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ABSTRACT

Rotational invariance is a popular inductive bias used by many fields in machine learning,

such as computer vision and machine learning for quantum chemistry. Rotation-invariant

machine learning methods set the state of the art for many tasks, including molecular prop-

erty prediction and 3D shape classification. These methods generally either rely on task-

specific rotation-invariant features, or they use general-purpose deep neural networks which

are complicated to design and train. We suggest a simple and general-purpose method for

learning rotation-invariant functions of three-dimensional point cloud data using a random

features approach. Specifically, we extend the random features method of Rahimi and Recht

[2007] by deriving a version that is invariant to three-dimensional rotations and showing

that it is fast to evaluate on point cloud data. We show through experiments that our

method matches or outperforms the performance of general-purpose invariant architectures

on standard molecular property prediction benchmark datasets QM7 and QM9. We also

show that our method is competitive with other general-purpose invariant architectures on

the ModelNet40 shape classification task. Finally, we show that our method is an order of

magnitude faster at prediction time than competing kernel methods.
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CHAPTER 1

INTRODUCTION

Many common prediction tasks where the inputs are three-dimensional physical objects are

known to be rotation-invariant; the ground-truth label does not change when the object is

rotated. Building rotation invariance into machine learning models is an important induc-

tive bias for such problems. The common intuition is that restricting the learning process

to rotation-invariant models will remove any possibility of poor generalization performance

due to rotations of test samples, and may improve sample efficiency by reducing the effec-

tive complexity of learned models. These ideas have inspired a line of research begun by

Kondor et al. [2018], Cohen et al. [2018a] into building general-purpose deep neural network

architectures that are invariant to rotations of their input. This line of work complements

methods that use task-specific rotation-invariant features for problems at the interface of

computational chemistry and machine learning (e.g., Montavon et al. [2012], Rupp et al.

[2012]).

In this paper, we consider prediction problems that are rotation-invariant, that is, the

ground-truth response f∗(x) = y does not change when an arbitrary rotation is applied to the

input x. We choose to model the input data x as a 3D point cloud, an unordered set of points

in R3 possibly with accompanying labels. Common examples of rotation-invariant prediction

problems on 3D point clouds include molecular property prediction, where the point cloud

consists of the positions of a molecule’s constituent atoms, and 3D shape classification,

where the points are sampled from the surface of an object. The method we suggest and the

methods we review in this paper are all rotation-invariant.

We propose a new method for learning rotation-invariant functions of point cloud data,

which we call rotation-invariant random features. We extend the random features method of

Rahimi and Recht [2007] by deriving a version that is invariant to three-dimensional rotations

and showing that it is fast to evaluate on point cloud data. The rotation invariance property
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Figure 1.1: An overview of the rotation-invariant random features method. First we con-
struct a feature matrix Φ. The rows of Φ correspond to pi, different samples in our training
set, and the columns of Φ correspond to gj , different random sums of spherical harmonic
functions, which are defined in eq. (4.5). The entries of the feature matrix are rotation-
invariant random features. To compute the random features, we analytically evaluate the
integral over all possible rotations of the data sample pi. We describe our method for evalu-
ating the random features in section 4.1. After constructing the feature matrix, we fit a set
of linear weights β and make predictions by evaluating the linear model Φβ = ŷ.

of our features is clear from their definition, and computing the features only requires two

simple results from the representation theory of SO(3). Despite its simplicity, our method

achieves performance near state of the art on small-molecule energy regression and 3D shape

classification. The strong performance on both tasks gives evidence that our method is

general-purpose. An overview of our method can be found in fig. 1.1.

Other general-purpose methods for learning rotation-invariant functions use special deep

neural networks. Methods in this line of work leverage results in the representation theory

of SO(3) to enforce rotational invariance (or equivariance) at each intermediate layer of

the network, and examples include Cohen et al. [2018a], Kondor et al. [2018], Anderson

et al. [2019], Thomas et al. [2018], Weiler et al. [2018], Poulenard et al. [2019]. Throughout

this paper, we refer to these methods as general-purpose invariant architectures. These

methods are attractive because they do not rely on expert domain-specific knowledge to
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extract features, and they can learn richer classes of functions than methods specifying a

fixed set of rotation-invariant features. However, the design of these methods requires expert

knowledge in the representation theory of SO(3). At a practical level, a significant amount of

knowledge and engineering is required to implement and successfully train these networks. In

comparison, training our model requires fitting a linear model, for which there are optimized

solvers in most common scientific computing libraries. Finally, deep learning methods often

under-perform classical methods such as kernels or linear models in small-data regimes when

the number of training samples is limited.

Another approach to learning a rotation-invariant predictor from point cloud data is to

extract a set of rotation-invariant features and feed those features into an expressive machine

learning model to make predictions. A prototypical example of this approach comes from

molecular energy regression and uses the Coulomb matrix as a set of rotation-invariant

features [Rupp et al., 2012]. The Coulomb matrix models the forces generated by electrostatic

repulsion between a molecule’s atoms. As the Coulomb matrix only depends on atomic

charges and interatomic distances, it is clearly invariant to rotations of the original molecule.

This general approach is powerful because any machine learning model can be used while

retaining provable rotational invariance. Often, finding informative features to extract from

the data is highly task-specific and requires expert background knowledge.

A third approach [Xiao et al., 2020] to learning rotation-invariant functions of three-

dimensional point clouds is to preprocess the data by rotating it into a canonical alignment,

defined by the principal components of the matrix of Euclidean coordinates of the point

cloud. After the data samples are aligned, one can use any method and enjoy rotation-

invariant predictions. This alignment preprocessing step has been shown to be very effective

for shape classification tasks with densely-sampled point clouds, but to our knowledge has

been untested in molecular property prediction.

Computational cost at prediction time is a growing concern for many machine learn-
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ing methods. Using machine learning predictions for real-time system control places hard

requirements on prediction latencies. For example, trigger algorithms in the ATLAS experi-

ment [Collaboration, 2008] at the CERN Large Hadron Collider requires prediction latencies

ranging from 2µs to 40ms at different stages of the event filtering hierarchy. Methods which

extract a fixed set of rotation-invariant features are often able to quickly compute the features

of a new sample, but the best-performing examples of these methods are kernels [Christensen

et al., 2020] which have prediction-time complexity linear in the number of training sam-

ples. The deep neural network approaches which learn rotation-invariant features have rigid

architectures that often involve many layers computed in serial, Fourier transforms, or the

computation and storage of high-dimensional geometric tensors. We show that our method is

an order of magnitude faster than state-of-the-art methods when predicting on new samples

of molecular energy regression tasks. Due to the simplicity and generality of our design, we

consider our method as a baseline against which one can measure the benefit of using expert

domain knowledge for a given learning task.

