spectroscopy remains a boutique method. Two main factors separate rota-
tional spectroscopy from commonly used analytical methods such as nuclear magnetic
resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. First, com-
mon spectroscopic techniques must produce spectra which are easy to interpret by
humans or automated software. NMR benefits from spectral peaks that match to
specific carbon or hydrogen atoms, allowing experts and automated systems to gar-
ner important structural information, even for complex mixtures. FTIR lacks this
peaks-to-atoms mapping, but benefits from functional groups exhibiting modes which
localize to specific ”fingerprint regions” of an infrared spectrum, which are readily
interpreted at the undergraduate level. Rotational spectroscopy lacks any such charac-
teristics, and in many cases experts can discern little from a spectrum divorced from a
molecule-specific context. In practice, rotational spectra are experimentally collected
for known molecules and corroborated alongside ab-initio calculations. Second, com-
mon spectroscopic techniques do not strictly require quantum number assignments
for peak transitions in order to infer structural information. Rotational spectroscopy
requires the correct manual assignment of six quantum numbers per peak transition,
and while tools and heuristics exist to aid in spectral assignment, the process is often
time-intensive and error prone. For these reasons, this so-called ”inverse mapping”
problem for identifying unknown molecules or mixtures using rotational spectroscopy
has remained out of reach.

Our paper is ordered as follows. First, we provide a suitable background of
rotational spectroscopy, derive the constituent rotational and dipole constants that
comprise a rotational spectrum, and highlight relevant domain-specific computational
software. Second, we introduce our own ”forward mapping” tool and the Monte Carlo
sampling procedures (for both single and multiple species) used to perform an inverse
mapping. Third, we describe our results for a single molecule species across varying
Monte Carlo sampling procedures. Finally, we highlight future directions for improving
the robustness, speed, and scope of our methods.

2 Background

We first provide a background on calculating rotational and dipole constants from
molecular geometries, then summarize the calculations required to generate a rota-
tional spectrum from these constants.
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2.1 Rotational and Dipole Constants

Consider an arbitrary molecule in the gas phase with a fixed internal geometry (also
called a rigid rotor), where {(x1, y1, z1,m1), ..., (xn, yn, zn,mn)} describes the Carte-
sian locations and masses of all atoms. Such a molecule is free to rotate about
three mutually orthogonal axes oriented about the center of mass. We can calcu-
late nine rotational inertia constants according to Ix,x =

∑n
i=1 mi(y

2
i + z2i ) and

Ip,q = Iq,p = −
∑n

i=1 mipiqi where p ̸= q. Constructing an inertial matrix decom-
posing, we are left with three inertial magnitudes IA ≤ IB ≤ IC along our three
mutually orthogonal axes (corresponding to the inertial matrix eigenvectors). By con-
vention, we write our rotational constants as χ = h

8π2Iχ
(where h is Planck’s constant)

for χ ∈ {A,B,C}, resulting in A ≥ B ≥ C. While symmetric molecules exist where
A = B (oblate) or B = C (prolate) or even A = B = C (spherical), we generally
assume the asymmetric case of A > B > C, which spans nearly all molecules. The
degree of asymmetry is helpfully measured by Ray’s asymmetry parameter, defined
as κ = 2B−A−C

A−C . These three rotational constants (by convention measured in MHz)
will solely define the location of all spectral peaks for a molecular species.

After calculating rotational constants, the dipole constants of the rigid must also be
determined. The overall dipole vector in R3 of a molecule is automatically calculated
using most ab-initio software packages, but can also be computed purely classically
using Gastieger charges (albeit with dubious accuracy). Using the previously computed
rotational eigenvectors, we can perform a change of basis on the overall dipole vector
to determine dipole constants µA, µB , µC ∈ R which correspond to their respective
rotational constants. These three dipole constants (by convention measured in Debye)
will, along with the rotational constants, solely define the intensities of spectral peaks
for a molecular species.

