
THE UNIVERSITY OF CHICAGO

RECONSTRUCTING THE LINEAGE OF ARTIFACTS IN DATA LAKES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MOHAMMED SUHAIL REHMAN

CHICAGO, ILLINOIS

JUNE 2023

Copyright © 2023 by Mohammed Suhail Rehman

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1 INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Thesis Outline . 2

2 BACKGROUND . 4
2.1 Motivation . 4
2.2 Related Work . 6

2.2.1 Research in Data Lineage . 6
2.2.2 Online Lineage Capture / Curation / Version Control 7
2.2.3 Data Discovery . 7
2.2.4 Query Synthesis . 8
2.2.5 Document Provenance Systems . 8
2.2.6 Dataframe Benchmarking . 9

3 THE RELIC SYSTEM . 11
3.1 Introduction . 11
3.2 Problem Definition . 16

3.2.1 Notation . 16
3.2.2 The Lineage Inference Task . 17
3.2.3 Types of Transformations . 18

3.3 Lineage Inference Technique . 20
3.3.1 Initialization . 21
3.3.2 Building the Lineage Graph . 23
3.3.3 Inferring Point Preserving Transformations 25
3.3.4 Inferring Non-Point-Preserving Transformations 27
3.3.5 Breaking Ties when Selecting Edges 33

3.4 Experimental Evaluation . 34
3.4.1 Datasets Used . 35
3.4.2 Configurations to be Evaluated . 37
3.4.3 Overall Accuracy . 38
3.4.4 Individual Detector Performance . 39
3.4.5 Time to Infer Workflows . 40

3.5 Conclusions and Future Work . 42
3.6 Relaxing Relic’s Assumptions . 42

iii

3.6.1 Effect of Materialization Rate on Accuracy 43
3.6.2 Unmatched Schema . 44
3.6.3 Multiple Workflows . 46

4 SCALING RELIC . 48
4.1 Preliminaries . 51

4.1.1 MinHashing . 51
4.1.2 One Permutation Hashing . 52
4.1.3 K-Minimum Value Sketches . 52
4.1.4 Locality Sensitive Hashing . 53

4.2 Coupled Containment Sketches . 54
4.2.1 Sketch Construction . 54
4.2.2 Index Construction . 55
4.2.3 Querying the Index for Lineage . 56
4.2.4 Ranking the Results . 57

4.3 Implementation . 57
4.3.1 Sketching Techniques Used . 58
4.3.2 Software Implementation . 59

4.4 Evaluation . 59
4.4.1 Datasets Used . 60
4.4.2 Competing Systems . 61
4.4.3 Evaluation Metrics . 62

4.5 Results . 63
4.5.1 Index Query Accuracy . 63
4.5.2 Result Ranking . 67
4.5.3 Baseline Performance . 70
4.5.4 Index Generation and Query Runtimes and Space Requirements . . . 70

4.6 Conclusions . 71

5 THE FUZZYDATA WORKFLOW SPECIFICATION SYSTEM 73
5.1 Introduction . 73
5.2 Fuzzydata . 75

5.2.1 Data Model . 76
5.2.2 Implementation . 78
5.2.3 Generating Random Artifacts . 79
5.2.4 Generating and Replaying Random Workflows 79
5.2.5 Instrumentation . 82
5.2.6 Clients Implemented . 83

5.3 Use Cases . 93
5.3.1 Fuzzy Testing Suite for Dataframe Systems 94
5.3.2 Encoding and Replaying an Existing Workflow 94
5.3.3 Scaling and Replaying a Generated Workflow 96

5.4 Deployment on Modin . 98
5.5 Conclusions and Future Work . 98

iv

6 CONCLUSIONS . 100

REFERENCES . 101

v

LIST OF FIGURES

2.1 The Compliance/Accessibility Trade-off in Data Lakes 5

3.1 Example of a Typical Data Analysis Workflow 11
3.2 Motivating Example for the Lineage Inference Problem. 12
3.3 Point-Preserving and Non-Point-Preserving Operations 18
3.4 RELIC Running Example . 21
3.5 Cell-Level Comparison of Artifacts . 25
3.6 Lineage Recovery Accuracy . 39
3.7 RELIC Runtime . 41
3.8 Materializaiton Rate vs Accuracy . 43
3.9 Mean F1 score accuracy of various schema matching techniques grouped by op-

eration type for different synthetic workflows. All of the techniques failed to
produce a schema match for the pivot operation. Error bars indicate standard
deviation. 45

4.1 Average recall and number of results returned for 2-column groupby queries vs.
target containment thresholds. Error bands indicate the 95% confidence interval
over 100 queries. 64

4.2 Average recall and number of results returned for Join queries vs. target con-
tainment thresholds. Error bands indicate the 95% confidence interval over 100
queries. 65

4.3 Average recall and number of results returned for Pivot queries vs. target con-
tainment thresholds. Error bands indicate the 95% confidence interval over 100
queries. 66

5.1 The design of FuzzyData. 74
5.2 DAG of a randomly generated workflow using the generator described in Sec-

tion 5.2.4. The generation parameters used were (n = 15, r = 1000, c = 20, b =
0.01,m = 1). 82

5.3 Real-World Workflow Replay . 97
5.4 Results of the Scaling Experiments . 97

vi

LIST OF TABLES

3.1 Table Notation Used in this Paper . 17
3.2 Set of Operations O Under Consideration . 17
3.3 List of Real Workflows . 36
3.4 Individual Stage Performance . 40
3.5 Mean run-time (in seconds) to infer the schema among a single pair of tables.

Results are organized by table size, schema matcher and operation. DNF indicates
that the matcher took longer than 3600 seconds to run. 45

3.6 F1 score and cross-workflow false positive edges for Relic on multiple workflows. 47

4.1 An Example Table R . 48
4.2 Example Table S . 49
4.3 Example Table T, constructed by joining R and S on the column country . . . 49
4.4 Example Table U, constructed by grouping Table S by column experience_level

and job_title and applying the average function on the column salary_in_usd . 49
4.5 Example Table V, constructed by pivoting Table S by column job_title as the

index and country as the columns and salary_in_usd as the cell values 49
4.6 GitTables Dataset Filtering and Query Class Generation 60
4.7 Results of using similarity sketches to rank the results of each lineage query for

the gittables dataset. The index was probed using the target containment
threshold of 0.4. We report the minimum, mean and maximum number of results
returned from the index for each query before ranking and the ranking recall rate
at k = 1, 5, and 10. 68

4.8 Results of using similarity sketches to rank the results of each lineage query for
the synthetic dataset. The index was probed using the target containment
threshold of 0.4. We report the minimum, mean and maximum number of results
returned from the index for each query before ranking and the ranking recall rate
at k = 1, 5, and 10. 69

4.9 Results of using 3-column sketches for Join and Groupby Queries generated on
the gittables dataset. The index was probed using the target containment
threshold of 0.4. We report the minimum, mean and maximum number of results
returned from the index for each query before the ranking and the ranking recall
rate at k = 1, 5, and 10. 70

4.10 Baseline results (using an existing multi-column indexing technique, MATE and
a brute-force containment search) to rank the results of each lineage query. The
index was probed using the target containment threshold of 0.4. We report the
minimum, mean and maximum number of results returned from the index for
each query before ranking and the ranking recall rate at k = 1, 5, and 10. There
are no indexing results for the brute force method, it searches the entire corpus
of all two-column combinations of 5000 tables (a total of 529688 sets). 71

4.11 Total time taken (in Seconds) to generate the indexes using each sketch tech-
nique for Single, Double and Triple Column Sketches. Only gb-kmv was able to
complete the generation of a 3-column index. 71

vii

4.12 Average time taken (in Seconds) to query the indexes using each sketch tech-
nique for Single, Double and Triple Column Sketches. Only gb-kmv was able to
complete the generation of a 3-column index. 72

4.13 Average time taken (in Seconds) to rank the candidate results using each method,
using a containment threshold of 0.4. The mean time to estimate Jaccard Con-
tainment (JC) is per candidate pair. 72

5.1 Transformation Implementation Matrix. The Generation Constraints column
lists the minimum number of columns of each type required to generate each
transformation using the random workflow generator. 76

5.2 An example artifact generated using FuzzyData. Column labels indicate the
faker provider used to generate the values for the column, except for rn, which is
shorthand for random_number. In this table, pyint and rn are numeric columns,
while cryptocurrency_code is a groupable, joinable and string column. 79

5.3 Parameters for generating synthetic workflows. 80

viii

ACKNOWLEDGMENTS

I sincerely thank my thesis advisor, Aaron Elmore, for their invaluable guidance, support,

and encouragement throughout this research project. Aaron has been extraordinarily patient

and understanding as he ensured that I saw this project to completion. I am also grateful to

my committee members, Raul Castro Fernandez and Michael J. Franklin, for their valuable

insights and feedback as this project progressed. I would also like to acknowledge the support

and assistance of the Department of Computer Science, University of Chicago, in providing

the necessary resources and equipment for this research.

Additionally, I would like to thank my colleagues, friends, and family for their support

and encouragement throughout this journey. My father nurtured my interest in computer

science early on by ensuring an endless supply of equipment and software to play with during

my formative years. My teachers at MES Indian School, Doha, Qatar, also significantly

shaped my interest in computer science. I was nudged into research by Prof. P.J. Narayanan

at the International Institute of Information Technology, Hyderabad. He saw a spark of

interest in me and encouraged me to pursue research. Prof. Majd F. Sakr at Carnegie

Mellon University, Qatar, was instrumental in providing valuable guidance and support as I

navigated the then-novel areas of Cloud Computing which piqued my interest in large-scale

Data Management. I would also like to thank my friends, especially my roommates, for their

support and encouragement during this research project.

My wife, Mizaj, has been my rock throughout this journey. She has been my constant

source of support and encouragement and has been instrumental in ensuring that I could

focus on my research. I would also like to thank my parents, who have been my constant

source of inspiration and motivation. They have always been my biggest cheerleaders and

have encouraged me to follow my dreams.

ix

ABSTRACT

The explosive growth of data-driven fields such as machine learning and data science has

led to a proliferation of large amounts of data and competing systems, tools, and techniques

to acquire, clean, process, prepare, curate, wrangle and analyze data. This has led to the

creation of data lakes, large repositories of data often used as a central source of truth for

data-driven applications. However, the lack of lineage information in data lakes can affect

the quality of data processed and the insights derived from data lakes. Existing solutions for

lineage involve manual annotation of lineage information or capturing lineage as data is ma-

nipulated and transformed. This does not solve the problem of lineage and quality for data

generated in the past and is often cited as an impediment to the overall vision of reducing

the time to insight from vast amounts of data organized in a central data lake. This thesis

proposes using similarity metrics to infer the lineage of data artifacts in data lakes. We show

the feasibility of recovering the lineage of data artifacts under varying assumptions of the

availability of metadata using Relic. We then scale Relic using sketching and indexing

techniques and show that we can answer complex lineage queries accurately and efficiently

with a suitable index structure. Finally, we also introduce FuzzyData, a dataframe bench-

marking system that can generate dataframe workflows of varying complexity using different

dataframe clients to benchmark and test dataframe-based systems.

x

CHAPTER 1

INTRODUCTION

Data lineage, also called provenance or pedigree, is information about data’s origin and

creation process. Lineage information is used to understand the semantics of processed data,

tracing errors from the result of a transformation back to its input data, and estimating

the quality of derived data [59]. Data lineage is a crucial component that enables error

tracing, troubleshooting, quality estimation, and knowledge building in a variety of data

systems ranging from relational databases [56], OLAP warehousing systems [22], NoSQL

systems [108] and systems for the Machine Learning Lifecycle [107]. Quality lineage is

crucial for building productive and sustainable data lakes; the lack of lineage information

can affect the quality of data processed and the insights derived from data lakes [72].

Prior work in database lineage deals with lineage has always been discussed from a

capture, record or annotate perspective [13, 41, 50, 56, 74, 107]. The assumption is that

the lineage management system is running in conjunction with the core database software,

monitoring accesses and logs or allowing for API calls to record the lineage information for

every artifact accessed during each data life-cycle activity. These systems effectively solve

the lineage problem going forward; none of the proposed solutions allow for retrospective

tagging/analysis of data artifacts generated in the past.

On the other hand, existing data discovery solutions such as [17, 110, 113] do not

consider lineage at all; they use techniques from information retrieval to process data from

a query-focused perspective. These systems are designed to handle queries such as (Retrieve

all artifacts that match a set of keywords or is a likely join or union candidate for a specific

input table).

To our knowledge, there has not been any work on inferring the lineage of data artifacts

in a retrospective manner, i.e., long after they have been created, without any supporting

metadata about the artifacts that could help with the inference procedure. Such a scenario

1

is common within poorly maintained and governed data lakes and is often cited as an im-

pediment to the overall vision of reducing the time to insight from vast amounts of data

organized in a central data lake [72].

This disseratation aims to be the seminal retrospective data lineage thesis - we would like

to outline the problem statement, its feasibility, applications, and solutions for the problem.

1.1 Thesis Statement

My thesis statement is as follows: Given an expected grammar of data transformations, can

we retrospectively use content similarity to:

• Organize data lake artifacts into the individual workflows that generated them, and,

• Infer a lineage tree for the individual workflows that most closely resemble their ground

truth derivations,

• In a manner that most closely represents the ground truth lineage, as measured by the

edge F1 score?

1.2 Thesis Outline

This disseratation is organized as follows:

• Chapter 2 provides a background on the problem of data lineage, and the related work

in the area.

• Chapter 3 introduces the problem of retrospective lineage inference (RLI) and outlines

a first solution, Relic, which is used to solve the RLI problem under a set of strong

assumptions. We then relax these assumptions and demonstrate the feasibility of

solving the RLI problem by extending Relic to support multiple workflows, workflows

with different materialization rates, and workflows with unmatched schemas.
2

• Chapter 4 evaluates different sketching techniques to improve the scalability of Relic.

We build a specialized contianment index that can be used to answer lineage queries,

using existing Locality-Sensitive Hashing (LSH) and K-Minimum Value sketches. We

show that the most time-consuming detectors in Relic, namely the join, groupby and

pivot detectors can be sped up by an order of magnitude by using these sketching and

indexing techniques.

• Chapter 5 introduces a dataframe benchmarking system, FuzzyData, which can be

used to generate dataframe workflows of varying complexity using different dataframe

clients. We usde fuzzydata to generate a set of synthetic workflows for Relic, and it

has been further deployed to perform fuzzy testing of dataframe systems like modin.

• Chapter 6 presents the conclusions and future work.

3

CHAPTER 2

BACKGROUND

2.1 Motivation

Relational databases have been the mainstay of data processing systems since the advent of

System R [10]. Within the relational model, operational data collection and storage were

typically handled by transaction-focused OLTP systems, and analytical queries, reporting,

and data exploration tasks were handled by read-query-optimized OLAP (data warehousing)

systems. Decades of database research have helped in the fine-tuned performance optimiza-

tions of both these types of systems, as well as the development of hybrid engines that can

be used to handle both types of workloads for organized, schema-defined data [55].

However, the explosion in data as part of the expansion of the Internet, smartphones, and

sensor networks along with the ever-increasing requirements for complex analyses, machine

learning, and analytics have resulted in a shift away from these traditional, rigid, schema-first

relational databases [11].

Data analysts and machine learning practitioners often have to process large amounts

of data from disparate sources, using multiple tools and processes and collaboratively, often

using lowest common denominator data interchange formats such as CSV, Apache Parquet,

and so on. The resulting decentralization of data away from relational database systems has

prompted the industry to converge around the idea of data lakes – centralized, shared data

repositories that allow for the storage of both raw data from multiple sources, as well as

cleaned, transformed data and machine learning models [72]. The availability of cheap, easy

to integrate distributed file systems such as HDFS and cloud storage such as S3 hastened the

move towards this paradigm, making it easy to set up an internet-connected data collection

and retention system that is instantly scalable on-demand. According to [9], most Fortune

500 companies operate a two-tiered architecture where a data lake is used to ingest and

4

feed non-relational analytics and machine learning pipelines, while some data is ETL-ed into

warehouse systems for more traditional OLAP workloads.

While the data lake vision promises to enable data discovery, reduce time-to-insight for

real-time analytics, and enable quick machine learning training and inference turnarounds;

more often than not, the data lake reality is that of a data swamp, a so-called data dumping

ground with data curation tasks taking a back seat. In data swamps, the data quality ends

up being suspect and only gets worse over time.

Supports multiple tools,
environments, data formats

Shiny new BI/ML/Analytics
tool that just “works” with

your data store.

Write your transformed data
back into the store!

Requires disciplined data
curation to be effective
Force all lake access to go
through a logging / compliance
layer
Logical Extreme: OLAP and DW

The Data Lake Compliance / Accessibility Tradeoff

Rigid Accessible

Raw Object StoresData Lake CurationData Warehousing

Figure 2.1: The Compliance/Accessibility Trade-off in Data Lakes

This situation is in part due to a rigidity/accessibility trade-off (Figure 2.1) that en-

compasses database systems, data lakes, and other data operations. Traditional relational

databases and data warehouses figure on the left, with rigid schema acting as a compliance

layer which forces data to be well-structured and enough metadata (in the form of log-

ging/access control/schema and constraint management) to discern lineage information [72].

On the other hand, Big data architectures and data lakes are an evolving market with
5

many emerging technologies that are vying for market share. In order to build a customer

base and ease customer adoption, there will be a natural tendency to skew right in Figure2.1

(towards less rigid and accessible solutions that fit into the existing data systems). The

resulting provenance crisis in data lakes is a significant problem that impedes the original

data lake vision. As we will see in Section 2.2, existing solutions are insufficient to discern

lineage in such data swamps in a retrospective manner and require new tools and techniques

to aid in the organization of said swamps. This thesis will focus on inferring the lineage

of these data artifacts in a retrospective manner; using tools and techniques adapted and

modified from various related fields as follows:

2.2 Related Work

Work related to this dissertation can be broadly classified into the following themes:

2.2.1 Research in Data Lineage

Ikedaet al.have summarized traditional lineage research in a survey [59], while providing a

taxonomy of lineage systems for relational and probabilistic databases. Cuiet al. [22] pro-

posed a taxonomy of transformations for the purposes of lineage tracing. The categorization

is based on the number of input and output tuples involved in transformation; dispatchers

(1:N), aggregators(N:1), and black-box transformations; the paper provides the formalism

and tracing procedures for each of these transformation types assuming that the lineage

tracing procedure is capturing both the input and output tuples as they are being processed

during query execution. A more recent survey by Herschelet al. [54] provides an application-

centric overview of all of the workflow lineage solutions proposed in the domains of science,

business, data analytics, and general programming.

6

2.2.2 Online Lineage Capture / Curation / Version Control

: Systems such as OrpheusDB [56] and ProvDB [70] provide (git-style) version control for

relational databases, they have substantial barriers to adoption—and are unlikely to be used

in unstructured, ad-hoc data exploration settings like in data lakes. For data lakes, lineage

capture systems both from the industry [1, 9, 13, 41, 42, 74] and academia [5, 13, 17, 56, 111]

either require access to code or explicit API calls to register and link artifacts in a curated

fashion, which requires compliance and human effort to document lineage while artifacts are

being created and offer no help in a retrospective analysis of said artifacts. At the time of

writing, the Lakehouse architecture described in [9] is gaining traction among the plethora

of solutions being proposed by companies in managing data lake complexity going forward.

2.2.3 Data Discovery

: ReConnect [3] and Rediscover [4] attempt to discover the relationship for a given dataset

pair. These papers define a space of relevant relationships, generate the conditions for each

relationship based on row and column statistics, and then suggest a relationship for a given

dataset pair by examining the conditions. ReConnect relies on user feedback to validate

candidate relationships, while ReDiscover uses a machine learning model to predict the

relationship. However, both ReConnect and ReDiscover only consider a limited relationship

set, i.e., containment, augmentation, complementation, template, and incompatible, and

cannot handle any mix of them. Systems such as Aurum [17] use sampling and estimation

techniques to build, maintain, and query datasets in an Enterprise Knowledge Graph (EKG).

The system uses similarity metrics like Jaccard distance and containment to find tables with

columns that are most similar to a source table; JOISE [113] speeds up searches for top-k

joinable tables in data lakes using a novel set overlap similarity search system. Aurum and

JOISE assist in query-centric similarity search; neither system makes any inferences about

lineage.

7

2.2.4 Query Synthesis

A long line of work in Query Reverse Engineering (QRE) and Query By Example (QBE) [23,

32, 61, 91, 95, 105] focuses on reverse-engineering SQL queries that are used to transform

one artifact to another. This approach has several issues that make it challenging to apply

in our problem context. Firstly, most of this work constrains the inferred SQL queries to

some subset of Select-Project-Join-Aggregate (SPJA) and assumes a perfect solution exists

in that search space. Second, the input and output artifacts are explicitly labeled, usually

within the context of a normalized database schema with established join paths via PK/FK

constraints. We argue that artifacts generated by modern data analytics systems do not

satisfy either of these conditions. Besides SQL queries, manual edits, scripts, and programs

can also be involved in data curation, transformation, and feature engineering. We also note

that inferring a concise SQL query itself is a computationally hard problem [105]. We may

complicate the problem further if we try to formulate the delta between two artifacts as

SQL queries. Finally, current work focuses on a single pair of datasets. Instead, we aim to

summarize the relationship among a collection of datasets, which poses additional challenges

since it involves all possible dataset pairs.

2.2.5 Document Provenance Systems

A separate line of work explores retrospective lineage using similarity scores in information

retrieval for plain text documents. Deolalikar et al. [26] demonstrate a system that combines

content analysis (cosine similarity over TF-IDF vectors) with filesystem timestamps to gen-

erate a list of documents, ordered by the time that is most relevant to a given document.

Similarity [24, 25] uses TF-IDF over-extracted named entities to discover provenance using

semantic similarity over a set of documents. These approaches are fine-tuned for documents

and are unlikely to yield good results over large data tables, as shown by [97], which uses

a complex scheme to recover the semantic meaning of tables present in the web corpus and

8

utilize the semantic keywords and relevant information to power a table search system. In

our context, we deal with multiple tables with varying degrees of semantic information or

named entities (e.g., a time-series table of sensor values may have little semantic informa-

tion or named entities that can be extracted from the table). Since the tables are assumed

to have some derivation or transformation relationship to one another, they are likely to

saturate these semantic information signals to the extent that makes it difficult to assess

the fine-grained differences between versions of these individual tables. Table similarity is

discussed in [75], which uses a combined Schema and Data similarity metric to measure

the distance between two web tables and is an approach that is most closely related to our

proposal.

2.2.6 Dataframe Benchmarking

Benchmarking and database workload generation systems have a long and storied history in

academia and industry [44].

The TPC benchmark suite [21] is the most popular benchmark suite for database sys-

tems and encompasses transactional processing, data warehousing, data integration, big-data

systems, and others. Vogelsgesang et al. [99] have empirically shown that typical data vi-

sualization workloads originating from BI application dashboards such as Tableau consist of

complex nested sub-queries, which are very different from typical TPC workloads.

The rise in popularity of the Dataframe-based data analysis workflows has resulted in a

large number of systems that implement the API while making improvements to the memory

model [36, 98], leverage parallel and distributed computing [64, 71, 86], heterogeneous hard-

ware [92] and usability improvements [65]. However, the lack of a standardized workload

or performance benchmark for dataframe systems results in primarily anecdotal reports of

performance improvements. One prominent example is the H20.ai benchmark website [47],

which compares join and groupby query performance against dataframes of various sizes

9

(0.5, 5, and 50GB at the time of writing); the website is designed to run periodically against

the latest versions of popular “database-like” systems in an automated fashion. Among pub-

lished work, the AFrame system [89] used a version of the scalable Wisconsin benchmark [44],

consisting of mostly integer columns and a few string patterns with varying cardinality to

show performance improvements. Sanzu [100] is a big-data benchmark suite designed to test

data science environments with a wide variety of operations such as wrangling and machine

learning but consists of static queries and datasets. Similarly, Böhm et al. [16] conducts

a deep dive into dask’s runtime and scheduler system to find performance bottlenecks; the

benchmark suite is again a set of static tasks/operations performed against static datasets.

