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ABSTRACT

Causal discovery of genome-scale networks is important for identifying pathways from genes

to phenotypes –e.g. cell function, disease, drug resistance and others. Causal learners

based on graphical models rely on interventional samples to orient edges in the network.

However, these models have not been shown to scale up the size of the genome, which are on

the order of 1e3-1e4 genes. We introduce a new learner, SP-GIES, that jointly learns from

interventional and observational datasets and achieves almost 4x speedup against an existing

learner for 1,000 node networks. SP-GIES achieves an AUC-PR score of 0.91 on 1,000 node

networks, and scales up to 2,000 node networks – this is 4x larger than existing works. We

also show how SP-GIES improves downstream optimal experimental design strategies for

selecting interventional experiments to perform on the system. This is an important step

forward in realizing causal discovery at scale via autonomous experimental design.
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CHAPTER 1

INTRODUCTION

A biological network describes causal interactions between variables in a biological system.

These variables can be genes, transcription factors, proteins and metabolites. Interactions

between these variables, along with external environmental factors, maps the genome of a

species (or genotype) to an observable trait (or phenotype) (See Fig. 1.1). Predicting phe-

notypes from genotypes is one of the core challenges in systems biology (Pigliucci [2010],

Ritchie et al. [2015], Lewis et al. [2012]). Genotype-phenotype models are useful for pre-

dicting cell function, disease, drug resistance, and many other problems related to biology

and public health. In this paper we focus on biological network recovery of the first layer

in the interaction hierarchy (the gene regulatory network) – which we name a “genome-scale

network" since the number of variables corresponds to the number of genes in a genome.

Recovery of genome-scale networks is important for understanding drivers for phenotypic

changes and for identifying new drug targets. Moreover, a better understanding of genome-

scale networks enables more accurate downstream phenotype prediction models including

those that use machine learning (See latent topics in Fig. 1.1).

Biological networks are inferred from experimental data. Recovery of biological networks

is a reverse engineering problem: given experimental data, what is the network that gives

rise to the data? Existing methods for network recovery fall into two primary categories:

pairwise information theoretic methods, and graphical model methods. The advantages of

the former are that they are embarrassingly parallel and have been shown to be effective on

large-scale biological datasets (Faith et al. [2007], Lachmann et al. [2016], Margolin et al.

[2006]). The main disadvantage of these methods is that they can only learn from one data

distribution – e.g. they cannot incorporate new experimental data after an intervention has

been applied to a system. The second category of network recovery methods are graphical

models, often called structure learners. The advantages of these are that they have an
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immediate causal interpretation (the direction of an edge implies cause and effect) and as a

result a suite of methods have been built to jointly learn from observational and interventional

data distributions (Hauser and Bühlmann [2012], Wang et al. [2017], Tong and Koller [2001])

– we call these “joint learners". This ability to jointly learn from different distributions takes

a statistical model (e.g a Bayesian Network) and converts it into a causal model (e.g a Causal

Bayesian Network). The disadvantages of graphical models are that they do not scale well

with the number of nodes in the graph (the graph search space is combinatorial), and joint

learners do not have parallel implementations. This means that joint structure learners have

not been evaluated on datasets at scale – at most we observed evaluations on 500 node

networks. Given that the genomes of most species are on the order of 1e3-1e4 genes, there

is a need to scale up these joint structure learners to larger networks. In this paper we

introduce a new hybrid structure learner, named SP-GIES, that leverages the advantages of

both categories of methods.

A causal model is preferable to a statistical model because directed causal edges in a

network allow us to identify pathways, or mechanisms of action, from genotype to pheno-

type. In applications of biology and medicine, researchers seek to model both functional

outcomes and the mechanisms leading to outcomes so that these can be understood and

manipulated through therapeutics. Given this priority, there is a demand for causal models

in this application space. This motivates the need to incorporate data from interventions

on the system. We estimate the space of possible interventions in the environment and gene

spaces to be 1e4-1e5 depending on the species under investigation. A brute force sampling of

this space of interventions is experimentally expensive and wasteful. Instead, there is a need

to design feedback loops that choose advantageous interventions based on domain knowledge

and learned knowledge. Work in optimal experimental design (OED) uses expected gain to

choose interventions on variables in Bayesian Networks to drive causal discovery (Tong and

Koller [2001], Hauser and Bühlmann [2014], Agrawal et al. [2019], Ghassami et al. [2018]).
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Figure 1.1: The hierarchy of biological networks which is partially known. Levels in this
hierarchy can be represented as causal networks. Interventions activate mechanisms of action
and reveal causal relationships within a mechanism. The space of possible interventions
is large, motivating the need fgor autonomous design loops like AI driven experimental
design and robotic laboratories. In theory, recovery of all networks allows for full genotype
to phenotype mapping. However, in practice it is impossible to fully capture the data
distribution and control for confounding variables. This motivates representing mechanisms
of action as topic latent variables that can be learned via topic modeling.
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This paradigm allows us to reason about how new inferred knowledge can connect to our

existing domain knowledge, and provide a path forward for integrating AI into science do-

mains.

