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ABSTRACT

Technology moves fast, often leaving behind people who do not have technical expertise. For

emerging technologies like smart homes and social robots, obstacles to their wide adoption

include limited information on their applicability, as well as a lack of end-user support

for customization. This dissertation proposes to bridge these gaps in end-user adoption.

Specifically, we propose to 1) introduce such technologies to existing systems and examine

how they affect user interactions, and 2) design user interfaces that introduce new channels of

information to make such technologies accessible to end-users. The technologies we consider

include smart home devices, social robots, and body-actuating devices.

To help end-users effectively automate smart home devices and online services, we de-

signed a tool that compares trigger-action programs, which are popularly used in these areas.

To ease end-users into reinforcement learning, we designed interfaces that help them define

reinforcement learning tasks. Expanding on the existing literature of social robot appli-

cations, we studied how introducing humanoid robots to livestreamed performances might

foster engagement from performers and from the audience. Finally, to encourage adoption

of body-actuating devices like electrical muscle stimulation, we are currently designing inter-

actions leveraging unique features of social robots to engender user trust in these devices.
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CHAPTER 1

INTRODUCTION

Technology is evolving from traditional computers, smartphones, and tablets. Now there are

smart homes in which appliances share information through the Internet, and augmented

and virtual reality systems that make users experience alternative worlds. Although less

ubiquitous, there also exist technologies such as social robots that leverage their physi-

cal anthropomorphic features to foster social interactions, and body-actuating devices that

leverage the human body to enhance one’s physical capabilities or communicate information.

We anticipate these emerging technologies to permeate all aspects of people’s daily lives in

the future, from their physical interactions with the environment, to home and work, to ed-

ucation, healthcare, and entertainment. For this dissertation, we propose working towards

realizing this vision by integrating these emerging technologies into the lives of end-users

– people who do not necessarily have the technical background to overcome the technical

complexities of such devices.

For emerging technologies, various obstacles stand in the way of their wide adoption. For

technologies such as smart homes and social robots, where we anticipate every household

to potentially own in the future, one obstacle is having accessible means of end-user cus-

tomization. On the one end, end-user programming paradigms enable users to exert more

control over the customization without the complexity of software programming languages

(e.g. [88, 38, 72]). However, they are not infallible against reasoning errors, resulting in

unexpected behaviors in users’ programs and subsequent reluctance to adopt these systems

(e.g. [9]). On the other end, machine learning methods afford a less demanding and more

natural interaction with the technology than end-user programming (e.g. [1, 36, 4]). This

is particularly true in the case of social robots, as programming them could negate one’s

suspension of belief in their social agency. Yet, defining the tasks to learn in the first place

can still be nontrivial for end-users, requiring technical knowledge to minimize the cost and
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maximize the efficacy of the learning.

Another obstacle is the limited knowledge on the potential applications of such tech-

nology. Social robots are one such domain. Existing work has found that robots not only

offer functional utility—assisting tasks such as manufacturing and engineering—but also of-

fer benefits through social means. Robot interactions can be designed to foster compliance

(e.g. [6, 58]) and trust (e.g. [81]), leading to applications such as child tutoring (e.g. [75, 56])

and home assistance (e.g. [69]). However, relatively little work has explored their application

in other domains, such as in entertainment and in tandem with other emerging technologies.

To alleviate these challenges for adopting emerging technologies, we propose to 1) intro-

duce such technologies to existing systems and examine how they affect the user interaction,

and 2) introduce new channels of information to make such technologies accessible to end-

users. This dissertation will include the following projects. First, in the realm of smart

homes and end-user programming, we designed a tool that compare trigger-action programs

to help end-users iteratively create and debug their smart home automations. Second, we

designed user interfaces to help people define reinforcement learning tasks, with a focus on

human-robot interaction. Third, we examined the potential of introducing humanoid robots

into livestreamed performances for fostering audience and performer engagement. Finally, we

will investigate the potential for humanoid robots to engender user trust in body-actuating

devices, namely electrical muscle stimulation. The first three projects are complete, while

the last one is ongoing.
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CHAPTER 2

UNDERSTANDING TRIGGER-ACTION PROGRAMS

THROUGH NOVEL VISUALIZATIONS OF PROGRAM

DIFFERENCES

2.1 Introduction

Trigger-action programming (TAP) is a paradigm for end-user development and composition

in which users create rules of the form “IF [trigger] WHILE [conditions] THEN [action]” using

a graphical interface. For example, the rule “IF Alice falls asleep WHILE it is nighttime AND

the front door is unlocked THEN lock the front door” instructs the home to lock the front

door when Alice falls asleep at night. We term a set of TAP rules a TAP program. TAP

has shown promise in empowering non-technical users to connect and automate Internet-

of-Things devices and online services [88]. It underpins end-user automation in domains

including social media [82], business [93], scientific research [13, 14], and smart homes [89,

55, 74]. Services that support TAP include IFTTT [32], Microsoft Flow [61], Zapier [93],

and Mozilla WebThings [60, 20].

TAP is intuitive and easy to use [88, 22], but it is also vulnerable to reasoning er-

rors [30, 92, 9]. Complex interactions between rules and device states can hinder users from

knowing precisely when the TAP system would initiate an action [92, 9]. Increasingly large

deployments will exacerbate TAP complexity by requiring many rules to satisfy potentially

conflicting requirements. This complexity makes it challenging for users to write rules that

match their intent or to debug programs, leading to problems ranging from discomfort to

wasted resources to security risks.

During the development and maintenance of TAP programs, comparing similar TAP

programs is a common and crucial task. We use the term variants to refer to highly similar

programs being compared. When a user is iteratively tweaking or debugging their program
3



Program A:

1. IF Alice falls asleep
THEN lock the front
door.

2. IF it becomes night-
time THEN lock the
front door.

3. IF the front door un-
locks WHILE Alice
is asleep AND it is
nighttime THEN lock
the front door.

Program B:

1. IF Alice falls asleep
THEN lock the front
door.

2. IF it becomes nighttime
THEN lock the front
door.

3. IF the front door un-
locks WHILE Alice is
asleep THEN lock the
front door.

4. IF the front door un-
locks WHILE it is night-
time THEN lock the front
door.

Program C:

1. IF Alice falls asleep
WHILE it is daytime
THEN lock the front
door.

2. IF it becomes nighttime
THEN lock the front
door.

3. IF the front door un-
locks WHILE Alice is
asleep THEN lock the
front door.

4. IF the front door un-
locks WHILE Alice is
awake AND it is night-
time THEN lock the front
door.

Figure 2.1: A running example. Programs A, B, and C all have different rules, but only Pro-
gram A behaves differently from the others. Program A allows the front door to unlock and
stay unlocked when Alice is awake at night or when she is asleep during the day. Meanwhile,
Programs B and C both ensure the front door remains locked while Alice is asleep and/or it
is nighttime.
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either to add new behaviors or to fix bugs, the original program and the tweaked programs

the user creates are variants. Because TAP programs can be long (contain many rules) or

be complex in the degree to which different rules act on the same device, users might modify

a program and struggle to determine whether they have achieved their goal. Similarly,

taking advantage of ecosystems of shared TAP programs [32], users might merge programs

created by others into their own existing programs, wondering how the variant reflecting the

combined programs compares to the original. Furthermore, researchers have recently created

tools for automatically synthesizing TAP programs [95, 94, 41]. These methods often output

multiple candidate variants from a single input, leaving the user wondering which variant to

choose.

We further illustrate instances where users may wish to compare TAP programs with the

following vignette. Suppose Alice uses Program A (Figure 2.1) for her home. She expects

the door to be locked whenever she is asleep or whenever it is nighttime. However, she

sometimes notices that the door is unlocked at night, making her concerned about the safety

of her home. Alice decides to fix this problem by modifying Program A into Program B

(Figure 2.1). With our tool, she can now compare the two programs to determine whether

Program B resolves the issue Program A had. Her visiting mother distrusts Program B and

instead proposes Program C (Figure 2.1). Alice can again compare Program B with Program

C to see that both programs behave identically.

To help end-users correctly reason about TAP, we designed and evaluated a

set of novel user interfaces, powered by formal analysis of TAP programs, that

compare TAP programs not just syntactically, but semantically. Although our

methods can be applied to any arbitrary set of programs, we focus on highly similar variants

because the number of differences will be relatively small and therefore tractable to surface

to users. While previous work sought to improve TAP understanding by visualizing previous

and potential smart home behaviors [53, 16] or explaining certain types of programming
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errors [18, 17, 50], our interfaces helps users more broadly understand the effects of changes

while modifying programs or while selecting among variants to meet their goals.

Traditional diff1 interfaces like those on GitHub or Google Docs compare program

text [66, 73, 3, 40]. Our semantic-diff interfaces differentiate programs based on situational

outcomes, general properties, or user selection of desired outcomes. Furthermore, whereas

a traditional text-diff interface would highlight syntax differences between Programs B and

C (Figure 2.1), our outcome-diff interface would show that the programs actually behave

identically. Because these novel semantic-diff interfaces are driven by our formal analysis

approach that leverages the relatively small state space of TAP programs, they are specific

to TAP, although the concepts can perhaps be adapted to other constrained applications.

To evaluate the effectiveness of these interfaces, we conducted a 107-participant online

experiment. We randomly assigned each participant to an interface—either one of our diff

interfaces or a control interface showing just the programs themselves. While the control

interface and traditional text-diff interface enabled participants to identify differences in short

and straightforward programs, our novel semantic-diff interfaces significantly outperformed

those interfaces when participants aimed to identify differences between long and complex

programs. Notably, our novel interfaces focused on outcomes helped participants accurately

complete a wide variety of tasks, and our interface focused on high-level properties helped

participants overlook low-level details when appropriate. While (compared to our controls)

our novel interfaces helped a significantly larger fraction of participants correctly identify

differences between long, complex programs, the time it took to complete tasks did not

differ significantly across interfaces.

This work is presented as follows. Section 2.2 defines our terminology and assumptions.

We motivate and describe the interaction design of our user interfaces in Section 2.3, and

we then describe our formal model of TAP systems and novel algorithms underpinning and

1. Many tools for comparing differences use the name “diff,” by analogy to the Unix diff utility [31]. We
call any comparison interface a “diff” interface.
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enabling these interfaces in Section 2.4. We present the methodology of our user study

in Section 2.5 and the results in Section 2.6. In Section 2.7, we discuss implications and

deployment considerations for TAP systems.

2.2 Terminology and Definitions

To facilitate our presentation of this work, we define the following terms and note the fol-

lowing assumptions. As mentioned in Section 2.1, we term a set of TAP rules a program.

We term the related programs being compared with our interface variants.

A factor is any element relevant to the smart home system, including smart devices,

the users, and the environment (e.g., weather, time of day). An attribute is an aspect of

a factor. Example attributes of a user are whether they are asleep and whether they are at

home. We will refer to the pair of a factor and an attribute as a variable (e.g., “whether

the front door is locked” and “whether Alice is asleep”). A state is a statement that is

true about the variable over some period of time (e.g., “Alice is asleep”), while an event is

an instantaneous change in the variable’s state (e.g., “Alice falls asleep”). A smart home

system state is the set of all variable states in an environment at that point in time.

In its simplest form, a TAP rule takes the form “IF [trigger] THEN [action].” The action

is an event that can be automated, such as locking a smart door lock. The trigger activates

the action. Out of several trigger types, we use event-state triggers in this work because prior

work [30, 9, 68] found this type to be most intuitive for TAP. Event-state triggers consist of

an event and zero or more states that must all be true to trigger the action. Note that we

refer to just the event part of an event-state trigger as the trigger and the states (if any) as

the set of conditions, such that a rule may have the form “IF [trigger] WHILE [conditions]

THEN [action].” We refer to the trigger, the conditions, and the action as rule subparts.

For rules whose action reverses the trigger (e.g., “IF the front door unlocks THEN lock

the front door,” as in Figure 2.1), we assume the rule prevents the trigger from occurring,
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rather than allowing the trigger to proceed and then immediately reversing it. We made this

decision to minimize confusion about whether an action occurs.

2.3 Diff-Based User Interfaces

In this section, we present our interfaces and describe their goals and interaction design.