YCSB [20], is a popular NoSQL benchmark system that is aimed at cloud-serving systems

that support a limited set of queries (insert/update/read/scan), with the option of scaling

and mixing query types in a workload. YCSB’s popularity can be attributed to its extensible

client-server model – a new key-value store or database client can be written using the YCSB

API and run existing workload sets to compare against other YCSB clients. We have sought

to emulate this design pattern with FuzzyData.

10

CHAPTER 3

THE RELIC SYSTEM

3.1 Introduction

The emergence of collaborative data science and machine learning (ML) platforms has made

it possible for data scientists and analysts to manipulate, process, and analyze modest to

large amounts of tabular data in an exploratory or ad-hoc manner. This data analysis work-

flow typically involves dealing with raw data from one or more sources, followed by multiple

stages of data preparation, spanning ingestion, cleaning, transformation/analysis, and ex-

port. These stages are often performed by a range of tools, spanning data analysis scripts, to

computational notebooks, to spreadsheet systems. Consider a typical ML preparation work-

flow in Figure 3.1: here, a dataset is sourced from the Internet, wrangled, and cleaned for

use as input to an ML training algorithm. Depending on the trained model’s accuracy, the

data scientist may go back to the original dataset, perform additional wrangling or feature

engineering, producing new artifacts for training.

raw.csv cleaned.csvData Source

input_1.csv

Ingest Wrangling

train_1.csv

test_1.csv

input_2.csv

test_2.csv

train_2.csv

Feature Set 2

test_n.csv

train_n.csv

…

input_n.csv

Test/Train Splits

Model 1

Model 2

Model n

Models

Figure 3.1: Typical data Analysis/ML prep workflow, with each stage transforming the input
and producing artifact file(s).

11

F1

F2

F3

F4

F1.fillna(4)
F3.groupby(A)

.count()

F5

F5 =

F2.join(F4,on=A)

F1 Artifact File

Transformation

F6

F6 = F5.pivot(index=A, columns=B,

values=C)

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C

1
nan

nan
2

2 4
1
3

i
1

nan
nan

2

2 4
1
3

i

(a) A data analysis work-
flow represented as a graph
(Ground Truth).

F1

F2

F3

F4
F5

F1 Artifact File

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C

1
nan

nan
2

2 4
1
3

i
1

nan
nan

2

2 4
1
3

i

(b) Set of artifacts with-
out any derivation informa-
tion (Input).

F1

F2

F3

F4
F5

F1 Artifact File

Inferred Lineage Edge

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C

1
nan

nan
2

2 4
1
3

i
1

nan
nan

2

2 4
1
3

i

(c) Lineage graph recon-
structed from artifact
contents (Output).

Figure 3.2: Motivating Example for the Lineage Inference Problem.

Intermediate results between the stages of data analysis workflows are often stored as

artifacts in a file-system that is shared across the organization, a so-called data lake [49, 90,

94]. However, the processes used to generate them, and the lineage information (i.e., the

source artifacts that a given artifact is derived from), are rarely recorded. As such, the lack

of this lineage makes it difficult to support (i) reproducibility and debugging, e.g., how did

I derive this artifact that led to high accuracy on my ML task or which downstream artifacts

were derived from this artifact, (ii) maintenance, e.g., which artifacts represent “abandoned”

trials during experimentation—and therefore can be discarded, (iii) explainability, e.g., can I

make sense of the experimentation workflow that led to these artifacts at a high level, and (iv)

discovery, e.g., can I find a pre-cleaned version of this dataset. Thus, the original driving

vision of data lakes, with the goal of making it seamless to discover, make sense of, and

integrate datasets across an organization, is hard to accomplish without lineage [84, 90].

Recognizing the fact that lineage is essential to make data lakes useful, a number of in-

dustry projects have emerged recently, targeted at enabling users to explicitly record lineage

metadata during data analysis workflows, including Amundsen [38], Marquez [40], Apache

Atlas [37], Egeria [39], Uber’s DataBook [96], LinkedIn’s DataHub [28], Netflix’s Meta-

cat [73], and AirBnB’s DataPortal [2]. There are also a number of academic projects in this

space, enabling users to provide and make use of lineage metadata [6, 14, 34, 57, 112].

12

Despite all of these projects and initiatives, data scientists in most organizations are re-

luctant to explicitly record lineage information along with their artifacts during their work-

flows, due to the additional overhead it introduces into the rapid experimentation typical

in data science. The culture of disciplined provenance management and version control is

not as widespread among data scientists as it is with software development teams [14, 94].

Data scientists may end up recording the lineage metadata only for their “final” artifacts,

as opposed to recording it every step along the way. Moreover, even if organizations do

eventually adopt one of the lineage-recording tools described previously, all of the organi-

zations’ artifacts until that point would still lack lineage information, requiring solutions

that can help “ingest” and “backfill” these past artifacts into these lineage-recording tools.

Another potential solution is instrument existing tools such that they automatically capture

lineage [18, 46, 51, 53, 79, 101]; however, these approaches limit the flexibility in tooling

available to data scientists, who often prefer using tools that are hard to instrument—and

the problem of “backfilling” past artifacts still exists with this approach.

Consider the worst-case scenario—one where code and documentation for a data analysis

workflow are absent; wherein a user has the daunting task of understanding the purpose

and context for several artifact files that contain tabular data, say from a data-dump or

backup. The file system metadata of these artifact files (such as file creation/modification

time) may be absent or unreliable1, in which case we do not have any reliable temporal

ordering of these artifact files; indeed, even with this information, it is hard to determine

which artifact files were the sources for a certain one, given the inherent non-linearity in

data science experimentation.

In this work, we introduce the problem of retrospective lineage inference, with the goal of

recovering the lineage of artifact files (or simply artifacts) generated during a data wrangling

or analysis workflow. We rely solely on the content of said artifact files and determine

1. This is typical in case of an ad-hoc copy or improperly configured file backup operation.

13

their relationships with one another via an inferred lineage graph. As an example, consider

Figure 3.2, which represents a cleaning and integration workflow consisting of 6 artifacts.

Figure 3.2a illustrates the ground-truth lineage graph, which represents the original workflow,

but is unavailable as a retrospective reference. Each edge of this graph has been labeled with

the exact operation used to derive a target artifact from its source. The operations shown are

from Python/Pandas but could be in other languages such as SQL. Figure 3.2b depicts the

input to the retrospective lineage inference problem: the artifacts themselves, without any

lineage information or order. To keep the problem a bit more tractable, our focus is on just

identifying the edges between artifacts, but not the exact operation (such as f1.fillna(4)).

This level of source-target relationships is similar to the types of relationships recorded

explicitly by users in industry lineage metadata capture solutions, and is therefore compatible

with them. Due to this simplification, our goal is both more ambitious and shallower than

prior work on query reverse engineering (QRE) [12, 33, 45, 62]: we are inferring multiple

relationships between artifacts at the same time (unlike QRE, which only does so for a pair

of artifacts), while not inferring the exact operation, just source-target relationships (unlike

QRE, which attempts to determine the exact operation). If needed, we could perform QRE

on each edge after retrospective lineage inference is complete, if more fine-grained derivation

relationships are needed. We compare against QRE and other related work in more detail in

Section 2.2. We also do not attempt to infer the directionality of the operations (note that

the edges in Figure 3.2c are un-directed). The inferred lineage graph is un-directed because

it may be impossible to infer directionality of certain operations (columns/rows added vs.

removed). If file creation times are present, the directionality is easy to determine; therefore,

in our formulation, we focus on the undirected version.

Despite these simplifications, retrospective lineage inference is a rather challenging prob-

lem: we have n artifact files, no input or output labels, no fixed schema, and therefore a space

of
(n

2

)
relationships (and more, if we consider joins) that need to be assessed to construct

14

the lineage graph, essentially making our problem one of query reconstruction at scale. The

second challenge emerges from the vast variety of operations that can be performed on tab-

ular data in a typical workflow. The set of operations not only include traditional relational

operations but may include spreadsheet-style editing of individual cells, arbitrary UDFs, in

addition to re-ordering of tuples and columns. Furthermore, there may be no strict schema,

the files may be indexed (in the dataframe sense) arbitrarily or not have indexes at all, and

there may be no known relationships between the data present in these artifact files.

In this paper, we present Relic, our first solution for retrospective lineage inference.

Relic infers the lineage of artifacts generated in data analysis workflows retrospectively,

without access to the underlying scripts or instructions that generated said artifacts. The

intuition underlying Relic is straightforward: artifacts that exhibit a higher similarity to

one another are more likely to have been derived from one another, in line with Occam’s

razor. This intuition follows from prior work exploring data versioning in such workflows [57,

106], as well as work exploring retrospective lineage in other settings, such as software

lineage inference [60]. However, the implementation of this similarity differs on the type

of operations employed. We consider scenarios that involve the manipulation of tabular data

using operations that encompass typical data integration, cleaning, analysis, and feature

engineering workloads—including operations that preserve one-to-one relationships between

rows and columns across artifacts (such as filters, projections, or pointwise edits), and those

that don’t (such as group-bys or pivots). Relic will help with dataset curation, finding

authoritative versions of a dataset, or forensic analysis of data recovered from a backup or

data dump. Our contributions are as follows:

• We formalize the problem of retrospective lineage inference, wherein we infer the lineage

graph of artifact generated as a result of data analysis operations. (Section 3.2).

• We introduce a novel characterization of artifact transformations based on the preser-

vation of column and row mappings before and after transformations. This is then used
15

to design similarity metrics and operation-specific detectors to infer workflow lineage

in a systematic manner as part of our solution, Relic (Section 3.3).

• Being a novel problem, with no standardized benchmarks or workloads, we design and

evaluate our technique on both real and synthetic workloads (Section 3.4), discuss

related work (Section 2.2), before wrapping up with the key takeaways and directions

for future work (Section 3.5).

3.2 Problem Definition

We are given a set of tabular artifact files, with no additional metadata, including versioning

or temporal ordering information available to us. Our task is to infer the underlying lineage

graph that describes the evolution of the files in the workflow.

3.2.1 Notation

Consider a set of n tabular artifact files F = {F1, . . . , Fn}. These files are assumed to belong

to a data science workflow, represented as a ground truth lineage graph W = (F , E), where

each edge (Fu, Fv) ∈ E is labeled with some operation o ∈ O, such that o(Fu) = Fv. . O

represents the set of all possible transformation operations in the setting under consideration

(such as pandas, R or SQL transforms). A special case is join (./∈ O), which associates

three artifacts together as Fr ./ Fs = Ft. This allows for two edges (Fr, Ft), (Fs, Ft) ∈ E to

be part of the same operation.

Within each file Fi, the tabular notation used in this paper is illustrated in Table 3.1,

consisting of n row ids RFi = {r1 . . . rn}, m column labels CFi = {c1, . . . , cm} and m × n

individual values in tabular form VFi =
{
v(c1,r1), . . . , v(cm,rn)

}
.

Finally, O, the set of operations used to transform these artifacts are listed in Table 3.2.

From our analysis of typical data analysis workflows in the wild (Section 3.4.1), we believe

16

Column Labels (CFi)
c1 . . . cm

R
ow

-I
ds

(R
F
i
)

r1 v(c1,r1) . . . v(cm,r1)
...

...
rn v(c1,rn) . . . v(cm,rn)

Table 3.1: Notation used to describe an artifact file Fi. The set of cell-values in this table is
denoted as VFi = {v(c1,r1) . . . v(cm,rn)}.

Operation Pandas Examples
Point Edits df.fillna(‘0’)
Row Selection df.iloc , df.loc, df.sample
Row Concatenation df3 = pd.concat([df1,df2])
Column Modifications df[[‘column1’, ‘column2’]], df.drop(columns=[’column1’])
Derived Column df[‘column2’] = df[‘column2’].apply(func)
Joins df3 = df1.merge(df2, on=‘keycol’)
GroupBy/Aggregation df.groupby([‘column1’ ...]).sum()
Pivot df.pivot(index=‘col1’, columns=‘col2’, values=‘col3’)

Table 3.2: Set of operations O under consideration, and example Pandas functions on a
dataframe (df).

this set covers a wide range of data analysis/transformation operations. While our technique

is optimized for these operations, Section 3.5 describes ways to extend this set to cover

additional operation types.

3.2.2 The Lineage Inference Task

Our task is formalized as follows:

Problem 1 (Lineage Inference). Given a set of artifact files F and the set of all possible

operations O, infer the un-directed workflow lineage graph edges E′, that most closely resem-

bles the ground-truth graph represented using lineage edges E, as measured by the precision,

recall and F1 score.

17

The ground truth graph is assumed to be a connected, directed acyclic graph (DAG),

commonly used to represent cycle-free2 data workflows. As a result, the ground truth graph

must have a minimum of (n−1) edges to be weakly connected and can have up to n(n−1)
2 edges

to remain acyclic. In our work, we choose to terminate our algorithm as soon as the graph

is connected with (n − 1) edges. Although the ground-truth lineage graph of the workflow

is directed, the directionality of certain operations may be impossible to disambiguate (e.g.,

a dropped column can be viewed as adding a new derived column in the other direction).

Note that the ground truth may also contain cycles, but for simplicity we target a DAG at

the cost of lower precision. Section 3.5 outlines how we can extend our framework to infer

directionality, operation type, and operation parameters as part of a larger lineage inference

task.

3.2.3 Types of Transformations

Group-By / Aggregation PivotPoint Edits

Inner-JoinAdd / Drop ColumnsAdd / Drop Rows

Column Modifications

Column Labels

Row IDs

Values

Changed Value

(a) Point Preserving Transformations (PPT) (b) Non- Point Preserving Transformations (NPPT)

Figure 3.3: Types of transformations and how row-ids, columns labels and values change
between these transformations.

We are primarily interested in recovering the lineage of artifacts produced during data

science, including data analysis, machine learning preparation, and data integration work-

2. In a retrospective setting, we are viewing a point-in-time snapshot of artifact files, and we cannot
observe any new mutations to an existing artifact, so we assume a cycle-free graph.

18

loads. Such workflows commonly contain spreadsheet-style editing operations performed at

the cell-level, or more complex operations such as pivots. The focus in this paper is Pandas,

but our techniques are generalizable to other frameworks. Our key insight in this work is the

categorization of transformations into two types: point-preserving, and non-point preserving.

The categorization helps us in inferring transformation edges while gradually building the

lineage graph.

An o(Fu) = Fv transformation results in a mapping of each of the source rows in RFu to

either 0, 1, or N rows in RFv . As an example, the column add/drop transformation, has a

1:1 mapping of rows from source to destination. In contrast, the group-by operation, which

aggregates multiple rows in the source to a single row in the target, results in an N:1 mapping

of rows from source to destination. This can be used as a basis for classifying different types

of transformations.

Point-Preserving Transformations: We define a point-preserving transformation (PPT)

as one which has a 1:1, 1:0 or 0:1 row mapping between source and destination artifacts.

This means that a destination row either exists as a modified version of an existing row in

the source (1:1), is filtered out (1:0), or is a new row(0:1). For example, in Figure 3.3a,

all the operations shown have a row-mapping between the source artifact and destination

artifact of either 1:0 or 1:1. PPTs provide a positional “anchor” to map individual cell values

across the transformation, allowing us to reason about the similarities between two artifacts

in a fine-grained, cell-level manner. Note that column additions and deletions are designated

as PPTs in our classification, and thus artifacts transformed via a PPT do not need to have

exactly matching schema.

Non-Point-Preserving Transformations: Transformations that have an N:1, 1:N or N:N

row mapping between source and destination artifacts are non-point preserving transforma-

tions (NPPTs). This means that a destination row represents either a collection of rows from

the source (N:1, in case of an groupby/aggregation), or a single row can be replicated (1:N,

19

in case of a join), or there may be no direct mapping between records (N:N such as pivots or

melts). NPPTs are harder to characterize as there is no obvious way to map values before

and after a transformation, which makes inferring the lineage of such operations difficult.

Figure 3.3b illustrates how the mapping of values across the transformation can vary. Note

that joins are a special case; in the case of a PK-FK join, one of the source artifacts (the

one with the primary key) may have a 1:1 row mapping, while the other artifact (with the

foreign key) may have a 1:N mapping.

3.3 Lineage Inference Technique

At the heart of the lineage inference problem is an edge selection problem from the space

of
(F

2

)
. Our methodology seeks to find the artifacts that are most similar to each other

first. We start by inferring minor point-preserving edits among artifacts that share the same

schema and then move on to identify more elaborate non-point preserving transformations.

We break down the lineage inference technique into the following steps:

• Initialize and pre-process the input artifacts; identify row and column mappings for all

artifacts, and cluster the artifacts by schema. (Section 3.3.1)

• Within each cluster, compute the pair-wise similarity of artifacts and place edges on

the most similar artifacts. (Section 3.3.3)

• Between clusters, find pairs of artifacts that may be lineage-linked using operation-

specific detectors and use them to bridge and merge disconnected artifacts. (Sec-

tion 3.3.4)

• Repeat the previous step until the generated lineage graph is a single, connected cluster

consisting of all artifacts, or the remaining edges are below some similarity/detector

threshold for consideration.

20

F1

F2

F3

F4
F5

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
nan

nan
2

2 4
1
3

i
1

nan
nan

2

2 4
1
3

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C
1
3

2
4

A B
0
1

i
1
2

C

Cluster 1

Cluster 4

Cluster 2

Cluster 3

(a) Input and clustering

F1

F2

F3

F4
F5

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
nan

nan
2

2 4
1
3

i
1
nan

nan
2

2 4
1
3

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C
1
3

2
4

A B
0
1

i
1
2

C

δcell(f1,f2)=0.75

δcell(f3,f4)=0.30

(b) Cell-level jaccard

F1

F2

F3

F4
F5

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
nan

nan
2

2 4
1
3

i
1
nan

nan
2

2 4
1
3

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C
1
3

2
4

A B
0
1

i
1
2

C δjoin(f2,f4,f5)=1.0

δjoin(f1,f3,f5)=0.3

(c) Join detector

F1

F2

F3

F4
F5

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
nan

nan
2

2 4
1
3

i
1
nan

nan
2

2 4
1
3

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C
1
3

2
4

A B
0
1

i
1
2

C

δgroupby(f3,f4)=1.0

(d) Groupby detector

F1

F2

F3

F4
F5

F6

1
3

2
nan

A B
0
1

i
1
3

2
nan

A B
0
1

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i

1
3

a
b

A C
0
1

i

3 d2

1
3

1
2

A C
0
1

i

1
nan

nan
2

2 4
1
3

i
1
nan

nan
2

2 4
1
3

i

1
3

2
4

A B
0
1

i
1
3

2
4

A B
0
1

i
1
2

C
1
3

2
4

A B
0
1

i
1
2

C
δpivot(f5,f6)=2.0

(e) Pivot detector

Figure 3.4: Running example for our lineage inference technique, showing edges added to
the inferred lineage graph

.
3.3.1 Initialization

To compare the cell values of two artifacts, we must first map the individual cell values

across artifacts using their row ids and column labels. Artifacts that have consistent row ids

and column labels can have their cell values compared easily. On the other hand, if rows are

re-ordered, or columns have been renamed or replaced, we will have to rely on more complex

mapping techniques as follows:

Recovering Column Mappings

Identifying column mappings across tables is an instance of the so-called schema matching

problem, for which many techniques have been summarized by Rahm et al. [81]. These

techniques typically exploit information from the schema (e.g., column name and column

type) or the content of these columns. In this work, we implement schema matching solely

21

based on the column name and column type. That is, when both the column name and

column type are the same, we claim that these two columns are matched, and we have found

this assumption to be sufficient for our setting.

Recovering Row Mappings

Pandas dataframes contain an explicit row-index by default and is typically the first column

when materialized to CSV. Many NPPTs, however, replace the existing row-index with

other values, which then requires additional effort to identify. One natural method is to

examine the uniqueness of column combinations (UCCs)—if the ratio between the value set

cardinality and the total number of values in the column is above some threshold, e.g., 0.9,

the column combination can be used as a primary key [52]. In the absence of an appropriate

primary key, we may have to rely on more complex record linkage techniques [19] which

may be computationally expensive. In our work, we assume the first column of an artifact

to be the index of the artifact (as is typically the case with pandas dataframes, emperically

shown in [102]), and if the row-indices of two artifacts do not share at least 50% of their

values, we re-index the artifacts to align them. In case there are no pairs of columns that

serve as an appropriate index, the artifact cells are compared in their physical, materialized

order, which we have also found to be useful in our setting.

Clustering

Once the row and column mappings are computed and verified among the set of input

artifacts, Relic clusters the artifacts by the exact column set, thereby restricting the initial

set of edges inferred to be among those artifacts that have the same set of column labels.

The clustering procedure is as simple as constructing a map from sets of column labels to

artifacts. This can be done by reading the column labels for each artifact and does not require

scanning any of the data values. As part of our running example, Figure 3.4a shows the

22

artifacts grouped into four clusters with column sets of {{A,B}, {A,C}, {A,B,C}, {2, 4}}.

3.3.2 Building the Lineage Graph

Once we have all the artifacts ready for pairwise comparison, we can start the inference

procedure (Algorithm 1). Starting from an edge-less graph consisting of all the vertices,

we begin by computing the pairwise similarity of all artifacts within a cluster. Since all

the artifacts within a cluster share the same schema, they may be related through point-

preserving transformations, and we use the techniques laid out in Section 3.3.3 to infer

their lineage. Once we have exhausted the search for edges within clusters, we can look

for the remaining edges between disconnected components. If there are no point-preserving

edges between artifacts above some threshold (say, εintra_cell within clusters and εinter_cell

between clusters), we then proceed to check for non-point preserving operations as outlined

in Section 3.3.4. This procedure is repeated until the entire graph is connected or there are

no remaining edges with similarity scores above some threshold.

Algorithm 1: InferLineage(F)
Input: Set of artifact files F
Output: W = (F , E) with lineage edges added

1 Initialize W ← (F , φ);
2 C ← cluster(F);
3 foreach Ci ∈ C do
4 W ←W ∪AddLineageEdges(W [Ci], δcell, εintra_cell)

5 W ←W ∪AddLineageEdges(W , δjoin, εjoin);
6 W ←W ∪AddLineageEdges(W , δcell, εinter_cell);
7 W ←W ∪AddLineageEdges(W , δcontain, εcontain);
8 W ←W ∪AddLineageEdges(W , δgroupby, εgroupby);
9 W ←W ∪AddLineageEdges(W , δpivot, εpivot);

10 return W

23

Algorithm 2:
AddLineageEdges(W , δdetector, εdetector)

Input: Partially connected graph W = (F , E),
Scoring / Detector Function δdetector,
Scoring / Detector Threshold εdetector
Output: W with detector lineage edges added

1 while W is not connected do
2 K ← components(W);
3 if δdetector = δjoin then

4 fx, fy, fz ← arg max
fx∈Ki,fy∈Kj ,fz∈Kk

x 6=y 6=z

{
δjoin(fx, fy, fz)

}
;

5 if δjoin(fx, fy, fz) ≥ εjoin then
6 Ē ← (fx, fz), (fy, fz);
7 else

8 fx, fy ← arg max
fx∈Ki,fy∈Kj

x 6=y

{
δdetector(fx, fy)

}
;

9 if δdetector(fx, fy) ≥ εdetector then
10 Ē ← (fx, fy);
11 if Ē = ∅ then
12 break;
13 else
14 W ← (F , E ∪ Ē);
15 return W ;

24

3.3.3 Inferring Point Preserving Transformations

We can represent the similarity between two artifact files Fu and Fv by looking at the cells

that are modified between them. Each cell v(ci,rj)
can be represented as the column label,

row id and value triple (ci, rj , vi,j). Two cells from two different artifacts are the same if and

only if they share the same column label, row id, and value.