The contributions of this work are as follows:

1. The implementation of a new hybrid structure learning method named Skeleton-Primed

Greedy Interventional Equivalence Search (SP-GIES), based on the existing method

GIES, that jointly learns from observational and interventional data. SP-GIES achieves

better network recovery accuracy and a faster time to solution on large-scale networks

compared to existing methods.

2. The application of SP-GIES to an optimal experimental design feedback loop that

chooses optimal interventions on genes.

3. An analysis of the complexity of these methods and discussion of future directions, in-

cluding unified libraries of causal algorithms, in order to achieve genome-scale network

recovery for genotype to phenotype mapping with interventions.

1.1 Preliminaries

1.1.1 Causal Bayesian Networks

Let G = (V,E) be an acyclic graph defined by a set of vertices V and directed edges

E. The vertices of the graph represent random variables X1...Xp. Under the Markov As-

sumption for Bayesian Networks, each variable Xi is conditionally independent of its non-

descendants given its parents. The joint distribution of a Bayesian network factorizes as

P (X) =
∏p

i=1 P (Xi|Pa(Xi)) [Spirtes et al., 2000]. The following definitions describe impor-

tant properties of Bayesian Networks that are relevant for structure learning.

Definition 1.1.1. Markov Equivalence Class (MEC) The Markov Equivalence class (MEC)
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Figure 1.2: How to convert from purely statistical model (such as a Bayesian Network) to
causal model (such as a Causal Bayesian Network) with interventional data. By modeling
interventional distributions, the interventional essential graph EssI(G) is closer to the true
underlying causal graph compared to the essential graph Ess(G). This figure is adapted
from Schölkopf et al. [2021]

of a Bayesian Network G consists of all directed acyclic graphs (DAGs) that share the same

conditional independence relationships.

Definition 1.1.2. Essential Graph (Ess) An essential graph Ess(G) is a partially oriented

graph that uniquely represents the MEC of a DAG. Directed arrows only exist on edges

consistent across the equivalence class and all other edges are left undirected [Andersson

et al., 1997].

A Causal Bayesian Network is a Bayesian Network where edges represent causal and

effect relationships [Pearl, 1995a]. For example if a directed edge exists from Xi to Xj , this

means that no unobserved confounding variables are responsible for the their correlation and

Xi is a direct cause of Xj .

1.1.2 Structure Learning with Observational Data

Constructing the graph structure from a set of instances (sampled values for each node Xi)

is called structure learning. The following assumptions are made for learning a graph Ĝ from
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data.

1. All random variables are observed, ie there are no hidden variables

2. Causal Markov Assumption - The data is generated from an underlying Bayesian

Network (G∗, θ∗) over a set of random variables X

3. Faithfulness Assumption - The distribution P ∗ over X induced by (G∗, θ∗) satisfies

no independencies beyond those implied by the structure of G∗

We are given a data set D = {X1...Xp} of N samples from P ∗ – this data is assumed to be

independent and identically distributed (iid). The task is to learn a model M̂ = (Ĝ, θ̂) that

defines a distribution P̂ that best fits true distribution P ∗ [Koller and Friedman, 2009].

All graphs in the same MEC give rise to the same observational distribution. Therefore

the best we can do with only observational data is recover the true graph’s MEC. Several

graphical model based methods learn the structure from observational data only. These are

split into constraint-based and score-based methods. There are also pairwise information

theoretic methods that learn from only observational data. We discuss these in Section 2.