Section 2.4 complements this section by describing the algorithms underpinning these inter-

faces. We first discuss our control conditions, Rules and Text-Diff . The former shows just

the programs themselves, while the latter highlights syntax differences. We then describe

our semantic-diff interfaces that emphasize TAP differences beyond syntax. We present two

interfaces that visualize differences in behavior outcomes between variants (Outcome-Diff:

Flowcharts and Outcome-Diff: Questions) and one that compares abstract properties guar-

anteed by variants (Property-Diff ). For each interface, we show how it compares Programs

A and B from our running example (Figure 2.1).

2.3.1 Control Conditions

The Rules interface displays each program individually (Figure 2.2). Existing sys-

tems show trigger-action programs to users individually, so this approach serves as a control

condition against diff interfaces. We expected this traditional interface to be sufficient for

short, simple variants. A dropdown menu at the top allows users to toggle which program

they see. Each row lists a rule with its subparts (trigger, conditions, and action) separated

into columns.

The Text-Diff interface displays programs side-by-side. It highlights rules

that differ, as in traditional diff interfaces (Figure 2.3). We expected Text-Diff to

help contrast TAP variants that have a small number of key differences. For example, if the

differences are simple and independent from the other rules (e.g., if the differences concern

the TV and lights, while all other rules relate to the front door lock and whether Alice is

8



Figure 2.2: Rules of Program A (left) and Program B (right) from Figure 2.1. Dropdown
menus toggle the program shown.

asleep), we expected Text-Diff to be sufficient. Unfortunately, for realistic and practical

TAP applications, the text of programs can differ substantially.

We chose Text-Diff as a control condition to represent existing diff tools. We piloted

several implementations representative of popular tools like GitHub’s “split diff” and “unified

diff” [66], as well as Google Docs version history changes [73]. Pilot participants preferred

the “split diff” design, so we adopted it as our final design.

Like GitHub’s “split diff,” our Text-Diff describes how one can modify the first variant

to become the second. Rules unique to the first variant are “deleted” (shown with a minus

sign and red background). Rules unique to the second variant are “added” (with a plus sign

and green background). The plus and minus signs mitigate the potential inaccessibility of a

red/green color scheme to colorblind users. We also bold the text differences. A rule in the

9



Figure 2.3: Text-Diff comparing Programs A and B from Figure 2.1. Similar to GitHub’s
“split diff” [66], rules unique to a variant have a color background and are preceded by a
symbol (red and “-” on the left, green and “+” on the right). When a pair of rules from
the two variants is similar, they are aligned on the same row with differences highlighted in
darker red or green.

first variant is instead “modified” into a rule in the second if they are similar. We align such

rules on the same row and show precise differences with a darker red/green background. In

Figure 2.3, the third rule on the left is “modified” to become the third rule on the right by

removing “AND it is nighttime.” Another rule, “IF front door unlocks WHILE it is nighttime

THEN lock the front door,” is “added” as the fourth rule on the right. When there are more

than two variants, dropdown menus let users select which two to compare.

We redesigned parts of GitHub’s “split diff” approach to suit TAP. For a rule to be

considered “modified,” we defined that they must differ in exactly one subpart. To reduce

confusion from misaligned rules, we also sorted the rules of the second variant relative to

the first. Unlike traditional software or text documents, trigger-action programs are sets of

rules in which the order is flexible. If two variants have identical rules in different orders, a

traditional code-diff interface would thus highlight them as different.

2.3.2 Outcome Differences

A shortcoming of traditional diff interfaces is that they do not help users directly discern

when a system would take specific actions, nor how the variants cause these actions to differ.

10



Figure 2.4: Outcome-Diff: Flowcharts showing a situation in which Programs A and B from
Figure 2.1 produce different outcomes.

By seeing or comparing just the text of Programs A and B from Figure 2.1, a user might

fail to recognize that when someone attempts to unlock the front door while Alice is asleep

during the day, the smart home will prevent them from doing so with Program B, but not A.

It is critical to identify the situations in which the variants differ in behavior, but examining

only the rules themselves can obscure this information. Here, the situation is the context

of Alice being asleep while it is daytime and someone is trying to unlock the front door.

The outcome of Program A is that the front door is unlocked, while with Program B it is

locked. Variants produce different outcomes when they take different actions under identical

situations.

To help users reason about program differences when they have in mind desired out-

comes under specific situations, we present two interfaces that visualize outcome differences.

Outcome-Diff: Flowcharts uses flowcharts to display all situations in which outcomes differ.

Outcome-Diff: Questions asks the user to select their desired outcome(s) for these situations

through checkboxes, and then summarizes how many, and which, selected outcomes occur

under each program variant. To avoid overloading the user, neither interface shows situations

11



(a) The first situation Outcome-Diff: Questions shows
with Programs A and B from Figure 2.1 as the variants.
Users select zero or more desired outcomes.

(b) The results of Outcome-Diff: Ques-
tions appears when the user has made a
choice for every situation. Note that for
Programs A and B, there are two such
situations. These example results occur
when the user chooses to have the front
door locked in both the first situation
(Figure 2.5a) and the second situation.

Figure 2.5: Snippet of Outcome-Diff: Questions with Programs A and B from Figure 2.1 as
variants.

with identical outcomes.

Outcome-Diff: Flowcharts shows all situations in which two variants produce

different outcomes (Figure 2.4). Via dropdown menus, a user chooses two variants to

compare and sees a series of flowcharts highlighting differences in outcomes. The interface

also states the number of situations in which outcomes differ between those variants. Each

flowchart shows a situation. For Programs A and B, Outcome-Diff: Flowcharts shows two

situations in which the two programs produce different outcomes. The first situation (Fig-

ure 2.4) starts with Alice asleep during the day while the front door is locked. Then, a

hypothetical event—the front door unlocking—occurs. Program A results in the front door

being unlocked, while Program B results in it being locked. Variable state differences use the

same color scheme as text differences in Text-Diff, and we took the same steps to enhance

accessibility.

Outcome-Diff: Questions instead asks the user to indicate what outcomes, if

any, are desirable in particular situations, as shown in Figure 2.5. It shows the same

situations as Outcome-Diff: Flowcharts , albeit in this revised question format. Whereas
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Outcome-Diff: Flowcharts , Text-Diff , and Property-Diff all compare exactly two variants

at a time, pairwise comparisons are tedious and overwhelming if there are many variants

to compare. The approach of Outcome-Diff: Questions enables the user to quickly identify

variants with the desired behaviors among a large set of variants. For each specific situation,

the interface lists all of the different outcomes caused by at least one of the variants under that

situation. The user selects their desired choice(s), or specifies that they have no preference.

Figure 2.5a shows an example of the same situation in Figure 2.4 for Programs A and B.

Below the situation are the outcome choices. Differences between outcomes have orange

backgrounds in selected outcomes and blue backgrounds in unselected outcomes.

For each program variant, Outcome-Diff: Questions tracks the number of situations in

which the user-selected outcome matches what would occur in that variant. Once the user has

responded to all of the given situations, Outcome-Diff: Questions presents the percentage

of situations for which each variant would have an acceptable outcome. A variant that

satisfies more situations is more likely to match the user’s intent. In the case of Figure 2.5,

the interface shows that Program B matches a selected outcome in all situations where

outcomes differ, while Program A matches none of them.

2.3.3 Property Differences

Sometimes, the user might care mainly about general trends or guarantees, such as whether

the door will always be locked when Alice is asleep, as opposed to specific behaviors in

specific situations. It is difficult for users to extract high-level trends from any interface

presented so far, especially when variants have many differences.

Property-Diff helps users reason about broader behaviors in their automated

systems by contrasting high-level properties held by the two variants (Figure 2.6).

In particular, our interface highlights safety properties, which are informally defined as state-

ments indicating that “nothing bad happens in the system’s execution” [5]. For instance, all
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Figure 2.6: Property-Diff comparing the safety properties of Programs A and B from Fig-
ure 2.1.

Table 2.1: Properties that Property-Diff supports. The terms [device_state] and
[device_event ] refer to a device variable’s state or event, while [external_state] refers to
the state of a variable that cannot be controlled, like attributes of users and environmental
factors. A [state] can be the state of any variable.

Property Template Based on AutoTap [94] Example Phrasing in the Property-Diff Interface

[device_state] will [always/never] be active. [The lights] will [always] be [on].

[device_state] will [always/never] be active while
[external_state1, · · · , external_staten].

[The lights] will [always] be [on] when [it is nighttime] and [Alice is awake].

[state1, · · · , staten] will [never] be active together. The smart home will [never] have [the lights on]
and [the window curtains open] at the same time.

[device_event] will [only/never] happen when [state1, ..., staten]. [The lights] will [only] [turn on] when [it is nighttime].

three programs in Figure 2 have the safety property that “the front door will always be locked

when Alice is asleep and it is nighttime.” We designed this interface to be useful when dif-

ferences in low-level rules or outcomes are unimportant and may even be burdensome to

users.

The properties Property-Diff presents are based on templates from Zhang et al. [94]

and are listed in Table 2.1. We excluded templates they found to confuse users, such as

“[state1, ..., staten] will [always] be active together.” We also condensed equivalent templates

and separated those whose meaning can differ based on the number of device variables.

Finally, we excluded timing-related properties, such as “ [state] will [never] be active for more

than [duration],” because they require different transition-system analyses than properties

unrelated to timing (see Section 2.4 and [94]).
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To maximize consistency across interfaces, we followed the layout and visual elements

of Text-Diff for contrasting properties. Pilot participants did not understand the phrase

“safety property,” so we listed them as “patterns that are always or never true about the

smart home.” In addition to the properties that differ, Property-Diff also shows properties

held by both variants. Pilot study participants preferred seeing all properties to gauge more

comprehensively whether any variant satisfied the user study tasks. Unlike Text-Diff , we

did not define how two different properties can be similar. Doing so requires more careful

consideration of what makes two properties “similar,” which we leave to future work.

2.4 Algorithms For Computing Diffs

In this section, we present the algorithms underpinning the interfaces that we presented in

Section 2.3. Section 2.4.1 shows how we compare text differences across variants for Text-

Diff. Section 2.4.2 introduces transitions systems, which we use to represent TAP variants in

a home. They serve as the basis for our algorithms for semantic-diff interfaces. Section 2.4.3

explains our algorithms to identify outcome differences across variants for Outcome-Diff:

Flowcharts and Outcome-Diff: Questions . Section 2.4.4 introduces how we generate property

differences across variants for Property-Diff.

2.4.1 Text-Diff

The main task in populating the Text-Diff interface algorithmically is to identify potential

“modified” rules, which are pairs of rules from the two variants that are most similar to each

other. The set of candidates is the Cartesian product of the two sets of rules from the two

variants. Per our definition of “modified” rules in Section 2.3, we eliminate all candidates in

which the rules differ by more than one subpart. We calculate the differences within each

remaining pair of rules to be the number of conditions in which the pair differs, or 1 if the

pair differs in their triggers or their actions (never both). We then choose the largest unique
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set of rule pairs with the smallest differences to be the set of “modified” rules.

2.4.2 Modeling the Home as a Transition System

All of our semantic-diff interfaces require reasoning about how particular TAP variants differ

in behavior. To this end, we model each TAP variant and the smart home as a transition

system [5, 94]. Each transition system incorporates rules of the variant as well as the subset

of the home’s devices (and their possible states) and environmental factors (e.g., weather,

light levels, time of day) that affect or are triggered by these rules.

A node in the transition system represents every device and every environmental factor

from the variant being in a particular state. Recall that each device or environmental factor

in the home is represented by a variable. The set of states (nodes) in a given transition

system is thus the Cartesian product of the set of states for each variable. For example, a

system with n binary variables would have 2n states. While a home with many devices and

relevant environmental factors would seemingly require a huge transition system to model,

the transition system actually only needs to include the devices and environmental factors

directly related to the rules in the TAP variants being compared. For instance, if no rule

in the TAP variants being compared is triggered by, nor acts upon, the home’s thermostat,

the thermostat can be excluded entirely from the transition system. Furthermore, a variable

with a large number of possible states (e.g., the home’s temperature) can be discretized. For

instance, if the only aspect of temperature relevant to any rule in the variants being compared

is whether or not the home is under 65°F, temperature can be treated as a binary variable.

As a result, even for a home with many devices, the transition system typically remains

small. For our user study (Section 2.5), the largest system—Task 6 (Abstraction)—had 7

binary variables and thus 128 states (nodes).