1 5 9

2 6 10

d

e

3 7 11f

0 5 9

A B J

6 10

3 7 11

4 8 12g

A B C

𝐹1 𝐹2

2

f

d

h

Figure 3.5: Artifacts F1 and F2 compared at the cell-level. Based on our definitions, only
the cell values 3, 5 and 7 are in common between these two artifacts.

Cell-Level Jaccard Similarity

The cell-level Jaccard similarity is defined as the Jaccard similarity between set of cell values

VFi and VFj . Formally, we can compute δcell(Fi, Fj) as in Equation 3.3.1, where |VFi ∩ VFj |

is the number of common cells between Fi and Fj and |VFi ∪VFj | is the number of the union

of cells in Fi and Fj .

δcell(Fi, Fj) =
|VFi ∩ VFj |
|VFi ∪ VFj |

(3.3.1)

For the artifacts in Figure 3.5, the number of cells in common is 3, and the union is 18,

since we consider the cells in row h and Column J in F2 to be distinct from the values in

row e and column C in F2. Thus, δcell(F1, F2) = 3
18 ' 0.167.

25

Cell-Level Jaccard Containment Similarity

Certain operations (such as row sampling, concatenation, drop columns etc.) exhibit low

cell-level jaccard similarity, especially when one artifact is similar to a very small fraction

of the other. Consider the case of a sample operation that takes a 1 percent sample from

a larger artifact. Such an operation will only register a 1 percent similarity score using the

cell-level Jaccard similarity metric (Equation 3.3.1). However, in these cases each artifact

is fully contained in the other. We have found it to be useful to incorporate this reasoning

in our technique, by employing a containment score, described below (Equation 3.3.2):

δcontain(Fi, Fj) =
|VFi ∩ VFj |

min(|VFi |, |VFj |)
(3.3.2)

δcontain thus has a value between 0 (when there are no cells in common) and 1 (one of

the artifacts is fully contained in the other). When invoked, we find a pair of artifacts that

exhibits the highest containment score and add an edge connecting them to the inferred

lineage graph. For the artifacts in Figure 3.5, the number of cells in common is 3, and the

size of the smallest artifact is 9. Thus, δcontain(F1, F2) = 3
9 ' 0.333.

δcontain ≥ δcell by definition, and hence δcontain can produce a large number of false

positive edges, especially if there is an artifact that has its values contained in many other

artifacts. We hence always invoke the containment score only after we have exhausted all

δcell edges in the workflow. Computing δcell and δcontain are straight-forward. Given two

artifacts Fi and Fj , we first build a hash table with all cells in Fi, and then probe cells in

Fj using the built hash table. Thus, the time complexity for computing the cell-level delta

is O(|Fi|+ |Fj |), where |Fi| is the number of cells in Fi, i.e., |VFi |.

26

3.3.4 Inferring Non-Point-Preserving Transformations

Recall that NPPTs are transformations that contain 1:N, N:1 or N:N row mappings. Such

transformations are difficult to infer via PPT techniques. Our initial approach to infer

these transformation edges was to use a generalized similarity score that relied on value

containment of all columns between the source and destination artifacts, akin to a dataset

similarity search implemented in [34]. This approach was promising for some operations

like groupbys, but it did not perform adequately in case of joins and pivots. We, therefore,

designed operation-specific detectors. These detectors look for value containment across cell

boundaries in specific patterns indicative of certain operations. We shall now describe the

design of three such detectors, namely the join, groupby and pivot detectors.

The Join Detector

The join detector allows us to locate and infer join operations in the workflow, wherein two

source artifacts Fr and Fs are joined on a common key to produce a destination artifact Ft3.

A natural join can be viewed as a column concatenation between different artifacts that

share a common key. We design our detector around finding value containment from each

side of the join, in a manner that exhibits coherent group containment with the join key,

similar to a technique used in [62]. Unlike the other detectors mentioned in this paper, the

join detector works on triples of artifacts rather than pairs (Line 4 in Algorithm 2); Given

some triple (Fi, Fj , Fk), the join detector assigns a score between 0 and 1 that indicates the

likelihood that two of the three artifacts were naturally joined to create the third, as follows:

1. We first determine the two source artifacts and the destination artifact of a possible

join by checking the column labels. We assign the source labels Fr, Fs and destination

3. We concentrate on natural joins between two source artifacts Fr and Fs to produce a destination
artifact Ft. We additionally assume that the join be performed on a single key column that is common in the
source artifacts and present in the destination artifact. These assumptions were made to reduce the search
space for our detector. They can be relaxed, but the runtime performance and accuracy will be affected.

27

label Ft to the artifacts Fi, Fj , Fk such that the following conditions are satisfied:

(
CFr ∪ CFs

)
⊇ CFt (3.3.3a)

Crt =
(
CFr ∩ CFt

)
− CFs 6= ∅ (3.3.3b)

Cst =
(
CFs ∩ CFt

)
− CFr 6= ∅ (3.3.3c)

These conditions can be used to figure out the source and target assignments for a

possible natural join. The target artifact Ft must not get columns from other sources

(Equation 3.3.3a) and we verify that there are non-null column contributions (Crt and

Cst) from either source artifact (Equations 3.3.3b, 3.3.3c). The order of the source

artifacts does not matter for the detector, so Fs and Fr are interchangeable. No

assignment of source and target artifacts satisfies these conditions, then we stop and

assign δjoin(Fi, Fj , Fk) = 0, and Algorithm 2 can move on to the next triple to be

evaluated.

2. Compute the join score for this triple δjoin(Fr, Fs, Ft) by solving the following opti-

mization problem (Equation 3.3.4):

28

δ
join

(Fr, Fs, Ft) = arg max
k∈K

{
∆

contain
(SCr, TCr)× ∆

contain
(SCs, TCs)

}
(3.3.4a)

where K = (CFr ∩ CFs ∩ CFt)

J =
{
πkVFr ∩ πkVFs ∩ πkVFt

}
SCr = πCrt

(
σj∈J (VFr)

)
; SCs = πCst

(
σj∈J (VFs)

)
(3.3.4b)

TCr = πCrt

(
σj∈J (VFt)

)
; TCs = πCst

(
σj∈J (VFt)

)
(3.3.4c)

s.t. πkVFr ∩ πkVFs ⊇ πkVFt (3.3.4d)

where ∆
contain

(X, Y) =
|X∩Y |
|Y | , the jaccard containment of the set Y in in set X, and σ

and π are the selection and projection operations in relational algebra, respectively.

The optimization problem in Equation 3.3.4 tries to find the best join key k ∈ K such

that the product of the value containment of the source column contributions from either

source artifact (SCr, SCs) is maximized in the target (TCr, TCs). If the final join score is

above some threshold (εjoin = 0.9) and is the triple with the maximum join score at that

instant, then the edges (Fr, Ft) and (Fs, Ft) can be added to our lineage graph. Figure 3.4c

illustrates the join detector invoked on our running example and scores the ground-truth

join with δjoin(F2, F4, F5) = 1.0, as it satisfies all the conditions stated above. In case there

are ties for the maximum join score, we break the tie as described in Section 3.3.5.

The Groupby Detector

The Groupby detector works by identifying a groupby-aggregate operation that transforms

an artifact Fu to produce Fv by selecting some set of columns Cg to form groups and another

set of columns Ca to compute some form of aggregate over. We can check for the presence of

29

a group-by via a few identifying characteristics; The grouped columns Cg will form a key in

the destination artifact and should be contained within the destination graph. Our groupby

detector works as follows:

1. Check for schema compatibility. Let C = CFu∩CFv 6= ∅. If C = ∅, then δgroupby(Fu, Fv) =

0.

2. Assign source (Fs) and destination (Fd) labels to Fu and Fv based on the number of

rows in each, such that RFs > RFd . If RFs = RFd then δgroupby(Fu, Fv) = 0, as we

assume a groupby/aggregation operation always results in a contraction of the number

of rows in a table.

3. Partition C into two disjoint sets, the grouped columns (Cg) and the aggregate columns

(Ca). The grouped columns should exhibit high value containment with the corre-

sponding source columns and should form a unique key in the destination artifact,

while the aggregate columns should exhibit low containment. The optimal partition

can be found by considering the value containment and keyness constraints as described

below:

arg max
Cg⊂C

∆
contain

(
πCg

(Fd), πCg
(Fs)

)
(3.3.5a)

s.t. πCg
(Fs) ⊇ πCg

(Fd) (3.3.5b)

πCg
(VFd)∣∣RFd∣∣ = 1.0 (3.3.5c)

πCg
(VFs)∣∣RFs∣∣ < 1.0 (3.3.5d)

Equation 3.3.5a seeks to find the optimal group/aggregate column partitioning by

30

finding a column or group of columns in the source that is most contained in the

destination. This is subject to additional conditions that the destination values for

that column must be fully contained in the source (Equation 3.3.5b). The constraints

also specify keyness conditions in the destination artifact (Equation 3.3.5c), which are

not in the source (Equation 3.3.5d). If any one of these conditions is not met, then the

groupby score for this pair δgroupby(Fu, Fv) = 0.

4. If all the conditions above above are met, the group-by score is computed as:

δ
groupby

(Fs, Fd) =
(
|Cg| −

∣∣∣πCg
(Fs)− πCg

(Fd)
∣∣∣)

−
(
1−∆jaccard(CFs , CFd)

) (3.3.6)

where ∆
jaccard

(X, Y) =
|X∩Y |
|X∪Y | , the jaccard index of the set Y in in set X.

Equation 3.3.6 weighs valid multi-column groupbys higher than those using single columns

and penalizes for missing group values that should be present in a groupby and accounts for

a column label difference between the source and destination artifacts. Any pair that scores

above a threshold (εgroupby = 1.0) is considered to be a possible groupby operation. In our

experiments, we found this threshold to be satisfied a large number of artifact pairs and use

a tie-breaker mechanism to decide which edges to include in the final lineage (Section 3.3.5).

Figure 3.4d illustrates an example of the groupby detector invoked on our running ex-

ample, and scoring the ground-truth groupby operation with δgroupby(F3, F4) = 1.0. You

may also note that the other artifacts in the workflow score 0 with the groupby detector as

it does not satisfy our row contraction and schema compatibility requirements.

31

The Pivot Detector

In a pivot operation, there are three types of columns used as input parameters; the first is

the destination index column (Ci), another the new set of column labels in the destination

(Cc), and the third, is the values in the destination (Cv). Our detector needs to identify

these three columns individually. Pandas additionally supports pivots with aggregations,

allowing us to ignore the value column (Cv) if we do not find a good match.

1. First, verify that the schema are compatible for a pivot between Fu and Fv. The set of

row labels of the pivot destination should be in common with values in some column

of the source. The artifact whose row set contains such values should be assigned to

Fd and the artifact containing the matching column should be assigned Fs.

2. Determine Ci, Cc, Cv as follows:

IC = arg max
Ci∈CFs

∆
contain

(
πCi

(VFs), RFd
)

(3.3.7a)

CC = arg max
Cc∈CFs

∆
contain

(
πCc

(VFs), CFd
)

(3.3.7b)

V C = arg max
Cj∈CFs

∆
contain

(
πCv

(VFs), VFd
)

(3.3.7c)

s.t. πCi
(VFs) ⊇ RFd (3.3.7d)

πCc
(VFs) ⊇ CFd (3.3.7e)

πCv
(VFs) ⊇ VFd (3.3.7f)

Ci 6= Cc 6= Cv (3.3.7g)

Ci, Cc 6= ∅ (3.3.7h)

3. If all the conditions above are met, and we identified Ci, Cc and, optionally Cv, we

32

assign a final pivot score δpivot as follows:

δ
pivot

(Fs, Fd) = (IC × CC) + V C (3.3.8)

The optimization problem in Equation 3.3.7 aims to find source column assignments for

Ci, Cc and Cv to maximize their individual containments in the target. The final pivot score

is then computed as a product of the value containments of Ci and Cc in the target, with

the value containment of Cv added to the final score. Note that Cv may be empty, as certain

pivot operations may include an aggregation for the value column, leading to little or no

containment. Figure 3.4e illustrates an example of the pivot detector invoked on our running

example, and scoring the ground-truth pivot operation with δpivot(F5, F6) = (1.0∗1.0)+1.0 =

2.0, which is the highest pivot score among all other possibilities. F3 and F4 are not possible

pivot sources since they do not contain a column that can be compatible for the column

label containment Cc requirement (Equation 3.3.7e). δpivot(F2, F6) = (1.0 ∗ 1.0) + 0 = 1.0

since there is no compatible column for the value column Cv.

3.3.5 Breaking Ties when Selecting Edges

If multiple artifact pairs present the same maximum similarity score when building out the

lineage graph, we break ties as follows:

• Cell-level Jaccard Score: Choose the pair with the maximum number of overlapping

cells.

• Cell-level Jaccard Containment Score: Choose the pair with the least difference

in the number of rows.

• Join Detector: Attempt to replay the join using the key identified for the artifact

triple. We compute Fr ./k Fs = Ft
′ and Fs ./k Fr = Ft

′′. The final tie breaker

33

score for the join detector is the maximum cell-level Jaccard similarity between the

replayed joins (F ′t and F ′′t) and the join destination artifact Ft, i.e. δjoin_tb =

max
(
δcell(F

′
t , Ft), δcell(F

′′
t , Ft)

)
. Select the triple with the highest replay score.

• Groupby Detector: Attempt to replay the group-by using the detected group-

columns Cg over a set of aggregate functions4. Compute the cell-level Jaccard score

between the replayed results and the target artifact and compare the max scores to

select one groupby edge to include in the lineage.

• Pivot Detector: Replay the pivot operation and compare with the target dataframes

and select the edge with the best replay similarity score similar to the groupby and

join detectors above.

3.4 Experimental Evaluation

Our evaluation methodology has been designed with the following goals in mind:

• Overall Accuracy: How accurate are the inferred lineage graphs are compared to the

ground truth?

• Variation with Workflow Configuration: How does the accuracy change with

workflow configuration (number of artifact files, size of the original artifacts, and num-

ber of operations between materialization of artifact files)?

• Individual Detector Performance: What were the edge contributions from each

detector (cell, containment, join, groupby etc.) and how accurate were they?

• Runtime Performance: What is the overall time taken? What part of our technique

takes the longest time to run?

4. We used min, max, sum, mean and count as the aggregate functions

34

3.4.1 Datasets Used

To the best of our knowledge, there are no standardized data analysis benchmarks or work-

loads that can be used for evaluating our lineage inference technique. Hence, we rely on a

combination of workflows derived from Jupyter notebooks published as a corpus [87] and

synthetically generated workflows.

Workflows in the Wild

To evaluate our technique on realistic workloads, we use a variety of workflows sourced from a

notebook corpus [87], AzureML, and Kaggle. Jupyter notebooks are used extensively for data

analysis and exploration, and the linear nature of notebook code allows us to automatically

execute code, observe outputs, and construct ground-truth lineage in a semi-automatic fash-

ion [82]. However, as flexible as Jupyter notebooks are, they are also notoriously messy [87],

as they primarily contain experimental, ad-hoc, and exploratory code that may be manip-

ulated and executed out of order. Additionally, the notebook corpus does not contain any

associated metadata or contextual information. We sifted through the corpus to find a sam-

ple of notebooks that primarily use pandas for data preparation, load data from valid public

URLs, generate at-least 5 dataframes, and belong to a single workflow that deals with data

analysis or ML prep (as opposed to homework assignments or tutorial/example notebooks).

These notebooks were then executed, verified, and hand-annotated to produce the artifact

files and ground truth lineage graphs. These workflows are outlined in Table 3.3.

Synthetic Workflow Generator

Our synthetic workflow generator can generate pandas dataframes using the generation pa-

rameters listed in Table 5.3. To generate realistic datasets, we used the Faker [30] python

library to generate values in different types of columns. Columns are categorized into different

types, i.e., numeric, string, group-able. Group-able columns typically have lower cardinally
35

Name Description (|F|, |RF0 |, |CF0 |)
agri-mex Data Analysis Workflow* (9, 1300, 9)
churn Computing Customer Churn* (5, 3333, 21)
githubviz Github Repository Visualizations* (6, 8697,5)
london-crime Analysis of Crime in London* (11, 446975, 5)
nyc-cab Analysis of Cab Rides in NYC* (17, 150000, 21)
nyc-noise Analysis of 311 noise complaints* (24, 136080, 51)
nyc-property Analysis of NYC property taxes* (15, 13060, 11)
prop-64 California prop-64 donors* (10, 56379,8)
retail Bike rental ML prep† (21, 17379,16)
titanic Titanic survivor ML prep‡ (13, 891, 12)

Table 3.3: List of workflows obtained from Jupyter corpus(*), Azure ML(†), Kaggle(‡).

(such as country or state), which allow for meaningful group-by operations to be performed.

Base artifacts are artifacts that do not have any ancestors in the workflow. Based on the

statistics of scraped dataframes [87], we vary the cardinality of columns for each of the base

tables as a function of the row-size of the table, to capture the properties of tables found “in

the wild”.

After generating a base artifact with the specified number of rows and columns, a syn-

thetic workflow is generated by perturbing the artifact using a randomly selected pandas

operation5 with random parameters. For example, a random column may be selected and

a random value within that column maybe selected to be replaced with a new one. Our

generator performs quality checks to keep the operations meaningful (e.g., it does not gen-

erate empty tables or tables with NaNs, we also limit the number of pivots and groupbys

performed in a chain). The outdegree of each artifact in the synthetic workflows is also

carefully controlled in order to generate a tree-like workflow that is roughly between straight

line path and a star-like workflow.

5. The operations are point-edits, row sampling, column drops, new derived columns, groupby, merge and
pivot

36

3.4.2 Configurations to be Evaluated

We have tested the following configurations in this paper:

• cell: Constructs a spanning tree consisting of edges in decreasing order of δcell, with

no threshold on the lowest edge score.

• cell+detectors: Constructs a spanning tree consisting of δcell edges followed by δjoin,

δgroupby, δpivot edges, each in decreasing order. We use εcell = 0.1, εjoin = 0.9,

εgroupby = 1.0 and εpivot = 0.99 to determine the minimum edge inclusion threshold

for each detector.

• Relic: Constructs a tree as defined in Algorithm 1. Artifacts are first clustered by

schema, then δcell edges are added within each cluster. This is followed by δjoin,

δcontainment, δgroupby, δpivot edges. We use εintra_cell = εinter_cell = 0.1, εcontain =

0.99, εjoin = 0.9, εgroupby = 1.0 and εpivot = 1.0. This is the finalized configuration

for Relic.

• column: Constructs a spanning tree consisting of edges in decreasing order of column-

level jaccard similarity (δcolumn) edges (as defined in Equation 3.4.1), with no threshold

on lowest edge score.

δcolumn(Fi, Fj) =

∑
k∈CFi

∩CFj

(
∆

jaccard

(
πCk

(VFi), πCk
(VFj)

))
|CFi ∪ CFj |

(3.4.1)

The column configuration is adapted from the most closely related work at the time of

writing, Aurum [34], which is used for dataset similarity search. δcolumn is a column-oriented

similarity function that returns the average column jaccard similarity between two artifacts.

37

Aurum uses approximate similarity search techniques such as LSH [66], trading accuracy for

a reduction of search space, which we have not implemented in the interest of fairness to the

column configuration.

3.4.3 Overall Accuracy

We first evaluate how effective Relic and other configurations are at recreating lineage for

a set of artifacts. Figure 3.6a shows our results for the 10 real workflows described in Sec-

tion 3.4.1. The average F1 score of our technique Relic across all the real workflows is

around 0.90. We notice that the column configuration performs quite well in a number of

workflows (agri-mex, githubviz, nyc-cab), but fails to produce sufficiently good results

for other workflows. Specifically, nyc-noise contains multiple groupby and pivot oper-

ations that are better handled in Relic via the respective detectors than the generalized

column baseline. Similarly, nyc-property contains sample and concat operations that were

handled by the clustering and containment scoring in Relic well. Relic’s performance on

retail highlights the importance of clustering; the retail workflow consists of multiple

feature selection and sampling, as well as test/train splits, causing erroneous edges to be

inferred between feature splits in the baseline configurations (which did not perform the

initial clustering).

Finally, churn and titanic are the primary outliers in terms of accuracy; this can be

attributed to a few operations that are not supported, with Relic such as crosstab, and

value scaling/normalization. Relic still infers the lineage correctly for the rest of the edges

in those workflows.

Figure 3.6b illustrates the accuracy of our method on synthetic workflows with varying

number of artifacts, rows, and columns. For each configuration, we generated ten random

workflows. The F1 score Relic is favorable with an average score of ∼ 0.91, and is the best

performer on average for all the workflow configurations. Overall, Relic is able to recover

38

ag
ri-

m
ex

ch
ur

n

gi
th

ub
vi

z

lo
nd

on
-c

rim
e

ny
c-

ca
b

ny
c-

no
ise

ny
c-

pr
op

er
ty

pr
op

64
-n

ew

re
ta

il

tit
an

ic

Workflow Name

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

cell
cell+detectors

RELIC
column

(a) Real Workflows

0.6

0.8

1.0

F1
 S

co
re

artifacts = 20 | columns = 10 artifacts = 20 | columns = 20

10
0

10
00

10
00

0

10
00

00

Rows

0.6

0.8

1.0

F1
 S

co
re

artifacts = 50 | columns = 10

10
0

10
00

10
00

0

10
00

00

Rows

artifacts = 50 | columns = 20

cell
cell+detectors

RELIC
column

(b) Synthetic Workflows. Each bar represents the
mean F1 score of 10 separate workflows generated
using the (artifact, column, row) configuration.
Error bars indicate standard deviation.

Figure 3.6: Lineage recovery accuracy (F1 Score) for the workflows described in Section 3.4.1

lineage for a wide variety of real and synthetic workflows with reasonable accuracy. The

addition of clustering and specialized detectors allows Relic to infer edges more accurately

than the other methods.

3.4.4 Individual Detector Performance

We now assess the contributions of the individual detectors towards our overall accuracy.

Since each stage of Relic uses a different similarity score or detector, we label edges as

being inferred at that specific stage, using a specific detector. Grouping the inferred edges

by detector, we can compute the detector-specific precision and recall, presented in Table 3.4.

Note that the edges under consideration at each stage decrease as the graph is built, since

we add edges between pairs (or triples) of disconnected components. We see the precision

of the individual stages are quite good, with groupby and pivot detectors having the lowest

precision. We also see that cell level detectors pick up a majority of the edges with a recall

rate of around 0.65. The recall scores for δcontain are low as well, as this detector is invoked
39

after δcell and δjoin detectors to capture sample and concat-style operations, which is a

small fraction of the total edges in the workflow.

Score / Detector real synthetic
precision recall precision recall

δcell 0.96 0.64 0.95 0.65
δjoin 1.00 0.86* 0.99 0.99*
δcontain 1.00 0.05 0.67 0.02
δgroupby 0.83 0.83* 0.69 0.37*
δpivot 1.00 0.67* 0.38 0.32*
Total 0.92 0.89 0.87 0.87

Table 3.4: Individual Stage Performance in Relic. The ground truth edge space is all edges
in the workflow, except for (*), which indicates the recall score specific to the edges for which
that specific detector was designed for.