1.1.3 Structure Learning with Interventional Data

In addition to structure learning on observational data, we want to incorporate interventional

datasets into our learning procedures. Intervening on a set of random variables I ⊆ X

removes incoming edges to the random variables I, and sets the joint distribution to a new

interventional distribution P do(Xi=x). Here, we are setting node Xi to a value x. In this

paper, we assume a “hard" interventions, where a node is set to a constant value, because

this mimics the types of interventions we are able to perform in biology applications – e.g.

gene knockout experiments. This is contrast to a “soft" intervention which is samples Xi = x

from a distribution.
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Definition 1.1.3. Interventional Distribution The joint distribution after a hard interven-

tion is:

P do(Xi=x) =


∏p

j ̸=i P (Xj |Pa(Xj) ifXi = x

0 otherwise

Jointly learning on observational and interventional data allows us to correctly isolate

causal relationships and orient edges in the graph. An estimated Ess(G) from observational

data can be further refined into an I-essential graph (EssI(G)). This is a partially oriented

DAG that represents an interventional Markov Equivalence class (I-MEC) (see Fig. 1.2).

There are several existing methods that jointly estimate structure given observational and

interventional data. See Vowels et al. [2021] for a full list of these structure learners.

1.1.4 Optimal Experimental Design

We have access to new interventional data by sampling the system, but we wish prioritize the

interventional experiments that will recover the true causal graph the fastest. This is done

via maximization of an expected utility function, U , over the set of potential interventions:

Î = argmaxI EG|D[U ] where U is a utility function like mutual information, number of

oriented edges, etc.

Our goal is to recover the underlying Causal Bayesian Network given a mix of interven-

tional and observational samples, and some prior information about the causal edges in the

graph. We cast this as a Bayesian Inference problem over the space of DAGs. We have a prior

P (G) which encodes any prior structural knowledge about the underlying DAG. Applying

Bayes Theorem gives us the posterior distribution P (G|D) ∝ P (D|G)P (G). The likelihood

is P (D|G) =
∫
θ P (D, θ|G)dθ =

∫
θ P (D|θ,G)P (θ|G)dθ, where we have marginalized out the

parameters of the graph [Tong and Koller, 2001]. D is a mix of observational and interven-

tional data. The posterior distribution is sampled via the joint structure learners described
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in the previous section. After sampling new data from the chosen intervention using OED,

the new data is concatenated to the existing dataset and the posterior is re-sampled using

the structure learners.
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CHAPTER 2

RELATED WORK

Table 2.1 and 2.2 provide summary of the related work in biological network recovery and

optimal experimental design respectively.

Table 2.1: Properties of all the learners covered in this paper. Methods are split row-wise
by the nature of the learner. Data type refers to observational and/or interventional data
capability of the learners. Evaluation dataset lists the benchmarks used for evaluation for
each paper. Finally, the table also lists the maximum number of nodes the algorithm was
evaluated on and the complexity of the algorithm as reported in the corresponding papers.
p is the number of nodes, n is the number of samples. k is the maximal degree of any node
in the graph. For IGSP, we did not find a complexity analysis in the paper.

Data Type Evaluation dataset Scaling
Paper Observ. Interv. Random DREAM Large-Scale Max # of nodes Worst case runtime
CLR Faith et al. [2007] ✓ ✓ 4,345 O(p3n3)

Pairwise Info. Theoretic ARACNE-AP Lachmann et al. [2016] ✓ ✓ 1,331 O(p3 + p2n2)

Pinna et. al Pinna et al. [2010] ✓ ✓ ✓ 100 O(p3 + np)

PC Zarebavani et al. [2019],Le et al. [2016], Madsen et al. [2017] ✓ ✓ ✓ ✓ 5,361 O(pk+2)
Graphical Models GIES Hauser and Bühlmann [2012] ✓ ✓ ✓ ✓ 500 O(2p)

IGSP Wang et al. [2017] ✓ ✓ 24 O(2p)
MCMC Mallows Rau et al. [2013] ✓ ✓ ✓ 10 O(2p)

Hybrid SP-GIES [this paper] ✓ ✓ ✓ ✓ ✓ 2,000 O(2p)

Table 2.2: Properties of the OED methods covered in the paper. OED criteria refers to the
utility function used for selection of next experiments. Note that the the complexity listed
here corresponds only to choosing the next intervention or sets of interventions. Each algo-
rithm here also has the cost of sampling from the posterior distribution which is equivalent
to the complexity of the learners in Table 2.1

OED criteria Evaluation dataset Scaling
Paper Info. theory Edge orient. Random DREAM Large-Scale Max # of nodes Big O

Ness et al. [2017] ✓ ✓ 17 O(|E| ∗ p!)
Hauser and Bühlmann [2014] ✓ 40 polynomial in p

Tong and Koller [2001] ✓ 12 O(pn)

ABCD [Agrawal et al., 2019] ✓ ✓ ✓ 10 O(p2n)
BED [Ghassami et al., 2018] ✓ ✓ ✓ 100 polynomial in p

2.0.1 Structure Learning With Interventional Data for Biology Network

Recovery

Pairwise information theoretic learners use calculated information theoretic metrics to es-

timate the dependence of two variables. A threshold is applied to the metric to obtain a
9



network representation of the system. Pinna et al. [2010] use a deviation matrix (differ-

ence between intervened samples and steady state samples) to estimate an initial network.