We have defined six variables [A,B,C, µA, µB , µC ] which, with respect to the for-
ward mapping, solely define a full rotational spectrum for a molecular species. From the
forward mapping perspective, we can consider the overall mapping as, approximately,
R4n → R6 → R2P where P is the number of spectral peaks (considering frequen-
cies and intensities). Note that other variables, such as centrifugal distortion, can be
included and have an effect at higher frequencies, however we omit these for now. Six
variables is far fewer than the number required for other spectroscopic techniques,
making the bottleneck in the forward mapping readily apparent.

2.2 Spectral Calculation

Assuming that the rotational and dipole constants of a molecular species are identi-
fied via ab-initio or classical means, we now calculate the frequencies and intensities
composing a rotational spectrum. We begin with the Schrödinger equation HΨ = EΨ,
where H is a Hamiltonian matrix, E is an energy vector, and Ψ is the wave function
matrix. We introduce three quantum numbers for a rotational state: J ∈ [0, ..., Jmax]
represents overall inertial quantization, KA ∈ [−J, ..., J ] represents quantized rota-
tional inertia towards an oblate extreme, and KC ∈ [−J, ..., J ] represents quantized
rotational inertia towards a prolate extreme. The overall Hamiltonian matrix is linearly
separable as H =

∑
χ∈{A,B,C} χHχ, where each Hχ is a [(Jmax+1)2×(Jmax+1)2] band

3



matrix. The eigenvalues {λ1, ..., λP } of H represent the resulting unique (J,KA,KC)
quantum states. A dipole matrix µ2 can be constructed in a manner similar to the
Hamiltonian, where µ2 = Ψ−1

[∑
χ∈{A,B,C} µ

2
χMµ2

χ

]
Ψ, where Mµ2

χ
matrices are also

of size [(Jmax + 1)2 × (Jmax + 1)2].
Considering quantum states λlo > λhi satisfying the selection rules (that is, having

a nonzero corresponding dipole matrix element), the final peak transition frequencies
(in MHz) are simply ωhi→lo = λhi − λlo. The corresponding peak intensities (in units
of MHz ∗ Debye2) are determined as

ρhi→lo = ωhi→lo × µ2
hi→lo×

[
1 − exp

(
−λlo

kβT

)]
× exp

(
−ωhi→lo

kβT

)
where kβ is Boltzmann’s constant and T is a fixed effective temperature (slightly
above absolute zero for most CP-FTMW instruments). For more information on the
derivation of rotational spectra, see textbooks by Gordy and Cook [2] and Kroto [3].

2.3 Existing Forward and Inverse Mapping Tools

Rotational spectra can be accurately calculated from rotational and dipole parame-
ters using software tools like Pickett’s SPCAT (open-source C) [4], Kisiel’s ASROT
(open-source Fortran) [5], and Western’s PGOPHER (Pascal) [6]. While these tools
are mostly in agreement on transition frequencies, they may occasionally differ dur-
ing state assignment. The tools exhibit larger discrepancies when calculating spectral
intensities, as theoretical frameworks for calculating intensities differ across tools to
some extent. While these tools effectively address the forward problem of mapping
rotational and dipole constants to spectra, the methods were never intended to scale
beyond individual runs.

The inverse problem of mapping from rotational spectra back to rotational and
dipole constants, and eventually to molecule identities, has been far more difficult.
All methods rely on the accurate manual identification of some number of transition
states in a spectrum, after which a fitting can be carried out. Some tools and heuris-
tics exist to facilitate manual labelling of transition states, such as Loomis-Wood
plotting [7] and RAARR scaffolding [8]. Once states have been manually assigned,
tools such as SPFIT [4] and ASFIT [9] perform a least-squares fitting on the transi-
tion state assignments to determine underlying rotational constants. Unfortunately,
fitting in SPFIT or ASFIT also requires a strong set of initial guesses of rotational
constants, and poor initial guesses often lead to numerical instabilities or incorrect
fittings. Seifert’s AUTOFIT tool [10] takes an initial step towards eliminating this
guesswork and automating the fitting process by first running ab-initio calculations to
estimate rotational constants from an optimized geometry, then adjusting alignments
to experimental spectra in a brute-force grid fashion. An important limitation with
all of these established techniques is the experimenter’s assumed prior knowledge of
the contents of their sample. Without knowledge of the contents of a sample (as is the
norm in analytical chemistry) ab-initio simulations can provide little assistance, and
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there can be no clear strategy for manually labelling transition states. For these rea-
sons, mapping the experimental spectrum of a sample of unknown origin to separate
molecular species is practically impossible.