Additionally, we found that the groupby and pivot detectors often produce an "equiv-

alent edge" for that operation, which is the same operation applied to a different source

dataframe to generate the same result. This is plausible since we found that for every syn-

thetically generated artifact produced by a groupby or pivot in the ground truth, there are,

on average, approximately 2 alternate groupby sources and 6 alternate pivot sources that

could have produced the same result. If these “equivalent-edges” are taken into considera-

tion, our synthetic workflow (precision, recall) numbers improve significantly to (0.92,0.50)

for the groupby detector and (0.99,0.84) for the pivot detector. Thus, the stage ordering and

thresholds used in Relic provides good opportunities for each of the detectors to find the

respective edges, and is reflected in the stage-wise performance metrics presented.

3.4.5 Time to Infer Workflows

We empirically show how Relic scales in terms of wall-clock time. Time-to-infer in our con-

text includes the wall-clock time to load all the artifact tables to memory, perform clustering,

compute pair-wise similarity scores and run the individual detectors. All of the experiments

were run on a desktop with a Intel Core i7-8700K CPU, 16 GB of RAM and SSD storage.

40

1000

2000

3000

239 409

2569

475

ag
ri-

m
ex

ch
ur

n

gi
th

ub
vi

z

lo
nd

on
-c

rim
e

ny
c-

ca
b

ny
c-

no
ise

ny
c-

pr
op

er
ty

pr
op

64
-n

ew

re
ta

il

tit
an

ic

0

20

40

60

80

100

Ru
nt

im
e

(S
ec

on
ds

)

2 1 3 8 10 12

00_load
01_pairwise_cell
02_pairwise_cell_containment
03_clustering
05_intra
06_join
07_inter
08_groupby
09_pivot

(a) Real Workflows

10
0

10
00

10
00

0

10
00

00

Rows

0

100

200

300

400

500

600

700

Ti
m

e
(s

ec
on

ds
)

35 22
64

544

20 Artifacts | 10 Columns

10
0

10
00

10
00

0

10
00

00

Rows

42 37

126

590

20 Artifacts | 20 Columns

(b) Synthetic Workflows

Figure 3.7: Time to run the lineage inference technique, broken down into individual stages

Figure 3.7 breaks down the time-to-infer using Relic for the real and synthetic workflows

under consideration. Our method scales in time linear to the table size and quadratic to

the number of artifacts, due to the increase in the number of pairwise similarities that need

to be computed. The join detector forms the bulk of the timing breakdown, especially for

larger workflows, as the Join detector looks at artifact triples and is thus cubic in time com-

plexity. The time taken by individual detectors is dependent on the number of components

that remain to be connected at the instant the detector is invoked. Small workflows such as

agri-mex, chrun, githubviz, nyc-property, pro64-new and titanic have their workflows

inferred within 15 seconds, making interactive usage of Relic plausible. london-crime,

nyc-cab, nyc-noise and retail all have large artifacts and multiple tied joins and group-

bys, which contributes to the long time taken by those detectors. We note that sampling and

approximate matching techniques (such as LSH [34, 66]) may be useful in reducing artifact

scan sizes- and pairwise comparison overheads, and is something we plan to explore in future

work.

41

3.5 Conclusions and Future Work

In this paper, we introduced the problem of retrospective lineage inference and outlined a

technique that allows us to recover the lineage of artifact files produced from data analysis

workflows. Relic produces a lineage graph that closely represents the ground truth lineage;

all while relying solely on the data present in the files. Our approach differentiates between

two types of transformations (PPT and NPPT), and we use different similarity scores and

detection techniques for each. Our technique was evaluated against real workflows derived

from Jupyter notebooks, as well as synthetically generated workflows. We can recover lineage

with an F1 score of approximately 0.90 and 0.91 for real and synthetically generated workflow

respectively.

Apart from pandas, we believe that Relic can be extended to alternatives such as SQL

and R. To improve accuracy and support a wider variety of operations, new detectors can

be constructed (such as normalization, scaling, flatten, melt, etc.). Once the lineage graph

is constructed, directionality may be inferred, and techniques from query synthesis [12] can

be used to infer the exact operation used to generate a destination artifact from a source

artifact, providing a more complete picture of the workflow lineage.

3.6 Relaxing Relic’s Assumptions

As we saw in Chapter 3, the Relic system is designed to work with a single workflow. In

this chapter, we relax this assumption and show how Relic can be extended to support

multiple workflows where the artifacts belonging to multiple workflows are stored in the

same location. We also show how Relic can be extended to support workflows with different

materialization rates. Finally, we show how Relic can be extended to support workflows

with unmatched schemas. We evaluate the performance of these extensions using a set of

synthetic workloads.

42

3.6.1 Effect of Materialization Rate on Accuracy

1 2 4 8
Materialization Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

F1
 S

co
re

Figure 3.8: Effect on materialization rate on Accuracy. Each bar represents the average of
5 workflows generated using 50 operations with a base table size of 1000x20. Error bars
represent the standard deviation.

In addition to our overall results, we would like to see what effect the materialization

rate has on accuracy for Relic. Artifacts that are materialized less frequently should exhibit

less similarity and may affect many of the conditions that we use in our NPPT detectors,

impacting accuracy. Setting a fixed number of operations, rows, and columns (50,1000,20),

we vary the materialization rates from 1 (which generates an artifact after every operation)

and 8 (which generates an artifact after every eight operations). We refrain from generating

join operations in this experiment as it is hard to keep the number of artifacts fixed as a

join requires two inputs. Figure 3.8 plots the average F1 score for each materialization rate.

We see that as the materialization rates increase, the accuracy of our technique decreases,

especially for non-point preserving operations, as the detectors may not correctly capture

the containment metrics that we target when several operations are stacked upon each other

before an artifact is materialized. However, even with four operations between materializa-

tion, we have a reasonable accuracy range, which suggests that Relic could be used in more

general lineage recovery scenarios.

43

3.6.2 Unmatched Schema

Relic’s similarity metrics and detectors heavily rely on schema-matched and row-matched

artifacts; Within our pandas workflows, we leaned on the availability of consistently named

columns and indices that are matched for accurately computing scores such as the δcell. This

is not always true; columns can be arbitrarily renamed, rows can be sorted and indices can

be dropped. For Relic to be useful in arbitrary data-lake environments, we will need to

include some form of schema matching to allow for these deviations from our assumptions.

Schema Matching Valentine [63] is the most-up-to-date benchmarking survey of the state

of the art methods in schema matching, and an implementation was readily available for

experimenting with pandas dataframes[80]. Our initial experiments have shown that schema-

based methods (column names, types and relations) are strike a good balance between speed

and accuracy for the retrospective lineage inference application. Fig 3.9 shows the mean F1

accuracy of schema matching against the synthetic dataset for 4 different schema matching

systems for a sample of synthetically generated workflows, organized by operation type:

• coma: COMA[27] combines multiple schema-based matchers. Schemata are repre-

sented as rooted directed acyclic graphs, where the associated elements are graph

nodes con- nected by edges of different types (e.g. containment). The match result is

a set of element pairs and their corresponding similarity score.

• cupid: Cupid[68] is a schema-based approach. Schemata are translated into tree struc-

tures representing the hierarchy of different elements (relations, attributes etc.). The

overall similarity of two elements is the weighted similarity of i) Linguistic Matching

and ii) Structural Matching.

• jlm: A naive instance-based schmea matcher that uses jaccard-levenshtien distance of

column pairs, as implemented in [80]

44

Rows Matcher assign dropcol groupby merge pivot point_edit sample

100

COMA 1.83 2.00 2.01 1.88 1.92 1.89 1.90
CUPID 915.60 766.37 644.77 688.76 438.85 847.55 1044.25
JLM 1.25 1.43 0.28 1.82 0.04 1.15 0.77
SF 1.08 1.00 0.61 1.31 0.41 1.02 1.09

1000

COMA 2.34 2.09 2.10 2.35 2.04 2.26 1.99
CUPID DNF DNF DNF DNF DNF DNF DNF
JLM 11.33 8.49 5.35 17.73 0.06 6.03 5.18
SF 1.89 0.77 0.60 1.81 0.84 0.79 0.72

10000

COMA 1.78 1.70 1.76 1.85 1.99 1.78 1.63
CUPID DNF DNF DNF DNF DNF DNF DNF
JLM 31.97 15.26 0.77 110.79 0.84 15.93 11.89
SF 0.45 0.37 0.45 1.47 4.64 0.45 0.47

50000

COMA 2.67 2.45 2.49 3.33 9.59 2.43 2.37
CUPID DNF DNF DNF DNF DNF DNF DNF
JLM 215.28 311.20 77.05 2109.40 11.76 207.48 134.31
SF 1.66 1.21 0.96 2.40 33.19 1.08 1.75

Table 3.5: Mean run-time (in seconds) to infer the schema among a single pair of tables.
Results are organized by table size, schema matcher and operation. DNF indicates that the
matcher took longer than 3600 seconds to run.

• sf : Similarity Flooding[69] is a schema- based matching approach that relies on graphs,

and outputs correspondence between any kind of elements (relations, attributes, data

types) of two given schemata.

Figure 3.9: Mean F1 score accuracy of various schema matching techniques grouped by
operation type for different synthetic workflows. All of the techniques failed to produce a
schema match for the pivot operation. Error bars indicate standard deviation.

Table 3.5 shows the number of seconds elapsed when inferring the schema between a

single pair of artifacts organized by table size and operation. Our initial results show that

Similarity Flooding (sf) is the most promising in terms of both accuracy and performance
45

for our application. We plan to further experiment with this technique to find its accuracy

among a broader set of operations and within multiple workflows.

We can now show the impact of using the Similarity Flooding schema matching tech-

nique on the overall Relic accuracy. For this experiment, we have randomly selected 5

workflows from Section 3.4.1, and altered the schema of all the artifacts as follows. First,

we randomly select 10% of column labels that appear in more than one workflow. For each

of occurrence of a selected column label in a workflow, we perturb the column label with

a 40% probability. For labels that are perturbed, we generate a new label with 10% of the

label’s characters changed. For example, the column label zip_code appears in 20 different

artifacts and was chosen to be altered; as a result eight occurrences of this attribute change

their label to bip_coda. In Figure 3.9, we show the results of Relic on the original (un-

perturbed workflow), Relic run with the similarity flooding schema matcher implemented

in Valentine [63], as well as Relic without the schema matching step. The schema matcher

was run on every pair of artifacts prior to running any of the similarity functions and de-

tectors. Relic manages to perform respectably, indicating the viability of our approach

even in challenging lineage reconstruction scenarios. Of note is the impact on runtime; The

similarity flooding matcher adds ∼ 1 second of run-time for every pair of artifacts that needs

to be schema matched. For example, (50,100,20) configuration in Figure 3.9 takes roughly 5

minutes to infer lineage without schema matching, but the runtime increases to 30 minutes

with the added schema matching step. Further optimizations such as the implementation

of a mismatched column threshold before invoking the schema matcher could potentially

reduce the impact of this step.

3.6.3 Multiple Workflows

We evaluate the efficacy of Relic in inferring lineage in a data-lake style setting with arti-

facts from multiple workflows mixed together in the same directory. Our first mixed workflow

46

Configuration #Artifacts F1 Cross
Score Workflow

FPs

real_world 135 0.926 0
µ = 0.1 2156 0.864 0
µ = 0.2 2376 0.846 0
µ = 0.5 2249 0.824 2
µ = 0.75 2253 0.818 5

Table 3.6: F1 score and cross-workflow false positive edges for Relic on multiple workflows.

(real-world) consists of all 135 artifacts from the workflows in the wild (Section 3.4.1). We

found Relic to perform well on this mixed workflow set with an F1 score of 0.926 (Ta-

ble 3.6), owing to the diverse nature of the workloads and lack of shared artifacts and schema

between them. Thus, evaluating Relic in data-lake style setting requires generating mul-

tiple synthetic workflows with controllable schema overlap, allowing us to emulate differing

data reuse and similarity levels.

To synthesize a specific data lake with n workflows, we first generate s distinct seed

workflows using the techniques described in Section 3.4.1. We then generate n−s overlapping

workflows in which every base artifact has c columns that overlap with some randomly

selected seed workflow. c is chosen at random from a Gaussian distribution N = (µ, σ2). We

set n = 100, σ = 0.1, s = 25 and vary µ from 0.1 to 0.75 to generate four different synthetic

data lakes with increasing schema overlap.

Table 3.6 shows the performance of Relic on these multiple workflows. In the synthetic

data lakes, we observe that as the column overlap (µ) increases, we find a reduction in accu-

racy and a slight increase in cross-workflow false positive edges (Cross Workflow FPs), (i.e.,

false-positive edges inferred by Relic which cross the original ground truth workflow bound-

aries). Here we find that Relic’s performance degrades as the datasets overlap, but suggests

that Relic can be used in a multi-workflow data-lake environment to help reconstruct the

lineage of a data repository or at least help in clustering artifacts by workflow.

47

CHAPTER 4

SCALING RELIC

In this chapter, we will discuss the use of sketching to generate a suitable index to answer

lineage queries. Exploring and finding relevant datasets from a data lake for data analysis,

wrangling or machine learning tasks has been often-cited as a time-consuming process [83].

Most work on data lake discovery has focused on helping users tables that are joinable [17,

33, 113] (which contain a common key column to augment the query table with additional

columns via a join operation) or unionable [17] (contain additional rows, with the same set

of columns, so that the dataset can be extended). Given the size and complexity of typical

data lakes, most prior work rely on sketching (such as Minhashes) and indexing (such as

LSH) techniques to reduce the O(n2) pair-wise comparison complexity down to a smaller

candidate set of tables, which are then ranked and presented to the user as potential joinable

or union-able table pairs. In this we work, we seek to extend the class of queries argue that

similar sketches and indexes can be constructed to answer a large set of queries, related to

table lineage. Given a data lake which consists of D tables, consider the following query

scenarios:

experience_level job_title salary_in_usd country remote_ratio

Senior ML Engineer 192600 US 100
Mid Data Analyst 50000 Spain 100
Senior ML Engineer 66265 India 0
Mid Data Analyst 32974 Australia 100
Senior Data Engineer 25000 US 100

Table 4.1: An Example Table R

Example 1. GroupBy Source Query: A user is given a query table TQ, which consists

of some unknown source table TX ∈ D that has been grouped by a set of columns CG, with

another set of columns CA having an aggregation function agg(x) applied against each group.

The user is now tasked to find the TX , in order to explore other groups C ′G and/or apply
48

country gdp

Australia 1.3 trillion
India 2.7 trillion
Spain 1.3 trillion
US 21.0 trillion

Table 4.2: Example Table S

experience_level job_title salary_in_usd country remote_ratio gdp
Senior ML Engineer 192600 US 100 21.0 trillion
Mid Data Analyst 50000 Spain 100 1.3 trillion
Senior ML Engineer 66265 India 0 2.7 trillion
Mid Data Analyst 32974 Australia 100 1.3 trillion
Senior Data Engineer 25000 US 100 21.0 trillion

Table 4.3: Example Table T, constructed by joining R and S on the column country

experience_level job_title salary_in_usd
Mid Data Analyst 41487
Senior Data Engineer 25000
Senior ML Engineer 129432.5

Table 4.4: Example Table U, constructed by grouping Table S by column experience_level
and job_title and applying the average function on the column salary_in_usd

job_title Australia India Spain US
Data Analyst 32974 – 50000 –
Data Engineer – – – 25000
ML Engineer – 66265 – 192600

Table 4.5: Example Table V, constructed by pivoting Table S by column job_title as the
index and country as the columns and salary_in_usd as the cell values

49

another aggregate function agg′(x) on possibly another set of aggregate columns C ′A. As an

example of this type of query, consider Table U (Illustrated in Table 4.4) and the user is now

tasked to find the original table S.

Example 2. Pivot Source Query: A user is given a query table TQ, which was generated by

applying a pivot function on some source table TX ∈ D. The user needs to find TX in order

to explore other pivots that could be applied to TX or look for other columns in the original

table. As an example of this type of query, consider Table V (Illustrated in Table 4.5) and

the user is now tasked to find the original table S.

Example 3. Join Source(s) Query: A user is given a query table TQ, which was generated

by applying a join function on some source table(s) {TX1
. . . TXi

} ∈ D. The user needs to

find each source table TXi
to explore other columns or keys that did not end up in TQ. As

an example of this type of query, consider Table T (Illustrated in Table 4.3) and the user is

now tasked to find the original tables R and S.

Readers will note that this problem is a hybrid combination of data lake discovery as

well as Query-Reverse Engineering (QRE) or Query-By-Example (QBE) tasks. Searching

for relevant tables within a large table corpus using keywords or an input table is typical

in data lake discovery, while QRE/QBE takes input/output table pairs and generates a

query that produces the given output from the input(s). In this scenario, we have an output

table, as well as an operation (which may not be fully specified), and we would like to find

the appropriate input table from the given corpus. This distinction will become apparent

through this paper, and we blend techniques from these disparate tasks to solve this problem.

In this work, we explore the application of various sketch techniques that allow us to find

a suitable set of candidate Tables TX for these types of lineage queries. We provide a novel

multiple-column coupled-containment sketching scheme that allows us to narrow down the

set of candidate tables to answer these types of data lake lineage queries efficiently. Following

50

the retrieval of the candidate tables for each query, we use specialized ranking functions to

return the top-k matches that are likely to be the input table for a given operation.

4.1 Preliminaries

4.1.1 MinHashing

Minhashing described by Broder et.al. [15], uses k separate hash functions over a set of

values V and stores the minimum hash value for each hash function as a set signature.

Broder showed that the probability that two sets having the same minhash for a given hash

function is equal to their Jaccard similarity. Increasing the number of hash functions k

typically improves the estimation accuracy, most literature uses 128 or 256 hash functions

for applications in data lake discovery [34, 109, 114].

Formally, consider two sets c1 and c2 with every element in each set coming from a

universe of elements E such that ∀e ∈ ci, e ∈ E. Consider a random hash function h that

maps an element in E to S, the universe of hash values, and obtains the minimum hash

value s ∈ S by applying h on ci, that is min(hj(ci)). For a given h, the probability that the

minhash of two sets c1 and c2 being the same is exactly equal to the Jaccard similarity of

the sets (Equation 4.1.1):

P (min(h(c1))) = min(h(c2))) =
|c1 ∩ c2|
|c1 ∪ c2|

(4.1.1)

Using K independent hash functions, h1, h2, . . . , hK , the Jaccard similarity can be esti-

mated as follows (Equation 4.1.2):

51

Ĵ(c1, c2) =
1

K

K∑
i=1

1 (min(hi(c1)) = min(hi(c2))) (4.1.2)

where 1 is the indicator function, which is 1 if the condition is true and 0 otherwise.

4.1.2 One Permutation Hashing

One Permutation Hashing (OPH) [67] is a variant of Minhashing that uses a single hash

function to generate a set signature instead of using K independent hash functions. Every

value in the set ci are hashed once and partitioned into K buckets. The sketch is then

constructed by taking the minimum value per bucket. One issue with OPH is that buckets

can be empty, especially with skewed data distributions. Recent methods have been proposed

such as Optimal One Permutation Hashing (OOPH) [88] which attempts to fill empty buckets

by densification, which introduces randomness in the placement of hash values into the

buckets.

4.1.3 K-Minimum Value Sketches

Given a no-collision hash function h which maps elements to range [0, 1], a KMV synopses

of a set ci denoted by Lci , is to keep k minimum hash values of ci. Then the number of

distinct elements |ci can be estimated as follows (Equation 4.1.3):

ˆ|ci| =
k − 1

U(k)
(4.1.3)

where U(k) is the kth smallest hash value.

Given two sets c1 and c2 with KMV synopses Lc1 and Lc2 respectively. We can construct

a composite KMV synopses of c1 ∪ c2 as Lc1
⊕
Lc2 , which consists of the k smallest values

52

in Lc1 ∪ Lc2 , and k = min(|Lc1|, |Lc2 |). The unbiased estimate of the number of distinct

elements in c1 ∪ c2 is then given by (Equation 4.1.4):

ˆ|c1 ∪ c2| =
k − 1

U(k)
(4.1.4)

Similarity, the interesection of c1 and c2 can be estimated. LetKcap = |v ∈ L : v ∈ Lc1 ∩ Lc2 |,

i.e. the number of common distinct hash values in Lc1 and Lc2 . The the number of distinct

elements in c1 ∩ c2 is given by (Equation 4.1.5):

ˆ|c1 ∩ c2| =
Kcap
k
× k − 1

U(k)
(4.1.5)

Thus, given the estimates of the union and intersection, the jaccard similarity and con-

tainment can also be estimated from the KMV synopses.

4.1.4 Locality Sensitive Hashing

For the minhash and one-permutation hashing techniques descibed above, locality-sensitive-

hashing (LSH) can be used to reduce the number of comparisons required to estimate the

similarity between two sets. Minhash signatures for every set can be stored in an LSH-index,

which divides each signature into b bands of r rows each. The choice of b and r can be carefully

tuned to match a required similarity threshold. With the LSH index constructed, queries can

be issued into the index similarity by minhashing the query set and comparing the minhash

signature to the signatures in the index. Any set in the index whose minhash signature within

any band matches the query signature is considered a candidate for similarity estimation.

The similarity between the query set and the candidate set can then be estimated using the

minhash signatures. Thus an LSH index can be used to reduce the number of comparions

53

from O(n2) to O(n) where n is the number of sets in the index.

4.2 Coupled Containment Sketches

4.2.1 Sketch Construction

A user inputs a query table TQ as well as a set of k columns CQ = CQ1, . . . , CQk
which are

a part of TQ and some threshold ε. The coupled containment query problem is to find all

tables TX that contain k columns CX = CX1
, . . . , CXk

, such that the Jaccard containment

score of tables TQ in TX projected on columns CQ and CX respectively is greater than or

equal to ε (Equation 4.2.1)

∣∣∣πCQ
(TQ) ∩ πCX

(TX)
∣∣∣

|πCQ
(TQ)|

≥ ε (4.2.1)

Note that the sets of columns CQ and CX whose containment is to be estimated are

sets of columns, i.e. unordered. We therefore need to design a containment sketch that is

permutation invariant to column order. Thus the sketching function F applied over CX

columns of any given relation TX must produce the same signature for any permutation

Πj ∈ SCX
(formalized in Equation 4.2.2 below):

F
(
πΠi(CX)(XQ)

)
= F

(
πΠj(CX)(XQ)

)
∀ Πi,Πj ∈ SCX

(4.2.2)

We design this sketch by first designing a permutation-invariant hashing scheme applied

on each tuple of values for a given set of k columns. Let row Ri of πCX
(XQ) be the tuple of

values represented as VRi
= (v1, . . . , vk). Given a hash function H that maps an arbitrary

value into a fixed length set of b bytes (such as MD5 [85] or MurmurHash3 [7]), we can

54

construct a permutation invariant hash function H′ by summing of all the hash values, as

the sum operation is associative1. Therefore the permutation invariant hash of tuple values

for VRi
is H′(VRi

) = H(v1) +H(v2) · · · +H(vk) maps to the same hash value for all tuple

value permutations Π(VRi
) ∈ SV .

4.2.2 Index Construction

Algorithm 3: IndexTables(T, ε, k)
Input: Set of Tables T = {T1, . . . , Tn}, Target Containment Threshold ε, Column

Coupling Size k
Output: Index I

1 I := InitilizeIndex(ε, k);
2 foreach Ti ∈ T do
3 Ci ← GetColumns(Ti) ;
4 foreach index j ∈ [1, k] do
5 foreach Cl ∈

(Ci
j

)
do

6 label← Ti + Cl ;
7 hash_set← GetHashes(πCl

(Ti)) ;
8 I ← Insert(I, hash_set, label) ;
9 return I ;

In the algorithm described in Algorithm 3, we first initialize an index I with the target

containment threshold ε and column coupling size k. We then iterate over each table Ti

in the set of tables T and for each table Ti, we iterate over all possible column sets Cl of

size j (where j ∈ [1, k]) and compute the hash set GetHashes(πCl
(Ti)) for each column

set Cl. We then insert the hash set and the label Ti + Cl into the index I. Currently, the

GetHashes function computes a permutation-invariant hash for each tuple in the relation

πCl
(Ti) and returns a set of all the hashes. We use the MurmurHash3 [7] hash function to

compute the hash values. The Insert function inserts the hash set and the label into the

index I, based on the type of Index being used.