Transitions (edges) in the transition system reflect events that change one or more vari-

ables, which intuitively means that one or more devices or environmental factors has changed
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n1 n2
z z z

n4
z z z

n3

Alice falls asleep

Alice wakes up

IF the front door unlocks
WHILE Alice is asleep
THEN lock the front door 

Lock the 
front door

Unlock the 
front door

IF Alice falls asleep
WHILE the front door
is unlocked
THEN lock the front door 

(a) TS1, a transition system for a trigger-action
program consisting of two rules: “IF Alice
falls asleep WHILE the front door is unlocked
THEN lock the front door” and “IF the front
door unlocks WHILE Alice is asleep THEN
lock the front door.” The first rule redirects
transition n3 → n4 to n3 → n2. The sec-
ond rule redirects the transition n2 → n4 to
n2 → n2 (a self-transition). Assuming n1 is
the initial state, this program ensures that n4
is unreachable.

n1 n2
z z z

n4
z z z

n3

IF the front door unlocks
WHILE Alice is awake
THEN lock the front door 

IF the front door unlocks
WHILE Alice is asleep
THEN lock the front door 

Alice falls asleep

Alice wakes up

(b) TS2, a transition system for a trigger-
action program consisting of two rules: “IF
the front door unlocks WHILE Alice is awake
THEN lock the front door” and “IF the front
door unlocks WHILE Alice is asleep THEN
lock the front door.” Assuming n1 is the initial
state, this program ensures both n3 and n4
are unreachable.

Figure 2.7: Transition systems (TS1 and TS2) of two TAP variants, both focusing on whether
Alice is awake and whether the front door is locked. The system states are labeled n1 through
n4. Arrows represent valid transitions. Alice is awake in n1 and n3, and asleep in n2 and n4.
The front door is locked in n1 and n2, and unlocked in n3 and n4. If a rule triggers (redirects)
a transition, we label the corresponding transition arrow with the rule. Unreachable nodes
are colored gray and crossed out.

its state. Initially, these edges will represent manual transitions (e.g., a light can change state

if someone manually turns it on) and natural environmental transitions (e.g., day will turn

to night). When there are no automation rules, every pair of smart home states that differ

in the state of exactly one variable will typically be connected by two transitions, one from

each state to the other. However, this pattern does not hold true if not all transitions for a

device are valid. For instance, in modeling a device that must always temporarily be in a

“warming up” state before it reaches the “on” state, there will not be an edge from “off” to

“on” nodes. As with Zhang et al. [94], we require that the valid transitions for a given type

of variable be pre-specified as part of an overall model of a smart home.

Rules redirect transitions in the graph. Specifically, the in-transition of a state represent-
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ing a particular rule’s triggering event and conditions will be redirected to the state reflecting

the eventual outcome of the action specified by the rule.

To further illustrate transition systems, we partially model our running example from

Section 2.1. The states of this transition system will be the Cartesian product of whether

Alice is asleep and whether the front door is locked (Figure 2.7), resulting in four states:

• (Aliceawake, doorunlocked)

• (Aliceawake, doorlocked)

• (Aliceasleep, doorunlocked)

• (Aliceasleep, doorlocked)

If Alice wakes up, which is a variable state change, the system transitions from Aliceasleep

to Aliceawake. If someone manually locks the door, the system transitions from doorunlocked

to doorlocked.

Again, rules redirect these transitions. For instance, if Alice is awake with the door

unlocked and then falls asleep, without any rules the system would move from state n3 to

state n4 of Figure 2.7a. However, the rule “IF Alice falls asleep WHILE the front door is

unlocked THEN lock the front door” instead redirects this edge to node n2 because the rule’s

action is to lock the front door.

Our analyses for Outcome-Diff and Property-Diff rely on reachability analysis, using

breadth-first search to identify reachable states in the system. This search process requires

an initial state from which to start. Inadvertently choosing an invalid (unreachable) state

as the starting point would result in the reachability analysis being incorrect, mistaking

some unreachable states as reachable and vice versa. Most intuitively, real-world systems

can choose the current state of the home as this initial state. In our user study, we choose

a state that satisfies the goal of the task as the initial state. For example, if the goal is to
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make sure the door is always locked while Alice is asleep, we define the initial state to be

any state except for the door being unlocked while Alice is asleep.

2.4.3 Outcome-Diffs

To identify all situations in which variants produce different outcomes, we compare their

transition systems. Each variant is represented by its own transition system. The key

intuition for detecting differences in outcomes is to compare the out-transitions for a given

(corresponding) state across variants. If a given (corresponding) transition from this state

differs across program variants, in that its destination state does not correspond across

variants, that means the outcome of that event is different.

The Outcome-Diff interfaces share similar algorithms, so we detail only the Questions

algorithm for n variants, presenting its pseudocode as Algorithm 1. Flowcharts uses this

algorithm for n = 2.

First, we generate the transition systems TS1 · · ·TSn for the n variants. We then find

the nodes that are reachable in every transition system, which are the system states that

are possible with all of the variants. For all outgoing edges of these nodes (i.e., every

possible event happening from these states), we identify the actions they would trigger with

Variant1 · · ·Variantn. For each situation, we group the variants based on the actions they

take, combining groups for which the actions lead to identical outcomes. We also merge the

situations to minimize redundancy. We then convert the remaining situations to multiple-

choice questions, each asking “what should the program do when event happens in state,”

with the choices being all possible outcomes from Variant1 · · ·Variantn.

We present an example for n = 2 (identical to Outcome-Diff: Flowcharts) with Figure 2.7.

The first program consists of two rules: “IF Alice falls asleep WHILE the front door is

unlocked THEN lock the front door” and “IF the front door unlocks WHILE Alice is asleep

THEN lock the front door.” The second program consists of two rules as well: “IF the front
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door unlocks WHILE Alice is awake THEN lock the front door” and “IF the front door

unlocks WHILE Alice is asleep THEN lock the front door.” Assuming n1 is the initial state,

the two respective transition systems share two possible states : n1 and n2. From state n1,

the possible events are Alice falling asleep and the door becoming unlocked (by someone or

another rule). In the left transition system, when the front door becomes unlocked while

Alice is awake at n1, the system allows this transition to n3. In the right transition system,

the system would instead transition back to n1 with Alice awake and the door still locked. For

Outcome-Diff: Questions , the algorithm would generate this question (in flowchart form):

“The situation starts off with Alice awake and the front door locked. Now the front door

unlocks. What should the outcome of this situation be?” The choices would be “have Alice

awake and the front door unlocked” and “have Alice awake and the front door locked.” In

Outcome-Diff: Flowcharts , a flowchart would show this situation with the two choices as

diverging outcomes (Section 2.3.2).

When there are multiple conditions or actions, we combine situations that only differ in

conditions that do not affect the outcome. For example, if two situations are identical in

conditions and in the set of outcomes, except that Alice is asleep in one situation and awake

in the other, we combine them into a single situation and do not show whether Alice is asleep

on the interface.

2.4.4 Property-Diff

Our algorithm underlying Property-Diff centers on analyzing the unreachable nodes in vari-

ants’ transition systems. The key intuition is that the states of a given variable or given

combination of variables that are always unreachable can be directly mapped to human-

intelligible safety properties for the Property-Diff interface.

We first extract safety properties from each variant. We then separate the safety prop-

erties shared by both variants. The safety properties we consider (Table 2.1) consist of
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Input : Variant1, · · · , Variantn
Output: situationDiffs , a list of (startState, event , behaviorMap) where variants

behave differently by taking different actions. behaviorMap is a map from
behaviors to variant ids.

Function findSituationDiffs(Variant1, · · · , Variantn)
TS1 · · ·TSn := transition systems of smart home implementing
Variant1 · · ·Variantn;
R1 · · ·Rn := sets of reachable states in TS1 · · ·TSn;
R := R1 ∩ · · · ∩Rn;
situationDiffs := ∅;
for Every state in R do

for Every event that can happen from state do
beh1 · · · behn := Actions triggered by Variant1 · · ·Variantn when event
happens under state;

if beh1, · · · behn are not all the same then
behaviorMap := {} (empty map);
for i in 1 · · ·n do

if behi is not in behaviorMap then
behaviorMap[behi] := ∅;

behaviorMap[behi] := behaviorMap[behi] ∪ {i};
situationDiffs := situationDiffs ∪ {(state, event , behaviorMap)};

return situationDiffs
Algorithm 1: Pseudocode for the Outcome-Diff: Questions algorithm. We identify
situations (a system state and an event) that result in any of the n variants producing
different outcomes. Outcome-Diff: Flowcharts uses this algorithm for n = 2.

properties based on states (S-properties, such as “the door will never be unlocked when

Alice is asleep”) and properties based on events (E-properties, such as “the door will never

unlock when Alice is asleep”). Algorithm 2 presents our pseudocode. We find S- and E-

properties separately.

Our algorithm considers that safety properties can be stated as logical expressions, and

therefore multiple logical expressions are equivalent. For example, the S-property “the front

door will always be locked” implies other S-properties, such as “the front door will always

be locked while Alice is awake” and “the front door will always be locked while Alice is

asleep.” These latter two properties can combine to yield the first by plugging the variable

states into a Boolean expression in disjunctive normal form—“(Front door being locked AND
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Alice being awake) | (Front door being locked AND Alice being asleep)”—and simplifying

this expression. This approach has been used in related applications, such as simplifying

smart building rulesets [71]. Note that variables with more than two states (e.g., light hue

color) and range variables (e.g., temperature) require a few more steps, but can also be

simplified in this manner. E-properties can also be written in the form of other E-properties

and combined with logic minimization. Assuming that the front door is locked in the initial

state, the first S-property can also be stated as the E-property “the front door will never

unlock ” and (implicitly) the E-property “the front door will never lock ” as it is already locked.

Displaying a large number of properties would likely overwhelm users. Therefore, our

algorithm extracts properties in their most simplified form, which in this case is the first

S-property. In addition, because positive statements are typically easier to understand than

negative ones, when possible we convert properties about states or events that can never

occur into properties about states or events that will always occur. For example, “the front

door will never be unlocked” is restated as “the front door will always be locked.”

We first extract S-properties by identifying unreachable nodes in each system. An un-

reachable node indicates a corresponding state that can never hold true in that system.

For example, if the node corresponding to (Aliceasleep, doorunlocked) is unreachable, then

the property “the front door will never be unlocked while Alice is asleep” is true for the

system. Instead of converting each node into a property in this manner, we perform logic

minimization over the set of such nodes to merge them based on common variable states,

and then generate corresponding S-properties. For example, if the node corresponding to

(Aliceawake, doorunlocked) is unreachable in addition to the node we just mentioned, then we

merge these two nodes to be (doorunlocked), yielding the property “the front door will never

be unlocked.” This approach lets us generate one general property, as opposed to two specific

properties. Our implementation uses the SymPy library [54] for minimization, which relies

on the Quine-McCluskey algorithm [52]. Other logic minimization algorithms would be valid
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as well. We then identify nodes unreachable in both systems and repeat the same process on

them to identify S-properties shared by both systems. This step not only helps with the next

step, in which we determine S-properties unique to one variant but not the other, but it also

outputs the shared S-properties that our interface shows in addition to unique S-properties.

Finally, we subtract the shared S-properties from the S-properties of each transition system.

Each system’s remaining S-properties are unique to that system, and thus that variant.

As an example, we run our analysis on TS1 and TS2 in Figure 2.7. With n1 as the

initial state, we find that n4 (Aliceasleep, doorunlocked) is unreachable in both TS1 and TS2.

Therefore, the two systems both have the property “the front door will never be unlocked

while Alice is asleep.” This is also the only S-property held by TS1. We find that both n3

(Aliceawake, doorunlocked) and n4 are unreachable in TS2, which produces the property “the

front door will always be locked.” The shared S-property cannot be subtracted from this

property. Therefore, we will tell the user that this property is unique to TS2. Alternatively

we could say that the property unique to TS2 is “the front door will always be locked while

Alice is awake,” but we designed the algorithm to quickly deduce properties at the most

abstract level and avoid outputting too many properties when a few would be equivalent or

imply them.