1.1 Contributions

• We derive a rotation-invariant version of the standard random features approach pre-

sented in Rahimi and Recht [2007]. By using simple ideas from the representation

theory of SO(3), our rotation-invariant random feature method is easy to describe and

implement, and requires minimal expert knowledge in its design. (chapter 4)

• We show with experiments that our rotation-invariant random feature method out-

performs or matches the performance of general-purpose equivariant architectures op-

timized for small-molecule energy regression tasks. In particular, we outperform or

match the performance of Spherical CNNs [Cohen et al., 2018a] on the QM7 dataset

and Cormorant [Anderson et al., 2019] on the QM9 dataset. We compare our test

errors with state-of-the-art methods on the QM9 dataset to quantify the benefit of
4



designing task-specific rotation invariant architectures. (section 5.1)

• We show the rotation-invariant random feature method is general-purpose by achieving

low test errors using the same method on a different task, shape classification on the

ModelNet40 benchmark dataset. (section 5.2)

• We show that our method makes predictions an order of magnitude faster than kernel

methods at test time. (section 5.1)
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CHAPTER 2

RELATED WORK

The organization of this section reflects the taxonomy of approaches to producing rotation-

invariant models described above. First, we describe methods that extract rotation-invariant

features using expert chemistry knowledge. We then describe general-purpose invariant

architectures. Finally, we briefly survey the random features work that inspire our method.

2.1 Descriptors of atomic environments

In the computational chemistry community, significant effort has been invested in using

physical knowledge to generate “descriptors of atomic environments,” or rotation-invariant

feature embeddings of molecular configurations. One such feature embedding is the Coulomb

matrix, used by Montavon et al. [2012]. In Rupp et al. [2012], the sorted eigenvalues of the

Coulomb matrix are used as input features. The sorted eigenvalues are invariant to rota-

tions of the molecule and give a more compact representation than the full Coulomb matrix.

Noticing that the Coulomb matrix can relatively faithfully represent a molecule with only

pairwise atomic interactions has been an important idea in this community. Many meth-

ods have been developed to generate descriptions of atomic environments by decomposing

the representation into contributions from all atomic pairs, and other higher-order approx-

imations consider triplets and quadruplets of atoms and beyond [Christensen et al., 2020,

Bartók et al., 2013, Kovács et al., 2021, Drautz, 2019].1 The FCHL19 [Christensen et al.,

2020] method creates a featurization that relies on chemical knowledge and is optimized for

learning the energy of small organic molecules. The FCHL19 feature embedding depends on

2-body and 3-body terms. There are multiple different approaches, such as Smooth Overlap

1. Many general-purpose invariant methods follow this design as well. Cormorant [Anderson et al., 2019]
has internal nodes which correspond to all pairs of atoms in the molecule, and Spherical CNNs [Cohen
et al., 2018a] render spherical images from molecular point clouds using ideas from pairwise electrostatic
(Coulombic) repulsion.
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of Atomic Potentials (SOAP) [Bartók et al., 2013] and Atomic Cluster Expansion (ACE)

[Drautz, 2019, Kovács et al., 2021] which first compute a rotation-invariant basis expansion

of a chemical system, and then learn models in this basis expansion. In appendix B, we show

that our proposed method can be interpreted as using a highly-simplified set of ACE basis

functions to learn a randomized nonlinear model.

Deep learning is an effective tool in computational chemistry as well. Task-specific deep

neural network architectures for learning molecular properties of small organic molecules

outperform other approaches on common energy learning benchmarks. Multiple methods

[Schütt et al., 2018, Unke and Meuwly, 2019] design neural networks to take atomic charges

and interatomic distances as input. These methods use highly-optimized neural network

architectures, including specially-designed atomic interaction blocks and self-attention layers.

OrbNet [Qiao et al., 2020], another neural network method, takes the output of a low-cost

density functional theory calculation as rotation-invariant input features, and uses a message-

passing graph neural network architecture.

2.2 General-purpose invariant architectures

While many general-purpose invariant architectures operate directly on point clouds, the

first examples of such architectures, Spherical CNNs [Cohen et al., 2018a] and Fully-Fourier

Spherical CNNs [Kondor et al., 2018] operate on “spherical images”, or functions defined on

the unit sphere. These networks define spherical convolutions between a spherical image and

a filter. These convolutions are performed in Fourier space, and the input spherical image

is transformed using a fast Fourier transform on the unit sphere. Much like a traditional

convolutional neural network, these networks are comprised of multiple convolutional layers

in series with nonlinearities and pooling layers in between. To accommodate multiple differ-

ent types of 3D data, including 3D point clouds, these methods take a preprocessing step to

render the information of a 3D object into a spherical image.
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Other methods operate on point clouds directly. SPHNet [Poulenard et al., 2019] com-

putes the spherical harmonic power spectrum of the input point cloud, which is a set of

rotation-invariant features, and passes this through a series of point convolutional layers.

Cormorant [Anderson et al., 2019] and Tensor Field Networks [Thomas et al., 2018] both

design neural networks that at the first layer have activations corresponding to each point

in the point cloud. All activations of these networks are so-called “spherical tensors,” which

means they are equivariant to rotations of the input point cloud. To combine the spherical

tensors at subsequent layers, Clebsch-Gordan products are used. Many other deep neural

network architectures have been designed to operate on point clouds, but the majority have

not been designed to respect rotational invariance. A survey of this literature can be found

in Guo et al. [2021].

There are many ways to categorize the broad field of group-invariant deep neural network

architectures, and we have chosen to form categories based on the input data type. Another

helpful categorization is the distinction between regular group-CNNs and steerable group-

CNNs introduced by Cohen et al. [2018b]. In this distinction, regular group-CNNs form

intermediate representations that are scalar functions of the sphere or the rotation group,

and examples of this category are Cohen et al. [2018a], Kondor et al. [2018], Poulenard

et al. [2019]. Steerable group-CNNs form intermediate representations that are comprised of

“spherical tensors”, and examples of this category are Anderson et al. [2019], Weiler et al.

[2018], Thomas et al. [2018].