This algorithm won the DREAM4 network recovery challenge and was the state-of-the-art

for gene regulatory network reconstruction at the time. Faith et al. [2007] introduce CLR

(context likelihood of relatedness) which calculates the pairwise B-spline mutual information

between genes in the E. coli K-12 gene regulatory network. CLR is implemented in MAT-

LAB, with a fast parallel kernel for calculating the pairwise mutual information. Margolin

et al. [2006] developed ARACNE (Algorithm for the Reconstruction of Accurate Cellular

Networks) which is a similar pairwise mutual information based network recovery algorithm.

ARACNE additionally employs a DPI (data processing inequality) algorithm that removes

indirect interactions. ARACNE was more recently upgraded to ARACNE-AP [Lachmann

et al., 2016], which is implemented in Java, to handle adaptive partitioning to calculate the

mutual information – this achieved a 200x computational performance improvement.

Graphical model based learners reveal a much finer structure than pairwise methods be-

cause they are based on Bayesian Network. The PC algorithm is a constraint-based structure

learner that only handles observational datasets. PC learns a graph by performing condi-

tional independence testing on pairs of nodes conditioned on other nodes. Since its introduc-

tion, many parallel implementations and optimizations of the PC algorithm have been added

(Le et al. [2016], Madsen et al. [2017]) including one that allows for GPU parallelism (Zare-

bavani et al. [2019]). Existing structure learners that jointly learn from observational and

interventional data are either score-based or hybrid score/constraint-based methods. Rau

et al. [2013] propose an algorithm called MCMC-Mallows based on Markov Chain Monte

Carlo sampling over the space of potential Gaussian DAGs and optimizes the best scoring

DAG. MCMC-Mallows was evaluated on the DREAM4 networks, and scored better than

Pinna et al. [2010] on two of the networks. Hauser and Bühlmann [2012] proposed Greedy

Equivalence Intervention Search (GIES) which is a greedy score-based approach that is an
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extension of the original GES learner. The time complexity of a step of GIES is polynomial

in p (the number of vertices in the graph) ; otherwise, it is in the worst case exponential –

however the authors note and show empirically that GIES is more efficient than this worst

case. GIES was evaluated on DREAM4 and achieved scores in the top third of all partic-

ipants. Intervention Greedy Sparsest Permutation (IGSP, Wang et al. [2017]) is a hybrid

score/constraint, and non-parametric extension of the GSP learner. IGSP associates a DAG

to every permutation of random variables and greedily updates the DAG by transposing el-

ements of the permutation. IGSP performed comparably to GIES on protein signaling data

[Sachs et al., 2005] and better than GIES on a real gene expression dataset with 24 genes.

2.0.2 Optimal Experimental Design for Biology Network Recovery

One way to choose the optimal intervention is to choose the set of interventions that maxi-

mizes the mutual information or leads to the greatest decrease in entropy. Tong and Koller

[2001] sample a set of orderings from the distribution over graphs and parameters. They then

use this set of orderings to compute entropy terms and select the intervention with the lowest

expected posterior loss. Agrawal et al. [2019] extend the work of Tong and Koller [2001] with

the ABCD strategy – a greedy implementation of batched experimental design. They use

a utility function based on the expected entropy decrease of an intervention. This requires

calculating expectations over the graph and parameter spaces, however, they are able to

make a tractable algorithm by using bootstrapping and weighted importance sampling.

Another way to choose the optimal intervention is to choose the intervention that leads

to the maximal number of oriented edges. Ness et al. [2017] use optimal experimental design

to recover protein signaling networks [Sachs et al., 2005]. They use a utility function based

on the expected information gain of an intervention given the observational MEC and other

interventions in the batch. This algorithm, however, has factorial dependence on batch size.