3 Methods

We introduce RotoCalc, our tool for spectral calculation, and RotoFit, our tool for
fitting spectra based on labelled transitions. We also introduce a Monte Carlo method
for inverse spectral mapping.

3.1 Forward Calculation With RotoCalc

First we present RotoCalc, our tool for calculating spectra from rotational and dipole
constants. When computing spectra from rotational and dipole constants, RotoCalc
follows essentially the same steps as described previously, but with several changes to
increase calculation speed even further. First, recall the linear equation for the overall
Hamiltonian H for some Jmax where for χ ∈ {A,B,C}:

H = AHA + BHB + CHC =
∑

χ∈{A,B,C}

χHχ.

Rather than computing the matrices Hχ;χ ∈ {A,B,C} at every step, we simply load
these three (Jmax + 1)2 × (Jmax + 1)2 sparse matrices into computer memory before
beginning our calculations. The only intensive operation regarding the Hamiltonian is
an eigendecomposition of a block diagonal matrix with eigenvalue reordering sped up
using the Hungarian algorithm. We perform a similar memory loading method with
the dipole matrix, but with several changes for additional speed improvements. Recall
that

µ2 = µ2
AMµ2

A
+ µ2

BMµ2
B

+ µ2
CMµ2

C
=

∑
χ∈{A,B,C}

µ2
χMµ2

χ
.

Recall the required diagonalization by the eigenvector matrix V ′, a matrix which
is dependent only on κ. The separate dipole-axis matrices are independent of the
molecule-specific dipoles or principal directions, and are therefore constants. So the
overall Mµ2

χ
matrices are dependent only on κ. Instead of recovering the dipole com-

ponent matrix via a diagonalization on a computed and reordered eigenvector matrix,
it can be shown that each location of the dipole component matrices can be more
simply expressed as a fourth-order polynomial expression as a function of κ. That is,

Mµ2
χ
(κ) =

4∑
p=0

κpMµ2
χ,p

.

To compute the overall dipole matrix, we therefore need only load fifteen sparse (Jmax+
1)2 × (Jmax + 1)2 matrices into memory and carry out a handful of matrix additions
and scalar multiplications. Peak intensity calculations can also be carried out quickly
using simple matrix manipulation. Our RotoCalc program has now optimized the full
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Fig. 1 Violin plot (semi-log) for time comparison of RotoCalc (blue) versus SPCAT (orange) and
ASROT (green) for values of Jmax.

calculation of rotational spectra to a point where the most compute-intensive steps
remaining are essentially unavoidable. These are the eigendecomposition of the block
diagonal Hamiltonian matrix, the eigenvector matrix reordering using the Hungarian
algorithm, and the final calculation of peak intensities.

Our tool is written in Python, performs calculations at a much faster rate, is easily
scaled in parallel across cores, and generates spectra that match closely with existing
tools. Figure 1 shows the wall time of RotoCalc versus competing tools SPCAT and
ASROT across increasing Jmax.

We also introduce RotoFit, which acts as a substitute for SPFIT or ASFIT. For
a set of labelled transitions and initial guesses for rotational constants, RotoFit uses
a BFGS optimizer (as implemented in Scipy) to perform a least-squares fitting for
the labelled transitions. Preliminary testing shows that RotoFit both faster and far
less sensitive to initial guesses than SPFIT or ASFIT. However, as our work aims to
completely eliminate expert manual annotation of spectra prior to analysis, we will
not analyze RotoFit in further depth in this paper.