2.3 Random features

Random Fourier features [Rahimi and Recht, 2007] are an efficient, randomized method of

approximating common kernels. For kernel methods, prediction time scales linearly with the

size of the dataset. Random Fourier feature methods require time linear in d, an approxi-

mation parameter. The approximation works by drawing a random vector ξ and defining a
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low-dimensional feature embedding ϕ(x; ξ), called a random Fourier feature. The random

Fourier features approximate a shift-invariant kernel k(x, x′) = k(x − x′) in the sense that

the inner product of two random Fourier feature evaluations is an unbiased estimate of the

kernel:

Eξ [〈ϕ(x; ξ), ϕ(x; ξ)〉] = k(x, x′)

This approximation holds when the random vectors ξ are drawn from the Fourier transform

of the kernel k and the random Fourier features have the following functional form:

ϕ(x; ξ) = [cos(〈x, ξ〉), sin(〈x, ξ〉)]T

To reduce the variance of this approximation, one can draw d such random vectors {ξ1, ..., ξd}

and concatenate the resulting random features. As a practical method, Rahimi and Recht

[2007] proposes building a feature matrix Φ ∈ Rn×d by drawing d different random Fourier

features ϕ( · ; ξj) and evaluating the random Fourier features at each of the n samples xi in

the training dataset:

Φi,j = ϕ(xi; ξj)

Once the feature matrix is formed, a linear model is trained to fit a response vector y using

regularized linear regression, such as ridge regression:

arg min
β

‖Φβ − y‖22 + λ‖β‖22 (2.1)

Experiments in Rahimi and Recht [2007] show this is an effective method for fitting data,

even when d << n. When d << n, the model can be evaluated much faster than the original

kernel.

Follow-up work, including Rahimi and Recht [2008], suggested that interpreting random

feature methods as kernel approximators is not necessary. This work uses random nonlinear
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features with varying functional forms, including random decision stumps and randomly-

initialized sigmoid neurons σ(〈ξ, x〉). These random nonlinear features form effective models

for diverse types of data. In chapter 4, we introduce random features similar to those in

Rahimi and Recht [2007]. Our method does not approximate any explicit kernel, and it is

designed to be invariant to any rotation of the input data, so we call our method rotation-

invariant random features.

Finally, the notion of group-invariant random feature models also appears in Mei et al.

[2021] as a technical tool to understand the sample complexity benefit of enforcing group

invariances in overparameterized models. In this work, the invariances considered are trans-

formations on one-dimensional signals that arise from cyclic and translation groups.
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CHAPTER 3

ROTATIONAL INVARIANCE AND SPHERICAL HARMONICS

In this section, we will introduce rotational invariance and the spherical harmonics. In our

method, we use the definitions presented in this section and only two simple facts about the

spherical harmonics and rotations, which we list at the end of this section. We say a function

f mapping a point cloud p to an element of the vector space Y is rotation-equivariant if there

exists some group action on the vector space Y such that

f(Q ◦ p) = Q ◦ f(p) ∀Q ∈ SO(3)

Intuitively, this means that when an input to f is rotated, f preserves the group structure

and the output changes predictably. We say that a function f is rotation-invariant if the

group action on the output vector space Y is the identity:

f(p) = f(Q ◦ p) = f({Qx1, Qx2, . . . , QxN}) ∀Q ∈ SO(3) (3.1)

Finally, our goal is to learn a function over point clouds that does not change when any

rotation is applied to the point cloud. Formally, given some distribution D generating pairs

of data (p, y) our learning goal is to find

f∗ = arg min
f

E(p,y)∼D [l(f(p), y)]

where l is a classification or regression loss depending on the task and the minimization is

over all functions that satisfy a rotational invariance constraint (3.1).
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3.1 Spherical harmonics

When decomposing a periodic function f : [0, 2π]→ R, a natural choice of basis functions for

the decomposition is the complex exponentials eimx. In this basis, f(x) may be expressed

as f(x) =
∑
m ame

ikx where am = 〈f(x), eimx〉 When decomposing a function on the

unit sphere S2, a similar set of basis functions emerges, and they are called the spherical

harmonics. The complex exponentials are indexed by a single parameter m, and because the

spherical harmonics span a more complicated space of functions, they require two indices,

` and m. By convention, the indices are restricted to ` ≥ 0 and −` ≤ m ≤ `. A single

spherical harmonic function Y (`)
m maps from the unit sphere S2 to the complex plane C. For

a function f(x) : S2 → R we can compute an expansion in the spherical harmonic basis:

f(x) =
∑
m,`

a
(`)
m Y

(`)
m (x)

a
(`)
m = 〈f(x), Y

(`)
m (x)〉

In designing our method, we use two simple facts about spherical harmonics:

• If one has evaluated the spherical harmonics of some original point x ∈ S2 and wants

to evaluate those spherical harmonics at a new rotated point Qx for some rotation

matrix Q, the rotated evaluation is a linear combination of the un-rotated spherical

harmonics at the same index `:

Y
(`)
m (Qx) =

∑̀
m′=−`

Y
(`)
m′ (x)D(`)(Q)m,m′ (3.2)

Here D`(Q) is a Wigner-D matrix; it is a square matrix of size (2`+ 1× 2`+ 1).

• Evaluating the inner product between two elements of the Wigner D-matrices is simple.

In particular, when dQ is the uniform measure over SO(3), we have the following
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expression:

∫
SO(3)

D(`1)(Q)m1,k1D
(`2)(Q)m2,k2dQ = (−1)m1−k1 8π2

2`+ 1
δ−m1,m2δ−k1,k2δ`1,`2

(3.3)

This is a corollary of Schur’s lemma from group representation theory, and we discuss

this fact in appendix C.
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CHAPTER 4

ROTATION-INVARIANT RANDOM FEATURES

In our setting, an individual data sample is a point cloud pi = {xi,1, . . . , xi,Ni} with points

xi,j ∈ R3. We model the data as a function: pi(x) =
∑Ni
j=1 δ(x − xi,j) where δ(·) is a

delta function centered at 0. We can then use a functional version of the random feature

method where our data pi is a function, g is a random function drawn from some pre-specified

distribution and 〈·, ·〉 is the L2 inner product:

ϕ(pi; g) = sin (〈pi, g〉) (4.1)

We want the random feature to remain unchanged after rotating the point cloud, but (4.1)

does not satisfy this. For general functions g, 〈Q ◦ pi, g〉 6= 〈pi, g〉. We achieve rotational

invariance by defining the following rotation-invariant random feature:

ϕ(pi; g) = sin

(∫
SO(3)

〈Q ◦ pi, g〉2dQ

)
(4.2)

We “symmetrize” the inner product by integrating over all possible orientations of the point

cloud pi, eliminating any dependence of φ(·;wj) on the data’s initial orientation. Because

φ(·;wj) does not depend on the initial orientation of the data, it will not change if this initial

orientation changes, i.e., if pi is rotated by Q. To build a regression model, we construct a

feature matrix

Φi,j = ϕ(pi; gj)

and fit a linear model to this feature matrix using ridge regression, as in (2.1).