1. We also apply a bitmask to ensure that the final hash value is restricted a set number of bits b

55

4.2.3 Querying the Index for Lineage

In this section, we present various applications for using the coupled containment sketch

to query source artifacts used to perform Join, Groupby and Pivot operations. For each

operation type, we construct a specialized query that allows us to quickly find the source

artifact from a large corpus of sketched artifacts.

Algorithm 4: QueryTable(I, Ci)
Input: Index I, Query Tabke Tq, Query Columns Ci
Output: Matching Column Tables candidates

1 candidates← ∅ ;
2 hash_set← GetHashes(πCi

(Tq)) ;
3 candidates← QueryIndex(I, hash_set) ;
4 return candidates;

Join Lineage Queries

In order to find the probable tables that were used to perform a join with join result table

TJ , we could query all of the columns C ∈ TJ and provide a union of all the results back

to the user; however, this will likely result in a large number of false-positive results. If the

user can be asked to provide additional information, such as the probable key-column used

for the join (CK), as well as an associated column from each side of the join (CL and CR).

In practice, we have found that it is best to choose the columns with the highest cardinality

from each side to minimize false positive results. Thus, we can query the contained sketches

of 〈CK , CL〉 and 〈CK , CR〉 in our index to find the probable join sources.

Groupby Lineage Queries

We can find the source table TX used to generate the table TG, after performing a group-by

operation on columns CG. The number of group columns is more than one, |CG| > 1 we

can query multiple columns using our coupled containment scheme < Ci|Ci ∈ CG >. In

56

case we have sketched only k-coupled columns in our index, we can query only a subset of

the columns in CG and take the intersection of the results to narrow the space of candidate

artifacts responsible for the groupby. For example, if we have a groupby operation performed

on 3 columns, while our index contains only 2-column coupled sketches, we can chose 2-

column combinations to probe in the index and return an intersection of the query results

back to the user.

Pivot Lineage Queries

To find the table TX on which a pivot operation was applied to generate table TP , we can

select the index values and column names to generate 2-column coupled sketches for each

index, column name pair and retrieve all values from the index. This can be achived by

enumerating all index, column pairs that have a valid value in TP .

4.2.4 Ranking the Results

Typically, approximate similarity indices return an unordered list of candidate sets that meet

the required similarity or containment threshold. In this work, we explore candidate ranking

using the existing sketches to estimate the containment and rank the candidates in ascending

containment scores. We augment the existing sketch techniques to additionally compute a

jaccard containment score using the existing hash signatures, and use these scores to return

probable candidates back the user.

4.3 Implementation

Now that we have obtained a permutation invariant hash of tuple values for a single row

and a given set of columns, we can construct a sketch of all the row values for the set of

columns for a given relation. In this section, we discuss the specific sketch techniques which

57

we have evaluated for the problem at hand, followed by a description of the client/server

system implemented to run large-scale experiments with this system.

4.3.1 Sketching Techniques Used

In this work, we consider 3 separate sketching schemes designed for set containment queries:

1. LSH-Ensemble Sketch [114]

2. Lazo Containment Sketch [35]

3. GB-KMV Sketch [104]

The LSH-Ensemble sketch, first described by Zhu et. al. [114] allows for the computing

of Jaccard containment using the standard Minhash and LSH Index used for estimating

Jaccard Similarity. LSH-E does this by partitioning the space of all indexed items by set

cardinality and creating a seperate LSH-index for each partition. Zhu et.al. further shows

that an optimal partitioning exists, however, the data must be repartitioned and re-indexed

if more items are added to the set, as the accuracy of the index levels off as the index is

updated with new items [35].

In the Lazo [35] method, the LSH index is constructed using OOPH [88] to provide a first

estimate of the jaccard containment, and the sizes of the individual sets are stored. Since the

intersection and union of the sets are bounded by the minimum and maximum cardinalities

of the sets involved, this estimate is adjusted to account for the actual cardinalities of the

sets, providing a faster and more accurate estimate of these cardinalities.

Finally the GB-KMV method constructs an index using the K-Minimum Value Sketch

method, and includes a histogram of the most frequent elements to augment the KMV sketch

to provide a more robust estimate of the cardinality of set intersecton and consequently, the

jaccard similarities and the jaccard contaiments for the individual sets.

58

4.3.2 Software Implementation

All of the sketch techniques were implemented in a client-server model using Apache Ar-

row [36]. This allowed us to create a common sketch building and querying client, which

in-turn allowed us to compare the results using different sketching techniques.

Client-Server Interaction Model

A common server API was built to transport Arrow-encoded columnar streams of data from

clients. The server is initialized with a few parameters that are specific to the sketch tech-

nique. Similarly, the client can be initialized with a directory containing all the tables that

are to be indexed, as well as the maximum number of columns to couple while constructing

the containment sketches.

When a client sends a column set to be stored, the server uses the specific sketch technique

to generate a signature for that column. Once all the columns in a session are sketched, the

client can issue an Index operation, which generates the query-able containment index. Lazo

allows for an incremental index to be constructed, while GB-KMV2 and LSH-Ensemble

require a fixed domain of sets before they can be indexed. Once an index is constructed,

the client can issue query sets to the server, which the server can process by sketching the

query column and probing the index for containment matches. The server then returns a set

of candidate set labels to the client. The client can further query for a containment score

estimate from the server for a pair of query/candidate labels, following which the sorted list

of result candidates are presented to the user.

4.4 Evaluation

2. GB-KMV can be modified to support incremental indexing, but was not implemented in the code that
was published

59

4.4.1 Datasets Used

To evaluate the sketching and indexing system, we design an experiment to allow us to

evaluate the retrieval and ranking performance of our proposed system in a real-life lineage

inference scenario. To this end, we have used two separate datasets.

gittables: The gittables dataset [58], a collection of tabular datasets that were col-

lected from public GitHub repositories. Our dataset filtering and sampling procedure is

summarized in Table 4.6 and outlined below:

Preperation Stage Size
GitTables Full 1,018,649
Filtered 824,457
Sample 5,000

Generated Query Classes
Query Type Number Generated
Single-Column Groupbys 100
Two-Column Groupbys 100
Three-Column Groupbys 100
Joins 100
Pivots 100

Table 4.6: GitTables Dataset Filtering and Query Class Generation

1. We filter the GitTables dataset to remove all tables that have less than 10 rows and 3

columns. This leaves us with 824,457 tables.

2. We sample 5,000 tables from the filtered dataset, and generate 100 queries for each

of the 5 query types: single-column groupbys, two-column groupbys, three-column

groupbys, joins, and pivots.

3. For groupbys and pivots, we randomized queries by randomly selecting a source table

and then selecting random columns to perform the groupby aggregation or the pivot

operation on.

60

4. Joins are performed by selecting a random table and random key column and then

joining with any random table that has the same column as a key.

5. We then perform the following sanity checks on the generated tables to ensure that

they are valid:

(a) The table must have at least 10 rows.

(b) At least 45% of the table cells must contain a non-null value

(c) Generated tables must have a valid schema (non-null, non-empty column labels)

(d) Groupby operations must collapse the table by at least 50%.

synthetic: We have also used a synthetic dataset generated by fuzzydata, a randomized

dataframe generation system (detailed in Chapter 5). Similar to the gittables dataset, we

generated 1000 randomized schema descriptions and then generated 5000 random tables

of varying row lengths by choosing a schema description uniformly at random. We then

generated 100 queries for each of the 5 query types: single-column groupbys, two-column

groupbys, three-column groupbys, joins, and pivots. We then performed the same sanity

checks on the generated tables as we did for the gittables dataset.

4.4.2 Competing Systems

We compare our system to the following baselines:

• MATE - At the time of writing, only a single system, MATE [29] was designed to

perform search/retrieval using a multi-column sketch. MATE is designed to quickly

discover joinable tables using multi-column attributes (for example, a join on First

Name, Last Name or a join on City, State). MATE is designed to be used in a data

exploration scenario, where the user provides a table and a set of joinable columns,

and wants to find a set of tables that can be joined on that composite key attribute. In

61

contrast, our system is designed to be used in a lineage inference scenario, where the

user provides a table, a likely operation and a set of operation parameters, and would

like to retrieve tables that are likely the source tables for the given table. MATE uses a

custom multi-column hash function, XASH, that is designed to act like a multi-column

bloom filter, and is as such, designed to answer set membership queries under very

limited constraints. The XASH design constraints include an assumption that string

tokens are typically <= 17 characters. In contrast, our system is designed to answer set

membership queries under a much wider range of constraints, including the ability to

handle string tokens of arbitrary length. In addition, our system is designed to answer

set membership queries for a much wider range of operations, including groupbys, joins,

pivots, and more.

• brute-force - We also compare our system against a non-sketching baseline, which

is a brute-force set containment search of the entire GitTables sample tables of 5000

tables. This baseline is used to provide a lower bound on query performance and an

upper bound on retrieval accuracy.

4.4.3 Evaluation Metrics

We aim to evaluate the accuracy and runtime performance of multiple components of our

system: index generation, query/candidate retreival and ranking. Index generation is the

process of generating the sketching index from the GitTables dataset. Query/candidate

retrieval is the process of retrieving a set of candidate tables from the GitTables dataset

that would be likely to be the source tables for a given table. The ranking is the process of

ranking the candidate tables by their likelihood of being the source tables for a given table.

During the indexing generation phase, we are only interested in the runtime performance

of the index generation process. We do not evaluate the accuracy of the index generation

process, as the index generation process is designed to be a one-time process, and can be

62

amortized over the lifetime of the system, or can be done when artifacts enter the data lake.

During the query/candidate retrieval phase, we are interested in both the runtime per-

formance and the accuracy of the retrieval process. For a given class of queries (for example,

groupbys), we query the index with the appropriate querying technique 4.2.3, and obtain

a set of candidate tables. We report the number of candidate tables returned and if the

correct table is present in the set of candidate tables. Since each query class contains 100

queries, we report the ratio of queries that had the correct source table retrieved as the

average recall rate for the given query class. This experiment is repeated against multiple

containment thresholds to determine the optimal containment threshold for each class of

queries - the optimal threshold provides the highest accuracy while returning the minumum

number of candidate tables. The time to query and retrieve the set of candidate table lists

is also reported.

Finally, we evaluate the ranking process by evaluating the quality of ranking using the

recall rate at K metric. This measure allows us to report the ratio of ranked results where

the correct table was present within k ranked results for each query class. We evaluate the

recall-rate at K for k=1, 5 and 10.

4.5 Results

4.5.1 Index Query Accuracy

In this section, we present the results of our experiments. We first show a comparison of

the three sketch techniques outlined in Section 4.3 for various containment thresholds. For

example, in Figure 4.1a, we see the average recall of the three sketch techniques across

containment thresholds for the 100 groupby queries presented in Section 4.4, using only a

single-column sketch. We also show the corresponding recall rate using our 2-column coupled

sketching scheme in Figure 4.1b. This experiment is repeated for join queries in Figure 4.2

63

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll
Performance 2.0-size groupbys (1.0 colsets) (groupby - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(a) Single Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll

Performance 2.0-size groupbys (2.0 colsets) (groupby - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(b) Two-Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results 2.0-size groupbys (1.0 colsets) (groupby - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(c) Single Column Sketches (Average Results Re-
turned)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results 2.0-size groupbys (2.0 colsets) (groupby - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(d) Two-Column Sketches (Average Results Re-
turned)

Figure 4.1: Average recall and number of results returned for 2-column groupby queries vs.
target containment thresholds. Error bands indicate the 95% confidence interval over 100
queries.

and pivot queries in Figure 4.3. From these results, we find that on average, all three

techniques show a high recall rate for containment thresholds of 0.4 and lower, and using

extremely high containment thresholds diminishes the recall rate. We also find the number

of results returned is higher for lower containment thresholds (as expected), and find that

0.4 is a sweet-spot for accuracy in terms of recall across all queries as well as the number

of results returned. While all three techniques have favorable average recall rates, overall,

we find LSH-E to be quite noisy in terms of the number of results returned, approaching

as high as 6000 on average for two-column sketches in groupby queries. Thus, for all future

experiments, we will use 0.4 as the containment threshold as we proceed to assess the ranking

performance of the three techniques.

64

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll

Performance (1.0 colsets) (join - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(a) Single Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll

Performance (2.0 colsets) (join - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(b) Two-Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results (1.0 colsets) (join - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(c) Single Column Sketches (Average Results Re-
turned)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results (2.0 colsets) (join - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(d) Two-Column Sketches (Average Results Re-
turned)

Figure 4.2: Average recall and number of results returned for Join queries vs. target con-
tainment thresholds. Error bands indicate the 95% confidence interval over 100 queries.

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll

Performance (1.0 colsets) (pivot - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(a) Single Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
ca

ll

Performance (2.0 colsets) (pivot - 100 queries)

Average Recall
Lazo
LSH-E
GB-KMV

(b) Two-Column Sketches (Average Recall)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results (1.0 colsets) (pivot - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(c) Single Column Sketches (Average Results Re-
turned)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Containment Threshold

0

2000

4000

6000

8000

10000

Av
g.

 Q
ue

ry
 R

es
ul

ts
 R

et
ur

ne
d

Average Number of Query Results (2.0 colsets) (pivot - 100 queries)
Avg. Query Results Returned

Lazo
LSH-E
GB-KMV

(d) Two-Column Sketches (Average Results Re-
turned)

Figure 4.3: Average recall and number of results returned for Pivot queries vs. target
containment thresholds. Error bands indicate the 95% confidence interval over 100 queries.

66

4.5.2 Result Ranking

Now that we have shown that the similarity indices can be used to retrieve the relevant

tables for each type of lineage query, we can now explore the use of the generated sketches to

rank the candidates in order of most likely source for each query. Table 4.7 lists the results

of the ranking experiment. We used the target containment threshold of 0.4 as determined

in Section 4.5.1. We then retrieved the relevant sketch for each candidate and estimated

the containment score of the query set against the candidate sketch, and used the score to

rank the results. We report the results for Join separately (as we rank the results separately

for each side of the join, left and right). Overall, we see that the use of coupled sketching

provides the best ranking accuracy for most of the query types.

Diminishing Returns of 3-Column Sketches

We also explored the use of 3-column sketches to rank the results of the lineage queries.

Firstly, we found that only Joins queries can be readily expanded to use more than one

column when probing the index. We also generated additional 3-column groupby queries so

that we can directly probe a 3-column sketch. Finally, 3-column sketches do not provide

any benefits for pivot lineage queries, since there is no guarantee that the value within a

cell of a pivoted dataframe actually exists in the source dataframe (such cell values may

be aggregated in case of multiple values that correspond to a specific index/column pair).

Finally, of the three systems evaluated, only GB-KMV was able to generate a 3-column

index that fit in the memory of our test machine. Our results are in Table 4.9. We find an

improvement in ranking performance when using 3-column sketches, but the improvement is

not significant enough to justify the additional time to generate the index and the increased

memory footprint.

67

Operation Num of Coupled Method Total Results Returned from Index Ranked Recall Rate @ k
Column Sketches Minimum Mean Maximum k=1 k=5 k=10

GroupBy

Single
gb-kmv 1.00 392.38 8522.00 0.64 0.72 0.76
lazo 0.00 71.74 5965.00 0.80 0.89 0.89
lsh-e 0.00 3169.93 45886.00 0.78 0.85 0.88

Double
gb-kmv 0.00 579.95 15087.00 0.75 0.84 0.87
lazo 0.00 214.26 4537.00 0.79 0.89 0.90
lsh-e 0.00 1626.11 22449.00 0.81 0.89 0.93

Join (Left)

Single
gb-kmv 2.00 2695.97 6144.00 0.41 0.46 0.48
lazo 2.00 849.97 5003.00 0.57 0.67 0.71
lsh-e 2.00 5644.54 16230.00 0.49 0.61 0.65

Double
gb-kmv 0.00 966.18 11908.00 0.75 0.88 0.90
lazo 0.00 309.96 4825.00 0.66 0.74 0.77
lsh-e 0.00 2056.97 18686.00 0.75 0.84 0.87

Join (Right)

Single
gb-kmv 2.00 2618.48 3765.00 0.33 0.38 0.44
lazo 2.00 762.78 4995.00 0.50 0.70 0.77
lsh-e 2.00 5515.43 16170.00 0.54 0.66 0.71

Double
gb-kmv 1.00 567.89 12630.00 0.83 0.90 0.93
lazo 0.00 256.88 6095.00 0.72 0.80 0.81
lsh-e 1.00 2170.38 18591.00 0.83 0.89 0.90

Pivot

Single
gb-kmv 1.00 288.48 3111.00 0.69 0.81 0.84
lazo 1.00 2.61 19.00 0.89 0.98 0.98
lsh-e 1.00 3.99 70.00 0.83 0.98 0.99

Double
gb-kmv 1.00 3.56 42.00 0.84 0.96 0.98
lazo 1.00 3.11 40.00 0.88 0.99 1.00
lsh-e 1.00 3.69 42.00 0.89 0.97 0.99

Table 4.7: Results of using similarity sketches to rank the results of each lineage query for
the gittables dataset. The index was probed using the target containment threshold of 0.4.
We report the minimum, mean and maximum number of results returned from the index for
each query before ranking and the ranking recall rate at k = 1, 5, and 10.

68

Operation Num of Coupled Method Total Results Returned from Index Ranked Recall Rate @ k
Column Sketches Minimum Mean Maximum k=1 k=5 k=10

Groupby

Single
gb-kmv 2 638.64 3551.00 0.24 0.33 0.37
lazo 1 101.32 680.00 0.44 0.56 0.65
lshe 1 822.50 9838.00 0.31 0.41 0.48

Double
gb-kmv 1 123.52 873.00 0.57 0.69 0.76
lazo 1 80.44 627.00 0.86 0.90 0.91
lshe 1 190.24 1541.00 0.58 0.76 0.81

Join (Left)

Single
gb-kmv 2 295.81 3894.00 0.79 0.93 0.94
lazo 2 345.90 2422.00 0.83 0.84 0.84
lshe 2 1022.65 6088.00 0.82 0.86 0.87

Double
gb-kmv 1 3.59 35.00 0.99 1.00 1.00
lazo 1 11.83 302.00 1.00 1.00 1.00
lshe 1 14.62 599.00 0.98 1.00 1.00

Join (Right)

Single
gb-kmv 2 330.67 3559.00 0.83 0.93 0.95
lazo 2 385.77 3315.00 0.86 0.86 0.86
lshe 2 1079.63 6305.00 0.72 0.78 0.80

Double
gb-kmv 1 3.27 25.00 1.00 1.00 1.00
lazo 1 8.91 91.00 1.00 1.00 1.00
lshe 1 11.18 286.00 1.00 1.00 1.00

Pivot

Single
gb-kmv 2 2.64 14.00 1.00 1.00 1.00
lazo 1 1.28 9.00 0.99 1.00 1.00
lshe 1 1.77 19.00 1.00 1.00 1.00

Double
gb-kmv 1 1.00 1.00 1.00 1.00 1.00
lazo 1 2.32 6.00 1.00 1.00 1.00
lshe 1 1.37 11.00 1.00 1.00 1.00

Table 4.8: Results of using similarity sketches to rank the results of each lineage query for
the synthetic dataset. The index was probed using the target containment threshold of 0.4.
We report the minimum, mean and maximum number of results returned from the index for
each query before ranking and the ranking recall rate at k = 1, 5, and 10.

69

Operation Num of Coupled Method Total Results Returned from Index Ranked Recall Rate @ k
Column Sketches Minimum Mean Maximum k=1 k=5 k=10

Join (Right) Double
gb-kmv 1.00 567.89 12630 0.83 0.90 0.93
lazo 0.00 256.88 6095 0.72 0.80 0.81
lsh-e 1.00 2170.38 18591 0.83 0.89 0.9

Triple gb-kmv 0.00 970.38 26096 0.84 0.90 0.92

Join (Left) Double
gb-kmv 0.00 966.18 11908 0.75 0.88 0.9
lazo 0.00 309.96 4825 0.66 0.74 0.77
lsh-e 0.00 2056.97 18686 0.75 0.84 0.87

Triple gb-kmv 0.00 692.22 30241 0.88 0.93 0.94

Groupby Double
gb-kmv 1.00 21056.66 18722520 0.83 0.93 0.94
lazo 0.00 14929.75 1200030 0.79 0.87 0.89
lsh-e 0.00 249076.75 18923372 0.85 0.92 0.92

Triple gb-kmv 0.00 2915.05 172776 0.83 0.94 0.94

Table 4.9: Results of using 3-column sketches for Join and Groupby Queries generated on
the gittables dataset. The index was probed using the target containment threshold of 0.4.
We report the minimum, mean and maximum number of results returned from the index for
each query before the ranking and the ranking recall rate at k = 1, 5, and 10.

4.5.3 Baseline Performance

As described in Section 4.4.2, we compare the evaluated methods using two existing baselines,

MATE and a non-approximate baseline that does a brute-force containment search of all two-

column set values. The brute-force method provides an an upper-bound on the accuracy of

the evaluated methods. However, the brute-force method is extremely expensive, resulting

in each query taking more than 10 minutes to complete, as compared to less than a second

of query time for the methods presented in Section 4.5.1. A detailed report of the runtime

is presented in Section 4.5.4, and the time taken to index and query the tables combined is

less than the total time taken to run the brute-force method (over 20 hours to complete all

the queries).

4.5.4 Index Generation and Query Runtimes and Space Requirements

Table 4.11 lists the total time taken to generate the indices for each of the methods against

the 5000 table dataset. Of all the methods, only gb-kmv was able to successfully generate a

triple-column containment index. Table 4.12 lists the average time taken to query the indices

70

Operation Num of Coupled
Column Sketches Method

Total Results Returned
from Index

Ranked Recall
Rate @ k

Minimum Mean Maximum k=1 k=5 k=10

Groupby Double brute-force – – – 0.89 0.97 0.98
MATE 1.00 1870.35 3499.00 0.23 0.26 0.29

Join (Left) Double brute-force – – – 0.87 0.94 0.94
MATE 1.00 1317.09 3488.00 0.35 0.38 0.44

Join (Right) Double brute-force – – – 0.74 0.83 0.86
MATE 0.00 1506.66 3464.00 0.27 0.39 0.40

Pivot Double brute-force – – – 0.85 0.94 0.97
MATE 1.00 24.71 1795.00 0.8 0.95 0.95

Table 4.10: Baseline results (using an existing multi-column indexing technique, MATE and
a brute-force containment search) to rank the results of each lineage query. The index was
probed using the target containment threshold of 0.4. We report the minimum, mean and
maximum number of results returned from the index for each query before ranking and the
ranking recall rate at k = 1, 5, and 10. There are no indexing results for the brute force
method, it searches the entire corpus of all two-column combinations of 5000 tables (a total
of 529688 sets).