For E-properties, we identify self-transitions and repeat the same algorithm as for S-

properties. A self-transition indicates that an event can never occur, possibly under some

situation (e.g., “the front door will never unlock when Alice is awake” based on the self-

transition from n1 in TS2, but not TS1). Some E-properties are implied by S-properties

because their corresponding self-transitions contribute to an unreachable node. Therefore,

we ignore these self-transitions. This is the case for all self-transitions in TS1 and TS2 of

Figure 2.7. Therefore, we do not show any E-properties for them.
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Input : TS1, TS2: transition systems of smart home implementing Variant1,
Variant2

Output: allProperties: 3-tuple of properties unique to Variant1, properties unique
to Variant2, and properties held by both variants

Function findAllProperties(TS1, TS2)
U1 := set of nodes unreachable in TS1;
U2 := set of nodes unreachable in TS2;
Uboth := U1 ∩ U2;
// Sboth: S-properties shared by both variants
Sboth := toSproperties(minimizeLogic(Uboth));
// S1, S2: unique S-properties of each variant
S1 := toSproperties(minimizeLogic(U1)) −Sboth;
S2 := toSproperties(minimizeLogic(U2)) −Sboth;

T1 := set of self-transitions from reachable nodes that do not contribute to U1 in
TS1;
T2 := set of self-transitions from reachable nodes that do not contribute to U2 in
TS2;
Tboth := T1 ∩ T2;
// Eboth: E-properties shared by both variants
Eboth := toEproperties(minimizeLogic(Tboth));
// E1, E2: unique E-properties of each variant
E1 := toEproperties(minimizeLogic(T1)) −Tboth;
E2 := toEproperties(minimizeLogic(T2)) −Tboth;

uniqueProperties1 := S1 ∪ E1;
uniqueProperties2 := S2 ∪ E2;
propertiesboth := Sboth ∪ Eboth;
return (uniqueProperties1, uniqueProperties2, propertiesboth)

Algorithm 2: Pseudocode for the Property-Diff algorithm. We identify properties that
are unique to each variant, as well as properties shared by both variants. “minimizeL-
ogic()” plugs nodes or edges into a logic expression in disjunctive normal form, simplifying
this expression. Self-transitions that contribute to unreachable nodes are those that, due
to their redirection, helped make the original destination node unreachable.

2.4.5 Scalability

Although real-world systems may have large programs and transition systems, we expect

users will want to compare subsets of rules related to a specific task (e.g., controlling the

door lock) to related sets of rules, as described in Section 2.1. While our algorithms could
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become computationally intractable for a sufficiently large transition system, we believe

transition systems for realistic tasks will generally be small from designing the study tasks.

For example, in a realistic TAP diff task—Task 6 (Abstraction) with 7 binary attributes—it

took only 8 seconds on a commodity laptop to generate results from scratch (showing 19

situations) for Outcome-Diff: Flowcharts , and 5 seconds for Property-Diff . Precomputation

and caching would further reduce the time required to run the algorithms and help the

approach scale further.

2.5 User Study Methodology

To evaluate whether our interfaces could help users understand TAP variants, we performed

a 107-participant online user study. We studied the following research questions:

• RQ1: Compared to Rules or Text-Diff , do semantic-diff interfaces equip users to more

accurately choose the correct program variant(s) out of a set of prospective variants to

match a motivating goal?

• RQ2: How does the relative performance of these interfaces compare across programs

with different characteristics (e.g., length, complexity, number of prospective variants)?

• RQ3: Do specific interfaces help users reason about TAP program differences more

(a) confidently and (b) quickly?

To address these questions, we designed six program-comparison tasks modeled after

potential scenarios in which the user encounters variants (Section 2.5.3). We implemented

the interfaces for participants to use. Each participant would complete these tasks in a

randomized order using a randomly assigned interface. For each task, participants could

choose to see the programs themselves (listed in prose) by clicking on a “program button.”

Our tutorial encouraged participants to focus on the interface, briefly mentioning that this
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“program button” feature was available. As described in Section 2.3, we piloted interface

designs on users with various technical backgrounds before the study to refine our designs.

2.5.1 Recruitment

We recruited participants with Prolific Academic [67], a recommended alternative [70] to

other recruitment platforms like Amazon Mechanical Turk. Participants had to be 18 years

or older with US nationality to take part in the study. We also required them to have a 90% or

higher approval rate from at least 10 previous submissions. As we expected our interfaces to

be particularly helpful for non-technical users, our recruitment description emphasized that

we did not require experience with programming or smart homes. We asked participants to

take the study on a computer, not a phone.

2.5.2 Study Overview

We first eased the participants into TAP and their randomly assigned interface. After con-

senting to the study, participants read a one-page description of trigger-action programs.

They then completed an interactive tutorial of their assigned interface on a sample task. If a

participant failed two of the three simple attention check items, the study terminated early.

Otherwise, participants continued onto the main portion of the study for their interface.

In the main portion, participants completed the six program-comparison tasks in a ran-

domized order. For each task, we recorded participants’ responses and durations. After each

task, we asked participants to rate on a 7-point Likert scale how much they agreed with the

following three statements: “I am confident that my answer is correct”; “I found the task

mentally demanding”; and “I found the interface helpful in completing the task.” We also

asked them to briefly describe their approach to completing the task and how the interface

helped or hindered.

Following the six tasks, we collected more in-depth information about participants’ expe-
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riences using the interfaces, as well as relevant background that could have influenced their

performance and experience. We asked participants to describe their general approach more

specifically, including the parts of the interface that were most helpful, least helpful, and

most confusing. To illustrate the level of detail we were looking for in their descriptions,

we provided an example describing a hypothetical approach for accepting Facebook friend

requests. We also asked them whether they relied mostly on the interface itself, the pro-

grams, or both. We quantitatively gauged interface usability with the 7-point version of the

System Usability Scale (SUS). The study concluded with questions about the participant’s

demographics and technology background.

This study was approved by the UChicago IRB. We compensated each participant $10.00.

The average completion time was slightly over an hour. We include the full survey instrument

and the text of the tasks in our online supplementary materials [96].

2.5.3 Task Design

To understand how our interfaces can help users, we designed the tasks to emulate scenarios

in which users need to compare variants (Table 2.2 and Table 2.3). We included at least

one task for each interface, including the controls, that we expected to highlight the unique

advantages of the interface. Each task asked the participant to compare between two or

more programs. In all tasks, we evaluated whether participants could identify differences

across variants that the task requested. Our tasks followed these hypothetical scenarios:

1. Task 1 (Straightforward): Given an original program, a desired behavior extension,

and modified versions of this program, could the participant determine which of the

modified versions maintained the original program behaviors, but extended them as

specified?

2. Task 2 (Simple Logic) and Task 6 (Abstraction): Given an original program, some obser-

vations about its undesirable behaviors, and modified versions of this program, could
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Table 2.2: Overview of the complexities of the tasks.

Situations with
Complex Different Differ in Many

Task Programs Outcomes Properties Variants

1 - Straightforward ✓
2 - Simple Logic ✓
3 - Redundant Programs ✓ ✓ ✓
4 - Hidden Similarity ✓ ✓ ✓
5 - 27 Variants ✓ ✓ ✓
6 - Abstraction ✓ ✓ ✓

the participant determine which of the modified versions would exhibit the desirable

behaviors instead?

3. Task 3 (Redundant Programs) and Task 4 (Hidden Similarity): Given an original pro-

gram, its goal, and modified versions of this program, could the participant determine

which of the modified versions met the same goal as the original program?

4. Task 5 (27 Variants): Given multiple programs and a set of goals, could the participant

determine which of the programs meet all of the goals?

We designed the tasks with the following characteristics to best highlight each interface.

In general, we expected Outcome-Diff interfaces to outperform the controls on tasks with

complex programs. We defined complex programs to be long programs with many rules

affecting the same variables, which may hinder participants from tracking all behavior dif-

ferences. We arbitrarily decided that a long program would contain at least six rules, with

some rules containing three or more conditions. Meanwhile, we expected participants using

the control interfaces to do well on tasks with variants that were not complex. Therefore,

we designed Tasks 3 (Redundant Programs), 4 (Hidden Similarity), and 6 (Abstraction) to have

complex programs, and Tasks 1 (Straightforward) and 2 (Simple Logic) to have simple pro-

grams. Variants in the former three tasks also differed in properties, for which Property-Diff
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Table 2.3: Detailed summary of the tasks.

1 - Straightforward Given an original program and a modified version, the participant decides whether the
modified version does exactly what the original program does, except it also turns off
the faucet when Alice leaves the bathroom.

2 - Simple Logic Given an original program and two modified versions, the participant decides which of
the two versions (if any) would turn off the AC when neither Alice nor Bobbie is at
home, but does not affect the AC if either one of them is home.

3 - Redundant Programs Given an original program that meets a specified goal and a modified version, the
participant decides whether the modified version also meets the specified goal. The
goal is to secure the home by keeping the security camera on when the front door is
unlocked or Alice is asleep. Both programs contain redundant rules.

4 - Hidden Similarity Given an original program that meets a specified goal and two modified versions, the
participant decides which of the two versions (if any) would meet the specified goal.
The goal is to keep exactly one of three windows open in the house at any given time.

5 - 27 Variants Given 27 programs that meet the same goal, the participant decides which of the pro-
grams (if any) would meet a second goal. The first goal is to ensure that the living
room window being open, the TV being on, and the Roomba being on will never occur
simultaneously. The second goal is to ensure that Alice gets to enjoy fresh air from the
living room window without disruption to her TV time.

6 - Abstraction Given an original program that fails to meet a specified goal and two modified versions,
the participant decides which of the two versions (if any) can meet the goal. The goal
is to save electricity by ensuring that only one of eight smart devices (AC, coffee pot,
lights, TV, speakers, and the Roomba) is on at any given time.

should help. To see whether participants would benefit from the form-based interaction of

Outcome-Diff: Questions , we designed Task 5 (27 Variants) to have many variants. In all

tasks, variants had situations with different outcomes, for which we expected Outcome-Diff

participants to do well even if the variants were not long enough to be complex.

2.5.4 Statistical Analyses

Our statistical analysis approach depended on whether our variables of interest were cate-

gorical or numeric. For both cases, we first conducted an omnibus test to determine whether

the variable of interest varied by interface. For significant omnibus results (using α = 0.05),

we then conducted pairwise comparisons across all interfaces to determine which interfaces

varied significantly from which other interfaces. We were particularly interested in how our

Outcome-Diff and Property-Diff interfaces compared to the two control conditions, which

reflected existing interfaces. Thus, we report the results of these comparisons most promi-

nently. To minimize the possibility of Type I errors due to multiple testing, we corrected

p-values within each family of omnibus tests and within each set of pairwise comparisons
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using the Holm method.

For both omnibus and pairwise comparisons between interfaces for categorical data, we

used Fisher’s Exact Test. We chose Fisher’s Exact Test instead of the more familiar Pearson’s

χ2 test because the latter is considered unreliable when expected cell counts are smaller than

5, which was often the case in our data. These categorical comparisons analyzed how the

correctness of participants’ answers differed across interfaces for each of the six tasks, as well

as how the use of the program button varied across interfaces for each of the six tasks. Thus,

each instance of Fisher’s Exact Test was run on a 2× 5 contingency table (binary outcomes

across five interfaces).

For omnibus comparisons of numeric data, we used the Kruskal-Wallis H test. For pair-

wise comparisons, we used its analogue for 2 groups, the unpaired Wilcoxon rank-sum test,

also known as the Mann-Whitney U test. These non-parametric tests are appropriate for

data that is not normally distributed and for ordinal data, which was the case for our quan-

titative data. In particular, we analyzed how the number of tasks participants answered

correctly, the number of tasks for which participants used the program button, System Us-

ability Scale scores, and total time taken (summed across tasks) varied by interface. We also

tested whether participants’ Likert-scale responses to the following three prompts (averaged

across tasks) varied by interface: their confidence in their answers to the tasks, whether

they considered the tasks demanding, and whether they considered the interface helpful in

completing the tasks.

We also created regression models to understand how both the assigned interface and

numerous demographic characteristics correlated with the number of tasks each participant

answered correctly and the number of tasks for which they used the program button. Because

both factors are counts, we created Poisson regression models. The independent variables

(IVs) were the assigned interface, number of tutorial questions answered correctly, and the

participant’s age, gender, education level, computer science background, familiarity with
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IFTTT, and ownership of IoT devices. For categorical variables with many categories, we

binned similar categories. Using the same IVs, we also created generalized linear models for

the total time a participant took across the six tasks and their average confidence rating

across tasks, both of which we treated as continuous. For all regressions, we created (and

report) a parsimonious model developed through backward selection by Akaike Information

Criterion (AIC). Our supplementary materials [96] provides the full regression tables. For

brevity, we report only p-values here.