14



4.1 Evaluating the random features

In this section, we describe how to efficiently evaluate the integral in (4.2). SO(3) is a three-

dimensional manifold and the integral has a nonlinear dependence on the data, so methods of

evaluating this integral are not immediately clear. However, representation theory of SO(3)

renders this integral analytically tractable and efficiently computable. The main ideas used

to evaluate this integral are exploiting the linearity of inner products and integration, and

choosing a particular distribution of random functions g. First, we observe that because the

rotated data function Q ◦ pi is the sum of a few delta functions, we can expand the inner

product as a sum of evaluations of the random function g:

〈Q ◦ pi, g〉 =

Ni∑
j=1

g(Qxi,j) (4.3)

Expanding the inner product and the quadratic that appear in (4.2) and using the linearity

of the integral, we are left with a sum of simpler integrals:

∫
SO(3)

〈Q ◦ pi, g〉2dQ =

Ni∑
j1,j2=1

∫
SO(3)

g(Qxi,j1)g(Qxi,j2)dQ (4.4)

Next, we choose a particular distribution for g which allows for easy integration over SO(3).

We choose to decompose g as a sum of randomly-weighted spherical harmonics with maxi-

mum order L and K fixed radial functions:

g(x) =
K∑
k=1

L∑
`=0

∑̀
m=−`

w
(`)
m,kY

(`)
m (x̂)Rk(‖x‖) (4.5)

where w(`)
m,k are random weights, x̂ = x

‖x‖ , and Rk : R+ → R is a radial function. Two

examples of such radial functions are shown in fig. 5.1.

By repeated application of the linearity of the integral and the two facts about the spher-
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ical harmonics mentioned in section 3.1, we are able to write down a closed-form expression

for the integral on the left-hand side of (4.4). We include these algebraic details in ap-

pendix A. Computing this integral has relatively low complexity; it requires evaluating a

table of spherical harmonics for each point xi,j up to maximum order L, and then perform-

ing a particular tensor contraction between the array of spherical harmonic evaluations and

the array of random weights. This tensor contraction has complexity O(N2L3K2).
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CHAPTER 5

EXPERIMENTS

We conduct multiple experiments comparing our method with other landmark rotation-

invariant machine learning methods. We find that for predicting the atomization energy

of small molecules, our method outperforms neural networks in the small dataset setting,

and we have competitive test errors in the large dataset setting. Our method is an order of

magnitude faster than competing kernel methods at test time. We also find that our method

performs competitively on a completely different task, 3D shape classification. We perform

these experiments to show that our method can be used as a fast, simple, and flexible baseline

for rotation-invariant prediction problems on 3D point cloud data.

5.1 Small-Molecule Energy Regression

A common target for machine learning in chemistry is the prediction of a potential energy

surface, which maps from 3D atomic configurations to the atomization energy of a molecule.

Large standardized datasets such as QM7 Blum and Reymond [2009], Rupp et al. [2012]

and QM9 Ruddigkeit et al. [2012], Ramakrishnan et al. [2014] offer a convenient way to test

the performance of these machine learning models across a wide chemical space of small

organic molecules. Both datasets contain the 3D atomic coordinates at equilibrium and

corresponding internal energies. The 3D coordinates and molecular properties are obtained

by costly quantum mechanical calculations, so there may be settings which require high-

throughput screening where an approximate but fast machine learning model may provide

an advantageous alternative to classical methods. To adapt our method to this task, we

make two small changes.
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Element-Type Encoding

The rotation-invariant random feature method defined above works for general, unlabeled

point clouds. However, in the chemistry datasets mentioned above, we are given more infor-

mation than just the 3D coordinates of particles in the molecule: the particles are individual

atoms, and we know their element type. Incorporating the element type of individual atoms

in a machine learning method is crucial for accurate prediction. Different elements interact

in quantitatively different ways, as predicted by the laws of gravitation and electrostatic re-

pulsion, and they interact in qualitatively different ways due to their electron configurations.

We use an element-type encoding method inspired by FCHL19 Christensen et al. [2020]

and ACE Kovács et al. [2021]. To construct this element-type encoding, we look at the local

view of a molecule created by centering the atomic coordinates at a given atom, separate the

atoms into different point clouds for each element type, and compute one random feature

per element type. We then repeat this procedure for all elements of a given type and sum

their feature vectors.

Expressed mathematically, we are given a sample pi = {xi,1, . . . , xi,N} with charges

{ci,1, . . . , ci,N}. Let p(cj)i be the collection of atoms with charge cj , and let p(cj)i − xi,h

denote the point cloud of atoms in pi with charge cj centered at point xi,h. In this notation,

p
(cj)
i − xi,h specifies a point cloud, which we can treat as unlabeled because all they all have

the same charge. As before, a random feature is denoted ϕ(·; gj). Then for all possible

element-type pairs (c1, c2), we compute individual entries in our feature matrix

Φi,j′ =
∑

h: cih=c1

ϕ
(
p
(c2)
i − xi,h; gj

)

The column index j′ depends on j, c1, and c2.
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Radial functions

We choose to parameterize our set of random functions as randomly-weighted spherical

harmonics with fixed radial functions. The choice of radial functions appears as a design

decision in many rotation-invariant machine learning methods. For example, radial functions

appear as explicit design choices in Kovács et al. [2021], Christensen et al. [2020], Poulenard

et al. [2019] and implicitly in the design of Cohen et al. [2018a]. This design choice is

often paramount to the empirical success of these methods. FCHL19 [Christensen et al.,

2020] optimize their radial functions over multiple hyperparameters and carefully balance

multiplicative terms including log-normal radial functions, polynomial decay, and soft cut-

offs. The ACE models in Kovács et al. [2021] use a set of orthogonal polynomials defined

over a carefully-chosen subset of the real line, a physically-motivated spatial transformation,

and use extra ad-hoc radial functions that control the behavior of extremely nearby points.

For our radial functions, we use two Gaussians, both centered at 1, with width parameters

chosen so the full widths at half maximum are 2 and 4 respectively. Our radial functions are

shown in fig. 5.1.

QM7 atomization energy regression

The QM7 dataset contains 7,165 small molecules with element types H, C, N, O, S and a

maximum of 7 heavy elements. We compare with two lightweight methods, FCHL19 and

Spherical CNNs, that show learning results on the QM7 dataset. We reproduce their orig-

inal training methods and compare test errors in table 5.1. Notably, our rotation-invariant

random feature method has average errors half of those of Spherical CNNs while being faster

to train. Our best-performing model uses 2,000 random features. With the element-type

encoding described above, this corresponds to 50,000 trainable parameters.