3.2 Monte Carlo Sampling Methods

RotoCalc provides a fast forward model to generate rotational spectra. For an inverse
mapping of a spectrum with no manual annotation or experimental context, our fast
forward model naturally begets a sampling approach. A sampling approach also comes
with two notable benefits. First, sampling can be more computationally efficient than
a grid approach over a large, high-dimensional search space. Second, sampling can
provide a distribution over constants, which can lead to uncovering spectral degeneracy
as well as allow for multiple conformer identification. One of the simplest Monte Carlo
schemes is random walk Metropolis Hastings (RWMH), which is described in the
algorithm below.
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Algorithm 1 Random Walk Metropolis Hastings (Using RotoCalc)

Inputs A ground truth spectrum −→ω ∗,−→ρ ∗

1: Draw Φ0 = [A0, B0, C0, µA,0, µB,0, µC,0] ∼ P(·).
2: for i from 1, ..., N : do
3: Propose A′ = Ai + ε; ε ∼ N(0, σ2

rot), repeat for B′, C ′.
4: Propose µ′

A = µA,i + ε; ε ∼ N(0, σ2
dip), repeat for µ′

B , µ
′
C .

5: Calculate −→ω ′,−→ρ ′ = RotoCalc(Φ′ = [A′, B′, C ′, µ′
A, µ

′
B , µ

′
C ])

6: Calculate acceptance probability as a = P(Φ′)L(−→ω ′,−→ρ ′|Φ′)
P(Φi)L(−→ω i,

−→ρ i|Φi)

7: With probability min(1, a), let Φi+1 = Φ′ [accepted]. Else:
8: Let Φi+1 = Φi [rejected].
9: end for

10: return ΦMAP = argmax
i∈{0,...N}

P(Φi)L(−→ω i,
−→ρ i|Φi)

In accordance with Bayes theorem, we must define a prior distribution P(·) and
likelihood distribution L(·|·). Together these define a posterior π(·|·), in the context
of our rotational spectra written as:

π(Φ|−→ω ,−→ρ ) ∝ L(−→ω ,−→ρ |Φ)P(Φ)

Or, since our implementation primarily takes place in log-space, we can write:

log(π(Φ|−→ω ,−→ρ )) = log(L(−→ω ,−→ρ |Φ)) + log(P(Φ)) + constant.

Our choice of prior and likelihood functions can drastically change the behavior of
the posterior distribution, and therefore affect the Monte Carlo scheme. We select a
prior which assumes the molecule in question is a member of GDB9 (that is, containing
fewer than nine heavy atoms). Since we have already computed rotational and dipole
constants for DFT-relaxed geometries of conformers of all molecules in GDB9, we can
simply parameterize each constant independently using an F-distribution. Figure 2
shows the histogram distribution of rotational and squared dipole constants, all fit to
F-distributions. Our log-prior can then be expressed as

log(P(Φ′ = [A′, B′, C ′, µ′
A, µ

′
B , µ

′
C ])) =

∑
χ∈{A,B,C}

[Fχ(χ′) + Fµ2
χ
(µ′2

χ )]

Note that this prior fails to account for relationships between rotational constants (eg.
A ≥ B ≥ C is not enforced), and also fails to consider trends in κ (molecules in GDB9
roughly follow a chi-squared distribution with respect to κ + 1 ∈ [0, 2]).

Next, we define our likelihood function, which may be constructed in a number of
fashions. First, we construct a likelihood with inspiration from Bretthorst’s Bayesian
methods in nuclear magnetic resonance (NMR) quadrature [11, 12]. Consider the com-
parison of a single ground truth peak (ω∗, ρ∗) with another proposed single peak
(ω′, ρ′), both of which are in the frequency domain. Presuming the peaks are modeled
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Fig. 2 Left: Histogram of rotational constants A (blue), B (red), and C (black) overlaid with fitted
F-distributions. Right: Histogram of squared dipole constants µ2

A (blue), mu2
B (red), and µ2

C (black)
overlaid with fitted F-distributions.

as Dirac delta functions in the frequency domain, recall the continuous inverse Fourier

transform identity ρ∗δ(ω − ω∗)
F−1

−−−→ ρ∗

2π e
iω∗t ∝ ρ∗ cos(ω∗t) + ρ∗i sin(ω∗t). Since rota-

tional spectroscopy is phase-locked and does not measure in quadrature (mainly due
to limitations in instrumentation), the imaginary term may be ignored. This leaves