Indexing Phase Single Double Triple
lazo Ish-e gb-kmv lazo lsh-e gb-kmv gb-kmv

Hash Computation 176.95 177.87 311.65 1390.29 1345.42 1355.76 27589.67
Sketching and Indexing Time 103.64 233.14 24.84 68.09 1676.44 68.44 771.80
Total 280.58 411.02 336.49 1458.38 3021.85 1424.19 28361.47

Table 4.11: Total time taken (in Seconds) to generate the indexes using each sketch technique
for Single, Double and Triple Column Sketches. Only gb-kmv was able to complete the
generation of a 3-column index.

and retrieve the candidate tables for each of the query types. All queries were completed

in less than a second, as opposed to 687 seconds per query under the brute-force method.

Table 4.13 list the time taken on average to compute the containment score for each candidate

table, and the average time taken to rank a set of results for the double-column index.

4.6 Conclusions

In this chapter, we performed a thorough evaluation of various sketch techniques to answer

lineage queries. We showed that we can effectively avoid the expensive pairwise computation

of similarity metrics by constructing LSH and KMV-based sketches of columns and showed

71

Query Phase Single Double Triple
lazo Ishe gb-kmv lazo Ishe gb-kmv gb-kmv

Hash Computation 0.00446 0.00464 0.004124 0.002907 0.002903 0.00239 0.002429
Query Upload 0.007112 0.007831 0.000718 0.063101 0.008287 0.000775 0.000762
Query Reply 0.006616 0.021797 0.005911 0.00984 0.016261 0.004511 0.017306
Total 0.018188 0.034268 0.010753 0.075848 0.027451 0.007676 0.020497

Table 4.12: Average time taken (in Seconds) to query the indexes using each sketch technique
for Single, Double and Triple Column Sketches. Only gb-kmv was able to complete the
generation of a 3-column index.

Method Mean Time to Mean Number of Candidates Mean Time to Rank All Candidates (sec)
Estimate JC Join Groupby Pivot Join Groupby Pivot

lsh-e 0.000595 2170 1626.11 3.69 2.582 0.968 0.002
lazo 0.000578 309.96 806.59 3.11 0.358 0.466 0.002
gb-kmv 0.000358 966.18 573.95 3.56 0.692 0.205 0.001

Table 4.13: Average time taken (in Seconds) to rank the candidate results using each method,
using a containment threshold of 0.4. The mean time to estimate Jaccard Containment (JC)
is per candidate pair.

the benefit of sketching multiple columns at a time. We found that sketching combinations

of two columns and indexing them for a target containment threshold of 0.4 allows for

an optimal balance of accuracy, while reducing the number of candidates returned by the

query. We also showed that we can use the constructed sketches to compute an approximate

containment score for each candidate, which can be used to rank the candidates. We then

showed that the proposed approach can be used to answer lineage queries in less than one

second, while a brute-force search can take over 10 minutes.

72

CHAPTER 5

THE FUZZYDATA WORKFLOW SPECIFICATION SYSTEM

5.1 Introduction

The rise in popularity of data science and machine learning has catapulted dataframe-based

tools such as R [43] and the pandas [93] library for Python to the forefront of the data

science practice, enabling large and small organizations to extract insight from data quickly.

These tools allow for ad-hoc ingestion and transformation of small to moderate amounts of

data, with the flexibility of integrating arbitrary code or machine learning workflows to the

data analysis workflows.

The dataframe model has thus become a popular programmatic interface to encode

data manipulation and transformation operations. Typical dataframe APIs enable both

spreadsheet-style manipulation and relational-style operations and on tabular data, allowing

for data cleaning and wrangling during the ETL process while retaining most of the pow-

erful querying semantics for analytical and visualization tasks. With the rise in popularity

of this model, expectations of such systems have grown, resulting in the growing demand

for systems that support these APIs on massive tabular datasets that may not fit a typi-

cal desktop or laptop computers’ memory. Projects such as dask [86], ray [71], modin [76],

SparkDataFrames [8], either provide interfaces to python scientific tools such as NumPy and

pandas or implement their own version of the dataframe API to work on parallel/distributed

environments with larger datasets.

However, there is an acute lack of workload generation, benchmarking, and testing

frameworks that allow for comparisons between these systems or evaluate optimizations

within these systems. Prior work encompassing dataframe systems either lacks a compre-

hensive evaluation or is evaluated against handwritten, static queries run against specific

datasets [47, 76, 89, 100]. Existing systems for relational benchmarking (such as TPC [21]),

73

Artifact
•Abstract representation of

a Table

•Schema Information and

Serialization /

Deserialization Routines

Operation
•Transforms an artifact to

another artifact, with

corresponding change in

schema, if any

Workflow
•Sequence of Operations

performed on Artifacts

SQL Workflow

Pandas Workflow

Modin Workflow

GroupBy()artifact_1

artifact_2

artifact_3 artifact_4

Abstract Representation Implementation

Figure 5.1: The design of FuzzyData.

or for NoSQL/key-value stores (such as YCSB [20]) do not adequately represent the work-

flows typically executed within these dataframe environments. DataFrame systems are a

kind of middle-ground between relational systems and raw key-value stores; they do not re-

quire strict schema definitions or DDL steps like the former but are not entirely schema-less

and support a vastly broader range of queries and transformations, unlike the latter.

Correctness guarantees and performance bottlenecks are harder to pinpoint with dataframe-

based systems because of the diversity in query language and semantics, supported data

types, serialization formats, memory layouts and execution engines. For example, the modin

project advertises performance advantages over pandas by parallelizing common dataframe

operations over multiple cores, ideally offering speedups of Nx where N is the number of

cores available [76]. However, during the time of writing, there were ∼ 45 open perfor-

mance issues on the modin GitHub page [77], with users providing empirical evidence of

modin’s performance being worse than pandas for the same operation. A more robust work-

load generation suite can supplement regression testing practices to catch performance and

correctness bugs during the development lifecycle. Thus, there is a need for a framework

that allows for synthetic workload generation, allowing for reproducibility, scalability, and

stress testing of dataframe systems while using some of the best design practices and pat-

74

terns from earlier benchmark and workload generator suites designed for relational [21] and

NoSQL systems [20].

In this paper, we present FuzzyData1. This system allows for data analysis workflows

to be manually specified or randomly generated, scaled, and replayed on various dataframe

system clients, allowing for “fuzzy” testing and direct performance comparisons between

dataframe systems. Our contributions are as follows:

• An implementation-agnostic data model to represent data artifacts, operations, and

workflows that can be used to express common data workflow operations in JSON (a

human-parsable format).

• A module that generates realistic and diverse tabular data artifacts and workflows

consisting of typical data transformations.

• Plug-in clients for FuzzyData that enable workflows to be generated and replayed on

SQLite, pandas, modin-dask, and modin-ray. We show how, with a few lines of code,

FuzzyData can be extended to more data operations or clients by writing simple

plug-ins.

• We demonstrate the use of FuzzyData in typical testing/ workload generation and

replay scenarios and show the types of insights that can be derived from its use. Fuzzy-

Data was used to find one correctness bug (Section 5.3.1) which was reported to the

modin developers, as well as performance issues in modin.

5.2 Fuzzydata

This section discusses the abstract design of the FuzzyData system and its implementation,

along with the random table/workflow generators and the three clients we have implemented

using the FuzzyData abstract model.

1. Source Code is available at https://github.com/suhailrehman/fuzzydata

75

https://github.com/suhailrehman/fuzzydata

Transformation Description Generation Constraints pandas SQLite modin

load Load (de-serialize) an artifact from a filesys-
tem location

– X X X

select Selects rows based on a filter condition numeric ≥ 1 X X X
apply Create a new derived column as a scalar func-

tion applied to an existing numeric column
numeric > 1 X X X

project Project a set of columns – X X X
sample Randomly select rows from the artifact – X X X
join Inner Join with another artifact based on a

key column
joinable ≥ 1 X X X

pivot Pivot the artifact by index, column and val-
ues

groupable ≥ 2 and
numeric ≥ 1

X – X

groupby Groupby set of group_columns and apply
an aggregate function on another set of
agg_columns

groupable ≥ 1 X X X

fill Replace an old value in a column with an-
other value

– X – X

materialize Execute stacked transformations to produce
a new artifact

– X X X

serialize Dump the contents of an artifact to disk – X X X

Table 5.1: Transformation Implementation Matrix. The Generation Constraints column
lists the minimum number of columns of each type required to generate each transformation
using the random workflow generator.

5.2.1 Data Model

The abstract model that we have created allows us to specify artifacts, operations, and

workflows in an implementation agnostic manner:

Artifact

An artifact is an abstract representation of a dataframe in FuzzyData. The data model

representing an artifact stores the metadata about an artifact, such as:

• Schema related information: A mapping of column label → column type

• Artifact representation: Information about the artifact represention in memory or as

a table/view in a database

• Serialization routines: File system paths to store serialized versions of artifacts, as well

as function pointers to serialization routines necessary to load/store the artifact from

disk

76

The abstract model for an artifact gives FuzzyData the flexibility to support various

data access and manipulation APIs. For example, a pandas implementation of the artifact

class would typically contain the dataframe label, and a filesystem path to (de)-serialize the

dataframe artifact from/to disk. On the other hand, a SQL implementation of the artifact

class will have much of the same information as the pandas’ implementation with additional

fields such as the database table/view names, schema, and the specific SQL query needed to

retrieve a view of the artifact from a database.

Operation

An operation is the abstract representation of one or more transformation(s) that takes one

or more artifact(s) as input and transforms them into a new artifact. The operation model

consists of metadata such as the source artifact labels, a list of transformations and their

arguments, and the label to be assigned to the new destination artifact created as a result

of the operation. The operation interface consists of abstract specifications of each of the

transformations with their arguments and how each of the transformations change the schema

of the artifact. Note that the actual query or code required to execute the transformations

for a particular operation is defined in the client implementation and left out the abstract

model. Table 5.1 has a listing of all the transformations that are currently implemented in

FuzzyData. The operator abstraction is designed to be extensible, allowing for additional

transformations or UDFs to be added to FuzzyData to support even more diverse workload

types in the future. Transformations can be defined and implemented for data processing

steps such as one-hot-encoding or normalization.

Workflow

Formally, a workflow is a directed-acyclic-graph (DAG)W = (V,E), where the set of vertices

V is the set of artifacts and the set of edges E are the operations that are used to transform

77

an artifact v1 ∈ V to another artifact v2 ∈ V . Artifacts that have no incoming edges are

source artifacts, which are either loaded from disk, or randomly generated. Note that the set

of edges E in FuzzyData is ordered, and is the sequence of operations that is implicit when

encoding an existing workflow (Section 5.2.2), or is the order of operations that is randomly

generated by FuzzyData (Section 5.2.4).

In FuzzyData, the workflow interface encapsulates information about the workflow, se-

quence of operations, and the final workflow directed acyclic graph, with enough information

for FuzzyData to load and replay specific workflows on different clients (Section 5.2.6). As

a workflow is replayed, the wall-clock time taken to load artifacts from the disk and replay

the individual operations are recorded for analysis and visualization (Section 5.2.5).

5.2.2 Implementation

FuzzyData is implemented in Python, with pandas [93] used as the internal dataframe

representation used to represent artifacts during generation (Section 5.2.3) and networkx [48]

used to represent the workflow graph. Users of FuzzyData have the option to specify a

workflow or have FuzzyData randomly generate a workflow (Section 5.2.3) with generation

parameters listed in Table 5.3.

FuzzyData supports workflow specifications to be provided in a JSON file. The work-

flow specification includes a name for the workflow and a list of operations. Each operation

consists of a list of source artifacts, the operation type, and the arguments for the operation.

When a workflow specification and the source artifacts are loaded into a FuzzyData client,

the following actions are performed: (a) The operation list is loaded, (b) the operations

are performed in the order specified in the file, and (c) any artifact that is currently not in

memory and is needed for the next operation will be deserialized from disk.

78

index iso8601 cryptocurrency_code pyint rn

0 2004-09-21T09:46:38 NEO 1453 10
1 2016-04-07T21:19:57 BCN 877 7
2 1973-08-09T20:35:50 USDT 8198 8
3 1985-08-24T17:07:41 EOS 7492 10
4 1979-06-16T21:01:12 NEM 157 6
5 2020-12-30T03:19:01 IOTA 5439 12
6 1995-05-03T04:56:00 BCH 2348 13
7 1972-09-02T20:03:53 XRP 1244 13
8 1990-12-27T10:33:05 ETC 8354 11
9 2017-07-03T20:19:32 WAVES 9717 11

Table 5.2: An example artifact generated using FuzzyData. Column labels indicate
the faker provider used to generate the values for the column, except for rn, which is
shorthand for random_number. In this table, pyint and rn are numeric columns, while
cryptocurrency_code is a groupable, joinable and string column.

5.2.3 Generating Random Artifacts

FuzzyData provides a table generation system that leverages the Python faker library [31].

The faker integration allows FuzzyData to generate diverse tables with a wide range of

columns and data, simulating real-world datasets with realistic data values. A user can

supply the number of rows (r) and columns (c) to be generated, and FuzzyData by default

randomly chooses columns types to generate from faker’s portfolio and generates a mix of

string and numeric columns with various levels of cardinality. These column types are labeled

as one or more of the following types: numeric, string, groupable and joinable; these labels

are essential when enumerating the space of possible operations that can be performed on a

given artifact (enumerated in Table 5.1. Table 5.2 shows an example table generated with

parameters (r = 10, c = 4) with a mix of column types and labels. This table can now be

used to generate additional artifacts based on the rules described below in Section 5.2.4.

5.2.4 Generating and Replaying Random Workflows

FuzzyData also supports the generation of entirely random workflows, including randomly

79

generated source artifacts (using the generator described in Section 5.2.3) and random op-

erations. Users have the option of supplying the following parameters (Table 5.3):

Parameter Description
n Number of Artifacts
r Base Artifact Number of Rows
c Base Artifact Number of Columns
b Workflow Branching Factor
T Set of Allowed Transformations
m Materialization Rate

Table 5.3: Parameters for generating synthetic workflows.

Users can specify the total number of artifacts to be generated (n) and the number of

rows (r) and columns (c) of the base artifact, and a few schema options, if any. The schema

options in the generator can provide specific column types to be generated or an exclusion

list of the types of columns to avoid. If no schema options are provided, the generator will

try to evenly distribute the types of columns in order to maximize the available operations

that can be performed (Table 5.1). Once the base artifact is generated, subsequent artifacts

are generated as follows:

1. A random artifact is first selected from the set of artifacts already generated in the

workflow. The workflow branch factor parameter (b) can be used to control the struc-

ture of the final workflow graph by biasing the selection probability towards artifacts

that were more recently generated. Formally, given we have a list of n′ artifacts that

have been generated so far, FuzzyData selects the next artifact from the list with

index i to be modified with probability (Equation 5.2.1)

P [i] =

(
b

ebn
′ − 1

)
ebi (5.2.1)

Thus, with b = 1.0, the probability is always skewed towards the newest artifact that

is generated, resulting in workflow that is more linear, and with b = 0.01, there is

80

a uniform probability, resulting in a more branched workflow (such as the example

workflow generated in Figure 5.2).

2. Once an artifact has been selected as the source artifact for an operation, FuzzyData

generates a set of possible transformations that can be performed on the artifact,

subject to the set of allowed transformations T . The source artifact schema map is

inspected, and the number of columns of each type is enumerated. It then follows

the rules listed in Table 5.1 and generates a set of transformations with randomized

arguments for each transformation.

3. From the set of possible transformations that can now be performed on a source ar-

tifact, a random option is selected and added to the operation chain. The expected

schema map that results from the transformation is updated, ensuring any future

stacked transformations have accurate schema representation, even if the operation is

not materialized.

4. Steps 2 and 3 are repeated until we have m transformations in the current operation

chain, i.e. we have reached the materialization rate.

5. The operation chain is materialized (executed) to generate the next artifact. This

means that FuzzyData will use an attached client (Section 5.2.6) to execute the

chain of operations and generate the resulting artifact. If the generator selects a merge

operation to be performed, an additional random artifact that contains the joinable

column (from the merge arguments) is generated and added to the workflow to simulate

an inner PK-FK join.

6. The steps above are repeated until we have generated n artifacts and there are no more

artifacts that remain to be generated.

7. Once the workflow is generated, it can be written to disk, which serializes all generated

81

artifacts to disk, writes the workflow graph, and generates a JSON specification of the

workflow, which can be loaded and replayed by FuzzyData clients in the future.

0

1

2

3

4

56

7

10

11

12

13
14

join

sample

project

groupby

0 n
Source
Artifact

Artifact generated by
operation

1
Additional Input Artifact
Generated for Join

Figure 5.2: DAG of a randomly generated workflow using the generator described in Sec-
tion 5.2.4. The generation parameters used were (n = 15, r = 1000, c = 20, b = 0.01,m = 1).

Figure 5.2 is an example of the DAG associated with a workflow generated in Fuzzy-

Data. While step 2 in our workflow generator currently implements a simple, randomized,

rule-based approach for generating operations on artifacts, we foresee the ability to use in-

telligent, ML-based approaches to automatically generate meaningful operations given the

source artifact, similar to AutoSuggest [103], implemented via the plug-in architecture of

FuzzyData.

5.2.5 Instrumentation

FuzzyData includes timing hooks implemented into the workflow interface for artifact

generation, loading, and operations. These hooks can be used to collect runtime performance

information for the execution of the workflow. This feature makes FuzzyData valuable

for system testing and performance analysis and evaluation of potential bottlenecks in the

systems being evaluated.
82

5.2.6 Clients Implemented

Implementing a FuzzyData client requires implementing each of the abstract interfaces

described in Section 5.2. The artifact interface requires implementing load/store routines

and a hook to the random artifact generation function. The operation interface requires

implementing each of the operations listed in Table 5.1, using the specific syntax of the client’s

query language or DSL. The workflow interface provides space for setting up parameters

used by all the artifacts in the workflow, like filesystem paths or database/execution engine

parameters. Thus, with a few lines of code, a client can be implemented in FuzzyData that

can generate and replay workflows. Three clients have been implemented in FuzzyData for

this paper:

pandas: The pandas client is a dataframe-based implementation of the three abstract inter-

faces described in Section 5.2. The operation implementation generates dataframe transfor-

mation code as a string of chained dataframe function calls. To materialize an artifact, the

string containing all the dataframe transformations is evaluated and run against the source

dataframe artifact.

We show a compact client implementation of FuzzyData on pandas in Listing 5.1,

which implements the interfaces defined in Section 5.2, along with the operations listed in

Section 5.1.

Listing 5.1: fuzzydata implementation of a pandas client
1 import logging

2 from typing import List

3

4 import pandas

5

6 from fuzzydata.core.artifact import Artifact

7 from fuzzydata.core.generator import generate_table

8 from fuzzydata.core.operation import Operation , T

9 from fuzzydata.core.workflow import Workflow

10

83

11 logger = logging.getLogger(__name__)

12

13

14 class DataFrameArtifact(Artifact):

15

16 def __init__(self , *args , ** kwargs):

17 self.pd = kwargs.pop("pd", pandas)

18 from_df = kwargs.pop("from_df", None)

19 super(DataFrameArtifact , self).__init__ (*args , ** kwargs)

20 self._deserialization_function = {

21 ’csv’: self.pd.read_csv

22 }

23 self._serialization_function = {

24 ’csv’: ’to_csv ’

25 }

26

27 self.operation_class = DataFrameOperation

28 self.table = None

29 self.in_memory = False

30

31 if from_df is not None:

32 self.from_df(from_df)

33

34 def generate(self , num_rows , schema):

35 self.table = generate_table(num_rows , column_dict=schema , pd=self.pd)

36 self.schema_map = schema

37 self.in_memory = True

38

39 def from_df(self , df):

40 self.table = self.pd.DataFrame(df)

41 self.in_memory = True

42

43 def deserialize(self , filename=None):

44 if not filename:

45 filename = self.filename

46

47 self.table = self._deserialization_function[self.file_format](filename)

48 self.in_memory = True

49

50 def serialize(self , filename=None):

84

51 if not filename:

52 filename = self.filename

53

54 if self.in_memory:

55 serialization_method = getattr(self.table , self._serialization_function[self

.file_format])

56 serialization_method(filename)

57

58 def destroy(self):

59 del self.table

60

61 def to_df(self) -> pandas.DataFrame:

62 return self.table

63

64 def __len__(self):

65 if self.in_memory:

66 return len(self.table.index)

67

68

69 class DataFrameOperation(Operation[’DataFrameArtifact ’]):

70 def __init__(self , *args , ** kwargs):

71 self.artifact_class = kwargs.pop(’artifact_class ’, DataFrameArtifact)

72 super(DataFrameOperation , self).__init__ (*args , ** kwargs)

73 self.code = ’self.sources [0]. table’ # Starting point for chained code generation

.

74

75 def apply(self , numeric_col: str , a: float , b: float) -> DataFrameArtifact:

76 super(DataFrameOperation , self).apply(numeric_col , a, b)

77 new_col_name = f"{numeric_col}__{int(a)}x_{int(b)}"

78 return f’.assign ({ new_col_name} = lambda x: x.{ numeric_col }*{a}+{b})’

79

80 def sample(self , frac: float) -> DataFrameArtifact:

81 super(DataFrameOperation , self).sample(frac)

82 return f’.sample(frac={frac})’

83

84 def groupby(self , group_columns: List[str], agg_columns: List[str], agg_function:

str) -> T:

85 super(DataFrameOperation , self).groupby(group_columns , agg_columns , agg_function

)

86 return f’[{ group_columns+agg_columns }]. groupby ({ group_columns }).{ agg_function }()

85

.reset_index ()’

87

88 def project(self , output_cols: List[str]) -> T:

89 super(DataFrameOperation , self).project(output_cols)

90 return f’[{ output_cols }]’

91

92 def select(self , condition: str) -> T:

93 super(DataFrameOperation , self).select(condition)

94 return f’.query ("{ condition }")’

95

96 def merge(self , key_col: List[str]) -> T:

97 super(DataFrameOperation , self).merge(key_col)

98 return f’.merge(self.sources [1]. table , on="{ key_col }")’

99

100 def pivot(self , index_cols: List[str], columns: List[str], value_col: List[str],

agg_func: str) -> T:

101 super(DataFrameOperation , self).pivot(index_cols , columns , value_col , agg_func)

102 return f’.pivot_table(index ={ index_cols}, columns ={ columns},values ={ value_col},

aggfunc ={ agg_func })’

103

104 def fill(self , col_name: str , old_value , new_value):

105 super(DataFrameOperation , self).fill(col_name , old_value , new_value)

106 return f’.replace ({{ "{ col_name }": {old_value} }}, {new_value })’

107

108 def chain_operation(self , op , args):

109 self.code += getattr(self , op)(** args)

110 super(DataFrameOperation , self).chain_operation(op, args)

111

112 def materialize(self , new_label):

113 new_df = eval(self.code)

114 super(DataFrameOperation , self).materialize(new_label)

115 return self.artifact_class(label=self.new_label ,

116 from_df=new_df ,

117 schema_map=self.current_schema_map)

118

119

120 class DataFrameWorkflow(Workflow):

121 def __init__(self , *args , ** kwargs):

122 super(DataFrameWorkflow , self).__init__ (*args , ** kwargs)

123 self.artifact_class = DataFrameArtifact

86

124 self.operator_class = DataFrameOperation

125

126 def initialize_new_artifact(self , label=None , filename=None , schema_map=None):

127 return DataFrameArtifact(label , filename=filename , schema_map=schema_map)

modin: The modin client (Listing 5.2) is an extension of the pandas’ client, in which all

pandas operations are simply routed through the modin library [76]. The client provides the

user an option of specifying either a dask or ray execution engine, along with initialization

parameters such as number of workers, which can distribute the dataframe operations on

parallel hardware.