Ghassami et al. [2018] use the expected number of oriented edges of an essential graph as
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the utility function. One drawback of this work as that the essential graph of the ground

truth network was given as input to the algorithm, rather than learned from the data. Since

access to Ess(G∗) is rarely ever given in real world problems, the results of this evaluation

are not relevant to the type of causal discovery we are interested in. Hauser and Bühlmann

[2014] similarly propose a utility function based on the number of oriented edges of a skeleton

graph.
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CHAPTER 3

SP-GIES

Here we describe our hybrid algorithm Skeleton-Primed GIES (SP-GIES). A skeleton is

an undirected graph with edges that correspond to edges in a DAG. The algorithm is a

simple sequential use of a pairwise learner to estimate the skeleton of the data using only

observational samples, and the joint graphical model structure learner GIES to orient those

edges. The two step algorithm is as follows:

1. Use ARACNE,CLR or PC to generate a skeleton with only observational samples

2. Use the output of (1) to restrict the possible edge set for the GIES learner. Jointly

learn from observational and interventional data using GIES.

For (1), if the PC algorithm is used then the input to (2) is an Ess(G) which is represented

by a partially oriented DAG or PDAG. We chose GIES for (2) since it has an open source

implementation that is part of the widely used pcalg library in R. For scaling studies, we

chose to use the R implementation of PC algorithm. This is because CLR and ARACNE are

implemented in MATLAB and Java respectively. Since GIES only has an R implementation,

we chose to use the R implementation of PC for our scaling studies.

While (1) is easily parallelizable on multiple processors or deployable to a GPU, the

bottleneck of the computation is in the GIES step. Still in Fig. 3.1, we see that SP-

GIES is able to reach a faster time to solution than GIES. To understand why this is, we

investigated the GIES algorithm. GIES is a greedy score-based structure learner. The score

function is the Bayesian Information Criteria which is based on the maximum likelihood

estimate of the graph given the current data. Starting from an empty essential graph, in

the forward phase of the algorithm an edge is added to Ess(G) such that the new essential

graph has the maximal score. The algorithm iterates through all possible edges until it finds

the corresponding essential graph with the highest score. The backward phase is similar,
13



Figure 3.1: A weak scaling study comparing the SP-GIES and GIES algorithms. The number
of samples is fixed to n=1,000. Data points are averaged over 3 runs. The study was
performed on a 2.8 Ghz AMD EPYC Milan 7543P 32 core CPU and a NVIDIA A100 GPU.
The GIES 2,000 node run exceeded 8 hours and it not plotted here.

except an edge is removed instead of added. By restricting the set of possible edges to

the GIES algorithm by first estimating the skeleton, we narrow the size of the search space

for both phases – this is what results in the speedup. Moreover, since we use a fast GPU

implementation of the PC algorithm (Zarebavani et al. [2019]), the overhead of estimating

the skeleton first is minimal.

Table 2.1 shows that all joint learners have a worst case exponential complexity – this

attributed to the combinatorial search space over graphs. However, the average empirical

complexity is related to the topology of the network i.e, the size of the largest clique. Since

14



the average complexity is difficult to calculate, we show in Figure 3.1 that SP-GIES reaches

a faster time to solution as the size of the network increases. For most biological datasets,

p is larger than n since the size of the genome is large and experimental data is difficult to

collect. We ran a scaling study for SP-GIES using a similar study as Hauser and Bühlmann

[2012] except we were able to scale up to p=2,000 nodes versus the p=500 nodes in the GIES

paper. At 2,000 nodes, the GIES algorithm failed to find a solution in 8 hours. We see that

SP-GIES is able to reach a faster time to solution than GIES because of the restriction of

the edge set discussed previously.
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CHAPTER 4

RESULTS

Each learner was evaluated on three metrics: Structural Hamming Distance (SHD), Struc-

tural Interventional Distance (SID) and the AUC-PR. The SHD is the L1 error between the

generated DAG and the ground truth DAG. The SID counts the incorrect interventional

distributions as defined by Eq. 1.1.3. The AUC-PR is the area under the precision-recall

curve. All three of these metrics are common evaluations for causal discovery. However, we

note that SHD and AUC-PR are biased towards empty graphs. Suppose a structure learner

A learns a graph GA with no edges and with SHDA = |E|. Another learner B learns a

graph GB with SHDB > |E|, but correctly learns some of the causal edges in the true

graph. According to the SHD, GA is better and we may posit that A is the better learner

for the data. However, an argument can be made for GB because it captures more causal

relationships than GA. This means that a lower SHD may not always indicate a model

that best fits the data distribution. A similar argument can be made for the AUC-PR. The

drawback of the SID is the computational complexity is quadratic in the number of nodes

for sparse networks, and cubic in the number of nodes for dense networks. This is shown

empirically up to 50 nodes by Peters and Bühlmann [2015].