2.5.5 Limitations

Our study required about an hour of our participants’ time, with no expectation of smart

home programming experience. Therefore, we cannot make conclusions about these inter-

faces regarding long-term smart home use. As we mention in Section 2.6, although we

emphasized that no experiences with programming nor smart homes was required, many of

our participants had programmed before and/or owned IoT devices. Experimenter bias is

also possible, but we mitigate this concern by measuring whether participants completed the

tasks correctly.

2.6 User Study Results

In this section, we report the results of our user study. Overall, Rules worked well for the

simple tasks, as did most other interfaces. For the complex tasks, however, Rules participants

performed poorly while participants using semantic-diff interfaces performed significantly

better. The latter participants also found the complex tasks significantly less demanding

than participants using Rules .
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2.6.1 Participants

We received 124 complete responses. We excluded both responses from one participant

who did the study twice (and also failed the attention check), seven who gave low-effort

or nonsensical answers to the text responses, four who copied and pasted their answers

throughout the study, and four who did not complete the tutorial. After applying these

criteria, 107 responses remained for analysis.

All participants were between 18 and 74 years old, with 50.5% in the 25–34 range and

28.0% in the 18–24 range. 51.4% of participants identified as women, 46.7% as men, and 1.9%

as non-binary. Regarding education, 33.3% held a 4-year college degree, 20.6% had some

college background, 15.9% were high school graduates, 11.2% held a 2-year college degree,

and 0.9% held a graduate degree. 56.1% of participants had some technical background;

they had programmed before, completed a CS-related class, and/or had a CS-related degree

or job. 81.3% of participants were not familiar with the IFTTT service [32], but 66.4% of

participants owned at least one IoT device.

2.6.2 Correctness

On tasks requiring comparisons of complex variants, we found that participants using the

novel semantic-diff interfaces generally outperformed those using Rules and Text-Diff inter-

faces (Figure 2.8). Even though participants assigned our novel interfaces completed more

tasks correctly than those assigned the control interfaces, the time participants took to com-

plete the tasks did not differ significantly across interfaces. In other words, in the same

amount of time, participants were more successful completing the tasks using the semantic-

diff interfaces than the control interfaces.

Table 2.4 compares the semantic interfaces and control interfaces by task. In general,

Outcome-Diff: Flowcharts helped participants identify differences in outcomes when com-

paring between a few variants and when the variants differed in only a few situations, as in
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Figure 2.8: Participants’ correctness per interface and task. Dashed lines represent chance
of random guessing.

Task 3 (Redundant Programs) and Task 4 (Hidden Similarity). When the number of variants

or situations became large, as in Task 5 (27 Variants) and Task 6 (Abstraction), Outcome-

Diff: Flowcharts was less successful. Outcome-Diff: Questions was helpful when choosing

between few variants, as in Task 3 (Redundant Programs) and Task 4 (Hidden Similarity). It

was also helpful even when the variants differed in many situations with many variables, as

in Task 6 (Abstraction). For that task, all variables had the same attributes (being on/off)

and the goal was abstract enough that it did not matter exactly which variables’ state dif-

fered. Property-Diff was helpful when there were abstract differences across a few variants,

as in Task 3 (Redundant Programs) and Task 6 (Abstraction), but not if there were many

variants, as in Task 5 (27 Variants), or if the variants had many properties, as in Task 4

(Hidden Similarity).

Compared to the other interfaces, we expected that Rules would only work well for

Task 1 (Straightforward) and Task 2 (Simple Logic) because they involve short and simple

variants. Rules participants were significantly more likely to complete the first task correctly

than Property-Diff participants. As Table 2.4 shows, though, Rules did not outperform the

semantic-diff interfaces in any other task. Rules participants found this first task easy,

including P52: “. . . it made it easy to notice the different modification that was being added

to the program.” A few, however, mentioned that it would be more convenient to see the
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Table 2.4: Differences in task correctness between novel interfaces (columns) and controls
(rows). The table shows whether a significantly larger (✓) or smaller (×) fraction of partic-
ipants who used a novel interface answered the task correctly compared to those who used
a control. P-values below task names are omnibus tests (Fisher’s Exact Test) across all
interfaces, while those in table cells are pairwise comparisons. All p-values were corrected
for multiple testing using the Holm method.

Outcome-Diff: Flowcharts Outcome-Diff: Questions Property-Diff
1 - Straightforward Rules × p = 0.028
(p = 0.001) Text-Diff
2 - Simple Logic Rules
(p = 0.001) Text-Diff
3 - Redundant Programs Rules ✓ p < 0.001 ✓ p = 0.040 ✓ p = 0.049
(p < 0.001) Text-Diff ✓ p < 0.001 ✓ p = 0.049
4 - Hidden Similarity Rules ✓ p < 0.001 ✓ p = 0.009
(p < 0.001) Text-Diff ✓ p = 0.029
5 - 27 Variants Rules
(p = 0.001) Text-Diff
6 - Abstraction Rules ✓ p < 0.001 ✓ p < 0.001
(p < 0.001) Text-Diff ✓ p = 0.004 ✓ p = 0.001

variants side-by-side. Property-Diff participants mostly relied on the “program button”

feature (viewing the rules themselves) rather than their assigned interface. This decision is

logical because there were no safety properties that could be derived from either variant for

the interface to show. While the interface explicitly stated that there were no patterns to

show, some participants nonetheless thought the interface was buggy or “unavailable” (P61).

A few others, such as P43, mistakenly believed that the lack of comparison meant “the

programs were the same.”

For Task 2 (Simple Logic), we did not find significant differences in correctness between

any semantic-diff interface and any control interface. Rules participants liked the interface

because “the layout was clear and easy to understand ” (P93). Text-Diff participants, like

P51, appreciated having the differences highlighted: “ It’s great helping me compare programs

because it is color coordinated and they are side by side.” While some Outcome-Diff: Flowcharts

participants found the interface useful, a few felt ambivalent, like P30: “The interface allowed

me to see the outcomes combined together. Its design did not really help nor hinder my ability.”

Some thought it needed more information, such as for “separating out what the original program

does entirely from what the modified program does” (P89). On the other hand, Outcome-Diff:
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Questions participants largely found the interface straightforward and felt it “helped [them]

visualize the scenario” (P72). Property-Diff participants found the interface simple, although

a few mistook the properties for the actual rules.

In Task 3 (Redundant Programs), with the exception of Property-Diff against Text-Diff ,

participants using the novel interfaces significantly outperformed those using the control

interfaces (Table 2.4). Most Outcome-Diff: Flowcharts participants found their interface

helpful. P26 stated, “The interface helped, as there were less variables. I could focus on the

one situation and identify faults with the second program as there were only two to compare.”

Outcome-Diff: Questions participants mostly found their interface straightforward as well,

such as P7: “ I think visually showing all the combination was helpful, so I could see easily if

the program met them.” Property-Diff participants felt similarly. P48 wrote, “The interface

made it clear that the rules that were desired were only partially met and the interface made this

fairly simple to determine.” A few Rules and Text-Diff participants found the large number

of rules in this task frustrating, but most still found their interface straightforward. P99

found Rules “well structured with a good layout which makes it easy and possible to determine

the comparison between both programs.” For Text-Diff , P3 wrote, “There were a lot of steps

to sort through, but the color coding that told me when something was different helped.”

For Task 4 (Hidden Similarity), Outcome-Diff: Flowcharts performed significantly better

than the controls, and Outcome-Diff: Questions performed significantly better than Rules ,

as shown in Table 2.4. Outcome-Diff: Flowcharts participants found the interface mostly

straightforward, albeit with a few hurdles. P5 wrote, “ I was able to refer to final configuration

of open and closed windows though I had trouble following the "if this situation happens" aspect

of it.” P21 said, “ It was a bit technical but I think I was able to get it.” Outcome-Diff:

Questions participants felt confident, such as P6: “The interface helped significantly, having %

match from previous situations let me quickly look to the options and see if any fit the suggested

change.” Rules participants found the interface “a little overloaded ” (P27) or “cluttered ”
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(P31). P24 explained, “ I couldn’t see all options at the exact same time to compare them all.

I had to memorize and try to figure out the differences.” Text-Diff participants liked the diff

highlights, but thought the tasks made the interface confusing. P14 explained, “ It made it

very difficult to concentrate and be able to determine the correct answer. Having three windows’

statuses being repeated over and over also made it confusing to read.”

We did not observe significant differences between semantic-diff participants and control

participants for Task 5 (27 Variants). However, we found that Outcome-Diff: Questions par-

ticipants outperformed Outcome-Diff: Flowcharts participants. Many Outcome-Diff: Ques-

tions participants, like P7, found the task relatively easy: “ It made it very quick to eliminate

options that didn’t meet the requirements.” On the other hand, Outcome-Diff: Flowcharts

did not reduce the mental load of the task for its participants. P17 stated, “ I had difficulty

aligning how the interface views aligned with the requirements. It was not obvious or intuitive

to me.” Rules participants, like P27, felt ambivalent about the interface: “The interface was

fine, but it didn’t really help to find the result quickly, since I had to click on each program in the

dropdown.” Text-Diff participants felt similarly, like P14: “ It was hard to scroll through all 27

programs, and it was a tedious and long process, but simple to understand and visually evaluate.”

The same was true for Property-Diff participants, with P96 explaining, “This one was fairly

easy to figure out and the design of the interface did help explain things. You did however have

to be careful and watch for what was stated.”

For Task 6 (Abstraction), Property-Diff and Outcome-Diff: Questions participants per-

formed significantly better than the control groups (Table 2.4). Property-Diff participants

mostly thought the interface made the task easy, such as P90: “ It told me exactly yes or no

if the program would do what was needed.” Similar to Task 1 (Straightforward), however, a

few participants were frustrated when Property-Diff did not show properties for a variant

(as it lacked properties by our definition), like P69: “ It’s frustrating to see that lack of the

always or never rules and makes it feel like there’s no program.” Due to an experimental error,
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Figure 2.9: The distribution of the number of tasks a given participant answered correctly.

Outcome-Diff: Questions only showed participants 7 out of 21 questions. Nonetheless, the

fact that they outperformed the control group raises interesting questions about the design

of Outcome-Diff: Questions , as we discuss in Section 2.7. Some Outcome-Diff: Questions

participants, like P7, felt that “not having to keep track of which options were on and off in

each situation made it very easy to quickly determine which combinations met the requirements.”

Some others, however, were overwhelmed: “There were so many choices that it became cum-

bersome to figure out” (P65). Most Rules participants found the interface “okay ” (P76) or

“not very user friendly ” (P35). P24 explained, “ It was hard because of all the information that

was presented and the only way to tell the difference between the programs was to either switch

back and forth or memorize.” Many Text-Diff participants found the layout to be overwhelm-

ing, such as P63: “When there are too many requirements listed out separately in the "while"

section, it can get a little overwhelming to keep it straight.”

The tasks in this study were not randomly chosen. However, because they cover a variety

of different comparison scenarios, we also compared how many tasks each group of partic-
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Figure 2.10: The distribution of the number of tasks for which a given participant used the
program button.

ipants answered correctly. On average, participants correctly answered 2.9 of the 6 tasks.

Overall performance varied significantly between interfaces (χ2(4) = 30.604, p < 0.001),

as shown in Figure 2.9. Participants using the two interfaces with low-level information,

Outcome-Diff: Flowcharts and Outcome-Diff: Questions , completed significantly more tasks

correctly than those with other interfaces (vs. Rules : p < 0.001 and p = 0.010, respectively;

vs. Text-Diff : p = 0.006 for both; vs. Property-Diff : p = 0.014 and p = 0.011, respectively).

2.6.3 Reliance on Seeing Programs

On average, participants used the “program button” feature to see the rules themselves for

1.6 of the 6 tasks. The number of tasks for which participants chose to look at the programs

differed significantly between interfaces (χ2(4) = 12.024, p = 0.017), but we did not find any

significant pairwise differences (Figure 2.10). In our Poisson regression, we observed that

Property-Diff participants were more likely to consult this feature than our baseline Rules

participants (p = 0.004), while women were more likely to do so than men (p = 0.007).
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Furthermore, participants without any college education were more likely to consult this

feature than participants with a graduate degree (p = 0.049).