In this experiment, we use a training dataset of 5,732 samples and a test set of size

1,433. For our method and FCHL19, we use 90% of the training set to train the models
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(a) Radial functions for small-molecule energy re-
gression
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(b) Radial functions for 3D shape classification

Figure 5.1: Our rotation-invariant random feature method requires simple user-defined radial
functions. fig. 5.1a shows the radial functions used in our small-molecule energy regression
experiments. We include 1

r2
and the average Carbon-Hydrogen bond length to give context

to the horizontal axis. fig. 5.1b shows the radial functions used in our 3D shape classification
experiments. The 3D shapes in the benchmark dataset are normalized to fit inside the unit
sphere.

and the remaining 10% as a validation set for hyperparameter optimization. To train the

FCHL19 models, we use the validation set to optimize over Gaussian kernel widths and L2

regularization parameters. In our method, we search over the number of random features and

L2 regularization parameters. We solve our ridge regression problem by taking an singular

value decomposition of the random feature matrix, and then constructing a solution for each

regularization level.

Method Mean Absolute Error (eV) Train Time (s) Train Device

Spherical CNNs 0.1405 512 single GPU
Random Features
(Ours)

0.0641 ± 6.99e-05 121 24 CPU cores

FCHL19 0.0510 111 24 CPU cores

Table 5.1: Test error and training time on the QM7 dataset. Methods above the break
are general-purpose, and FCHL19 is optimized for molecular systems. We report the mean
absolute error on the test set for all methods and the standard error of the mean for our
method.
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FCHL19
Invariant Random Features
Spherical CNNs

Method Model
Size

Inference
time (s)

Error (eV)

FCHL19 100 0.0151 0.2390
FCHL19 200 0.0256 0.1968
FCHL19 400 0.0604 0.1626
FCHL19 800 0.1188 0.1166
FCHL19 1600 0.3170 0.0946
FCHL19 3200 0.6635 0.0681
FCHL19 5000 1.0096 0.0566
Invariant Random Features 250 0.0177 0.0894
Invariant Random Features 500 0.0178 0.0861
Invariant Random Features 750 0.0189 0.0775
Invariant Random Features 1000 0.0203 0.0758
Invariant Random Features 2000 0.0242 0.0718
Spherical CNNs N/A 0.0080 0.1405

Figure 5.2: Invariant Random Features are faster at prediction time than FCHL19 and more
accurate than Spherical CNNs. For each method, we measure the latency of predicting each
molecule on a held-out test set 5 times. In the figure, we plot the median prediction latencies
with error bars spanning the 25th and 75th percentile measurements. The vertical axis of the
figure is mean absolute error measured in eV on a held-out test set. The FCHL19 method is
evaluated on 24 CPU cores using kernels with sample sizes 100, 200, 400, 800, 1600, 3200,
and 5000. The rotation-invariant random features method is evaluated on 24 CPU cores
with model sizes of 250, 500, 750, 1000, and 2000 random features. The Spherical CNNs
method is evaluated on a single GPU.
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The space of small organic drug-like molecules is extremely large. The GDB-13 dataset

Blum and Reymond [2009] contains nearly one billion reference molecules, even after fil-

tering for molecule size and synthesis prospects. Most of the machine learning methods

approximating potential energy surfaces are considered fast approximate replacements for

costly quantum mechanical calculations. To screen the extremely large space of small or-

ganic drug-like molecules, these methods require high prediction throughput, which can be

achieved by exploiting parallelism in the models’ computational graphs and readily-available

multicore CPU architectures. When parallelism inside the model is not available, the set of

candidate molecules can be divided and data parallelism can be used to increase screening

throughput. However, we consider another setting where experimental samples need to be

analyzed in real time to make decisions about ongoing dynamic experiments. In this setting,

prediction latency is paramount.

In the low-latency setting, our method can gracefully trade off prediction latency and

prediction error by tuning the number of random features used in a given model. Importantly,

all training samples are used to train the model. FCHL19 is a kernel method, so the time

required to predict a new data point scales linearly with the number of training samples used.

Thus, FCHL19 can only improve test latency at the cost of using fewer training samples and

incurring higher test errors.

To explore the tradeoff between prediction latency and prediction error, we train random

feature models and FCHL19 models of different sizes. We measure their prediction latencies

and plot the results in fig. 5.2. We note that at similar error levels, FCHL19 models show

prediction latencies that are an order of magnitude slower than ours. Spherical CNNs exhibit

low test latency because their method is implemented for a GPU architecture, but their test

errors are high, and the neural network approach does not admit obvious ways to achieve a

tradeoff between latency and test error. The prediction latencies of FCHL19 and our random

feature models depend on the number of atoms in the molecule, and we show this dependence
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Method Model Type Mean Abso-
lute Error
(eV)

Input Features

Cormorant General-purpose
rotation-invariant archi-
tecture

0.022 • Charges
• Atomic locations

Random Fea-
tures (Ours)

Ridge Regression 0.022 ± 2.42e-
06

• Charges
• Rotation-invariant ran-
dom features

FCHL19 Kernel Ridge Regression 0.011 • Charges
• Interatomic distances
• 3-body angles

SCHNet Neural Network with
atomic interaction
blocks

0.014 • Charges
• Interatomic distances

PhysNet Neural Network with at-
tention layers

0.008 • Charges
• Interatomic distances

OrbNet Message-Passing GNN 0.005 • Mean-field DFT calcula-
tions

Table 5.2: Comparing large-scale models trained on QM9. FCHL19 [Christensen et al., 2020]
was trained on 75,000 samples from QM9 and the other methods were trained on 100,000
samples. Methods in the first group are general-purpose invariant architectures, and methods
in the second group are specialized to molecular property prediction. We report the mean
absolute error on the test set for all methods and the standard error of the mean for our
method.

in fig. D.1.

QM9 atomization energy regression

The QM9 dataset contains 133,885 molecules with up to 9 heavy atoms C, O, N, and F, as

well as Hydrogen atoms. This is a larger and more complex dataset than QM7, and because

there is more training data, neural network methods perform well on this benchmark. For

this dataset, we follow Anderson et al. [2019], Gilmer et al. [2017] by constructing atomization

energy as the difference between the internal energy at 0K and the thermochemical energy
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of a molecule’s constituent atoms. We train a large-scale random feature model by taking

100,000 training samples from QM9 and generating 10,000 random features. We select an

L2 regularization parameter a priori by observing optimal regularization parameters from

smaller scale experiments on a proper subset of the QM9 training data.

We compare the performance of our model with the reported errors of FCHL19 and

other neural network methods. All methods considered in this comparison enforce rotational

invariance in their predictions. The results of this comparison are shown in table 5.2. Our

rotation-invariant random feature method matches the performance of Cormorant, and it

provides a very strong baseline against which we can quantify the effect of expert chemistry

knowledge or neural network design. OrbNet uses a graph neural network architecture, and

their inputs are carefully-chosen from the results of density functional theory calculations in

a rotation-invariant basis. PhysNet uses an architecture heavily inspired by that of SCHNet,

and this iteration in model design resulted in almost a 50% reduction in test error.