Datasets at various scales were generated or collated for evaluation of SP-GIES against

existing learners. Random networks were generated using the Networkx Python library.

Data distributions are multinomial Gaussians. Interventional data is generated from these

graphs using the GaussDAG class from the CausalDAG Python package Chandler Squires

[2018]. The DREAM4 insilico challenge provides observational and interventional knockout

data of gene regulatory networks generated from stochastic ODEs. The dataset provides one

interventional sample per node in the graph. The ground truth networks are subnetworks

of the larger known E.coli gene regulatory network, however the samples are generated

synthetically. The RegulonDB dataset is provided by Faith et al. [2007]. The network is the
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Table 4.1: Evaluation of learners on random networks of size 10. Three different types of
random networks were generated: Erdös Renyi Erdős et al. [1960], Scale free Barabási and
Bonabeau [2003], and Small world Watts and Strogatz [1998]. p and k refer to parameters
used to generate the graphs, not the number of nodes and degree as used previously. Results
are averaged over 30 random graphs, each learned with 100 data samples. The superscript on
the algorithms refers to the data type used (O for observational, OI for mixed observational
and interventional). For SP-GIES, ARACNE, CLR, and then PC were used for skeleton
estimation for Erdös Renyi, Scale Free and Small World respectively since these were the
best performers.

Random Networks size 10
Algorithm Erdös Renyi (p = 0.5) Scale Free (k = 2) Small World (p = 0.5, k = 2)

SHD SID AUC-PR SHD SID AUC-PR SHD SID AUC-PR
PCO 22.77 70.73 0.35 11.27 61.00 0.62 8.23 36.33 0.59

CLRO 22.67 71.43 0.34 17.27 68.30 0.35 10.83 51.17 0.43
ARACNE-APO 21.83 79.00 0.36 16.63 76.70 0.37 10.10 52.80 0.43

GESO 23.27 53.34 0.47 11.20 28.57 0.69 10.23 17.27 0.67
GIESOI 23.93 39.23 0.59 14.13 36.43 0.68 21.30 17.70 0.55
PinnaOI 22.67 57.60 0.26 18.00 56.93 0.28 13.97 29.73 0.13
IGSPOI 20.00 67.27 0.38 15.00 53.23 0.41 6.73 22.43 0.55

SP-GIESOI 24 39.87 0.59 11.34 48.53 0.64 5.90 26.53 0.68
NULL 21.00 66.83 0.61 16.00 61.30 0.58 10.00 30.00 0.55

Table 4.2: Evaluation of learners on the DREAM4 networks of size 10. The dataset contains
11 observational samples and 10 interventional samples. Interventional samples are gene-
knockout experiments. For SP-GIES, ARACNE was used for skeleton estimation, except for
Network 4 which used CLR. Note that for Network 3, we used adaptive learning in the GIES
subroutine (adaptive=“triples") to achieve the best performance for the SP-GIES learner.
We did not see significant improvement with adaptive learning for the other networks.

DREAM4 insilico size 10
Algorithm Network 1 Network 2 Network 3 Network 4 Network 5

SHD SID AUC-PR SHD SID AUC-PR SHD SID AUC-PR SHD SID AUC-PR SHD SID AUC-PR
PCO 14 39 0.31 12 56 0.43 16 64 0.26 14 45 0.16 11 57 0.59

CLRO 13 36 0.45 10 56 0.53 14 62 0.36 14 47 0.19 15 62 0.33
ARACNE-APO 11 28 0.56 12 56 0.45 13 61 0.43 15 45 0.06 12 57 0.46

GESO 13 29 0.49 15 52 0.30 17 64 0.15 19 48 0.10 11 51 0.14
GIESOI 13 31 0.51 12 49 0.51 16 40 0.49 15 26 0.34 9 39 0.37
PinnaOI 11 22 0.49 11 56 0.08 14 61 0.57 12 42 0.37 11 38 0.47
IGSPOI 13 27 0.07 13 54 0.08 16 65 0.07 15 38 0.06 13 48 0.19

SP-GIESOI 11 23 0.63 10 34 0.6 12 47 0.63 12 35 0.33 6 30 0.45
NULL 12 27 0.57 11 53 0.58 14 61 0.57 12 36 0.56 11 46 0.56

current estimated E.coli K12 regulatory network and contains 1146 nodes, 3175 edges and

524 real experimental samples. The RegulonDB contains environmental interventions and

gene knockout interventions. Existing learners currently only model gene variables, therefore
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the environmental interventional data is treated as observational data. Future work includes

explicitly modeling environmental condition variables.