Half of the Rules participants, who already saw the rules themselves in their interface,

did not rely on this feature. Unexpectedly, though, some relied on both this feature and

the interface to compare variants more easily or to show long programs on the same screen.

A few relied only on this feature; one found its text easier to read than the three-column

layout. Many Text-Diff participants relied on the interface alone because it was easier to

use, but some found both the interface and the program button helpful.

Almost all Outcome-Diff: Flowcharts participants relied on the interface for the most

part because they preferred seeing the outcome differences. P30 stated, “ It’s easier to just

focus on the outcomes that way and see whether it meets the conditions or not. Also, the

interface is a visual compared to the ’Programs’ which is just text.” Three participants used

both to give a more complete picture of the task, while one participant relied mostly on

the programs because it gave more information. Most Outcome-Diff: Questions participants

stated that they generally did not rely on seeing programs because the interface was easier

to use. A handful relied on both the programs and the interface in order to get a more

complete picture, while two relied mostly on the programs.

Most Property-Diff participants relied on the interface alone or with the programs. They

found the interface easier to grasp while the programs had unnecessary information. Some

mentioned that this preference varied between tasks.

2.6.4 Perception of Interface Usability

SUS scores did not differ significantly across interfaces. The mean score per interface ranged

from 53.8 to 69.9, while the median ranged from 54.2 to 73.3. An SUS score of 68 is often

considered average. Some interfaces’ mean and median scores were at or below 68, though

the difficulty of our tasks could have biased participants’ perceptions negatively. We designed
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considered each task. For Tasks 1, 2, and 4, ratings did not vary significantly by interface,
so we present only the aggregate distribution for all participants.

the tasks to highlight both benefits and drawbacks of each interface, so all participants had

to complete tasks for which their interface was unhelpful. Outcome-Diff: Flowcharts partici-

pants were also significantly more likely to complete some of the complicated tasks correctly

than control participants (Section 2.6.2), despite the low SUS rating of this interface.

2.6.5 Study Experiences

In total, participant perception of how demanding the tasks were differed significantly (χ2(4)

= 12.319, p = 0.015), with Outcome-Diff: Questions participants finding tasks significantly

less demanding compared to Rules participants (p = 0.014). This perception differed sig-

nificantly between interfaces for Task 3 (Redundant Programs) (χ2(4) = 18.987, p = 0.005),

where Text-Diff (p = 0.033), Outcome-Diff: Flowcharts (p = 0.001), and Outcome-Diff:

Questions (p = 0.001) participants all found the tasks less demanding than Rules . For

Task 5 (27 Variants) (χ2(4) = 18.375, p = 0.005), Outcome-Diff: Questions participants

found the task less demanding than Outcome-Diff: Flowcharts participants (p = 0.002). For

Task 6 (Abstraction) (χ2(4) = 18.834, p = 0.005), Outcome-Diff: Questions (p = 0.015)

and Property-Diff (p = 0.003) participants found the task less demanding than Rules . Fig-
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ure 2.11 shows participant ratings of how demanding tasks were.

Although participants were more likely to answer tasks correctly using the novel interfaces

than the control interfaces, participants’ confidence in their answers did not vary across tasks,

either for any individual task or in aggregate across tasks. While they were not significantly

more likely to answer tasks correctly, male participants were significantly more confident in

their answers than female participants (p = 0.044) in our regression model.

Similarly, user perception of interface helpfulness did not differ significantly overall or for

any task. Emphasizing the potential benefit of user interfaces that support TAP, participants

without a technical background found the interfaces more helpful than those with such a

background (p = 0.017) in our regression model. Furthermore, participants who did not own

IoT devices found the interfaces more helpful than those who did (p < 0.001).

2.7 Discussion and Conclusion

To help users reason about differences in TAP programs, we designed a set of complementary

interfaces that contrast TAP variants at different levels of semantic abstraction. We con-

ducted an online user study to compare semantic-diff interfaces (Outcome-Diff: Flowcharts ,

Outcome-Diff: Questions , and Property-Diff ) to two traditional interfaces (Rules and Text-

Diff ) in helping users complete TAP tasks with different characteristics. In our online user

study, we found that participants could correctly reason about differences between variants

of short, simple programs by examining only the rules themselves. However, when compar-

ing variants of long, complex programs, participants using semantic-diff interfaces signifi-

cantly outperformed those using Rules or Text-Diff . Outcome-Diff: Flowcharts participants

performed better when the task required identifying a manageable number of situation-

specific differences in complex programs, while Property-Diff participants performed better

when reasoning about more abstract differences. Participants using the low-level interfaces,

Outcome-Diff: Flowcharts and Outcome-Diff: Questions , were able to identify program dif-
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ferences correctly across a wider variety of tasks than other users. Outcome-Diff: Questions

participants often found tasks less demanding than others and significantly outperformed

Outcome-Diff: Flowcharts participants when comparing many variants.

Our work advances intuitive methods of surfacing smart-system behaviors to users. We

show that TAP interfaces should visualize information at multiple levels of granularity. By

having automated reasoning using formal methods underpin user interfaces for end-user

programming, the community can help TAP users better match a system’s behaviors to

their intent. To facilitate future work, our open-source code for the interfaces,

survey instrument, and regression tables are available online [96].

2.7.1 Deployment Recommendations

Our interfaces have complementary strengths and weaknesses based on the characteristics of

the TAP variants being compared. We believe that real-world deployments should take these

trade-offs into account, showing the user a diff interface appropriate for particular situation

and set of variants they are comparing. Fully understanding how to approximate user intent

and identify the relevant characteristics of the TAP variants in order to automatically select a

contextually appropriate diff interface requires future research, as does better understanding

the potential usability confounds of showing a single user different interfaces based on the

situation. Nonetheless, our results provide initial suggestions for contextually appropriate

interfaces. When a user is comparing variants of short programs (each with a few rules and

each rule with a few conditions), they should simply view the rules themselves. As programs

becomes longer and more complex during the modification process, the system should present

semantic-diff interfaces to help users understand the effects of their modifications. Because

Outcome-Diff: Questions helped participants in our study reason about a wider variety of

tasks and made the tasks less demanding, it could perhaps be presented by default. If the

user is choosing from many variants, an interactive form-based interface like Outcome-Diff:
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Questions will help them eliminate undesirable choices faster.

Rather than trying to automate the selection of an appropriate interface, the system could

instead ask the user whether they want to see differences in situation outcomes or high-level

trends (properties). To account for Property-Diff participants’ reliance on viewing the rules

via the program button in our study, Property-Diff interfaces should also provide prominent

access to the rules themselves, perhaps even displaying them by default. More broadly, we

found that participants sometimes struggled to understand how the properties and situa-

tions the semantic interfaces displayed related to the trigger-action rules. We recommend

that real-world deployments further clarify this connection, perhaps in an expanded tutorial

introduction before walking the user through concrete interfaces.

Our interfaces could also perhaps be useful during program creation. To minimize re-

peated computation and facilitate just-in-time diffs after each change, future work should

incrementally build transition systems rather than producing a new one from scratch each

time. Future work can also consider applying these interfaces outside of trigger-action pro-

gramming, such as to outcome-based program synthesis or constraint-based programming.
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CHAPTER 3

SUPPORTING END USERS IN DEFINING

REINFORCEMENT-LEARNING PROBLEMS FOR

HUMAN-ROBOT INTERACTIONS

3.1 Introduction

Reinforcement learning (RL) is applicable to a variety of domains [83, 7, 36], but end users

without sufficient technical expertise may have trouble applying it to their own needs. They

may face challenges such as determining how to train the RL agent efficiently and how

to define and administer rewards. Existing work has attempted to support end users by

incorporating user feedback through policy shaping, guided exploration, and augmented

value functions [4].

While most work supports end users in training the RL agent on a defined task, little

work has attempted to address end-user challenges in defining that task. It may appear

straightforward to define an RL task as a Markov decision process (MDP) with a set of states,

a set of actions, and a set of rewards. However, users might find it difficult to anticipate the

appropriate state space and action space. Specifying too many states or actions can cause

the agent to learn over an excessively long period of time. Specifying too few, on the other

hand, may cause the agent to learn a suboptimal policy.

We propose a tool for assisting end users in defining and refining RL problems.

Our tool consists of a graphical interface that guides the user in defining RL problems both

before and after training an agent. Using built-in primitives, users will first specify the

states, actions, and rewards of the MDP. Our tool walks the user through this process in

an accessible manner. The RL agent will then train on the resulting MDP. (For our tool,

we assume a Q-learning agent trained on episodic tasks.) When training is complete, our

tool shows the user a simulation of the agent interacting with its environment based on the
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learned policy. The user can then evaluate whether their MDP appropriately captures the

intended task. They can accept the final policy, revise it, or revise the MDP definition and

try again.

Our work focuses on RL applications in Human-Robot Interaction (HRI), which con-

cernssubjects social interactions between people and robots. In HRI tasks, robots must be-

have in a socially appropriate manner by adapting to personal preferences, cultural norms,

and other context-specific factors [2, 91, 37, 39]. One example in HRI is the issue of robot

abuse. Multiple public incidents have occurred in which people purposefully blocked the

robots’ path or sensors, hurled obscenities against them, or resorted to violent behaviors like

kicking and hitting [64, 11, 76]. Robots designed to accomplish tasks unsupervised must

somehow mitigate these incidents.

How can a user help the robot navigate complex social interactions, such as avoiding

or pacifying incidents of robot abuse? Programming languages like Python for the Pepper

robot1 require substantial technical knowledge. End-user programming paradigms and sys-

tems, such as Choreographe [72], demands less technical knowledge but still requires the

user to anticipate the ideal robot behavior under a specific circumstance for all possible

circumstances. A similar problem arises for Learning from Demonstration (LfD).

In contrast, an RL approach can help the robot adapt to the many scenarios it will

encounter without requiring the user to detail each possibility, making it especially well suited

to those with minimal programming and domain expertise. Unfortunately, to leverage RL for

this problem, the user still needs advanced knowledge of the environment. In our example,

users may neglect to realize that states related to bystanders may affect the likelihood of

robots being bullied, choosing instead to only consider states that relate to the bullies and

the robot. Our tool seeks to address this gap, with a focus on HRI tasks but may also be

extended to other applications.

1. https://www.softbankrobotics.com/emea/en/pepper
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3.2 Vision for the Interaction

We envision a multi-stage interaction between the user and the RL system. We present our

design here, with some parts implemented (Figure 3.1). Via a graphical interface, the user

will first specify the states, actions, and rewards of the MDP (Figure 3.1 left) by selecting

from a set of system-defined choices (Figure 3.2). It may be unclear to the user how these

components of the MDP relates to the learning process, e.g. what aspects of the environment

should be specified as part of the state space. Our interface clarifies this by first asking users

to specify outcomes the agent should try to accomplish or avoid. These will be considered

state features that, when achieved, will positively or negatively reward the agent. The

interface will also assume these outcomes to be terminating conditions for an episode, and

ask users to modify them or specify additional terminating conditions as needed. Lastly, the

user is given the opportunity to specify any additional states or actions of the MDP.

In addition, some users may find it difficult to think about RL tasks in the terms of MDP.

Our design offers these users the option to, instead, define the task by predicting parts of the

optimal policy. They will describe these predictions in the form of IF-THEN (trigger-action)

statements, and the system will extract a potential MDP based on these statements. For

example, if the user writes “IF a person starts hitting the robot THEN the robot should run

away,” the system will infer that “whether there is a person hitting the robot” is a relevant

state and “robot running away from people” is a relevant action for the MDP overall.

Training the robot will produce information for debugging the MDP. During training,

our interface design will show the policy of the robot at each timestep as well as information

such as the reward accumulated for each episode. The user can monitor this to understand

the trends in the robot’s learning, such as whether the robot is maximizing its rewards in

the first place. After training, the system will simulate executing the robot based on the

learned policy for a set of episodes, and visualizes this to the user along with statistics such

as the rewards gained for an episode.
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Figure 3.1: Screenshots showing selected stages of the user interaction with our graphical
interface. Top left: The user can first specify outcomes to achieve (positively reward) or avoid
(negatively reward) as part of the MDP. Center left: The user can then specify terminating
conditions for an episode. Bottom left: The user can specify any additional states or actions
that were not covered in the previous screens. Right: After the system has trained and
tested the agent with the user-defined MDP, it will show the user simulations of the agent’s
behavior, along with information such as accumulated rewards to help the user debug.
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State Features

• Person’s Location:
position and distance
relative to the robot;

• Person’s Mood:
happy, engaged, or
frustrated;

• Person’s Actions:
whether they are
looking at the robot
or speaking, what
they are saying, or
other user-specified
actions;

• Miscellaneous:
what the robot is
doing, is the environ-
ment noisy, is there
trash around the
robot.