Training models on large subsets of the QM9 dataset is difficult. FCHL19 requires 27

hours to construct a complete kernel matrix of size (133,855 × 133,855) on a compute node

with 24 processors. The 27 hours does not include the time required to find the model’s

linear weights. The neural network methods require long training sequences on GPUs. Both

Cormorant and PhysNet report training for 48 hours on a GPU.

When using a large sample size, our method is similarly difficult to train. We are able to

construct a matrix of random features of size (100,000 × 250,000) in 27 minutes on a machine

with 24 processors, but the matrix is highly ill-conditioned, and using an iterative method

to approximately solve the ridge regression problem requires 76.5 hours. Using an iterative

method introduces approximation error which we did not encounter when performing exper-

iments on the QM7 dataset. We attribute some of the performance gap between our method

and FCHL19 to this approximation error. We attempted to improve the training time of

our method by using a principal components regression approach, where we approximated
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the solution to the ridge regression problem using the top singular vectors of the random

feature matrix. Surprisingly, this led to poor performance. We believe the conditioning of

our problem is caused by the choice of element-type encoding, and we leave finding a new

element-type encoding that produces well-conditioned feature matrices for future work.

5.2 Shape Classification

To show that our method is general-purpose, we test our same method on a completely

different task, 3D shape classification. In particular, we consider multiclass classification

on the ModelNet40 benchmark dataset. The ModelNet40 benchmark dataset Zhirong Wu

et al. [2015] is set of computer-generated 3D models of common shapes, such as mugs, tables,

and airplanes. There are 9,843 training examples and 2,468 test examples spread across 40

different classes. The shape objects are specified by 3D triangular meshes, which define a

(possibly disconnected) object surface. To generate a point cloud from individual objects

in this dataset, one must choose a sampling strategy and sample points from the surface of

the object. We use the dataset generated by Qi et al. [2017], which samples 1,024 points on

the mesh faces uniformly at random. The point clouds are then centered at the origin and

scaled to fit inside the unit sphere.

We solve the multiclass classification problem with multinomial logistic regression. More

specifically, we optimize the binary cross entropy loss with L2 regularization to learn a set

of linear weights for each of the 40 classes in the dataset. At test time, we evaluate the 40

different linear models and predict by choosing the class with the highest prediction score. We

also slightly change the definition of our data function; for a point cloud Si = {xi,1, ..., xi,Ni},

we use a normalized data function Si(x) = 1
Ni

∑Ni
j=1 δ(x−xi,j) to eliminate any dependence

on the number of points sampled from the surface of the shape objects. For this setting, we

use radial functions that are three Gaussian bumps with centers at 0, 0.5, and 1, with width

σ = 0.75.
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Method Test Accuracy Train Time (s) Train Device

SPHNet 0.863 6,485 single GPU
Ours 0.653 9,664 24 CPU cores

Table 5.3: Training and test results on the ModelNet40 shape classification benchmark task.

We compare our method with another rotation-invariant method, SPHNet Poulenard

et al. [2019]. SPHNet is a multilayer point convolutional neural network that enforces ro-

tational invariance by computing the spherical harmonic power spectrum of the input point

cloud. SPHNet’s rotation-invariant method also requires a choice of radial functions, and

they use two Gaussians with different centers and vary the width of the Gaussians at dif-

ferent layers of their network. The results of our comparison are in table 5.3. Our method

does not achieve near state of the art results, but we conclude it provides a strong baseline

on this challenging multiclass problem.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

Our method is a simple, flexible, and competitive baseline for rotationally-invariant predic-

tion problems on 3D point clouds. Rotation-invariant random features are simple to explain

and implement, and using them in varied prediction tasks requires a minimal amount of

design choices. Our method does not achieve state-of-the-art accuracy on any prediction

task, but it provides a competitive baseline that allows us to begin to quantify the effect of

neural network models and expert chemistry knowledge in methods that enforce rotational

invariance.

Our method shows promise in settings where low prediction latency is desired. In high-

throughput experiments, such as the ATLAS experiment at the CERN Large Hadron Collider

Collaboration [2008], data is generated at such a high velocity that real-time decisions must

be made whether to save or discard individual samples. For this type of initial screening task,

we imagine our low-latency and flexible prediction method will be an attractive candidate.

Once trained, our method has a shallow computational graph which includes only simple

algebraic functions, evaluations of trigonometric functions, and complex exponentiation.

One can also interpret our work as an initial investigation into the use of random Fourier

feature methods for approximating common kernel learning methods in computational chem-

istry. Kernel methods are well-studied and highly performant in machine learning for com-

putational chemistry; examples of such methods include Rupp et al. [2012], Montavon et al.

[2012], Bartók et al. [2013], Christensen et al. [2020]. It is a natural question to ask whether

these methods can benefit from fast inference times while maintaining high test accuracy

when approximated by random features. Our method does not implement an exact approx-

imation to any of the kernel methods above, but our experiments show promise in this area.

Our test errors are near those of FCHL19 on the QM7 dataset, and versions of our model

using only 10% of the optimal number of parameters have reasonable test errors. However,
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when training our model on the QM9 dataset, we have seen that the particular element-type

encoding we have used creates ill-conditioned feature matrices and makes optimization diffi-

cult. To fully realize the potential of random feature methods in accelerating kernel learning

for computational chemistry, a new element-type encoding is needed.
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APPENDIX A

FULL INTEGRATION DETAILS

We wish to solve the following integral, which appears in the definition of rotation-invariant

random features (4.2): ∫
SO(3)

〈Q ◦ pi, g〉2dQ (A.1)

From section 4.1, we know this integral can decompose into

∫
SO(3)

〈Q ◦ pi, g〉2dQ =

Ni∑
j1,j2=1

∫
SO(3)

g(Qxi,j1)g(Qxi,j2)dQ (A.2)

And we also have chosen a particular functional form for our random function g:

g(x) =
K∑
k=1

L∑
`=0

∑̀
m=−`

w
(`)
m,kY

(`)
m (x̂)Rk(‖x‖) (A.3)

Repeated application of the linearity of integration gives us:

∫
SO(3)

〈Q ◦ pi, g〉2dQ = (A.4)

=

∫
SO(3)

g(Qxi,j1)g(Qxi,j2)dQ (A.5)

=

Ni∑
j1,j2=1

K∑
k1,k2=1

L∑
`1,`2=0

`1∑
m1=−`1

`2∑
m2=−`2

w
(`1)
m1,k1

w
(`2)
m2,k2

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)∫
SO(3)

Y
(`1)
m1 (Qx̂i,j1)Y

(`2)
m2 (Qx̂i,j2)dQ

(A.6)
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=

Ni∑
j1,j2=1

K∑
k1,k2=1

L∑
`1,`2=0

`1∑
m1=−`1

`2∑
m2=−`2

w
(`1)
m1,k1

w
(`2)
m2,k2

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)∫
SO(3)

Y
(`1)
m1 (Qx̂i,j1)Y

(`2)
m2 (Qx̂i,j2)dQ (A.7)

We can now focus on the integral in (A.6), and apply the rotation rule for spherical harmonics

introduced in section 3.1.