Table 4.3: Evaluation of learners on large-scale networks. Pinna et al. [2010] requires one
interventional sample per gene, since the RegulonDB dataset does not provide this we did
not evaluate Pinna on this dataset. The SID calculation for CLR on the random 1,000 node
network resulted in an out of memory error on our compute node. GESO required setting
the maximum degree to 10 in order to achieve convergence

Evaluation of Large Scale Networks
Algorithm RegulonDB 1146 nodes, 3179 edges Small world 1000 nodes, 1000 edges

SHD SID AUC-PR SHD SID AUC-PR
ARACNE-APO 3,752 25,979 0.04 1,000 3,883 0.50

CLRO 3,095 18,069 0.30 2,704 OOM error 0.45
PCO 3,963 23,908 0.01 467 2,447 0.82
GESO 8,712 74,224 0.005 1,523 879 0.88

GIESOI 8,355 80,580 0.006 1,623 1,097 0.84
PinnaOI x x x 16,577 4,334 0.002
IGSPOI

SP-GIESOI 3,154 22,114 0.10 341 975 0.91
NULL 3,179 18,294 0.50 1,000 3,883 0.50

Results of our evaluation on random networks, DREAM4 gene regulatory networks, and

genome-scale networks are shown in Table 4.1, Table 4.2, and Table 4.3 respectively. As

a reference, we also include the scores for a network without any dependencies (no edges),

named NULL. Many real world networks, including gene regulatory networks, are sparse.

As a result the NULL learner often appears to perform very well since the true networks

lie close to an empty network in combinatorial space. For random networks of size 10,

GIES outperforms other methods across all network types. For DREAM4, SP-GIES most

frequently gets the best score across all metric types over all five networks. We see that the

addition of interventional data improves the performance of algorithms that can handle both

data types (namely GIES, and SP-GIES).

For the RegulonDB network, the best scoring method is CLR. This is likely because the

CLR method calculates a threshold value to prune edges so that the learner achieves 60%
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precision compared to the ground truth network – this makes it an unfair comparison since

the ground truth network must be known a priori. We used CLR for the skeleton estimation

of SP-GIES. An unexpected result is that SP-GIES appears to worsen the estimate of the

graph. Nandy et al. [2018] show that the search path of GES may have to leave the search

space determined by a skeleton, even though the true CPDAG lies within these search spaces.

Therefore restricting search space of the GIES algorithm is not entirely controllable and can

lead to misguided optimization. Still, we see that priming the GIES algorithm with the CLR

skeleton produces better results than GIES on its own.

There are a couple reasons the joint learners may not be performing better here. First,

the experimental gene-knockout samples only contain 6 different types of knockouts out of

the potential 1,146 genes. It’s possible that more coverage over the intervention space will

improve the joint learners. Second, many of the experimental samples come from condition

interventions which are not modelled here. Still compared to GIES, SP-GIES achieves better

network recovery on the RegulonDB network. SP-GIES also outperforms all other methods

on the 1,000 node random networks for the SHD and AUC-PR metrics. Overall, SP-GIES

performs better than GIES on larger scale networks and on DREAM4 networks. As these

are both relevant datasets for genome-scale network recovery, we view this as a promising

step forward.

For many of the networks we evaluated here, the NULL graph achieves the best score.

As described previously, the SHD and AUC-PR are sometimes misleading metrics for this

use case. Interestingly, the NULL graph never scores best for the SID metric. This could

indicate that causal network recovery methods should be evaluated with the SID rather than

other metrics. However, more analysis is needed to understand the validity of this and is

outside the scope of this paper.

To understand the performance gains of SP-GIES over GIES on optimal experimental de-

sign, we evaluated both algorithms with two different OED criteria on the DREAM4 insilico
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Figure 4.1: An evaluation of OED strategies for DREAM4 10 node network #3 over 10
rounds of intervention. At each round of intervention, a new interventional data sample is
added to the current dataset corresponding to the chosen intervention. GIES and SP-GIES
are joint learners. Metrics are averaged over 30 runs.

10 node dataset. We limited this evaluation to small networks since the time complexity of

OED includes posterior sampling and optimal gene selection for each round of intervention.

We follow the framework of Agrawal et al. [2019], which includes bootstrap sampling of the

posterior distribution. An example result for a DREAM4 insilico network is shown in Fig.

4.1. We observe two trends here. First, the edge orientation strategy achieves better perfor-

mance than the information gain strategy. Second, the SP-GIES learner boosts the initial

performance of the learner, however, it easily stagnates and additional interventional samples

do not continue to improve the algorithm at the same rate as the GIES based strategies.