ρ∗δ(ω − ω∗)
F−1

−−−→ ρ∗ cos(ω∗t), which is equivalent to a noise-free free-induction decay
measured experimentally (ignoring the exponential decay term). Free-induction decay
duration for rotational spectroscopy is typically measured to around 20 microseconds,
although the cutoff time can be varied by experimenters based on a number of fac-
tors. Of course, free-induction decay measurements are not noise-free, and are often
averaged over longer time horizons to improve signal-to-noise ratio. For our likelihood
function, we introduce a noise term ϵT ∼ N(0, σ2

T ), which is applied to a proposed
peak in the time domain. To assess the likelihood of the occurrence of one peak ver-
sus another, we consider a Gaussian distribution on Euclidean L2 metric across some
duration tmax in the time domain, written as

L(ω∗, ρ∗|ω′, ρ′) ∝ 1

σ2
L

exp

{(∑tmax

t=0 ρ∗ cos(ω∗t) −
∑tmax

t=0 [ρ′ cos(ω′t) + ϵT ]
)2

σ2
L

}
where σ2

L is the variance of the Gaussian likelihood function.
Generalizing to more than one peak, we consider a ground truth spectrum −→ω ∗,−→ρ ∗

and a proposed spectrum −→ω ′,−→ρ ′. Let us also consider a vector
−→
t of arbitrary length Q

which evenly spans the time domain within [0, tmax]. Then our log-likelihood function
may be written as

log(L(−→ω ∗,−→ρ ∗|−→ω ′,−→ρ ′)) =
1Q

σ2
L
·
{

(−→ρ ∗)T cos((−→ω ∗)T
−→
t )−

8



(−→ρ ′)T cos((−→ω ′)T
−→
t ) + −→ϵ L

}2

− log(Qσ2
L) + CL

where CL is an arbitrary constant and the squared operator is applied element-wise
to the Q-length matrix. As a matter of notation, we will write our likelihood as
L(−→ω ∗,−→ρ ∗|Φ′), since we can generate −→ω ′,−→ρ ′ from our forward model using Φ′ as the
input.

A second likelihood function to consider is a measure-theoretic approach used in
Boyd’s DeepLoco model [13]. Considering a spectrum represented as a sum of Dirac
deltas, it is natural to consider a convolution kernel ϕ such that, for a spectrum −→ω ′,−→ρ ′,
we have a mapping

Rϕ(−→ω ′,−→ρ ′) = x 7→
∑
i

ρ′iϕ(ω − ω′
i).

Considering a log-likelihood function with respect to the convolution kernel, we may
write

log(Lϕ(−→ω ∗,−→ρ ∗|−→ω ′,−→ρ ′)) = ||Rϕ(−→ω ∗,−→ρ ∗) −Rϕ(−→ω ′,−→ρ ′)||22
which, in an expanded form, can be written as

log(Lϕ(−→ω ∗,−→ρ ∗|−→ω ′,−→ρ ′)) =

R∑
i=1

R∑
l=1

ρ∗i ρ
∗
lKϕ(ω∗

i , ω
∗
l )

−2

R∑
i=1

Q∑
j=1

ρ∗i ρ
′
jKϕ(ω∗

i , ω
′
j) +

Q∑
j=1

Q∑
k=1

ρ′jρ
′
kKϕ(ω′

j , ω
′
k)

where Kϕ is the kernel selected. In our case, two suitable contenders are a Gaussian
kernel

Kϕ(ωi, ωj) =
1

2πσω,ϕ
e

(ωi−ωj)
2

2σ2
ω,ϕ

and a Student’s t kernel (which for a single degree of freedom is equivalent to Cauchy’s
distribution):

Kϕ(ωi, ωj) =
1

πσω,ϕ

(
1 +

(ωi − ωj)
2

σ2
ω,ϕ

)−1

.