∫
SO(3)

Y
(`1)
m1 (Qx̂i,j1)Y

(`2)
m2 (Qx̂i,j2)dQ (A.8)

=

∫
SO(3)

`1∑
m′

1=−`1

Y
(`1)
m′

1
(x̂i,j1)D(`1)(Q)m1,m

′
1

`2∑
m′

2=−`2

Y
(`2)
m′

2
(x̂i,j2)D(`2)(Q)m2,m

′
2
dQ (A.9)

=

`1∑
m′

1=−`1

`2∑
m′

2=−`2

Y
(`1)
m′

1
(x̂i,j1)Y

(`2)
m′

2
(x̂i,j2)

∫
SO(3)

D(`1)(Q)m1,m
′
1
D(`2)(Q)m2,m

′
2
dQ (A.10)

(A.11)

At this point, we are able to apply the integration rule for elements of Wigner-D matrices

introduced in section 3.1.

∫
SO(3)

Y
(`1)
m1 (Qx̂i,j1)Y

(`2)
m2 (Qx̂i,j2)dQ (A.12)

=

`1∑
m′

1=−`1

`2∑
m′

2=−`2

Y
(`1)
m′

1
(x̂i,j1)Y

(`2)
m′

2
(x̂i,j2)(−1)m1−m′

1
8π2

2`+ 1
δ−m1,m2δ−m′

1,m
′
2
δ`1,`2 (A.13)

= δ`1,`2δ−m1,m2

8π2

2`+ 1

`1∑
m′

1=−`1

(−1)m1−m′
1Y

(`1)
m′

1
(x̂i,j1)Y

(`1)
−m′

1
(x̂i,j2) (A.14)
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To put it all together, we substitute (A.14) into (A.6), and we see many terms drop out of

the sums:

Ni∑
j1,j2=1

K∑
k1,k2=0

L∑
`1,`2=0

`1∑
m1=−`1

`2∑
m2=−`2

w
(`1)
m1,k1

w
(`2)
m2,k2

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)∫
SO(3)

Y
(`1)
m1 (Qx̂i,j1)Y

(`2)
m2 (Qx̂i,j2)dQ (A.15)

=

Ni∑
j1,j2=1

K∑
k1,k2=0

L∑
`1,`2=0

`1∑
m1=−`1

`2∑
m2=−`2

w
(`1)
m1,k1

w
(`2)
m2,k2

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)

δ`1,`2δ−m1,m2

8π2

2`+ 1

`1∑
m′

1=−`1

(−1)m1−m′
1Y

(`1)
m′

1
(x̂i,j1)Y

(`1)
−m′

1
(x̂i,j2) (A.16)

=

Ni∑
j1,j2=1

K∑
k1,k2=0

L∑
`1=0

`1∑
m1=−`1

w
(`1)
m1,k1

w
(`1)
−m1,k2

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)

8π2

2`+ 1

`1∑
m′

1=−`1

(−1)m1−m′
1Y

(`1)
m′

1
(x̂i,j1)Y

(`1)
−m′

1
(x̂i,j2) (A.17)

Once the spherical harmonics and radial functions are evaluated, this sum has O(N2KL3)

terms.

A.1 Basis Expansion

When implementing (A.17) to compute rotationally-invariant random features, one can see

that a lot of computational effort can be re-used between different evaluations of random

features. A table of spherical harmonic evaluations for all the points {x̂i,1, . . . x̂i,Ni} can be

pre-computed once and re-used. Also, by re-arranging the order of summation in (A.17), we
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arrive at this expression:

∫
SO(3)

〈Q ◦ pi, g〉2dQ =
K∑

k1,k2=1

L∑
`1=0

`1∑
m1=−`1

w
(`1)
m1,k1

w
(`1)
−m1,k2

Ni∑
j1,j2=1

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)
8π2

2`+ 1

`1∑
m′

1=−`1

(−1)m1−m′
1Y

(`1)
m′

1
(x̂i,j1)Y

(`1)
−m′

1
(x̂i,j2) (A.18)

Pre-computing everything after the line break allows for the re-use of a large amount of

computational work between different random feature evaluations. We can interpret this

pre-computation as an expansion of our point cloud in a rotationally-invariant basis B,

which depends on the choice of radial function. appendix B relates this basis expansion to

the Atomic Cluster Expansion method.

B[`,m, k1, k2] =

Ni∑
j1,j2=1

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)
8π2

2`+ 1

∑̀
m′=−`

(−1)m−m
′
Y
(`)
m′ (x̂i,j1)Y

(`)
−m′(x̂i,j2)

(A.19)

B[`,m, k1, k2] =

Ni∑
j1,j2=1

Rk1(‖xi,j1‖)Rk2(‖xi,j2‖)
∫
SO(3)

Y
(`)
m (Qx̂i,j1)Y

(`)
−m(Qx̂i,j2)dQ

(A.20)

In our implementation we precompute this B tensor once for each sample, and then we

perform a tensor contraction with the random weights:

∫
SO(3)

〈Q ◦ pi, g〉2dQ =
K∑

k1,k2=1

L∑
`1=0

`1∑
m1=−`1

w
(`1)
m1,k1

w
(`1)
−m1,k2

B[`1,m1, k1, k2] (A.21)
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APPENDIX B

CONNECTION BETWEEN OUR METHOD AND

RANDOMIZED ACE METHODS

B.1 Overview of the ACE basis

The atomic cluster expansion (ACE) method builds a rotationally-invariant basis for point

clouds that are an extension of our pre-computed basis expansion described in appendix A.1.

In the atomic cluster expansion (ACE) method, a preliminary basis Ak,`,m is formed by

projecting a point cloud function pi(x) =
∑
j δ(x− xij ) with a single-particle basis function

ϕk,`,m(x):

ϕk,`,m(x) = Rk(‖x‖)Y (`)
m (x) (B.1)

Ak,`,m(pi) = 〈ϕk,`,m, pi〉 (B.2)

=
∑
j

ϕk,`,m(xij ) (B.3)

where Rk is a set of radial functions. In Kovács et al. [2021], this set of radial functions is

defined by taking a nonlinear radial transformation. Then the radial functions are a set of

orthogonal polynomials defined on the transformed radii. This basis set is augmented with

auxiliary basis functions to ensure the potential energy of two atoms at extremely nearby

points diverges to infinity.