(Robot’s) Actions

• Gaze: look at a spe-
cific person, object, or
somewhere else;

• Speech: say a spec-
ified phrase, stop
speaking;

• Indicate: motion to
people or objects;

• Navigate:
start/stop trav-
eling a specified
distance toward a
specified direction at
a specified speed;

• Miscellaneous: rest,
shut down.

Outcomes to Reward

• Person’s Mood:
happy, engaged, or
frustrated;

• Person’s Speech:
whether they refer to
the robot positively,
whether they say
certain phrases;

• Person’s Actions:
whether they ac-
knowledge or ignore
the robot; whether
they respond as ex-
pected (e.g. whether
they are following the
robot’s directions).

Figure 3.2: A work-in-progress list of interface primitives we plan to support, deduced from
reviewing existing tasks studied in HRI literature (e.g. [77]). “Person” refers to a single
individual interacting with the robot, such as a conversation partner.
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To illustrate a use case of our proposed tool, we walk through the following example.

Suppose a robot is deployed at a store and tasked with maximizing average customer satis-

faction, as measured by an in-store exit survey. A user who is comfortable with the ideas of

MDP might use our interface to specify state features related to the mood of the customers.

They might specify actions such as greeting customers and approaching customers to offer

assistance. They might consider each customer to be an episode, and the positive or nega-

tive survey rating of the customer to be the reward for that episode. A different user might

choose to to define the tasks by writing IF-THEN statements such as “IF a customer begins

to get frustrated THEN approach the customer to offer assistance,” allowing the system to

extract a similar MDP as above.

Based on the MDP, the tool might recommend additions to the states, actions, and

rewards to account for potential robot abuse. For example, it might recommend the age

of the customer as a state feature since children might be more unruly and more likely to

hinder the robot, and the ability to run away as a possible action. The user decides to accept

these changes, and then train the robot. When training has concluded, suppose the user sees

that the final policy has the robot walk away from people intentionally blocking its path.

The user wants to know if it will be more effective in raising customer moods and reducing

antagonistic encounters if the robot instead asks the customer to politely move, which was

not an action included in the original MDP. They can, therefore, return to the starting MDP,

modify it to add this new action, and re-train the robot.

3.3 Conclusion

A large body of work has examined supporting end users and experts in improving their

RL system after it is deployed, yet little has attempted to help at the very beginning of

this lifecycle. Our work proposes supporting end users in defining RL problems through

structured templates and iterative debugging.
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CHAPTER 4

ROBOT MEDIATION OF PERFORMER-AUDIENCE

DYNAMICS IN LIVE-STREAMED PERFORMANCES

4.1 Introduction and Background

In an in-person performance, performers receive audience input such as applause, cheering,

booing, or silence. By acknowledging and responding to this input, the performers allow the

audience to influence the performance. In a live-streamed performance, where the audience

is watching from afar in real time, such interactions are severely muted. For example, on

Twitch, viewers (audience) can type in the chat and tip money to the streamers (perform-

ers). Yet while the streamers can acknowledge these feedback, they cannot see the viewers

individually. Consequently, performers cannot receive as much feedback nor as quickly as in

an in-person performance, reducing engagement and impact from the audience.

Robots might strengthen the interactions between performers and audience members in

virtual performances by supporting accurate and expressive communication between them.

As a mediator, the robot can leverage its physical and social features to actively prompt

for audience participation, respond to them, and express their sentiments to the perform-

ers. Prior work has explored the potential for leveraging robots as theatre actors [25, 33],

comedians [90, 57], musicians [10, 28, 29], and audience companions [26, 27]. It has not

yet examined how robots can serve as performance mediators. Beyond HRI, prior work has

explored the design implications for live-streamed activities [48, 49, 79, 78], but has not yet

explored the effects of a physical robot in this setting.

In this work, we conducted a between-subject study to investigate robot mediation in

live-streamed performances. Since performers will likely choose chatbots for online technol-

ogy mediation, our research question was: Compared to a chatbot mediator, can a

robot mediator enhance the performer-audience connection in a live-streamed,

50



remote performance? With a robot mediator, we hypothesized participants would feel

more included, perceive the performers to be more responsive, and enjoy the experience

more.

We streamed three interactive musical performances on Twitch and recruited participants

to join one of them. During each performance, participants answered prompts in the chat.

Their responses were randomly chosen to inform the rest of the performance. In one perfor-

mance, a chatbot employed text-to-speech to react to the audience and to communicate the

selected responses to the performers. In the other two performances, a robot in the perfor-

mance space replaced the chatbot to speak while gesturing. We surveyed the participants

between breaks and after the performance about their experience. We also recorded the chat

history and interviewed the musicians.

We did not find significant differences in audience experience between the chatbot perfor-

mance and the robot performances. However, based on survey responses and chat messages,

some participants found the robot helpful in fostering engagement. We reflect on the expe-

rience of having a performance robot mediator and highlight design considerations.

4.2 Methods

To distinguish the robot mediator’s influence on audience engagement, we sought to maxi-

mize the audience’s unfamiliarity with the experience. Thus, for the performance, we chose

experimental music over familiar art forms like pop music or improvisational comedy. We

chose an interactive experimental piece [23] (detailed in Section 4.2.2) that involved tech-

nology mediation by prompting audience for suggestions, based on which musicians must

improvise to musically respond.

We streamed three live performances of this composition. In all three, a mediator named

“Musicbot1975” prompted for and reacted to audience responses. It also informed performers

of the responses. In the baseline condition/performance, Musicbot1975 was a text-to-speech
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(a) Screenshot of the Chat-
bot performance.

(b) Screenshot of a Robot
performance.

(c) Example
snippet of the
Twitch chat.

Figure 4.1: Audience view of the performances on Twitch.

chatbot. In the other two performances, Musicbot1975 was a NAO robot in the performance

space. The robot spoke the same text as the chatbot, but also faced the party they were

speaking to (camera or the musicians) and gestured. It moved autonomously when at rest.

In both cases, Musicbot1975 presented participation prompts in chat rather than aloud to

avoid excessive audio interruptions.

We placed the video camera in front of the performers, and captured with microphones

the audio of Musicbot1975 and the musicians. Figure 4.1 shows what the audience saw

on Twitch. For the robot performances, the robot sat on a table to the front left of the

musicians. This layout allowed the camera to capture both the musicians and the robot, and

the musicians to see the robot while performing to the camera.

4.2.1 Procedure

Participants signed up for one performance and, at the assigned time, logged onto Twitch

with an account created by us. Each performance contained three movements, each of which

lasted 10-15 minutes with a unique theme. Participants completed a short survey after
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Figure 4.2: The recruited audiences enjoyed Movement 3 more than Movement 2. Beyond
this, their experiences did not differ significantly between conditions or between most move-
ments.

each movement. The survey asked for their perceived performance inclusion (the extent

to which they felt included in the performance), perceived musician responsiveness (the

extent to which they felt the musicians were responding to their input), enjoyment level, and

perception of Musicbot1975. We recorded all chat messages.

At the end, we gave participants a similar survey as before about the overall performance.

We administered the Robotic Social Attributes Scale (RoSAS) [12] regarding Musicbot1975.

We measured extroversion with a 5-point variant of the Extroversion scales in the Revised

Eysenck Personality Questionnaire (EPQ R-A) [21], with 5 indicating strong agreement

with extrovert statements or strong disagreement with introvert statements. We asked for

demographics and their prior experience with Twitch. We also interviewed each performer

about their experience. The UChicago IRB approved this study.

4.2.2 Performance and Robot

The robot (or chatbot) verbally introduced each movement while looking and gesturing

toward the camera. To react to the audience, we programmed robot gestures to mimic

happiness (waving hands above its head), sadness (twisting its wrists in front of its eyes as

if crying), confusion (a hand scratching the side of its head), and anger (shaking its fists up

and down).
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In Movement 1, Musicbot1975 prompted in the chat for audience suggestions, e.g. “Name

a composer” or “Name your favorite food.” Prompts occurred every 30-90 seconds in context

of the performance narrative. Suggestions were randomly selected to fill in template sentences

that Musicbot1975 then read aloud, such as “Covering <Mozart> with <sushi>.” We used an

existing emotion classifier [19] to output whether the selected response conveyed happiness,

sadness, confusion, or anger. The robot reacted accordingly and instructed the musician

(an oboist) to express this emotion in their improvisation. Movement 1 concluded with a

notification that hackers had supposedly invaded the performance stream.

In Movement 2, multiple-choice questions were superimposed on top of the stream about

every minute (Figure 4.1). The questions asked participants to select from a group of pic-

tures all those that satisfied a particular criteria, e.g. “Identify all pictures with robots.”

Musicbot1975 described the questions as CAPTCHA security checks to help identify the

hackers. A random audience response was chosen for each question. If the response was

correct, the robot would react with the “happy” gesture, and the electronic accompaniment

provided to the musicians would sound calmer and more pleasant. If it was incorrect, the

robot would react with the “sad” gesture, and the electronic music would sound more agi-

tated and dissonant. Two musicians (cellist and electric bassist) performed, with the former

at times playing a cello, dancing, and pretending to inspect a suitcase while the latter played

the bass. They changed their improvisations in response to changes in the electronic ac-

companiment. Movement 2 ended with the robot declaring a successful neutralization of the

hacking attempt.

In Movement 3, Musicbot1975 hosted a lip sync contest for celebration. All three musi-

cians from before competed for audience votes. Audience members were prompted to give

pre-scripted commands to the performers, e.g. “Play faster” or “Play higher.” Responses

were tallied for each command. Once the tally passed a certain threshold, the robot read the

command aloud to the performer. For example, after five participants selected “Play faster,”
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the robot read aloud the command, the electronic accompaniment played at a faster tempo,

and the musicians played noticeably faster in response. The robot coupled verbal instruc-

tions with gestures, such as raising its hands for “Play higher.” The audience voted for their

favorite performer after each round of the contest, and the robot congratulated or dismissed

a contestant accompanied by a “happy” or “sad” gesture. The performance concluded with

the ultimate winner symbolically becoming a robot.

4.2.3 Participants

We recruited participants online through the Center for Decision Research Virtual Lab at

University of Chicago Booth School of Business. Eligible participants were above the age of

18, lived in the United States, and had access to a computer/laptop with reliable internet

connection. We did not filter for Twitch users nor music experience in order to elicit insights

generalizable to most users. Participants were paid $12 with additional amount prorated by

the time they spent on the study, which averaged to be about 90 minutes.

Our study had 19 participants in the Chatbot audience, 18 in the first robot audience

(Robot1 ), and 13 in the second (Robot2 ). Everyone was between 18-74 years old, with

46% of the participants between 18-24 years old and 24% between 25-34 years old. Most

(82%) identified as women while the other 18% identified as men. For their highest education

completed, 36% of the participants held a 4-year college degree, 32% underwent some college,

and 30% received an advanced degree. Most (78%) did not hold a job, earn a degree, or

major in technology-related fields. Most were not avid Twitch users: in the six months prior,

86% had never streamed on Twitch and 50% had never viewed Twitch streams.

4.3 Results

We analyze each robot performance as its own separate condition, resulting in three con-

ditions total. This is due to differences between Robot1 and Robot2 . Robot1 occurred in
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the morning, while Chatbot and Robot2 occurred in the afternoon. Furthermore, in Robot1 ,

there was a longer delay (10 extra minutes) before Movement 2 than expected due to a

technical difficulty, which was resolved before proceeding. Although this delay likely did not

markedly impact audience experience, we decided to account for it as a potential confound

regardless.

For quantitative data analysis, we performed a 3 (audience) x 3 (movement number)

mixed analysis of covariance (ANCOVA) test where the audience type was a between sub-

jects factor (Chatbot , Robot1 , or Robot2 ) and the movement was a within subjects factor.