We can further extend the DeepLoco likelihood such that the kernel spans both
frequencies and intensities. We simply rewrite our previous log-likelihood as

log(Lϕ(−→ω ∗,−→ρ ∗|−→ω ′,−→ρ ′)) =

R∑
i=1

R∑
l=1

Kϕ(ω∗
i , ρ

∗
i , ω

∗
l , ρ

∗
l )

−2

R∑
i=1

Q∑
j=1

ρ∗i ρ
′
jKϕ(ω∗

i , ρ
∗
i , ω

′
j , ρ

′
j) +

Q∑
j=1

Q∑
k=1

ρ′jρ
′
kKϕ(ω′

j , ρ
′
j , ω

′
k, ρ

′
k)

with two-dimensional Gaussian and Student’s t kernel written respectively as

Kϕ(ωi, ρi, ωj , ρj) =
1

2πσω,ϕσρ,ϕ
exp

{
− 1

2

[
(ωi − ωj)

2

σ2
ω,ϕ

+
(ρi − ρj)

2

σ2
ρ,ϕ

]}
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Fig. 3 A simple likelihood calculation test, where a ground truth frequency is fixed and a test
frequency is varied along α. Left: a diagram of the simple likelihood test. Right: Varying kernel and
σω values using the DeepLoco likelihood function (with a Euclidean norm).

and

Kϕ(ωi, ρi, ωj , ρj) =
1

2
√
πσω,ϕσρ,ϕ

[
1 +

(ωi − ωj)
2

σ2
ω,ϕ

+
(ρi − ρj)

2

σ2
ρ,ϕ

]−3/2

.

Note that other kernels can certainly be used, however Gaussian is the most common
choice, with Student’s t often useful as well due to, informally, its heavier tails. Figure
3 shows a simple example of adjusting likelihood parameters to change the overall
probability density with a Euclidean metric.

Note that a kernel simplification is only possible for L1 (Manhattan) and L2

(Euclidean) norms, however we often want to consider Minkowski LP norms where
P < 1. Selecting P < 1 can be advantageous when we seek to mute the effect of
intensity variations, which often play a far smaller role in spectral matching than the
underlying frequency alignment. When a likelihood is placed in a grid across variable
rotational constants, we can observe a region of high probability density around the
true rotational constants. Figure 4 shows one such example where P = 0.2, σω = 25.
Using this likelihood and prior, we can now begin sampling via a RWMH approach.

4 Conclusion

This preliminary work demonstrates our capacity to identifying rotational constants
from spectra without manual annotation or prior knowledge, which is an important
step towards accepting rotational spectroscopy as a viable tool for analytical chemistry.
In the future, we hope to continue advancing the state of the art for this fascinating
inverse mapping problem. We also hope to successfully apply our methods to real
experimental measurements supplied by our collaborators.
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Fig. 4 A spectral likelihood function as a grid over rotational constants, first displaying one-
dimensional and two-dimensional marginals (left), then showing a full three-dimensional display of
log-likelihoods (across varying percentiles).
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[9] Kisiel, Z., Pszczó lkowski, L., Medvedev, I.R., Winnewisser, M., De Lucia, F.C.,
Herbst, E.: Rotational spectrum of trans–trans diethyl ether in the ground and

11



three excited vibrational states. Journal of Molecular Spectroscopy 233(2), 231–
243 (2005)

[10] Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L.,
Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H.: Autofit, an automated fit-
ting tool for broadband rotational spectra, and applications to 1-hexanal. Journal
of Molecular Spectroscopy 312, 13–21 (2015)

[11] Bretthorst, G.L.: Bayesian analysis. i. parameter estimation using quadrature
nmr models. Journal of Magnetic Resonance (1969) 88(3), 533–551 (1990)

[12] Bretthorst, G.L.: Bayesian analysis. iii. applications to nmr signal detection,
model selection, and parameter estimation. Journal of Magnetic Resonance (1969)
88(3), 571–595 (1990)

[13] Boyd, N., Jonas, E., Babcock, H., Recht, B.: Deeploco: fast 3d localization
microscopy using neural networks. BioRxiv, 267096 (2018)

12


	Introduction
	Background
	Rotational and Dipole Constants
	Spectral Calculation
	Existing Forward and Inverse Mapping Tools

	Methods
	Forward Calculation With RotoCalc
	Monte Carlo Sampling Methods

	Conclusion
	Acknowledgments