Still the SP-GIES x OED runs achieve better performance than GIES x OED, and there is

some improvement in accuracy with the addition of interventional data. We speculate that

stagnation may happen with the SP-GIES joint learner because by fixing the skeleton, we

also restrict the search space of the learner. This may lead to the GIES step of the algorithm

getting stuck in a local minima. This motivates incorporating some level of uncertainty into

the skeleton, or randomly including sets of edges outside the skeleton into the search space

– we leave this to future work.
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CHAPTER 5

DISCUSSION

Understanding genome-scale networks is important for building a causal mapping from geno-

type to phenotype. However, recovery of genome-scale networks from interventional datasets

has not yet been realized because of the computational complexity of structure learners that

jointly learn from mixed data. Existing methods like GIES, IGSP, MCMC Mallows and oth-

ers are only evaluated on small networks up to 500 nodes and exhibit worst case exponential

complexity. This makes subsequent optimal experimental design techniques computationally

intractable since the complexity is then multiplied by the computation of choosing the opti-

mal intervention. This is a huge issue in realizing causal discovery at scale via autonomous

design loops.

In this paper, we note that structure learners built for observational datasets have parallel

implementations on multiple processors and on GPUs. Our SP-GIES learner first estimates

a skeleton using these parallel implementations. This restricts the edge set for the subse-

quent joint structure learner and improves the time to solution. However, SP-GIES is still

bottlenecked by the scaling of the joint learner GIES – for example running network sizes

of 1e4 nodes did not complete in 24 hours. To realize recovery of genome-scale networks on

the order of 1e3-1e4, and to sample an interventional space on the order 1e4-1e5, we must

have breakthroughs in distributed parallel implementation of joint learners. Joint structure

learners currently do not have parallel implementations because they are score-based learn-

ers (or hybrid constraint/score-based learners). At each step of the algorithm the candidate

graph is scored, typically using a function of the likelihood P (D|G) over the entire graph.

As we saw in Section 1.1, the joint distribution of a DAG is a product of conditional proba-

bilities which, for each node, depends on the parent nodes. As a result, the calculation of the

likelihood is sequential and typically optimization over this space is done greedily. It is not

intuitive how the graph may be partitioned into subgraphs for individual compute kernels.
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Constraint based methods, on the other hand, use pairwise conditional independence testing

to resolve edges. A naive approach to scaling is to generate a separate compute thread per

calculation, however, one can group variables into blocks to further minimize computations

and boost performance. This type of performance enhancement has not yet been realized

by score-based learners, and this presents a roadblock for existing joint learners.

In evaluating existing methods and designing the SP-GIES method, we found that learn-

ers and OED strategies are implemented in a varied set of languages including Java, MAT-

LAB, R, Python and C. This is due to the diverse nature of backgrounds interested in causal

discovery of biological networks including from biology, statistics, computer science, machine

learning, and representation learning. There has been a recent interest in unifying tools for

causal discovery – for example CausalDiscoveryToolbox Kalainathan and Goudet [2019] ,

Pgmpy Ankan and Panda [2015] and CausalDAG Chandler Squires [2018] are Python li-

braries that provide varying support for graphical and/or causal modeling. However, in the

case of CausalDiscoveryToolbox, the library is a Python wrapper for R code, which in turn

is a wrapper for C code. In the case of CausalDAG, many of the implementations are incom-

plete. For Pgmpy, no joint interventional learners are implemented. To realize better parallel

implementations of causal algorithms and OED strategies, we should encourage collabora-

tions with the supercomputing community. Therefore, there is a need for exclusive Python

or C implementations of these models and algorithms since these languages are popular in

the supercomputing community.
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CHAPTER 6

CONCLUSION

We present SP-GIES, a joint structure learner that leverages parallel observational learners to

estimate a skeleton and initialize the GIES joint learner. We provide a systematic evaluation

of SP-GIES against existing methods for datasets at various scales and with various metrics.

We see that SP-GIES is able to provide better network recovery accuracy for larger scale

networks up to 2,000 nodes and on biological networks up to 1,146 nodes. This scale of

network recovery for joint learners has not been achieved to our knowledge. SP-GIES reaches

a faster time to solution than existing method GIES and provides up to 3.87x speedup.

We also show that SP-GIES improves subsequent OED strategies. Future work includes

a distributed parallel implementation of SP-GIES, and incorporation of SP-GIES into an

autonomous experimentation design loop.
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