Listing 5.2: fuzzydata implementation of a modin client
1 import modin.pandas as mpd

2 from modin.config import Engine

3

4 from fuzzydata.clients.pandas import DataFrameArtifact , DataFrameOperation

5 from fuzzydata.core.workflow import Workflow

6

7

8 class ModinArtifact(DataFrameArtifact):

9

10 def __init__(self , *args , ** kwargs):

11 kwargs.update ({’pd’: mpd}) # Force loading of the modin pandas library

12 super(ModinArtifact , self).__init__ (*args , ** kwargs)

13 self._deserialization_function = {

14 ’csv’: self.pd.read_csv

15 }

16 self._serialization_function = {

17 ’csv’: ’to_csv ’

18 }

19

20 self.operation_class = DataFrameOperation

21

22

23 class ModinWorkflow(Workflow):

24 def __init__(self , *args , ** kwargs):

25 self.modin_engine = kwargs.pop(’modin_engine ’, ’dask’)

87

26 super(ModinWorkflow , self).__init__ (*args , ** kwargs)

27 self.artifact_class = ModinArtifact

28 self.operator_class = DataFrameOperation

29

30 if self.modin_engine == ’dask’:

31 from dask.distributed import Client

32 processes = kwargs.pop(’processes ’, True)

33 Client(processes=processes)

34 else:

35 import ray

36 ray.init(ignore_reinit_error=True)

37

38 Engine.put(self.modin_engine)

39

40 def initialize_new_artifact(self , label=None , filename=None , schema_map=None):

41 return ModinArtifact(label , filename=filename , schema_map=schema_map)

SQLite: The SQLite client (Listing 5.3) creates a file-based embedded database on disk

and uses the generator described in Section 5.2.3 to generate base table artifacts. The base

table artifacts are then operated upon by SQL queries constructed for each operation to

generate other artifacts as views in the database. We use nested sub-queries to chain all of

the transformations into an operation. All table views are serialized to disk as CSV files at

the end of the workflow. A notable exclusion from the SQLite client is the pivot operation

since generic pivots in a generic SQL dialect are quite complex to generate. The client

initialization parameters include an SQL connection string, so this client can be used with

other SQL databases as well. In case of a SQL dialect mismatch for other database systems,

this client could be extended to re-implement any of the incompatible operations.

Listing 5.3: fuzzydata implementation of a SQLite client
1 import math

2 from typing import List

3

4 import pandas

5 import sqlalchemy

6 import logging

88

7

8 from fuzzydata.core.artifact import Artifact

9 from fuzzydata.core.generator import generate_table

10 from fuzzydata.core.operation import Operation , T

11 from fuzzydata.core.workflow import Workflow

12

13 logger = logging.getLogger(__name__)

14

15 class SQLArtifact(Artifact):

16

17 def __init__(self , *args , ** kwargs):

18 self.sql_engine = kwargs.pop("sql_engine")

19 self.from_sql = kwargs.pop("from_sql", None)

20 self.sync_df = kwargs.pop("sync_df", False)

21 from_df = kwargs.pop("from_df", None)

22

23 super(SQLArtifact , self).__init__ (*args , ** kwargs)

24

25 self.operation_class = SQLOperation

26 self.pd = pandas

27

28 self._deserialization_function = {

29 ’csv’: self.pd.read_csv

30 }

31 self._serialization_function = {

32 ’csv’: ’to_csv ’

33 }

34

35 self._get_table = f’SELECT * FROM ‘{self.label}‘’

36 self._del_table = f’DROP TABLE IF EXISTS ‘{self.label}‘’

37 self._num_rows = f’SELECT COUNT (*) FROM ‘{self.label}‘’

38

39 if self.from_sql:

40 self.sql_engine.execute(self.from_sql)

41 if self.sync_df:

42 self.table = self.pd.read_sql(self._get_table , con=self.sql_engine)

43

44 elif from_df is not None:

45 self.from_df(from_df)

46

89

47 def generate(self , num_rows , schema):

48 df = generate_table(num_rows , column_dict=schema)

49 df.to_sql(self.label , con=self.sql_engine , if_exists=’replace ’)

50 self.schema_map = schema

51 if self.sync_df:

52 self.table = df

53 # self.in_memory = True

54

55 def from_df(self , df):

56 df.to_sql(self.label , con=self.sql_engine , if_exists=’replace ’, index=False)

57 if self.sync_df:

58 self.table = df

59

60 def deserialize(self , filename=None):

61 if not filename:

62 filename = self.filename

63

64 df = self._deserialization_function[self.file_format](filename)

65 df.to_sql(self.label , con=self.sql_engine , if_exists=’replace ’)

66 if self.sync_df:

67 self.table = df

68 # self.in_memory = True

69

70 def serialize(self , filename=None):

71 if not filename:

72 filename = self.filename

73

74 df = self.pd.read_sql(self._get_table , con=self.sql_engine)

75 serialization_method = getattr(df, self._serialization_function[self.file_format

])

76 serialization_method(filename)

77

78 def destroy(self):

79 if self.sync_df:

80 del self.table

81 self.sql_engine.execute(self._del_table)

82

83 def to_df(self):

84 return self.pd.read_sql(self._get_table , con=self.sql_engine)

85

90

86 def __len__(self):

87 return self.sql_engine.execute(self._num_rows).first ()[0]

88

89

90 class SQLOperation(Operation[’SQLArtifact ’]):

91

92 def __init__(self , *args , ** kwargs):

93 self.artifact_class = kwargs.pop(’artifact_class ’, SQLArtifact)

94 super(SQLOperation , self).__init__ (*args , ** kwargs)

95 self.agg_function_dict = {

96 ’mean’: ’AVG’

97 }

98 self.code = f"SELECT * FROM ‘{self.sources [0]. label}‘"

99

100 def sample(self , frac: float) -> SQLArtifact:

101 super(SQLOperation , self).sample(frac)

102 num_rows = len(self.sources [0])

103 sample_rows = math.ceil(num_rows*frac)

104 sql_sample_stmt = f"SELECT * FROM {{ source }} ORDER BY RANDOM () " \

105 f"LIMIT {sample_rows} "

106 return sql_sample_stmt

107

108 def apply(self , numeric_col: str , a: float , b: float) -> SQLArtifact:

109 super(SQLOperation , self).apply(numeric_col , a, b)

110 new_col_name = f"{numeric_col}__{a}x_{b}"

111 sql_apply_stmt = f"SELECT *, (‘{ numeric_col}‘ * {a}) + {b} AS ‘{new_col_name}‘ "

\

112 f"FROM {{ source }}"

113 return sql_apply_stmt

114

115 def groupby(self , group_columns: List[str], agg_columns: List[str], agg_function:

str) -> SQLArtifact:

116 super(SQLOperation , self).groupby(group_columns , agg_columns , agg_function)

117 group_cols_str = ’, ’.join([f" ‘{x}‘" for x in group_columns])

118

119 # Translate the aggregate function string if required

120 if agg_function in self.agg_function_dict:

121 agg_function = self.agg_function_dict[agg_function]

122

123 agg_cols_str = f"{’,’.join([f ’{agg_function }(‘{x}‘) AS ‘{x}‘’ for x in

91

agg_columns])}"

124 sql_groupby_stmt = f"SELECT {group_cols_str}, {agg_cols_str} " \

125 f"FROM {{ source }} " \

126 f"GROUP BY {group_cols_str} "

127 return sql_groupby_stmt

128

129 def project(self , output_cols: List[str]) -> T:

130 super(SQLOperation , self).project(output_cols)

131

132 project_predicate = ’,’.join([f"‘{x}‘" for x in output_cols])

133

134 sql_project_stmt = f"SELECT {project_predicate} FROM {{ source }} "

135 return sql_project_stmt

136

137 def select(self , condition: str) -> T:

138 super(SQLOperation , self).select(condition)

139 sql_select_stmt = f"SELECT * FROM {{ source }} " \

140 f"WHERE {condition}"

141 return sql_select_stmt

142

143 def merge(self , key_col: List[str]) -> T:

144 super(SQLOperation , self).merge(key_col)

145 sql_select_stmt = f"SELECT * FROM {{ source }} " \

146 f"INNER JOIN ‘{self.sources [1]. label}‘ " \

147 f"USING (‘{key_col}‘)"

148 return sql_select_stmt

149

150 def pivot(self , index_cols: List[str], columns: List[str], value_col: List[str],

agg_func: str) -> T:

151 raise NotImplementedError(’Generic Pivots in SQL are Hard!’)

152

153 def fill(self , col_name: str , old_value , new_value):

154 super(SQLOperation , self).fill(col_name , old_value , new_value)

155 other_columns = ’,’.join([f" ‘{x}‘" for x in list(set(self.current_schema_map.

keys()) - set(col_name))])

156 sql_fill_stmt = f"SELECT {other_columns}, " \

157 f"CASE WHEN ‘{col_name}‘ = ’{old_value}’ THEN ’{new_value}’ ELSE

‘{col_name}‘ END " \

158 f"AS ‘{col_name}‘ FROM {{ source }}"

159 return sql_fill_stmt

92

160

161 def chain_operation(self , op , args):

162 new_code = getattr(self , op)(** args)

163 logger.debug(f’Code before chaining: {self.code}’)

164 self.code = new_code.replace(’{source}’, f’({self.code})’)

165 logger.debug(f’Code after chaining: {self.code}’)

166

167 def materialize(self , new_label):

168 super(SQLOperation , self).materialize(new_label)

169 logger.debug(f’Executing SQL code: {self.code}’)

170 self.code = f’CREATE VIEW ‘{self.new_label}‘ AS {self.code}’

171 return self.artifact_class(label=self.new_label ,

172 sql_engine=self.sources [0]. sql_engine ,

173 from_sql=self.code ,

174 schema_map=self.current_schema_map)

175

176

177 class SQLWorkflow(Workflow):

178 def __init__(self , *args , ** kwargs):

179 sql_string = kwargs.pop(’sql_string ’, None)

180 super(SQLWorkflow , self).__init__ (*args , ** kwargs)

181 self.artifact_class = SQLArtifact

182 self.operator_class = SQLOperation

183 if not sql_string:

184 sql_string = f"sqlite :///{ self.out_dir }/{ self.name}.db"

185 self.sql_engine = sqlalchemy.create_engine(sql_string)

186

187 def initialize_new_artifact(self , label=None , filename=None , schema_map=None):

188 return SQLArtifact(label , filename=filename , sql_engine=self.sql_engine ,

schema_map=schema_map)

5.3 Use Cases

In this section, we demonstrate the various uses of FuzzyData. We first recreate a simple

workflow using a publicly available Jupyter notebook. We then generate a randomized

workflow, scale the workflow size and show the runtime performance on the three clients.

All of our experiments were run on a server running Ubuntu 18.04, with an Intel Xeon Silver
93

4416 CPU, 196 GB RAM . All of our code was executed using the Python 3.8.5 interpreter

with pandas v1.4.0, SQLite v3.33.0, modin v0.13.2, dask v2022.2.0, and ray v1.10.0. The

dask engine was configured using default settings, which resulted in 8 processes and 48

threads being spawned for each bechmarking session. ray was also configured similarly,

resulting in upto 48 worker threads being spawned in each session.

5.3.1 Fuzzy Testing Suite for Dataframe Systems

Any client implemented in the FuzzyData library can use the built-in test suite, generating

many workflow test cases with variable number of artifacts, rows, columns and operations2.

These tests can be used to check API and result equivalences and corner cases for operations

run using diverse column types. Using FuzzyData’s test suite, we uncovered an API

corner case in modin, wherein a dataframe generated in memory fails to execute consecutive

groupbys, and reported the issue to the modin developers3. The issue stems from lazy

metadata propagation in modin.

5.3.2 Encoding and Replaying an Existing Workflow

In this experiment, we encode an existing workflow from the modin examples page [78]. The

primary artifact that is loaded into this workflow is a 1.8GB CSV file, following which we

execute three different group-by operations on the same artifact. The resulting execution

timeline is depicted in Figure 5.3. We can see that the modin-ray client completes the

workflow the fastest at approximately 2.8x faster than pandas and 21.5x faster than SQLite,

with the runtime being dominated by the CSV loading process.

The following JSON file (Listing 5.4) is a manually encoded list of operations derived

from the workflow example in [78]. This JSON input file and source artifact can be used as

2. https://github.com/suhailrehman/fuzzydata/tree/main/tests

3. https://github.com/modin-project/modin/issues/4287

94

https://github.com/suhailrehman/fuzzydata/tree/main/tests
https://github.com/modin-project/modin/issues/4287

input to replay the workflow on all FuzzyData clients. The runtime result of this workflow

on all clients is in Section 5.3.2.

Listing 5.4: JSON encoding of a real workflow
1 {

2 "name" : "nyc−cab" ,

3 " ope r a t i on_ l i s t " : [{

4 " sour c e s " : [

5 " yel low_tripdata_2015−01"

6] ,

7 "new_label " : "gb_vendor_id_amount_sum" ,

8 " ope r a t i on_ l i s t " : [{

9 "op" : "groupby" ,

10 " args " : {

11 "group_columns" : [

12 "VendorID"

13] ,

14 "agg_columns" : [

15 "total_amount"

16] ,

17 " agg_function " : "sum"

18 }}] } ,

19 {

20 " sour c e s " : [

21 " yel low_tripdata_2015−01"

22] ,

23 "new_label " : "gb_pcount_amount_mean" ,

24 " ope r a t i on_ l i s t " : [{

25 "op" : "groupby" ,

26 " args " : {

27 "group_columns" : [

28 "passenger_count "

29] ,

30 "agg_columns" : [

31 "total_amount"

32] ,

33 " agg_function " : "mean"

34 }}]

35 } ,

95

36 {

37 " sour c e s " : [

38 " yel low_tripdata_2015−01"

39] ,

40 "new_label " : "gb_pcount_vendor_total_mean" ,

41 " ope r a t i on_ l i s t " : [{

42 "op" : "groupby" ,

43 " args " : {

44 "group_columns" : [

45 "passenger_count " ,

46 "VendorID"

47] ,

48 "agg_columns" : [

49 "total_amount"

50] ,

51 " agg_function " : "mean"

52 }}]

53 }

54]

55 }

5.3.3 Scaling and Replaying a Generated Workflow

Figure 5.2 represents a workflow generated by FuzzyData with parameters (n = 15, r =

1000, c = 20, b = 0.01,m = 1), with all operations permitted except pivots. The work-

flow was loaded and replayed in the three FuzzyData clients with the results shown in

Figures 5.4a.

For the workflow generated in Section 5.2.4, we scaled the base artifact up from 1000 rows

up to 5 million and re-ran the workload on all the clients. Figure 5.4a shows the results of

our scaling experiment. This specific example shows that pandas outperforms all the other

clients, even at 5M rows (2.1 GB). Figure 5.4b illustrates the runtime breakdown grouped by

operation. Despite the improvement in loading times, the total time to draw the six random

samples from the distributed dataframes is much slower than the corresponding operation in

96

pandas modin_dask modin_ray sqlite
Client

0

50

100

150

200

250

300

350

R
un

tim
e

(S
ec

on
ds

)

40
17 14

301load
groupby_1
groupby_2
groupby_3

Figure 5.3: Real-World Workflow Replay

1K 10K 100K 1M 5M
Base Artifact Number of Rows (r)

0

100

200

300

400

500

R
un

tim
e

(S
ec

on
ds

)

pandas
modin_dask
modin_ray
sqlite

(a) Total Runtime

1K 10K 100K 1M 5M
Base Artifact Number of Rows (r)

0

100

200

300

400

500

R
un

tim
e
(S
ec
on
ds
)

groupby
load
merge
project
sample

pandas
modin_dask
modin_ray
sqlite

(b) Breakdown of runtime.

Figure 5.4: Results of the Scaling Experiments

97

pandas, slowing down the total runtime in modin compared to pandas, indicating a potential

avenue for improvement in modin.

5.4 Deployment on Modin

At the time of writing, FuzzyData has been integrated into the CI suite for modin, which

resulted in it being downloaded over 100k times and being run the main repository 1600

times, generating approximately 3200 randomized workflows. 145 runs resulted in failures,

which resulted in 3 issues being filed in the modin repository. FuzzyData’s CI integration

is planned with addtional performance testing features, allowing the developers to track

the performance of modin over time, and compare it against pandas and other dataframe

systems.

5.5 Conclusions and Future Work

We have shown FuzzyData to be a useful workflow generation system that can be used to

generate workflows and test/evaluate dataframe-style systems. Due to the pluggable nature

of our implementation, many extensions can be considered for future work:

• Further enhancement of the randomized table generator, allowing users to express

inter-column functional dependencies and expected cardinalities for columns.

• The rule-based operation/workflow generator can be extended to use learned features to

automatically generate even more realistic operations and arguments, based on artifact

features, such as those described in [103].

• Integrate additional serialization formats such as parquet to enable comparisons across

serialization formats.

98

• Additional clients can be implemented in FuzzyData to provide even more points of

comparison.

99

CHAPTER 6

CONCLUSIONS

In this thesis, we have outlined the retrospective lineage infrerence (RLI) problem, and

discussed its relevance in the contemporary data lake setting. In Chapter 3 we presented the

Relic system, which is a novel system that addresses the RLI problem.

Relic is designed to work with a single workflow, and we have shown in Section 3.6 that

it can be extended to support multiple workflows, workflows with different materialization

rates, and workflows with unmatched schemas. We showed that we were able to recover the

lineage for small workflows in a reasonable amount of time with an average accuracy of 0.9

for set of real-world workflows.

We then showed in Chapter 4 that Relic can be scaled using sampling and sketch

techniques, which offloads much of the computation to a preprocessing step, allowing for

rapid lineage queries to be issued to a LSH-based index. We identified that a coupled-

column jaccard containment index can be used for querying the lineage of several types of

operations, and showed that the appropriate index can answer lineage queries in less than

one second, while a brute-force search can take over 10 minutes.

In Chapter 5, we have shown FuzzyData to be a useful workflow generation system that

can be used to generate workflows and test/evaluate dataframe-style systems. Fuzzydata was

used to generate workflows for dataframe-based systems and is currently being used by modin

to perform regression testing.

100

REFERENCES

[1] AirBnB. 2020. Dataportal Project. https://medium.com/airbnb-engineering/de
mocratizing-data-at-airbnb-852d76c51770

[2] AirBnB. 2020. Dataportal Project. https://medium.com/airbnb-engineering/de
mocratizing-data-at-airbnb-852d76c51770. [Online; accessed 12/21/2020].

[3] Abdussalam Alawini, David Maier, Kristin Tufte, and Bill Howe. 2014. Helping scien-
tists reconnect their datasets. In Proceedings of the 26th International Conference on
Scientific and Statistical Database Management (SSDBM ’14). Association for Com-
puting Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/261824
3.2618263

[4] Abdussalam Alawini, David Maier, Kristin Tufte, Bill Howe, and Rashmi Nandikur.
2015. Towards automated prediction of relationships among scientific datasets. In
Proceedings of the 27th International Conference on Scientific and Statistical Database
Management - SSDBM ’15. ACM Press, La Jolla, California, 1–5. https://doi.or
g/10.1145/2791347.2791358

[5] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and
Steve Mock. 2004. Kepler: An Extensible System for Design and Execution of Scien-
tific Workflows. In Proceedings of the 16th International Conference on Scientific and
Statistical Database Management (SSDBM ’04). IEEE Computer Society, USA, 423.

[6] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and
Steve Mock. 2004. Kepler: an extensible system for design and execution of scientific
workflows. In Proceedings. 16th International Conference on Scientific and Statistical
Database Management, 2004. IEEE, 423–424.

[7] Austin Appleby. 2016. MurmurHash3. https://github.com/aappleby/smhasher/w
iki/MurmurHash3. Accessed: 2023-01-14.

[8] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh
Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. 2015. Scaling
spark in the real world: performance and usability. Proceedings of the VLDB Endow-
ment 8, 12 (Aug. 2015), 1840–1843. https://doi.org/10.14778/2824032.2824080

[9] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak, Michał
Świtakowski, Michał Szafrański, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter
Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold Xin, and Matei Zaharia.
2020. Delta lake: high-performance ACID table storage over cloud object stores.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 3411–3424. https://doi.
org/10.14778/3415478.3415560

101

https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://doi.org/10.1145/2618243.2618263
https://doi.org/10.1145/2618243.2618263
https://doi.org/10.1145/2791347.2791358
https://doi.org/10.1145/2791347.2791358
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.14778/2824032.2824080
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560

[10] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray,
P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
I. L. Traiger, B. W. Wade, and V. Watson. 1976. System R: relational approach to
database management. ACM Transactions on Database Systems 1, 2 (June 1976),
97–137. https://doi.org/10.1145/320455.320457

[11] Peter Bailis, Joseph M Hellerstein, and Michael Stonebraker. 2015. Readings in
Database Systems, 5th Edition. http://www.redbook.io/

[12] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. Au-
toPandas: Neural-Backed Generators for Program Synthesis. Proc. ACM Program.
Lang. 3, OOPSLA, Article 168 (Oct. 2019), 27 pages. https://doi.org/10.1145/
3360594

[13] Anant Bhardwaj, Amol Deshpande, Aaron J. Elmore, David Karger, Sam Madden,
Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca Zhang. 2015.
Collaborative Data Analytics with DataHub. Proc. VLDB Endow. 8, 12 (aug 2015),
1916–1919. https://doi.org/10.14778/2824032.2824100

[14] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J.
Elmore, Samuel Madden, and Aditya G. Parameswaran. 2015. DataHub: Collaborative
Data Science & Dataset Version Management at Scale. http://cidrdb.org/cidr2
015/Papers/CIDR15_Paper18.pdf

[15] A. Broder. 1997. On the Resemblance and Containment of Documents. In Proceed-
ings of the Compression and Complexity of Sequences 1997 (SEQUENCES ’97). IEEE
Computer Society, USA, 21.

[16] Stanislav Böhm and Jakub Beránek. 2020. Runtime vs Scheduler: Analyzing
Dask’s Overheads. In 2020 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS). 1–8. https://doi.org/10.1109/WORKS51914.2020.00006

[17] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden,
and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, Paris, 1001–1012.
https://doi.org/10.1109/ICDE.2018.00094

[18] James Cheney, Laura Chiticariu, andWang-Chiew Tan. 2009. Provenance in databases:
Why, how, and where. Now Publishers Inc.

[19] P. Christen. 2012. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering 24, 9 (Sep.
2012), 1537–1555. https://doi.org/10.1109/TKDE.2011.127

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing - SoCC ’10. ACM Press, Indianapolis, Indiana,
USA, 143. https://doi.org/10.1145/1807128.1807152

102

https://doi.org/10.1145/320455.320457
http://www.redbook.io/
https://doi.org/10.1145/3360594
https://doi.org/10.1145/3360594
https://doi.org/10.14778/2824032.2824100
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
https://doi.org/10.1109/WORKS51914.2020.00006
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/1807128.1807152

[21] TPC Council. 2022. TPC-Homepage. https://tpc.org/default5.asp

[22] Y. Cui and J. Widom. 2003. Lineage tracing for general data warehouse transforma-
tions. The VLDB Journal The International Journal on Very Large Data Bases 12, 1
(May 2003), 41–58. https://doi.org/10.1007/s00778-002-0083-8

[23] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer Widom.
2010. Synthesizing view definitions from data. In Proceedings of the 13th International
Conference on Database Theory - ICDT ’10. ACM Press, Lausanne, Switzerland, 89.
https://doi.org/10.1145/1804669.1804683

[24] Tom De Nies, Sam Coppens, Davy Van Deursen, Erik Mannens, and Rik Van de
Walle. 2012. Automatic Discovery of High-Level Provenance Using Semantic Similar-
ity. In Provenance and Annotation of Data and Processes, David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Paul Groth,
and James Frew (Eds.). Vol. 7525. Springer Berlin Heidelberg, Berlin, Heidelberg, 97–
110. https://doi.org/10.1007/978-3-642-34222-6_8 Series Title: Lecture Notes
in Computer Science.