We performed this test with age, gender, education level, tech experience, experience in

viewing or streaming Twitch in the last six months, and extroversion as covariates. For

chat message volume, we could not match audience usernames with their survey responses,

and therefore conducted a mixed analysis of variance (ANOVA) without covariates. If the

test determined a groupwise difference, we followed up with Tukey’s HSD test to determine

significant pairwise differences. For Likert-scale questions regarding the overall performance,

we compared between groups using the ANCOVA with the audience type as a fixed factor

and with the same covariates as before. Effect sizes for the ANOVA tests are reported as

partial eta squared (η2).

4.3.1 Audience Experience

For each of our movement-specific metrics (perceived performance inclusion, musician re-

sponsiveness, and enjoyment), a two-way mixed ANOVA revealed that the main effect of

the condition was not significant, and that the interaction effect between the conditions and

the movements was not significant. There was a significant main effect of the movements

for enjoyment (F (2, 76) = 3.67, η2 = .04, p = .030), and a Tukey’s HSD test revealed that

participants enjoyed Movement 3 more than Movement 2 (p = .005) (Figure 4.2). We did not

find any significant pairwise differences between metrics on overall performance perception.
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Most participants, regardless of condition, noted in the survey that they found Movement

3 to be the most engaging. Compared to previous movements, they felt more included and

found the musicians more responsive. Some explicitly pointed out that the latter positively

influenced the former. A Chatbot participant noted: “This section was a lot better as the

music changed based on the audience. I was much more engaged.” Most participants rec-

ognized how music changed based on audience responses, sometimes citing the pre-scripted

commands. Multiple participants found this movement more intuitive than Movement 2,

in which the correct CAPTCHA answers were not always obvious. A Chatbot participant

found the voting system “quite straight forward... It didn’t require too much thinking like

the captcha round nor did it feel super random like the first round.”

Chat activity suggested Robot2 participants were more engaged with the performance

and with each other than the other audiences. With average number of messages sent per

participant as the dependent variable, a 3x3 mixed ANOVA revealed significant interaction

effects between the movements and the conditions (F (4, 98) = 5.98, η2 = .20, p < .001), but

no significant main effects of either factor, nor significant pairwise differences between levels

of each factor with Tukey’s HSD tests. As the performance went on, Robot1 participants

sent less messages on average while Robot2 participants sent more messages on average

(Figure 4.3). Both Chatbot and Robot1 participants kept to themselves, responding only

to the prompts and rarely commenting otherwise. However, multiple Robot2 participants

commented and joked with each other, starting with two in Movement 1. As the performance

went on, more participants joined in and the comments became more frequent. As one

participant noted: “People opened up a little more and were typing more. I noticed the same

few people typed a lot more than others.” Chat messages directly referenced Musicbot1975

(“[P1]: youre a funny little robot”, “[P6]: the robot is stressed”), the performance props

(“[P2]: why a silver boot / [P3]: theseoutfitsaresnazzy”), the performers (“[P2]: how are they

not laughing”), the performance theme (when a musician was “converted” into a robot in
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Figure 4.3: Robot2 participants on average sent more messages as the performance went on,
unlike the other two audiences.

Movement 3: “[P4]: black mirror is taking notes / [P1]: This is a religion / [P5]: a cult”),

and each other (“[P1]: will you marry me musicbot / [P6]: i vote [P1] off the island”).

As noted earlier, we could not account for covariates for chat activity because we could not

match the chat usernames with the survey responses. For context, Robot2 participants self-

reported to be the least extroverted (M = 2.45, SD = 1.14), followed by Robot1 participants

(M = 2.90, SD = 1.28) and lastly Chatbot participants (M = 3.42, SD = 1.24). Robot2

participants also skewed younger than the other two audiences, with 62% between 18-24

years old and completing at most some college at the time of the study. They may have

been more tech-savvy and receptive, and thus more active in chat.

4.3.2 Audience Perception of the Performance Mediator

Regarding Musicbot1975, we did not identify significant differences between the three groups

of participants on the RoSAS scale [12]. On the 9-point scale (with 9 corresponding to

strongly agree to items indicating competence, warmth, or discomfort): Participants found

Musicbot1975 to be moderately competent, with the Chatbot , Robot1 , and Robot2 partici-

pants rating competence items 5.11 (SD = 2.15), 5.37 (SD = 1.66), and 4.29 (SD = 2.20) on

average, respectively. They did not find it very personable, rating warmth items 3.41 (SD =

58



2.25), 3.90 (SD = 2.22), and 3.03 (SD = 1.89) on average, respectively. They did not find it

discomforting, rating discomfort items 4.35 (SD = 2.82), 4.45 (SD = 2.57), and 4.58 (SD =

2.76) on average, respectively.

In Movement 1, two Robot1 participants thought the music changed based on audience

response precisely because of the robot present, with one stating: “In the beginning the music

bot asked us what genre of music and then a robot said it out loud to the player. I would like

to think the player tried to play something based on their interpretation of our answers.” A

Robot2 participant noted: “The musicbot did read out some chat messages out loud which

was a nice touch, it made the performance feel more interactive.” Some participants found

the robot’s presence positive while some did not comment or did not find it interesting. In

Movement 3, Robot1 participants described the robot as “calm,” “pleasantly sitting on the

table,” or “more polite and objective.” One Robot2 participant thought “The bot talked and

moved in rhythm with music,” even though we did not program the robot to move in rhythm,

but rather it moved autonomously when resting.

4.4 Conclusion and Discussion

In this work, we held three performances live-streamed on Twitch with a chatbot or a robot

mediating performer-audience interactions. Although we did not find significant differences

in audience experiences between mediators, some participants pointed to the robot as a

reason for higher engagement. We review some of the lessons we learned from designing the

robot mediator and from interviewing the musicians.

How much of the audience experience should be revealed to the performers?

One musician wanted to see the chat projected in front of the room. Another wondered

what the audience was seeing, as some of the performative elements (e.g. CAPTCHAs) were

superimposed onto the stream but not shown to the performers. The ideal mediation system

would need more than just a robot to share audience experience.
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How should the performers depend on the robot? To support the musicians, we

projected in front of them the sheet music they consult for improvisations and the captions

for the chatbot/robot. This made the performance more comfortable for them, but also

weakened their reliance on the robot. The musicians also thought that the robot did not

necessarily help their improvisations, but rather gave instructions that they needed to follow.

It may have even hindered their improvisations slightly by distracting them with movements.

What utility does a mediator, especially a robot one, bring to the perfor-

mance? Experimental musicians may find robot mediation rewarding, but the experimental

nature of this genre can confuse the audience. Future work should study how robots can

enhance this distinctive setting. Mediators may also benefit other, participatory genres of

music, such as cabarets in which entertainers perform to audiences sitting at tables, and

gospel music in which a cantor leads the audience to sing in a call-and-response manner. It

is unclear whether a robot mediator can leverage its robot form to uniquely benefit these

performances. Lastly, our work may help Twitch streamers discern how to integrate a robot

into their live performances.
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CHAPTER 5

EFFECT OF VOICE EXPLANATIONS AND

ANTHROPOMORPHISM ON AGENCY ATTRIBUTION AND

TRUST IN BODY-ACTUATING DEVICES

Body-actuating devices, when attached onto a user, apply force, motion, and vibrations to

affect the user’s sense of touch and movement. Examples include robotic exoskeletons [24,

97] and electrical muscle stimulation (EMS) [85, 43]. They can enhance users’ physical

capabilities [62]. They can also convey information to the user, such as by enabling haptic

feedback in virtual reality [46] and mixed reality [47], training motor skills [85, 63], and

communicating dynamic affordances of objects [45]. In particular, an advantage of body-

actuating devices is that they can protect users from experiencing harm before the user

themselves recognize it and react. For example, it can prevent the user from unintentionally

burning their hand on a hot object [45].

Users may hesitate to adopt such systems, as they reduce user agency or sense of con-

trol [42, 59]. One of Shneiderman’s eight golden rules of user interfaces states that they

should “support internal locus of control” because users “strongly desire the sense that they

are in charge of the system and that the system responds to their actions” [80]. Automation

systems such as body-actuating systems, however, work against this [65, 8]. By definition,

body-actuating systems take charge of the user’s body and movements. Such systems espe-

cially weakens user agency when actuating the user’s muscles contrary to the user’s intent,

or doing so preemptively before they intend to move [34, 35]. In one study [44], participants

noted this agency loss after experiencing EMS changing their pose involuntarily: “it is weird

that you lose against yourself,” “sometimes the computer hand was faster than I,” and “it

was so remarkable to see my hand moving without my intention that I could not look away.”

Enhancing user trust in body-actuating systems may mitigate the hesitance in system
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adoption. Despite reduced agency, if the user has confidence in the system’s ability and

reliability to keep them from harm’s way, they will be more likely to take advantage of

its benefits. Here we rely on the definition of trust prevalent in the scholarly literature

as “the willingness of a party to be vulnerable to the actions of another party based on

the expectation that the other will perform a particular action important to the trustor,

irrespective of the ability to monitor or control that other party” (p.712) [51]. Trust is

multidimensional, including capacity and moral trust [87]. These dimensions all affect user

confidence in the system.

In this work, we examine how a system that controls agency may affect or foster user

trust. This comes from prior observations that users might attribute the control they lost

to other elements of the interaction, following an established distinction between “feeling of

agency” (whether one feels to be in control of their actions, to which we sometimes refer as

“user agency”) and “judgment of agency” (whether one perceives themselves or others to have

agency) [84]. Given reduced “feeling of agency,” we examine whether “judgment of agency”

affects user trust. In one study [45], EMS actuation manipulated participants’ hands and

arms to simulate how they should interact with a set of familiar and unfamiliar objects, e.g.

an unusual avocado peeler. Participants used a variety of grammatical subjects to describe

their experiences. Some attributed agency to the target object, e.g. “it [the avocado] didn’t

want me to cut it.” Some attributed agency to the tool whose affordance was communicated,

e.g. “The scooping tool told me to pull.” Some attributed agency to the EMS system instead,

e.g. (for a spray can) “the system shakes the can for me.”

Through a human-subjects experiment, we examine how users attribute agency

to the body-actuating system when the system includes voice explanations and

anthropomorphism. By varying the presence of these two components, we further exam-

ine how we can build, maintain, and repair user trust in the system. Our research questions

are:
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• RQ1: Do voice explanations and anthropomorphism affect how people attribute agency

to themselves and to the individual components of the body-actuating system?

• RQ2: Does change in agency attribution affect user trust in the system over time,

including in instances of trust violation and subsequent attempts at repair?

• RQ3: Does change in agency attribution mediate the relationship between voice ex-

planations or anthropomorphism and user trust in the system?

5.1 Project Plan

In a between-subject study, we will ask participants to complete a set of tasks while ac-

tuated by EMS. We focus on EMS as the body-actuating device, as it has promising ap-

plications [45, 46, 43, 15, 86] due to its lightweight nature compared to alternatives like

exoskeletons. Participants will be randomly assigned to three conditions. In the baseline

condition, participants complete tasks with EMS sometimes controlling their body move-

ments in unexpected ways that are usually correct. In a second condition, participants will

be similarly actuated by EMS, while a speaker nearby broadcast spoken explanations of the

EMS actuation. In the last condition, participants will be similarly actuated by EMS, while

a humanoid robot nearby will move in-sync and verbally explained the EMS actuation. With

this setup, we will investigate how participants judge their own agency and the agency of

each piece of technology, and how this judgment affects their trust in the body-actuating

system.

63



CHAPTER 6

EXPECTED TIMELINE

Of this dissertation, work pertaining to automated services (Chapter 2), reinforcement learn-

ing (Chapter 3), and livestreamed performances (Chapter 4) has been completed. Remaining

work pertains to the Body-Actuating Device Trust study (Chapter 5).

By Mar 10, 2023

• Acquire IRB approval.

• Complete experimental design and implementation.

• Pilot experiments.

By Jun 2, 2023

• Complete data collection.

• Complete data analysis.

By Mid Sept or Early Oct, 2023 (Depending on CHI/HRI Deadlines)

• Complete manuscript in preparation for CHI or HRI submission.

• Submit manuscript to CHI or HRI.

By Jan 19, 2024

• Submit initial full draft of dissertation to committee for feedback.

By Mar 22, 2024

• Submit final version of complete dissertation draft to committee for final feedback

before the final submission date of May 1, 2024.
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• Submit UChicago application to graduate.

By May 1, 2024

• Submit final copy of dissertation to UChicago.
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