The Ak,`,m basis is a first step, but it only models single particles at a time. To model

pairwise particle interactions, or higher-order interactions, the A basis is extended by taking

tensor products. First, a “correlation order” N is chosen. Then, the A basis is extended via
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tensor products:

Ak,`,m(pi) =
N∏
α=1

Akα,`α,mα
(pi) (B.4)

where k = (kα)Nα=1, ` = (`α)Nα=1, and m = (mα)Nα=1 are multi-indices.

Finally, to ensure invariance with respect to permutations, reflections, and rotations of

the point cloud, the ACE method forms a Haar measure dg over O(3) and computes a

symmetrized version of the A basis:

Bk,`,m(pi) =

∫
O(3)

Ak,`,m(H ◦ pi)dH (B.5)

The reference Drautz [2019] gives a detailed description of how this integral is performed.

Applications of representation theory give concise descriptions of which multi-indices k, `,m

remain after performing this integral; many are identically zero.
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B.2 Connection to our method

If one chooses to compute an ACE basis with correlation order N = 2, the resulting basis is

very similar to our pre-computed basis expansion in (A.20).

Bk,`,m(pi) =

∫
O(3)

Ak,`,m(H ◦ pi)dH (B.6)

=

∫
O(3)

Ak1,`1,m1
(H ◦ pi)Ak2,`2,m2

(H ◦ pi)dH (B.7)

=

∫
O(3)

∑
j1

ϕk1,`1,m1
(Hxij1

)

∑
j2

ϕk2,`2,m2
(Hxij2

)

 dH (B.8)

=

∫
O(3)

∑
j1

Rk1(‖xij1‖)Y
(`1)
m1 (Hx̂ij1

)

∑
j2

Rk2(‖xij2‖)Y
(`2)
m2 (Hx̂ij2

)

 dH

(B.9)

=
∑
j1,j2

Rk1(‖xij1‖)Rk2(‖xij2‖)
∫
O(3)

Y
(`1)
m1 (Hx̂ij1

)Y
(`2)
m2 (Hx̂ij2

)dH (B.10)

The remaining difference between our basis expansion in (A.20) and the ACE basis expansion

with correlation order N = 2 is the ACE basis integrates over all of O(3), while our method

only enforces invariance with respect to SO(3) ⊂ O(3).

So one can describe our random features as random nonlinear projections of a simpli-

fied version of the ACE basis with correlation order N = 2 using extremely simple radial

functions.

B.3 Benefit of Random Features

We conduct the following experiment to quantify the benefit of using random nonlinear

features over fitting a linear model in our simplified version of the ACE basis. Using the same

hyperparameters as in our energy regression experiments, we compute our basis expansion for

all the samples in the QM7 dataset. Using the same train/validation/test split, we perform
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Method Test Error (eV)

Spherical CNNs 0.1405
FCHL19 0.0510
Ours (Random Features) 0.0619
Ours (Linear Model of B basis) 0.1476

Table B.1: Reported are test errors on the QM7 dataset for Spherical CNNs, FCHL19, and
two variants of our method. The first variant is the full rotation-invariant random features
model. The second variant is a linear model of our basis expansion. We note that while our
random feature model is the second-best performing model on this benchmark, our linear
model is the worst-performing model.

ridge regression by fitting a linear model in our basis B with L2 regularization. We use

the validation set to identify the best-performing model and report errors on the test set in

table B.1. We note that the best-performing linear model has more than twice the error of

the best performing random features model.
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APPENDIX C

REPRESENTATION THEORY OF THE 3D ROTATION GROUP

C.1 Conjugation of Wigner-D Matrices

In the following, we derive a formula for conjugating an element of a Wigner-D matrix. First,

we use definition 6.44 in Thompson [1994] for the Wigner-D matrices:

D
(`)
m′,m(α, β, γ) = e−im

′αd
(`)
m′,m(β)e−imγ (C.1)

Here, (α, β, γ) are Euler angles parameterizing a rotation, and d
(`)
m′,m is an element of a

Wigner-d (small d) matrix. We omit the exact definition of d(`)
m′,m, but we note the following

symmetry properties:

d
(`)
−m′,−m(β) = d

(`)
m′,m(−β) (C.2)

d
(`)
m′,m(−β) = d

(`)
m,m′(β) (C.3)

d
(`)
m,m′(β) = (−1)m−m

′
d
(`)
m′,m(β) (C.4)

The relationship between the Wigner d matrix elements allows us to derive a formula for

conjugating an element of a Wigner D matrix:

D
(`)
m′,m(α, β, γ)∗ = eim

′αd
(`)
m′,m(β)∗eimγ (C.5)

= e−i(−m
′)αd

(`)
m′,m(β)e−i(−m)γ (C.6)

= e−i(−m
′)αd

(`)
−m′,−m(−β)e−i(−m)γ (C.7)

= e−i(−m
′)αd

(`)
−m,−m′(β)e−i(−m)γ (C.8)

= e−i(−m
′)α(−1)−m+m′

d
(`)
−m′,−m(β)e−i(−m)γ (C.9)

= (−1)m
′−mD(`)

−m′,−m(α, β, γ) (C.10)
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C.2 Orthogonality Relations

We use the following orthogonality relationship between elements of Wigner D matrices:

∫
SO(3)

D(`1)(Q)∗m1,k1
D(`2)(Q)m2,k2dQ =

8π2

2`+ 1
δm1,m2δk1,k2δ`1,`2 (C.11)

This is a well-known fact about the Wigner-D matrices. For a proof, one can derive this

relationship from Schur orthogonality relations, which are a consequence of Schur’s lemma.

A direct calculation can be found in section 6.4.2 of Thompson [1994]. Combining the two

facts from above, we arrive at the following identity, which we use to compute our rotation-

invariant random features.

∫
SO(3)

D(`1)(Q)m1,k1D
(`2)(Q)m2,k2dQ = (−1)m1−k1 8π2

2`+ 1
δ−m1,m2δ−k1,k2δ`1,`2 (C.12)
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APPENDIX D

SUPPLEMENTARY FIGURES
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FCHL19
Invariant Random Features

(a) Latency for small models

FCHL19
Invariant Random Features

(b) Latency for large models

Figure D.1: The number of atoms in a molecule affects the prediction latency for both
FCHL19 and the invariant random features method. In fig. D.1a, we show the prediction
latencies for the smallest models tested, corresponding to 250 random features for our method
and 200 training samples for FCHL19. For this model size, a quadratic scaling in the number
of atoms largely determines the prediction latency. fig. D.1b shows that for larger models
(2,000 random features for our method and 5,000 training samples for FCHL19), the random
features method is still in a regime where prediction latency is determined by the number
of atoms, while FCHL19’s prediction latency is dominated by the number of inner products
required to evaluate the kernel.
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