[25] Tom De Nies, Erik Mannens, and Rik Van de Walle. 2016. Reconstructing Human-
Generated Provenance Through Similarity-Based Clustering. In Provenance and An-
notation of Data and Processes (Lecture Notes in Computer Science), Marta Mat-
toso and Boris Glavic (Eds.). Springer International Publishing, Cham, 191–194.
https://doi.org/10.1007/978-3-319-40593-3_19

[26] Vinay Deolalikar and Hernan Laffitte. 2009. Provenance as Data Mining: Combining
File System Metadata with Content Analysis. In First Workshop on on Theory and
Practice of Provenance (San Francisco, CA) (TAPP’09). USENIX Association, USA,
Article 10, 10 pages.

[27] Hong-Hai Do and Erhard Rahm. 2002. COMA: a system for flexible combination of
schema matching approaches. In Proceedings of the 28th international conference on
Very Large Data Bases (VLDB ’02). VLDB Endowment, Hong Kong, China, 610–621.

[28] LinkedIn Engineering. 2020. DataHub Project. https://github.com/linkedin/da
tahub. [Online; accessed 12/21/2020].

[29] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022. MATE:
Multi-Attribute Table Extraction. Proc. VLDB Endow. 15, 8 (jun 2022), 1684–1696.
https://doi.org/10.14778/3529337.3529353

[30] Daniele Faraglia. 2020. Faker Python Package. https://github.com/joke2k/faker.
[Online; accessed 12/21/2020].

103

https://tpc.org/default5.asp
https://doi.org/10.1007/s00778-002-0083-8
https://doi.org/10.1145/1804669.1804683
https://doi.org/10.1007/978-3-642-34222-6_8
https://doi.org/10.1007/978-3-319-40593-3_19
https://github.com/linkedin/datahub
https://github.com/linkedin/datahub
https://doi.org/10.14778/3529337.3529353
https://github.com/joke2k/faker

[31] Daniele Faraglia and Other Contributors. 2022. Faker. https://github.com/joke2
k/faker original-date: 2012-11-12T23:00:09Z.

[32] Anna Fariha and Alexandra Meliou. 2019. Example-driven query intent discovery:
abductive reasoning using semantic similarity. Proceedings of the VLDB Endowment
12, 11 (July 2019), 1262–1275. https://doi.org/10.14778/3342263.3342266

[33] Anna Fariha and Alexandra Meliou. 2019. Example-driven Query Intent Discovery:
Abductive Reasoning Using Semantic Similarity. Proc. VLDB Endow. 12, 11 (July
2019), 1262–1275. https://doi.org/10.14778/3342263.3342266

[34] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker.
2018. Aurum: A Data Discovery System. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA, 1001–
1012. https://doi.org/10.1109/ICDE.2018.00094

[35] R. Castro Fernandez, J. Min, D. Nava, and S. Madden. 2019. Lazo: A Cardinality-
Based Method for Coupled Estimation of Jaccard Similarity and Containment. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE Computer
Society, Los Alamitos, CA, USA, 1190–1201. https://doi.org/10.1109/ICDE.201
9.00109

[36] Apache Software Foundation. 2020. Apache Arrow. https://arrow.apache.org/

[37] Apache Software Foundation. 2020. Apache Atlas. https://atlas.apache.org/.
[Online; accessed 12/21/2020].

[38] LF AI & Data Foundation. 2020. Amundsen Project. https://github.com/amundse
n-io/amundsen. [Online; accessed 12/21/2020].

[39] LF AI & Data Foundation. 2020. Egeria Project. https://egeria.odpi.org/.
[Online; accessed 12/21/2020].

[40] LF AI & Data Foundation. 2020. Marquez Project. https://github.com/Marquez
Project/marquez. [Online; accessed 12/21/2020].

[41] LF AI & Data Foundation. 2022. amundsen-io/amundsen. https://github.com/a
mundsen-io/amundsen original-date: 2019-05-14T15:12:40Z.

[42] LF AI & Data Foundation. 2022. MarquezProject/marquez. https://github.com
/MarquezProject/marquez original-date: 2018-07-05T22:43:20Z.

[43] The R Foundation. 2022. R: The R Project for Statistical Computing. https:
//www.r-project.org/

[44] Jim Gray (Ed.). 1994. The Benchmark handbook: for database and transaction pro-
cessing systems (2. ed., 2. [print.] ed.). Morgan Kaufmann, San Francisco, Calif.

104

https://github.com/joke2k/faker
https://github.com/joke2k/faker
https://doi.org/10.14778/3342263.3342266
https://doi.org/10.14778/3342263.3342266
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICDE.2019.00109
https://doi.org/10.1109/ICDE.2019.00109
https://arrow.apache.org/
https://atlas.apache.org/
https://github.com/amundsen-io/amundsen
https://github.com/amundsen-io/amundsen
https://egeria.odpi.org/
https://github.com/MarquezProject/marquez
https://github.com/MarquezProject/marquez
https://github.com/amundsen-io/amundsen
https://github.com/amundsen-io/amundsen
https://github.com/MarquezProject/marquez
https://github.com/MarquezProject/marquez
https://www.r-project.org/
https://www.r-project.org/

[45] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
Association for Computing Machinery, New York, NY, USA, 317–330. https:
//doi.org/10.1145/1926385.1926423

[46] Philip J. Guo and Margo Seltzer. 2012. BURRITO: Wrapping Your Lab Notebook
in Computational Infrastructure. In Proceedings of the 4th USENIX Conference on
Theory and Practice of Provenance (Boston, MA) (TaPP’12). USENIX Association,
USA, 7.

[47] H20.ai. 2022. Database-like ops benchmark. https://h2oai.github.io/db-bench
mark/

[48] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using networkx. Technical Report LA-UR-08-05495; LA-UR-
08-5495. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). https:
//www.osti.gov/biblio/960616

[49] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An intelligent data
lake system. In SIGMOD’16. ACM, 2097–2100.

[50] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis, Sudip
Roy, and Steven Euijong Whang. 2016. Goods: Organizing Google’s Datasets. In
Proceedings of the 2016 International Conference on Management of Data. ACM, San
Francisco California USA, 795–806. https://doi.org/10.1145/2882903.2903730

[51] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis, Sudip
Roy, and Steven Euijong Whang. 2016. Goods: Organizing google’s datasets. In Pro-
ceedings of the 2016 International Conference on Management of Data. ACM, New
York, NY, USA, 795–806.

[52] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and Felix
Naumann. 2013. Scalable discovery of unique column combinations. Proceedings of the
VLDB Endowment 7, 4 (2013), 301–312.

[53] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A Survey on
Provenance: What for? What Form? What From? The VLDB Journal 26, 6 (dec
2017), 881–906. https://doi.org/10.1007/s00778-017-0486-1

[54] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey on
provenance: What for? What form? What from? The VLDB Journal 26, 6 (2017),
881–906. Publisher: Springer.

[55] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang,
Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li, Xuelian
Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan Pei,

105

https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://www.osti.gov/biblio/960616
https://www.osti.gov/biblio/960616
https://doi.org/10.1145/2882903.2903730
https://doi.org/10.1007/s00778-017-0486-1

and Xin Tang. 2020. TiDB: a Raft-based HTAP database. Proceedings of the VLDB
Endowment 13, 12 (Aug. 2020), 3072–3084. https://doi.org/10.14778/3415478
.3415535

[56] Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran. 2017.
Orpheus DB: bolt-on versioning for relational databases. Proceedings of the VLDB
Endowment 10, 10 (2017), 1130–1141. Publisher: VLDB Endowment.

[57] Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran. 2017.
Orpheus DB: bolt-on versioning for relational databases. Proceedings of the VLDB
Endowment 10, 10 (2017), 1130–1141.

[58] Madelon Hulsebos. 2022. GitTables dataset for SemTab 2022. https://doi.org/10
.5281/zenodo.7091019

[59] Robert Ikeda and Jennifer Widom. 2009. Data lineage: A survey. Technical Report.
Stanford InfoLab.

[60] Jiyong Jang, Maverick Woo, and David Brumley. 2013. Towards Automatic Soft-
ware Lineage Inference. In 22nd USENIX Security Symposium (USENIX Security 13).
USENIX Association, Washington, D.C., 81–96. https://www.usenix.org/confe
rence/usenixsecurity13/technical-sessions/papers/jang

[61] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing Ma-
chinery, New York, NY, USA, 337–350. https://doi.org/10.1145/3183713.3183
727

[62] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). ACM, New
York, NY, USA, 337–350. https://doi.org/10.1145/3183713.3183727

[63] Christos Koutras, Kyriakos Psarakis, George Siachamis, Andra Ionescu, Marios Fragk-
oulis, Angela Bonifati, and Asterios Katsifodimos. 2021. Valentine in Action: Match-
ing Tabular Data at Scale. Proc. VLDB Endow. 14, 12 (oct 2021), 2871–2874.
https://doi.org/10.14778/3476311.3476366

[64] Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners, Sebas-
tian Breß, Tilmann Rabl, Juan Fumero, and Volker Markl. 2018. ScootR: Scaling R
Dataframes on Dataflow Systems. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC ’18). Association for Computing Machinery, New York, NY, USA,
288–300. https://doi.org/10.1145/3267809.3267813

[65] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and

106

https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.5281/zenodo.7091019
https://doi.org/10.5281/zenodo.7091019
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/jang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/jang
https://doi.org/10.1145/3183713.3183727
https://doi.org/10.1145/3183713.3183727
https://doi.org/10.1145/3183713.3183727
https://doi.org/10.14778/3476311.3476366
https://doi.org/10.1145/3267809.3267813

Aditya G. Parameswaran. 2021. Lux: always-on visualization recommendations for
exploratory dataframe workflows. Proceedings of the VLDB Endowment 15, 3 (Nov.
2021), 727–738. https://doi.org/10.14778/3494124.3494151

[66] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of Massive
Datasets (2nd ed.). Cambridge University Press, USA.

[67] Ping Li, Art B Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In Proceed-
ings of the 25th International Conference on Neural Information Processing Systems -
Volume 2 (Lake Tahoe, Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY,
USA, 3113–3121.

[68] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. 2001. Generic Schema
Matching with Cupid. In Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 49–58.

[69] S. Melnik, H. Garcia-Molina, and E. Rahm. 2002. Similarity flooding: a versatile
graph matching algorithm and its application to schema matching. In Proceedings
18th International Conference on Data Engineering. 117–128. https://doi.org/10
.1109/ICDE.2002.994702 ISSN: 1063-6382.

[70] Hui Miao, Amit Chavan, and Amol Deshpande. 2017. ProvDB: Lifecycle Management
of Collaborative Analysis Workflows. In Proceedings of the 2nd Workshop on Human-
In-the-Loop Data Analytics (HILDA’17). Association for Computing Machinery, New
York, NY, USA, 1–6. https://doi.org/10.1145/3077257.3077267

[71] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion
Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 561–577. https://www.usenix.org/confere
nce/osdi18/presentation/moritz

[72] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena.
2019. Data lake management: challenges and opportunities. Proceedings of the VLDB
Endowment 12, 12 (Aug. 2019), 1986–1989. https://doi.org/10.14778/3352063
.3352116

[73] Netflix. 2020. Metacat Project. https://github.com/Netflix/metacat. [Online;
accessed 12/21/2020].

[74] Netflix. 2022. Metacat. https://github.com/Netflix/metacat original-date:
2016-03-19T20:06:34Z.

[75] Thanh Tam Nguyen, Quoc Viet Hung Nguyen, Matthias Weidlich, and Karl Aberer.
2015. Result selection and summarization for Web Table search. In 2015 IEEE 31st

107

https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1145/3077257.3077267
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.14778/3352063.3352116
https://github.com/Netflix/metacat
https://github.com/Netflix/metacat

International Conference on Data Engineering. 231–242. https://doi.org/10.110
9/ICDE.2015.7113287 ISSN: 2375-026X.

[76] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. 2020. Towards scalable dataframe systems. Proceedings of the VLDB
Endowment 13, 12 (Aug. 2020), 2033–2046. https://doi.org/10.14778/3407790
.3407807

[77] Modin Project. 2022. Issues · modin-project/modin. https://github.com/modin-p
roject/modin

[78] Modin Project. 2022. Modin NYC Taxi Example Notebook. https://github.com
/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/exa
mples/jupyter/NYC_Taxi.ipynb original-date: 2018-06-21T21:35:05Z.

[79] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-Grained Lineage at Interactive
Speed. Proc. VLDB Endow. 11, 6 (Feb. 2018), 719–732. https://doi.org/10.147
78/3184470.3184475

[80] Kyriakos Psarakis. 2022. Valentine: Matching DataFrames Easily. https://github
.com/delftdata/valentine original-date: 2019-06-28T13:50:14Z.

[81] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10, 4 (2001), 334–350.

[82] Mohammed Suhail Rehman. 2019. Towards Understanding Data Analysis Workflows
Using a Large Notebook Corpus. In Proceedings of the 2019 International Conference
on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 1841–1843. https://doi.org/10.114
5/3299869.3300107

[83] El Kindi Rezig, Lei Cao, Michael Stonebraker, Giovanni Simonini, Wenbo Tao, Samuel
Madden, Mourad Ouzzani, Nan Tang, and Ahmed K. Elmagarmid. 2019. Data Civilizer
2.0: A Holistic Framework for Data Preparation and Analytics. Proc. VLDB Endow.
12, 12 (aug 2019), 1954–1957. https://doi.org/10.14778/3352063.3352108

[84] Janessa Rivera and Rob van der Meulen. 2014. Gartner Says Beware of the Data Lake
Fallacy. http://www.gartner.com/newsroom/id/2809117. Accessed: 2023-01-14.

[85] Ronald Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321. RFC Editor.
1–21 pages. https://www.rfc-editor.org/rfc/rfc1321

[86] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference. Austin,
TX, 130–136.

108

https://doi.org/10.1109/ICDE.2015.7113287
https://doi.org/10.1109/ICDE.2015.7113287
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3407790.3407807
https://github.com/modin-project/modin
https://github.com/modin-project/modin
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.14778/3184470.3184475
https://github.com/delftdata/valentine
https://github.com/delftdata/valentine
https://doi.org/10.1145/3299869.3300107
https://doi.org/10.1145/3299869.3300107
https://doi.org/10.14778/3352063.3352108
http://www.gartner.com/newsroom/id/2809117
https://www.rfc-editor.org/rfc/rfc1321

[87] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and explanation
in computational notebooks. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 32.

[88] Anshumali Shrivastava. 2017. Optimal Densification for Fast and Accurate Minwise
Hashing. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 3154–3163.

[89] Phanwadee Sinthong and Michael J. Carey. 2019. AFrame: Extending DataFrames
for Large-Scale Modern Data Analysis. In 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 359–371. https://doi.org/10.1109/BigData47090.2019.
9006303

[90] Brian Stein and Alan Morrison. 2014. The enterprise data lake: Better integration and
deeper analytics. PwC Technology Forecast: Rethinking integration 1 (2014).

[91] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017. Reverse
engineering aggregation queries. Proceedings of the VLDB Endowment 10, 11 (Aug.
2017), 1394–1405. https://doi.org/10.14778/3137628.3137648

[92] RAPIDS Development Team. 2018. RAPIDS: Collection of Libraries for End to End
GPU Data Science. https://rapids.ai

[93] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.or
g/10.5281/zenodo.3509134

[94] Ignacio G. Terrizzano, Peter M. Schwarz, Mary Roth, and John E. Colino. 2015. Data
Wrangling: The Challenging Journey from the Wild to the Lake. In CIDR 2015,
Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org. http://cidrdb.org
/cidr2015/Papers/CIDR15_Paper2.pdf

[95] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query by
output. In Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of data. ACM, New York, NY, USA, 535–548.

[96] Uber. 2020. DataBook Project. https://eng.uber.com/databook/. [Online; accessed
12/21/2020].

[97] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei Wu,
Gengxin Miao, and Chung Wu. 2011. Recovering semantics of tables on the web.
Proceedings of the VLDB Endowment 4, 9 (June 2011), 528–538. https://doi.or
g/10.14778/2002938.2002939

[98] Ritche Vink. 2021. Polars. https://github.com/pola-rs/polars original-date:
2020-05-13T19:45:33Z.

109

https://doi.org/10.1109/BigData47090.2019.9006303
https://doi.org/10.1109/BigData47090.2019.9006303
https://doi.org/10.14778/3137628.3137648
https://rapids.ai
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
https://eng.uber.com/databook/
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://github.com/pola-rs/polars

[99] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor Leis,
Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real: How
Benchmarks Fail to Represent the Real World. In Proceedings of the Workshop on
Testing Database Systems (DBTest’18). Association for Computing Machinery, New
York, NY, USA, 1–6. https://doi.org/10.1145/3209950.3209952

[100] Alex Watson, Deepigha Shree Vittal Babu, and Suprio Ray. 2017. Sanzu: A data
science benchmark. In 2017 IEEE International Conference on Big Data (Big Data).
263–272. https://doi.org/10.1109/BigData.2017.8257934

[101] Eugene Wu, Samuel Madden, and Michael Stonebraker. 2013. SubZero: A Fine-
Grained Lineage System for Scientific Databases. In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013) (ICDE ’13). IEEE Com-
puter Society, USA, 865–876. https://doi.org/10.1109/ICDE.2013.6544881

[102] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data Prepa-
ration Steps Using Data Science Notebooks. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data (Portland, OR, USA) (SIG-
MOD ’20). Association for Computing Machinery, New York, NY, USA, 1539–1554.
https://doi.org/10.1145/3318464.3389738

[103] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data Prepara-
tion Steps Using Data Science Notebooks. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). Association for
Computing Machinery, Portland, OR, USA, 1539–1554. https://doi.org/10.114
5/3318464.3389738

[104] Y. Yang, Y. Zhang, W. Zhang, and Z. Huang. 2019. GB-KMV: An Augmented KMV
Sketch for Approximate Containment Similarity Search. In 2019 IEEE 35th Interna-
tional Conference on Data Engineering (ICDE). IEEE Computer Society, Los Alami-
tos, CA, USA, 458–469. https://doi.org/10.1109/ICDE.2019.00048

[105] Gunce Su Yilmaz, Tana Wattanawaroon, Liqi Xu, Abhishek Nigam, Aaron J. Elmore,
and Aditya Parameswaran. 2018. DataDiff: User-Interpretable Data Transformation
Summaries for Collaborative Data Analysis. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing Ma-
chinery, New York, NY, USA, 1769–1772. https://doi.org/10.1145/3183713.31
93564

[106] Gunce Su Yilmaz, Tana Wattanawaroon, Liqi Xu, Abhishek Nigam, Aaron J. Elmore,
and Aditya Parameswaran. 2018. DataDiff: User-Interpretable Data Transformation
Summaries for Collaborative Data Analysis. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 1769–1772. https://doi.org/10
.1145/3183713.3193564

110

https://doi.org/10.1145/3209950.3209952
https://doi.org/10.1109/BigData.2017.8257934
https://doi.org/10.1109/ICDE.2013.6544881
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1109/ICDE.2019.00048
https://doi.org/10.1145/3183713.3193564
https://doi.org/10.1145/3183713.3193564
https://doi.org/10.1145/3183713.3193564
https://doi.org/10.1145/3183713.3193564

[107] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Kon-
winski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie,
and Corey Zumar. 2018. Accelerating the Machine Learning Lifecycle with MLflow.
IEEE Data Engineering Bulletin 41 (2018), 39–45.

[108] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing (Boston, MA) (HotCloud’10).
USENIX Association, USA, 10.

[109] Yi Zhang and Zachary G. Ives. 2019. Juneau: data lake management for Jupyter.
Proceedings of the VLDB Endowment 12, 12 (Aug. 2019), 1902–1905. https://doi.
org/10.14778/3352063.3352095

[110] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for Interac-
tive Data Science. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 1951–1966. https://doi.org/10.1145/3318464.3389726

[111] Jun Zhao, Carole Goble, Robert Stevens, and Daniele Turi. 2008. Mining Taverna’s
semantic web of provenance. Concurrency and Computation: Practice and Experience
20, 5 (2008), 463–472. Publisher: Wiley Online Library.

[112] Jun Zhao, Carole Goble, Robert Stevens, and Daniele Turi. 2008. Mining Tav-
erna’s semantic web of provenance. Concurrency and Computation: Practice and
Experience 20, 5 (2008), 463–472. https://doi.org/10.1002/cpe.1231
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1231

[113] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In Pro-
ceedings of the 2019 International Conference on Management of Data (SIGMOD
’19). Association for Computing Machinery, New York, NY, USA, 847–864. https:
//doi.org/10.1145/3299869.3300065

[114] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH Ensemble:
Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (aug 2016), 1185–1196.
https://doi.org/10.14778/2994509.2994534

111

https://doi.org/10.14778/3352063.3352095
https://doi.org/10.14778/3352063.3352095
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1002/cpe.1231
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/2994509.2994534

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Outline

	2 Background
	2.1 Motivation
	2.2 Related Work
	2.2.1 Research in Data Lineage
	2.2.2 Online Lineage Capture / Curation / Version Control
	2.2.3 Data Discovery
	2.2.4 Query Synthesis
	2.2.5 Document Provenance Systems
	2.2.6 Dataframe Benchmarking

	3 The RELIC System
	3.1 Introduction
	3.2 Problem Definition
	3.2.1 Notation
	3.2.2 The Lineage Inference Task
	3.2.3 Types of Transformations

	3.3 Lineage Inference Technique
	3.3.1 Initialization
	3.3.2 Building the Lineage Graph
	3.3.3 Inferring Point Preserving Transformations
	3.3.4 Inferring Non-Point-Preserving Transformations
	3.3.5 Breaking Ties when Selecting Edges

	3.4 Experimental Evaluation
	3.4.1 Datasets Used
	3.4.2 Configurations to be Evaluated
	3.4.3 Overall Accuracy
	3.4.4 Individual Detector Performance
	3.4.5 Time to Infer Workflows

	3.5 Conclusions and Future Work
	3.6 Relaxing Relic's Assumptions
	3.6.1 Effect of Materialization Rate on Accuracy
	3.6.2 Unmatched Schema
	3.6.3 Multiple Workflows

	4 Scaling RELIC
	4.1 Preliminaries
	4.1.1 MinHashing
	4.1.2 One Permutation Hashing
	4.1.3 K-Minimum Value Sketches
	4.1.4 Locality Sensitive Hashing

	4.2 Coupled Containment Sketches
	4.2.1 Sketch Construction
	4.2.2 Index Construction
	4.2.3 Querying the Index for Lineage
	4.2.4 Ranking the Results

	4.3 Implementation
	4.3.1 Sketching Techniques Used
	4.3.2 Software Implementation

	4.4 Evaluation
	4.4.1 Datasets Used
	4.4.2 Competing Systems
	4.4.3 Evaluation Metrics

	4.5 Results
	4.5.1 Index Query Accuracy
	4.5.2 Result Ranking
	4.5.3 Baseline Performance
	4.5.4 Index Generation and Query Runtimes and Space Requirements

	4.6 Conclusions

	5 The FuzzyData Workflow Specification System
	5.1 Introduction
	5.2 Fuzzydata
	5.2.1 Data Model
	5.2.2 Implementation
	5.2.3 Generating Random Artifacts
	5.2.4 Generating and Replaying Random Workflows
	5.2.5 Instrumentation
	5.2.6 Clients Implemented

	5.3 Use Cases
	5.3.1 Fuzzy Testing Suite for Dataframe Systems
	5.3.2 Encoding and Replaying an Existing Workflow
	5.3.3 Scaling and Replaying a Generated Workflow

	5.4 Deployment on Modin
	5.5 Conclusions and Future Work

	6 Conclusions
	References

